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Abstract
Minimal inconsistent sets have played an important role in the analysis and general handling of inconsistency

in logical knowledge bases. We introduce a semantical counterpart of this notion we call minimal inconsistent

signature, which is a minimal set of propositions such that projecting the knowledge base onto it still preserves

the inconsistency. We analyse minimal inconsistent signatures and the corresponding dual notion of maximal

consistent signatures in depth and show, among others, that the hitting set duality applies for them as well.

We apply our new notions to the field of inconsistency measurement and derive a series of new inconsistency

measures, which we analyse in terms of postulate satisfaction and general behaviour. Finally, we analyse the

computational complexity of various problems within this new context.

1. Introduction

Reasoning with inconsistent information is a central issue for approaches to knowledge representation

and reasoning [1, 2, 3, 4, 5, 6, 7, 8]. A standard approach to deal with inconsistency is to consider the

minimal inconsistent subsets of the knowledge base. Given a (possibly inconsistent) knowledge base

𝐾 consisting of (propositional) formulas, a minimal inconsistent subset 𝐾 ′
is a set 𝐾 ′ ⊆ 𝐾 that is

inconsistent and every set 𝐾 ′′
with 𝐾 ′′ ⊊ 𝐾 ′ ⊆ 𝐾 is consistent (we will give formal definitions in

Section 2). Minimal inconsistent subsets can directly be used for diagnosis and debugging [9], but also

for inconsistency-tolerant reasoning by removing one formula from each minimal inconsistent subset

[1, 7].

In this work, we define and analyse a new approach to analyse inconsistency, but defined in terms of

signatures rather than subsets of the knowledge base. More precisely, we define a minimal inconsistent

subsignature as a minimal set of propositions, such that forgetting
1

[10, 11] the remaining propositions

from the knowledge base still retains its inconsistency. By considering both the notion of minimal

inconsistent subsignatures and their counterpart, the maximal consistent subsignatures, we obtain

a technical framework that is quite similar to the framework of minimal inconsistent subsets and

maximal consistent subsets, but also features some additional interesting properties. We show that the

classical hitting set duality [9] carries over to minimal inconsistent subsignatures as well, i. e., one can

obtain maximal consistent subsignatures by removing a minimal hitting set of all minimal inconsistent

subsignatures, and vice versa. We furthermore analyse one particular application area in detail, namely

the area of inconsistency measurement [2, 12]. This area is concerned with developing measures that

assess the degree of inconsistency in knowledge bases. Many of the existing measures are defined in

terms of minimal inconsistent subsets and we analyse variants of these measures by using minimal

inconsistent signatures instead of minimal inconsistent subsets. In order to complement our analysis,

we also investigate the computational complexity of various problems pertaining to our approach.

To summarise, the contributions of this paper are as follows:

1. We revisit the notion of forgetting parts of the signature of a knowledge base for the purpose of
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defining a semantical counterpart to minimal inconsistent subsets and make some new observa-

tions (Section 3).

2. We define minimal inconsistent and maximal consistent subsignatures and analyse their properties;

in particular, we show that these structures also obey the hitting set duality (Section 4).

3. We define and analyse new inconsistency measures based on minimal inconsistent subsignatures

and maximal consistent subsignatures (Section 5).

4. We analyse the computational complexity of various decision problems related to minimal

inconsistent subsignatures (Section 6).

We will discuss necessary preliminaries in Section 2, discuss related work in Section 7, and conclude

with a discussion in Section 8.

Proofs of technical results can be found in an extended version of this paper [13].

2. Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of propositions, and let ℒ(At)
be the corresponding propositional language constructed using the standard connectives ∧ (conjunction),

∨ (disjunction), → (implication), and ¬ (negation). Let furthermore ⊤,⊥∈ At be special propositions

denoting tautology and contradiction, respectively.

Definition 1. A knowledge base 𝐾 is a finite set of formulas 𝐾 ⊆ ℒ(At). Let K be the set of all

knowledge bases.

If Φ is a formula or a set of formulas we write At(Φ) to denote the set of propositions appearing in

Φ. For a set Φ = {𝜑1, . . . , 𝜑𝑛} let

⋀︀
Φ = 𝜑1 ∧ . . . ∧ 𝜑𝑛 and ¬Φ = {¬𝜑 | 𝜑 ∈ Φ}.

Semantics to a propositional language are given by interpretations where an interpretation 𝜔 on

At is a function 𝜔 : At → {true, false}. Let Ω(At) denote the set of all interpretations for At (with

the convention that 𝜔(⊤) = true and 𝜔(⊥) = false). An interpretation 𝜔 satisfies (or is a model of)

a proposition 𝑎 ∈ At, denoted by 𝜔 |= 𝑎, if and only if 𝜔(𝑎) = true. The satisfaction relation |= is

extended to formulas in the usual way. For Φ ⊆ ℒ(At) we also define 𝜔 |= Φ if and only if 𝜔 |= 𝜑 for

every 𝜑 ∈ Φ.

In the following, let Φ,Φ1,Φ2 be formulas or sets of formulas. Define the set of models Mod(Φ) =
{𝜔 ∈ Ω(At) | 𝜔 |= Φ}. We write Φ1 |= Φ2 if Mod(Φ1) ⊆ Mod(Φ2). Φ1,Φ2 are equivalent, denoted by

Φ1 ≡ Φ2, if and only if Mod(Φ1) = Mod(Φ2). If Mod(Φ) = ∅ we also write Φ |=⊥ and say that Φ is

inconsistent (or unsatisfiable).

Definition 2. Let 𝐾 be a knowledge base.

1. 𝐾 ′ ⊆ 𝐾 is called a minimal inconsistent subset of 𝐾 if

a) 𝐾 ′ |=⊥ and

b) for all 𝐾 ′′
with 𝐾 ′′ ⊊ 𝐾 ′

, 𝐾 ′′ ̸|=⊥.

