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Abstract

We introduce the notion of an undisputed set for abstract ar-
gumentation frameworks, which is a conflict-free set of argu-
ments, such that its reduct contains no non-empty admissible
sets. We show that undisputed sets, and the stronger notion
of strongly undisputed sets, provide a meaningful approach
to weaken admissibility and deal with the problem of attacks
from self-attacking arguments, in a similar manner as the re-
cently introduced notion of weak admissibility. We investi-
gate the properties of our new semantical notions and show
certain relationships to classical semantics, in particular that
undisputed sets are a generalisation of preferred extensions
and strongly undisputed sets are a generalisation of stable ex-
tensions. We also investigate the computational complexity
of standard reasoning tasks with these new notions and show
that they lie on the second and third level of the polynomial
hierarchy, respectively.

1 Introduction
Computational models of argumentation (Baroni et al. 2018;
Gabbay et al. 2021) are formal approaches to knowledge
representation and reasoning that focus on the representation
of arguments and their interaction with each other. In par-
ticular, abstract argumentation frameworks (AFs) model ar-
gumentative scenarios as a directed graph where arguments
are identified as vertices and a directed edge from one ar-
gument to another is interpreted as an attack (Dung 1995).
Formal semantics for abstract argumentation (Baroni, Cam-
inada, and Giacomin 2018) capture conditions that should
be imposed on a set of arguments in order to deem this set
a plausible outcome of the argumentation (also called an ex-
tension). Many different semantics have been proposed over
the years, many based on this notion of an extension, but also
based on different concepts such as rankings (Amgoud and
Ben-Naim 2013; Skiba et al. 2021), weights (Dunne et al.
2011; Bistarelli and Santini 2021), or probabilities (Li, Oren,
and Norman 2011; Hunter et al. 2021).

This work continues the investigation on primal reasons
why arguments should be deemed acceptable and what
should form an extension. We are particularly interested in
the family of non-admissible semantics (Kakas and Mancar-
ella 2013; Baumann, Brewka, and Ulbricht 2020b; Dauphin,
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Rienstra, and van der Torre 2020; Dondio and Longo 2019).
The notion of admissibility (Dung 1995) refers to the prop-
erty of a set of arguments to defend itself against all at-
tacks: for every argument that is attacking an argument of
the set, there must be an argument in the set that attacks back
(we will provide formal definitions in Section 2). Seman-
tics based on notions such as weak admissibility (Baumann,
Brewka, and Ulbricht 2020b; Dauphin, Rienstra, and van der
Torre 2020)—see also (Kakas and Mancarella 2013) for an
earlier treatment of the same idea—or undecidedness block-
ing (Dondio and Longo 2019) take a more relaxed stand on
this constraint, insofar only attacks from relevant arguments
must be defended. How this aspect of relevance is defined,
differs in the aforementioned works. However, a particular
example (where all these approaches also agree on) is that
an attack from a self-attacking argument is deemed irrele-
vant. While we will provide a deeper discussion of the pros
and cons of these approaches in Section 3, let us just note
that the formal definition of those semantics can be quite in-
volved and opaque, in contradiction to the general aim of
having explainable models in AI. In addition to that, the se-
mantical notion of weak admissibility (Baumann, Brewka,
and Ulbricht 2020b) also comes with the additional caveat
of being computationally very hard, (Dvořák, Ulbricht, and
Woltran 2021) shows that all interesting reasoning problems
for weak admissibility are PSPACE-complete.

Our aim is to define a new notion of a non-admissible se-
mantics that captures the intuition of the works above but is
conceptually simple and enjoys better computational com-
plexity (in particular better than PSPACE-completeness).
Our core concept to this aim is that of an undisputed set,
which is a conflict-free set of arguments, such that its
reduct—i. e., the part of the argumentation framework that
remains when we remove the set and all arguments attacked
by it—contains no non-empty admissible sets anymore. We
show that this notion is actually a generalisation of preferred
extensions (Dung 1995), which are subset-maximal admissi-
ble sets, and we show that it enjoys further desirable proper-
ties. We then investigate a special case of undisputed sets,
namely strongly undisputed sets that additionally demand
that their reduct does not contain a non-empty undisputed
set as well. We show that the strongly undisputed semantics
behaves identical on all examples from (Baumann, Brewka,
and Ulbricht 2020b) and therefore poses a conceptually sim-



pler alternative. In addition, we show that the computational
complexity of standard reasoning tasks with undisputed sets
and strongly undisputed sets lie (only) on the second and
third level of the polynomial hierarchy, respectively.