2. 𝐾 ′ ⊆ 𝐾 is called a maximal consistent subset of 𝐾 if

a) 𝐾 ′ ̸|=⊥ and

b) for all 𝐾 ′′
with 𝐾 ′ ⊊ 𝐾 ′′ ⊆ 𝐾 , 𝐾 ′′ |=⊥.

Let MIS(𝐾) and MCS(𝐾) denote the set of all minimal inconsistent subsets of 𝐾 and the set of all

maximal consistent subsets of 𝐾 , respectively.

Let furthermore FREE(𝐾) = 𝐾 ∖
⋃︀

MIS(𝐾) denote the set of free formulas of𝐾 , i. e., those formulas

of 𝐾 that are not members of any minimal inconsistent subset of 𝐾 . Moreover, a formula 𝛼 is safe

for a knowledge base 𝐾 iff 𝛼 ̸|=⊥ and At(𝛼) ∩ At(𝐾 ∖ {𝛼}) = ∅. Let SAFE(𝐾) denote the set of safe

formulas of 𝐾 and note that SAFE(𝐾) ⊆ FREE(𝐾) [14].



3. Forgetting and Projecting

A forgetting operator is an operator that removes a given set of propositions from a signature of the

knowledge base. Its initial motivation [10] was to be able to remove irrelevant parts of a knowledge

base, while retaining previous inferences as much as possible. There exists certain properties that such

an operator should satisfy [10, 11] and it makes sense (in the case of consistency) to identify forgetting

with the variable elimination operation. Let 𝜑[𝜓 → 𝜓′] denote the propositional formula that is obtained

from 𝜑 by simultaneously replacing each occurrence of 𝜓 in 𝜑 by 𝜓′
.

Definition 3. For a formula 𝜑 and some 𝑎 ∈ At(𝜑) define the elimination of 𝑎 from 𝜑, denoted as 𝜑÷ 𝑎,

to be the formula 𝜑÷ 𝑎 = 𝜑[𝑎→ ⊤] ∨ 𝜑[𝑎→ ⊥].

In other words, eliminating 𝑎 from 𝜑 is equivalent to replacing 𝑎 with ⊤ or ⊥. A nice property of

variable elimination is that inferences on the remaining part of the signature are retained [10]. We do

not formalise this property here, but only show an example.

Example 1. Let 𝜑 = (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ ¬𝑑). Forgetting 𝑎 from 𝜑 gives us

𝜑÷ 𝑎 = (⊤ ∧ 𝑏) ∨ (𝑐 ∧ ¬𝑑) ∨ (⊥ ∧ 𝑏) ∨ (𝑐 ∧ ¬𝑑) ≡ 𝑏 ∨ (𝑐 ∧ ¬𝑑)

Note that, e. g., 𝜑 |= 𝑏 ∨ 𝑐 and 𝜑÷ 𝑎 |= 𝑏 ∨ 𝑐.

Observe that variable elimination preserves inconsistency, i. e., if a formula is inconsistent then

forgetting any proposition cannot restore consistency. For this to see, first observe that the order

in which propositions are eliminated does not matter, so let 𝜑 ÷ 𝑆 for a set 𝑆 ⊆ At(𝜑) denote the

application of variable elimination in any order.

Proposition 1. 𝜑 ̸|=⊥ if and only if 𝜑÷ At(𝜑) ≡ ⊤.

Our aim in the rest of this section is to devise a forgetting operation based on variable elimination

that is able to restore consistency, i. e., by removing “conflicting” parts of the signature of the formula or

knowledge base, we wish to end up with a consistent outcome. Note that restoring consistency will

retract a lot of inferences, which is then not aligned with the initial motivation for forgetting from

above. We illustrate our aim with a simple example.

Example 2. Consider the formula 𝜑 given by 𝜑 = 𝑎∧¬𝑎∧𝑏. Clearly 𝜑 |=⊥. Intuitively, the proposition

𝑎 (and the modelled information about it) is responsible for the inconsistency. We therefore expect that

forgetting 𝑎 leaves us with a formula 𝜑′ = 𝑏, from which we can still derive meaningful information

about 𝑏. Note, however, that 𝜑÷ 𝑎 ≡ ⊥.

In order to define a forgetting operation with the above behaviour, we have to operate on the

level of proposition occurrences rather than proposition. Since we do not wish to retain inferences

by forgetting but only to remove propositions (and the information modelled for them), we allow

proposition occurrences to be replaced by ⊤ or ⊥ individually. For that, let

𝜑[𝜓 → 𝜓′
1/𝜓

′
2/ . . . /𝜓

′
𝑛]

denote the propositional formula that is obtained from 𝜑 by replacing the first occurrence of 𝜓 in 𝜑
by 𝜓′

1, the second occurrence of 𝜓 in 𝜑 by 𝜓′
2, and so on (the operation is undefined if the number of

occurrences of 𝜓 in 𝜑 is not equal to 𝑛).

Example 3. For the formula 𝜑 = 𝑎∧ (𝑏∨𝑎)∧¬𝑎 we have 𝜑[𝑎→ ⊤/ ⊥ / ⊥] = ⊤∧ (𝑏∨ ⊥)∧¬ ⊥≡ 𝑏.

The above operation allows us to define a new variant of variable elimination as follows. Let #𝜑𝑎
denote the number of occurrences of 𝑎 ∈ At(𝜑) in 𝜑.



Definition 4. For a formula 𝜑 and some 𝑎 ∈ At(𝜑) define

𝜑⊟ 𝑎 =
⋁︁

𝑥1,...,𝑥#𝜑𝑎
∈{⊤,⊥}

𝜑[𝑎→ 𝑥1/ . . . /𝑥#𝜑𝑎]

The operator ⊟ allows the replacement of each occurrence of 𝑎 with ⊤ or ⊥ such that contradictions

within a formula can be resolved. Let us consider again Example 2.

Example 4. Consider again

𝜑 = 𝑎 ∧ ¬𝑎 ∧ 𝑏

Here we have

𝜑⊟ 𝑎 = (⊤ ∧⊤ ∧ 𝑏) ∨ (⊤ ∧⊥ ∧ 𝑏) ∨ (⊥ ∧⊤ ∧ 𝑏) ∨ (⊥ ∧⊥ ∧ 𝑏) ≡ ⊤ ∧⊤ ∧ 𝑏 ≡ 𝑏

as desired.

Before we continue with an analysis of ⊟ let us first give some intuitions and a simple syntactic

characterisation of what ⊟ does to a formula. It may not be apparent from the definition above, but

what 𝜑⊟ 𝑎 basically does is the following: it replaces every disjunction within 𝜑 that contains 𝑎 or ¬𝑎
by ⊤ and removes all occurrences of 𝑎 and ¬𝑎 from conjunctions. Recall that a formula 𝜑 is in negation

normal form (NNF) if negations only appear right in front of propositions. For formulas in NNF we can

characterise ⊟ as follows.

Proposition 2. For a formula 𝜑 in NNF and some 𝑎 ∈ At(𝜑) define 𝜑 ⊟̂ 𝑎 inductively on the structure of

𝜑 via

𝜑 ⊟̂ 𝑎 =

⎧⎨⎩
⊤ if 𝜑 = 𝑎 or 𝜑 = ¬𝑎
𝜓 ⊟̂ 𝑎 ∨ 𝜓′ ⊟̂ 𝑎 if 𝜑 = 𝜓 ∨ 𝜓′

𝜓 ⊟̂ 𝑎 ∧ 𝜓′ ⊟̂ 𝑎 if 𝜑 = 𝜓 ∧ 𝜓′

If 𝑎 /∈ At(𝜑) we define 𝜑 ⊟̂ 𝑎 = 𝜑. Then

𝜑 ⊟̂ 𝑎 ≡ 𝜑⊟ 𝑎

Since 𝜑1 ∨ . . . ∨ 𝜑𝑛 ∨⊤ ≡ ⊤ and 𝜑1 ∧ . . . ∧ 𝜑𝑛 ∧⊤ ≡ 𝜑1 ∧ . . . ∧ 𝜑𝑛 for all 𝜑1, . . . , 𝜑𝑛, it should be

clear that forgetting 𝑎 from a formula 𝜑 in NNF means that we replace every disjunction within 𝜑 that

contains 𝑎 or ¬𝑎 by ⊤ and remove all occurrences of 𝑎 and ¬𝑎 from conjunctions, as stated above.

Note that every formula can be translated into NNF with only a linear increase in size and that this

translation yields an equivalent formula. Most of our examples are using formulas in NNF, so the above

characterisation can be applied.

If multiple propositions are forgotten with ⊟, it should be obvious that the order does not matter. So

for a set 𝑆 = {𝑎1, . . . , 𝑎𝑛} ⊆ At(𝜑) let

𝜑⊟ 𝑆 = (. . . ((𝜑⊟ 𝑎1)⊟ 𝑎2) . . .)⊟ 𝑎𝑛

with an arbitrary order among the propositions in 𝑆. Furthermore, for a knowledge base 𝐾 and

𝑆 ⊆ At(𝐾) we write

𝐾 ⊟ 𝑆 = {𝜑⊟ 𝑆 ∩ At(𝜑) | 𝜑 ∈ 𝐾}

Example 5. Consider 𝐾1 = {𝑎,¬𝑎 ∧ 𝑐}, we get

𝐾 ′
1 = 𝐾1 ⊟ 𝑎 = {⊤∨ ⊥, (¬⊤ ∧ 𝑐) ∨ (¬ ⊥ ∧𝑐)} ≡ {𝑐}

Consider a syntactic variant of 𝐾1, namely 𝐾2 = {𝑎 ∧ ¬𝑎, 𝑐}, we get

𝐾 ′
2 = 𝐾2 ⊟ 𝑎 = {(⊤ ∧ ¬⊤) ∨ (⊥ ∧¬ ⊥) ∨ (⊤ ∧ ¬ ⊥) ∨ (⊥ ∧¬⊤), 𝑐} ≡ {𝑐}

So this example shows that ⊟ is (to some extent) not syntax-sensitive, even in the presence of inconsis-

tency. We come back to this aspect later (in particular, see Proposition 10).



From the examples so far it should be clear that inferences are not necessarily retained (even on the

remaining signature). In particular, in Example 4 we have 𝜑 |= ¬𝑏 (in fact 𝜑 entails everything), but

𝜑⊟ 𝑎 ̸|= ¬𝑏. In fact, we obtain the following observation.

Proposition 3. Let 𝜑 be a formula such that 𝜑 |=⊥. Then there is 𝑆 ⊆ At(𝜑) such that 𝜑⊟ 𝑆 ̸|=⊥.

The above observation shows that, from the perspective of inconsistency-tolerant reasoning, ⊟ is

a sensible choice for a forgetting operation, since it allows the restoration of consistency in any case.

Moreover, ⊟ does also not introduce inconsistencies.

Proposition 4. Let 𝐾 be a knowledge base and 𝑆 ⊆ At(𝐾). If 𝐾 is consistent then 𝐾 ⊟ 𝑆 is consistent

and 𝐾 |= 𝐾 ⊟ 𝑆.

Our forgetting operator ⊟ allows us to project the signature of a knowledge base to a subset of its

signature. We define this concept in a general manner as follows.

Definition 5. For a knowledge base 𝐾 and 𝑆 ⊆ At(𝐾), the projection of 𝐾 onto 𝑆, denoted 𝐾|𝑆 , is

defined as 𝐾|𝑆 = 𝐾 ⊟ (At(𝐾) ∖ 𝑆).

Example 6. We consider again 𝐾1 = {𝑎,¬𝑎 ∧ 𝑐} and 𝐾2 = {𝑎 ∧ ¬𝑎, 𝑐}. We get 𝐾1|{𝑐} ≡ {𝑐} and

𝐾2|{𝑐} ≡ {𝑐}.

4. Minimal inconsistent and maximal consistent subsignatures

The notion of projection allows us to define analogues to the concepts of minimally inconsistent subsets

and maximally consistent subsets of a knowledge base 𝐾 (see again Definition 2), based on a more

semantical perspective. In general, we say that a set 𝑆 ⊆ At(𝐾) is a consistent subsignature of 𝐾 iff

𝐾|𝑆 is consistent, otherwise it is called an inconsistent subsignature.

Definition 6. Let 𝐾 be a knowledge base.

1. 𝑆 ⊆ At(𝐾) is called a minimal inconsistent subsignature of 𝐾 if

a) 𝐾|𝑆 |=⊥ and

b) for all 𝑆′
with 𝑆′ ⊊ 𝑆, 𝐾|𝑆′ ̸|=⊥.

2. 𝑆 ⊆ At(𝐾) is called a maximal consistent subsignature of 𝐾 if

a) 𝐾|𝑆 ̸|=⊥ and

b) for all 𝑆′
with 𝑆 ⊊ 𝑆′ ⊆ At(𝐾), 𝐾|𝑆′ |=⊥.

Let MISig(𝐾) and MCSig(𝐾) denote the set of all minimal inconsistent subsignatures and the set of

all maximal consistent subsignatures, respectively.

We furthermore say that a proposition 𝑎 ∈ At(𝐾) is a free proposition in 𝐾 iff 𝑎 /∈ 𝑆 for all

𝑆 ∈ MISig(𝐾).

Example 7. We consider again the knowledge base 𝐾1 = {𝑎,¬𝑎 ∧ 𝑐}. Here we have

MISig(𝐾1) = {{𝑎}} MCSig(𝐾1) = {{𝑐}}

For 𝐾2 = {𝑎 ∧ ¬𝑎, 𝑐} we get likewise

MISig(𝐾2) = {{𝑎}} MCSig(𝐾2) = {{𝑐}}

For both cases, 𝑐 is also a free proposition.



Example 8. Consider

𝐾3 = {𝑎 ∧ 𝑏 ∧ 𝑑,¬𝑎 ∨ ¬𝑏, 𝑏 ∧ ¬𝑐, (𝑐 ∨ ¬𝑏) ∧ 𝑑}

Here we get

MISig(𝐾3) = {{𝑎, 𝑏}, {𝑏, 𝑐}} MCSig(𝐾3) = {{𝑎, 𝑐, 𝑑}, {𝑏, 𝑑}}

and 𝑑 is a free proposition.

Some straightforward observations are as follows.

Proposition 5. Let 𝐾 be a knowledge base.

1. 𝐾 is consistent iff MISig(𝐾) = ∅ iff MCSig(𝐾) = {At(𝐾)}.

2. MCSig(𝐾) ̸= ∅.

Observe that item 2 above includes the case where the only consistent signature is empty, so we may

have MCSig(𝐾) = {∅}.

A particular property of the set of all minimal inconsistent subsets MIS(𝐾) is its monotony wrt.

expansions of 𝐾 . More precisely, if 𝐾 ⊆ 𝐾 ′
then MIS(𝐾) ⊆ MIS(𝐾 ′). For the corresponding

semantical counterpart MISig(𝐾), this is not generally true.

Example 9. Consider 𝐾4 = {𝑎 ∨ 𝑏,¬𝑎 ∧ ¬𝑏}. Here we have MISig(𝐾4) = {{𝑎, 𝑏}}. However, adding

the formula 𝑎 gives us MISig(𝐾4 ∪ {𝑎}) = {{𝑎}} and therefore MISig(𝐾4) ̸⊆ MISig(𝐾4 ∪ {𝑎}).

But MISig(𝐾) behaves monotonically when it comes to expansions of the signature.

Proposition 6. Let 𝐾 be a knowledge base and 𝑆 ⊆ At(𝐾). Then MISig(𝐾 ⊟ 𝑆) ⊆ MISig(𝐾).

Another particularly interesting property of the sets of minimal inconsistent subsets and the set of

maximal consistent subsets of a knowledge base 𝐾 is the hitting set duality [9]. For that let us recall the

definition of a hitting set.

Definition 7. A hitting set of a set of sets 𝑀 = {𝑀1, . . . ,𝑀𝑛} is a set 𝐻 ⊆𝑀1 ∪ . . . ∪𝑀𝑛 such that

𝐻 ∩𝑀𝑖 ̸= ∅ for all 𝑖 = 1, . . . , 𝑛. A hitting set 𝐻 is minimal if there is no other hitting set 𝐻 ′
with

𝐻 ′ ⊊ 𝐻 .

The hitting set duality for MIS(𝐾) and MCS(𝐾) says that 𝐻 is a minimal hitting set of MIS(𝐾) iff

𝐾 ∖𝐻 ∈ MCS(𝐾) [9]. Interestingly, we obtain the same duality for MISig(𝐾) and MCSig(𝐾).

Theorem 1. Let 𝐾 be a knowledge base. 𝐻 is a minimal hitting set of MISig(𝐾) iff At(𝐾) ∖ 𝐻 ∈
MCSig(𝐾).

A corollary of the above result is that free propositions can also be characterised as those propositions

that appear in all maximal consistent subsignatures (as it is the case with free formulas and maximal

consistent subsets).

Corollary 1. Let 𝐾 a knowledge base. A proposition 𝑎 ∈ At(𝐾) is a free proposition in 𝐾 iff 𝑎 ∈ 𝑆 for

all 𝑆 ∈ MCSig(𝐾).

We continue with a more detailed analysis and comparison of the behaviours of minimal inconsistent

subsets and signatures. As for the former, removing free propositions from a signature does not influence

the structure of the minimal inconsistent subsignatures, as the following proposition shows.

Proposition 7. Let 𝐾 be a knowledge base and 𝑎 ∈ At(𝐾) a free proposition of 𝐾 . Then MISig(𝐾) =
MISig(𝐾 ⊟ 𝑎).



Minimal inconsistent subsignatures are not only robust against the removal of free propositions from

the signature (as the above proposition showed) but also against the removal of free formulas from the

knowledge base (as the next proposition shows).

Proposition 8. Let𝐾 be a knowledge base and 𝛼 a free formula of𝐾 . Then MISig(𝐾) = MISig(𝐾∖{𝛼}).

The previous two propositions show that our notion of a minimal inconsistent subsignature is quite

suitable for capturing the essence of the reasons why a knowledge base is inconsistent, since removal of

“independent” syntactic (i. e., formulas) or semantic (i. e., propositions) information does not influence it.

On the other hand, the next proposition shows that removing semantic information that is involved in

inconsistency indeed has an influence.

Proposition 9. Let 𝐾 be a knowledge base and 𝑎 ∈ At(𝐾) not a free proposition of 𝐾 . Then MISig(𝐾 ⊟
𝑎) ⊊ MISig(𝐾).

Note that the syntactic counterpart of the previous observation, i. e., that the removal of non-free

syntactic information changes the structure of minimal inconsistent subsignatures, does not hold in

general.

Example 10. Consider 𝐾5 = {𝑎,¬𝑎, 𝑎∧¬𝑎} with MISig(𝐾5) = {{𝑎}}. Note that 𝑎∧¬𝑎 is obviously

not a free formula of 𝐾5, but MISig(𝐾5 ∖ {𝑎 ∧ ¬𝑎}) = {{𝑎}} = MISig(𝐾5).

However, the notion of minimal inconsistent subsignature still behaves as expected in the previous

example. The formula 𝑎 ∧ ¬𝑎 actually describes redundant semantical information and its removal

does not impact which parts of the signature are responsible for producing the inconsistency. As a

matter of fact, the set of minimal inconsistent subsignatures is, to some extent, robust against syntactic

variations, even in the presence of inconsistency.

Proposition 10. Let 𝐾 be a knowledge base and 𝛼, 𝛽 formulas. Then MISig(𝐾 ∪ {𝛼, 𝛽}) = MISig(𝐾 ∪
{𝛼 ∧ 𝛽}).

The observation made in the previous proposition is quite remarkable. It says that in terms of

analysing inconsistency through the signature, it does not matter whether a knowledge base is defined

as a set of formulas or a single conjunction of these formulas. While this is obvious when reasoning

with consistent knowledge bases, the case of inconsistency usually requires a distinction between

using the logical conjunction and the “comma” operator, see [15] for an excellent discussion on this

topic. In particular, note that, in general, MIS(𝐾 ∪ {𝛼, 𝛽}) ̸= MIS(𝐾 ∪ {𝛼 ∧ 𝛽}) (e. g. obviously

MIS({𝑎,¬𝑎}) ̸= MIS({𝑎 ∧ ¬𝑎})). However, our framework allows for an equal treatment of these

syntactic variations.

5. Application to inconsistency measurement

We now consider the application of our framework of minimal inconsistent subsignatures and maximal

consistent subsignatures for inconsistency measurement. In general, an inconsistency measure [2, 12] is

a quantitative means to assess the severity of inconsistencies in knowledge bases. Let R≥0
denote the

set of non-negative real numbers.

Definition 8. An inconsistency measure 𝐼 is any function 𝐼 : 2ℒ(At) → R≥0
with 𝐼(𝐾) = 0 iff 𝐾 is

consistent.

Many existing inconsistency measures are based on minimal inconsistent and maximal consistent

subsets of 𝐾 , see [16] for a survey. We here consider the measures 𝐼MI and 𝐼MI-C, defined via

𝐼MI(𝐾) = |MIS(𝐾)|

𝐼MI-C(𝐾) =
∑︁

𝑀∈MIS(𝐾)

1/|𝑀 |



for any knowledge base 𝐾 , both introduced by Hunter and Konieczny [17], as well as the measures

𝐼MC and 𝐼P, defined via

𝐼MC(𝐾) = |MCS(𝐾)|+ |SC(𝐾)| − 1

𝐼P(𝐾) = |
⋃︁

𝑀∈MIS(𝐾)

𝑀 |

both by Grant and Hunter [18], where SC(𝐾) = {𝜑 ∈ 𝐾 | 𝜑 |=⊥} is the set of self-contradicting

formulas of 𝐾 .

We can use minimal inconsistent and maximal consistent subsignatures in a similar manner as

minimal inconsistent and maximal consistent subsets are being used in the above measures.

Definition 9. Let 𝐾 be a knowledge base. Define functions 𝐼MISig, 𝐼MISig-C, 𝐼MCSig and 𝐼PSig via

𝐼MISig(𝐾) = |MISig(𝐾)|

𝐼MISig-C(𝐾) =
∑︁

𝑀∈MISig(𝐾)

1

|𝑀 |

𝐼MCSig(𝐾) = |MCSig(𝐾)|+ |SCSig(𝐾)| − 1

𝐼PSig(𝐾) =

⃒⃒⃒⃒
⃒⃒ ⋃︁
𝑀∈MISig(𝐾)

𝑀

⃒⃒⃒⃒
⃒⃒

with

SCSig(𝐾) = {𝑎 ∈ At(𝐾) | 𝐾 |{𝑎}|=⊥}

is the set of self-contradicting propositions.

In other words, 𝐼MISig returns the number of minimal inconsistent subsignatures as a measure of

inconsistency. 𝐼MISig-C is a refinement of this idea and weighs each minimal inconsistent subsignature by

its inverse size (with the intuition that larger minimal inconsistent subsignatures constitute a less obvious

reason for inconsistency than smaller subsignatures). 𝐼MCSig uses maximal consistent subsignatures

instead of minimal inconsistent subsignatures. The intuition is that the more maximal consistent

subsignatures there are, the more possible ways to resolve the inconsistency exist, and, therefore, the

larger the inconsistency. We include the set of self-contradicting propositions here in order to ensure that

the value 0 is only attained for consistent knowledge bases (if, e. g., we have MISig(𝐾) = {{𝑎}} then

there is also just one maximal consistent subsignature and without adding |SCSig(𝐾)| the inconsistency

value would be 0). Finally, the measure 𝐼PSig takes the number of propositions appearing in at least one

minimal inconsistent subsignature as a measure of inconsistency.

Example 11. We consider again 𝐾3 from Example 8 with

𝐾3 = {𝑎 ∧ 𝑏 ∧ 𝑑,¬𝑎 ∨ ¬𝑏, 𝑏 ∧ ¬𝑐, (𝑐 ∨ ¬𝑏) ∧ 𝑑}

and

MISig(𝐾3) = {{𝑎, 𝑏}, {𝑏, 𝑐}} MCSig(𝐾3) = {{𝑎, 𝑐, 𝑑}, {𝑏, 𝑑}} SCSig(𝐾3) = ∅

Here we get

𝐼MISig(𝐾3) = 2 𝐼MISig-C(𝐾3) = 1

𝐼MCSig(𝐾3) = 1 𝐼PSig(𝐾3) = 3

We can first observe that all new measures are indeed inconsistency measures (Definition 8), i. e.,

they return the value 0 in the case of consistency (and only in this case).



MO IN DO SI PY AI SM PI PP

𝐼MISig ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
𝐼MISig-C ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
𝐼MCSig ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
𝐼PSig ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Table 1
Compliance of our new measures wrt. rationality postulates.

Proposition 11. The functions 𝐼MISig, 𝐼MISig-C, 𝐼MCSig and 𝐼PSig are inconsistency measures.

Inconsistency measures are usually evaluated wrt. rationality postulates [16]. Due to space limitations,

we do not consider all postulates from [16], but focus on the most prominent ones. Let 𝐼 be any function

𝐼 : 2ℒ(At) → R≥0
.

Monotony (MO) If 𝐾 ⊆ 𝐾 ′
then 𝐼(𝐾) ≤ 𝐼(𝐾 ′).

Free-formula Independence (IN) If 𝛼 ∈ FREE(𝐾) then 𝐼(𝐾) = 𝐼(𝐾 ∖ {𝛼}).

Safe-formula Independence (SI) If 𝛼 is safe for 𝐾 then 𝐼(𝐾) = 𝐼(𝐾 ∖ {𝛼}).

Dominance (DO) If 𝛼 /∈ 𝐾 , 𝛼 ̸|=⊥ and 𝛼 |= 𝛽 then 𝐼(𝐾 ∪ {𝛼}) ≥ 𝐼(𝐾 ∪ {𝛽}).

Penalty (PY) If 𝛼 /∈ FREE(𝐾) then 𝐼(𝐾) > 𝐼(𝐾 ∖ {𝛼}).

MO states that adding formulas cannot decrease the degree of inconsistency. IN and SI state that

removing free (resp. safe) formulas does not change the degree of inconsistency. DO requires that

replacing formulas with semantically stronger information cannot decrease the degree of inconsistency.

PY is the complement of IN and states that removing non-free formulas decreases the degree of

inconsistency. We will consider one further postulate from [19] that is concerned with syntax irrelevance

and is rarely satisfied by existing inconsistency measures [16].

Adjunction Invariance (AI) 𝐼(𝐾 ∪ {𝛼, 𝛽}) = 𝐼(𝐾 ∪ {𝛼 ∧ 𝛽}).

As we will see below, our measures (naturally) do not comply with the postulates MO, DO, and PY,

since these are particularly concerned with the role of formulas in inconsistency. Due to Proposition 10

(which also directly leads all our measures to satisfy AI) all our measures are insensitive to the exact

structure of the formulas. However, the introduction of minimal inconsistent subsignatures brings us

into the position to introduce semantical counterparts of these postulates, which are particularly well

suited to describe our new measures:

Signature-monotony (SM) For 𝑆 ⊆ At(𝐾) it is 𝐼(𝐾 ⊟ 𝑆) ≤ 𝐼(𝐾).

Free-proposition independence (PI) If 𝑎 is a free proposition in 𝐾 , then 𝐼(𝐾) = 𝐼(𝐾 ⊟ 𝑎).

Proposition-penalty (PP) If 𝑎 ∈ At(𝐾) is not a free proposition in 𝐾 , then 𝐼(𝐾) > 𝐼(𝐾 ⊟ 𝑎).

In other words, SM states that forgetting parts of the signature of a knowledge base cannot increase

the degree of inconsistency. PI states that removing free propositions cannot change the degree of

inconsistency. Conversely, PP states that removing non-free propositions decreases the degree of

inconsistency.

Naturally, our new measures satisfy the newly introduced postulates. In summary, we can make the

following statement on the compliance of our new measures with all the considered postulates.

Theorem 2. The compliance of the measures 𝐼MISig, 𝐼MISig-C, 𝐼MCSig and 𝐼PSig to the rationality postulates

is as shown in Table 1.

As it can be seen from Table 1, all our new measures behave similarly with respect to the considered

postulates. However, in the next section we will see that they behave differently in terms of complexity.



6. Computational complexity

We assume familiarity with the standard complexity classes P, NP and coNP, see [20] for an introduction.

We also require knowledge of the complexity class DP, which is defined as

DP = {𝐿1 ∩ 𝐿2 | 𝐿1 ∈ NP, 𝐿2 ∈ coNP}

In other words, DP is the class of problems that are the intersection of a problem in NP and a problem

in coNP. We also use complexity classes of the polynomial hierarchy that can be defined (using oracle

machines) via ΣP

1 = NP, ΠP

1 = coNP, and

ΣP

𝑖 = NP
ΣP

𝑖−1 ΠP

𝑖 = coNP
ΣP

𝑖−1

for all 𝑖 > 1, where 𝒞𝒟
denotes the class of decision problems solvable in class 𝒞 with access to

an oracle that can solve problems that are complete for 𝒟. In analogy to DP, we define DP2 via

DP2 = {𝐿1 ∩ 𝐿2 | 𝐿1 ∈ ΣP

2, 𝐿2 ∈ ΠP

2}. We also consider classes of the counting polynomial hierarchy

[21]. In particular, the class CNP is the class of counting decision problems where the corresponding

decision problem is in NP. More precisely, let 𝐻(𝑥, 𝑦) be a predicate, where it can be decided in non-

deterministic polynomial time if 𝐻(𝑥, 𝑦) is true. Given 𝑥 and a natural number 𝑘 ∈ N, the decision

problem of deciding whether there are at least 𝑘 instances of 𝑦, such that 𝐻(𝑥, 𝑦) is true, is then in

CNP (the class C=NP is defined analogously by replacing “at least” with “exactly”). Similarly, the class

# ·coNP is a counting complexity class [22] that contains problems that upon input 𝑥 return the number

𝑘 of instances 𝑦 such that 𝐻(𝑥, 𝑦) is true, which itself is a problem in coNP. Finally, FP is the class of

functional problems that can be computed in deterministic polynomial time.

Complexity results regarding some basic decision problems are as follows.

Theorem 3. Let 𝐾 be a knowledge base and 𝑆 ⊆ At(𝐾).

1. Deciding whether 𝑆 is a consistent subsignature of 𝐾 is NP-complete.

2. Deciding whether 𝑆 is a minimal inconsistent subsignature of 𝐾 is DP-complete.

3. Deciding whether 𝑆 is a maximal consistent subsignature of 𝐾 is DP-complete.

We consider now problems related to our new inconsistency measures from Section 5. As in [23], we

consider the following problems (for a given inconsistency measure 𝐼):

Exact𝐼 Input: 𝐾 , 𝑥 ∈ R
Output: true iff 𝐼(𝐾) = 𝑥

Upper𝐼 Input: 𝐾 , 𝑥 ∈ R
Output: true iff 𝐼(𝐾) ≤ 𝑥

Lower𝐼 Input: 𝐾 , 𝑥 ∈ R
Output: true iff 𝐼(𝐾) ≥ 𝑥

Value𝐼 Input: 𝐾
Output: The value of 𝐼(𝐾)

Due to Theorem 3, decision problems related to (in-)consistency of signatures have the same complexity

as the corresponding problems on formulas (e. g., deciding whether a set of formulas is consistent is

NP-complete as is the problem of deciding whether a set of propositions is a consistent subsignature).

The observations made in [23] about the above problems for the corresponding measures defined on the

formula level then also extend to our new measures quite easily. More precisely, we get the following

characterisations regarding computational complexity.

Theorem 4. The computational complexity of the problems Exact𝐼 , Upper𝐼 , Lower𝐼 , Value𝐼 wrt. the

measures 𝐼MISig, 𝐼MISig-C, 𝐼MCSig, and 𝐼PSig is as shown in Table 2.



Exact𝐼 Upper𝐼 Lower𝐼 Value𝐼

𝐼MISig C=NP-h CNP-c CNP-c # · coNP-c

𝐼MISig-C C=NP-h CNP-h CNP-h FP
#·coNP

𝐼MCSig C=NP-h CNP-c CNP-c # · coNP-c

𝐼PSig DP2 Π𝑃
2 -c Σ𝑃

2 -c FP
Σ𝑃

2 [log]

Table 2
Computational complexity of problems related to our new measures; all statements are membership statements,

except statements with an additional “-c” (which are completeness statements) or “-h” (which are hardness

statements)

𝛼 𝛽 𝜐(𝛼 ∧ 𝛽) 𝜐(𝛼 ∨ 𝛽) 𝛼 𝜐(¬𝛼)
T T T T T F

T B B T B B

T F F T F T

B T B T

B B B B

B F F B

F T F T

F B F B

F F F F

Table 3
Truth tables for propositional three-valued logic.

7. Related work

Our approach has some connections to previous works, in particular inconsistency-tolerant reasoning

with paraconsistent logics, which we will discuss in Section 7.1. Further related work will be discussed

in Section 7.2.

7.1. Relationships with paraconsistent reasoning

We briefly recall Priest’s 3-valued logic for paraconsistent reasoning [24]. A three-valued interpretation

𝜐 on At is a function 𝜐 : At → {𝑇, 𝐹,𝐵} where the values 𝑇 and 𝐹 correspond to the classical true and

false, respectively. The additional truth value 𝐵 stands for both and is meant to represent a conflicting

truth value for a proposition. The function 𝜐 is extended to arbitrary formulas as shown in Table 3.

An interpretation 𝜐 satisfies a formula 𝛼 (or is a 3-valued model of that formula), denoted by 𝜐 |=3 𝛼
if either 𝜐(𝛼) = 𝑇 or 𝜐(𝛼) = 𝐵. Define 𝜐 |=3 𝐾 for a knowledge base 𝐾 accordingly. Let Mod3(𝐾)
denote the set of all 3-valued models of 𝐾 . Note that the interpretation 𝜐0 defined via 𝜐0(𝑎) = 𝐵 for

all 𝑎 ∈ At is a model of every formula, so it makes sense to consider minimal models wrt. the usage of

the paraconsistent truth value 𝐵. A model 𝜐 of a knowledge base 𝐾 is a minimal model of 𝐾 if it is a

model and there is no other model 𝜐′ of 𝐾 with (𝜐′)−1(𝐵) ⊊ (𝜐)−1(𝐵). Let MinMod3(𝐾) denote the

set of minimal models of 𝐾 .

We can define an inference relation on MinMod3(𝐾) by considering all minimal models. More

formally, define |∼3
via

𝐾|∼3𝛼 iff 𝜐 |=3 𝛼 for all 𝜐 ∈ MinMod3(𝐾)

For an in-depth discussion of the properties of this inference relation and a refined version of it see [25].

For a three-valued interpretation 𝜐 define its two-valued projection 𝜔𝜐 : 𝜐−1({𝑇, 𝐹}) → {true, false}
via 𝜔𝜐(𝑎) = true iff 𝜐(𝑎) = 𝑇 and 𝜔𝜐(𝑎) = false iff 𝜐(𝑎) = 𝐹 , for all 𝑎 ∈ 𝜐−1({𝑇, 𝐹}). In other words,

𝜔𝜐 is a two-valued interpretation that is only defined on those propositions, where 𝜐 gives a classical

truth value, and the truth value assigned by 𝜔𝜐 agrees with 𝜐. We can capture the relationship between

three-valued models and inconsistent signatures as follows.



Proposition 12. Let 𝜐 be a three-valued interpretation. Then

𝜐 |=3 𝛼 iff 𝜔𝜐 |= (𝛼⊟ 𝜐−1(𝐵))

for every formula 𝛼.

So a three-valued interpretation 𝜐 is a model of 𝛼, if and only if the classical part of 𝜐 is a model of

the formula obtained by forgetting those propositions assigned to 𝐵.

Proposition 13. Let 𝐾 be a knowledge base.

1. If 𝜐 ∈ MinMod3(𝐾) then 𝜐−1(𝐵) ∈ MISig(𝐾).

2. If 𝑆 ∈ MISig(𝐾) then there is 𝜐 ∈ MinMod3(𝐾) with 𝜐−1(𝐵) = 𝑆.

In other words, 𝑆 is a minimal inconsistent subsignature if and only if there is a minimal 3-valued

model that assigns 𝐵 to exactly those propositions in 𝑆. Note that while works such as [25] analyse the

inferential capabilities of (refined versions of) |∼3
, the properties of minimal inconsistent subsignatures

have (in the form as we did in the preceding section) not been analysed in that line of research before.

7.2. Further related work

Lang and Marquis [4, 5] also considered forgetting as a means to restore consistency and to reason under

inconsistency. However, they also did not consider notions such as minimal inconsistent and maximal

consistent subsignatures nor the application to inconsistency measurement. In fact, our approach could

be used as a pre-processing step for that work to identify propositions that need to be forgotten in order

to restore consistency. A further particular related work is then [26], which proposes an inconsistency

measure 𝐼𝐹 that is based on forgetting. More precisely, 𝐼𝐹 (𝐾) (for a knowledge base 𝐾) is defined as

the minimal number of proposition occurrences (across all propositions) that have to be replaced by

either ⊤ or ⊥ such that the resulting knowledge base is consistent. Note that neither of our measures

coincides with 𝐼𝐹 , in particular because 𝐼𝐹 allows that only some of the occurrences of a proposition

are forgotten. In our approach, although proposition occurrences may be replaced differently (by either

⊤ or ⊥), we always forget a proposition completely. Only this allowed to derive our notions of minimal

inconsistent and maximal consistent subsignatures. As such, other then the general used method, there

is no direct relationship between 𝐼𝐹 and our framework. However, one can also note that 𝐼𝐹 is one of

the other few existing measures that also satisfies AI (invariance of {𝛼, 𝛽} and {𝛼 ∧ 𝛽}).

Brewka et. al [27] consider a generalisation of the concept of inconsistency called strong inconsistency.

A subset 𝑆 ⊆ 𝐾 of formulas of a knowledge base 𝐾 , is strongly inconsistent if every 𝑆′
with 𝑆 ⊆ 𝑆′ ⊆

𝐾 is inconsistent. In classical propositional logic, a set 𝑆 is strongly inconsistent if and only if it is

inconsistent, but the two concepts differ when considering non-monotonic formalisms, such as answer

set programming (ASP) [28, 29]. Strong inconsistency and minimal inconsistent subsignatures are, in

general, two orthogonal concepts that address different aspects of inconsistency handling. However, it

is conceivable to combine both of them in non-monotonic formalisms such as ASP, and obtain minimal

strongly inconsistent subsignatures. For that, we basically have to substitute requirements pertaining to

inconsistency by strong inconsistency (such as in Definition 6). This would open up applications of our

inconsistency measures in those formalisms as well, see also [30, 31].

8. Discussion and conclusion

We considered an approach to analyse inconsistency in a knowledge base through forgetting parts

of the signature such that the remaining knowledge base is consistent. In particular, we considered

the notions of minimal inconsistent and maximal consistent subsignatures as counterparts to minimal

inconsistent and maximal consistent subsets. Structurally, minimal inconsistent and maximal consistent

subsignatures behave similarly as their subset-based counterparts, in particular, we showed that the

hitting set duality is also satisfied by those notions. We analysed the application of these notions to



the field of inconsistency measurement and devised several novel and interesting new inconsistency

measures. Finally, we studied several problems in this context wrt. their computational complexity.

A possible venue for future work is to develop signature-based variants of inconsistency-tolerant

reasoning methods based on maximal consistent subsets such as the one by Rescher and Manor [1]

or Konieczny et al. [7]. The latter work proposes inference relations that only consider some of the

maximal consistent subsets of a knowledge base, where the consideration of maximal consistent

subsets is determined by a scoring function. Adapting those scoring functions for maximal consistent

subsignatures will therefore give rise to further inference relations. Moreover, the reasoning approach of

Brewka [32], who considers stratified knowledge bases—i. e. knowledge bases where formulas are ranked

according to their preference—, could also be cast into our framework by considering stratified signatures.

Finally, one could generalise our approach from propositional logic to more practical formalisms such

as description logics [33] and databases [34, 35].
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