In summary, the contributions of this paper are as follows.
1. We revisit the foundations of non-admissible semantics

and discuss their properties (Section 3),
2. We present and analyse the notion of undisputed sets,

particularly showing that they naturally derive from es-
tablished notions such as preferred semantics (Section 4).

3. We present and analyse the notion of strongly undisputed
sets and show they satisfy similar properties as weak
admissibility-based semantics (Section 5).

4. We analyse the computational complexity of reasoning
with (strongly) undisputed sets (Section 6).

Section 2 gives the necessary background on abstract argu-
mentation and Section 7 concludes the paper.

2 Preliminaries
An abstract argumentation framework (AF) F is a tuple
F = (A,R) where A is a finite set of arguments and R is a
relation R ⊆ A×A (Dung 1995). For two arguments a,b ∈ A
the relation aRb means that argument a attacks argument b.
For a set S ⊆ A we define

S+F = {a ∈ A | ∃b ∈ S : bRa} S−F = {a ∈ A | ∃b ∈ S : aRb}

If S is a singleton set, we omit brackets for readability, i. e.,
we write a−F (a+F ) instead of {a}−F ({a}+F ). For two sets S
and S′ we write SRS′ iff S′ ∩ S+F ̸= /0. For a set S ⊆ A, we
denote by F |S = (S,R∩ (S × S)) the projection of F on S
and by FS = F |A\(S∪S+F ) the reduct (Baumann, Brewka, and
Ulbricht 2020b) of F wrt. S.

We say that a set S ⊆ A is conflict-free if for all a,b ∈ S it
is not the case that aRb. A set S defends an argument b ∈ A if
for all a with aRb there is c ∈ S with cRa. A conflict-free set
S is called admissible if S defends all a ∈ S. Let cf(F) and
adm(F) denote the set of conflict-free and admissible sets
of F , respectively.

Different semantics can be defined by imposing con-
straints on admissible sets (Baroni, Caminada, and Gia-
comin 2018). An admissible set E is a
• complete (co) extension iff for all a ∈ A, if E defends a

then a ∈ E,
• grounded (gr) extension iff E is complete and minimal,
• stable (st) extension iff E ∪E+

F = A,
• preferred (pr) extension iff E is maximal.

All statements on minimality/maximality are meant to be
with respect to set inclusion. For σ ∈ {co,gr,st,pr} let
σ(F) denote the set of σ -extensions of F .

3 Related Works and Motivation
Consider the AFs F0 and F1 depicted in Figure 1. Both model
the core issue of admissible-based semantics and they have
been used as the motivating examples for semantics aim-
ing at weakening admissibility (Kakas and Mancarella 2013;
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Figure 1: The AFs F0 (left) and F1 (right).

Baumann, Brewka, and Ulbricht 2020b; Dauphin, Rienstra,
and van der Torre 2020; Dondio and Longo 2019). For all se-
mantics σ ∈ {adm,co,gr,st}1, we have that both F0 and F1
possess no non-empty extension and stable semantics is even
undefined. However, consider the set {b} (for both frame-
works). In F0, {b} is only attacked by a and one may ar-
gue why {b} should actually defend itself against a. The ar-
gument a is self-attacking and therefore provides sufficient
reasons for its own unacceptability. Since a is nonsensical
and can never be in an acceptable position, we can admit
the set {b} to not need to defend against a. In F1, the sit-
uation is similar: the set {b} is only attacked by a1 and a1
is part of a “non-sensical” sub-framework itself. The argu-
ments a1,a2,a3 form an odd cycle that cannot be resolved
(if a1 would be acceptable, then a3 would be defeated, and
a2 therefore acceptable, defeating a1 in turn, and so on). So
a1,a2,a3 are non-sensical as a whole and there is reason to
neglect attacks from any of them. Dung points to this issue
in his seminal paper on abstract argumentation (Dung 1995,
p. 351):

An interesting topic of research is the problem of
selfdefeating arguments as illustrated in the follow-
ing example. Consider the argumentation framework
< {A,B},{(A,A),(A,B)} >. The only preferred ex-
tension here is empty though one can argue that since
A defeats itself, B should be acceptable.

The above quote is also used as a motivation of (Baumann,
Brewka, and Ulbricht 2020b), but instead of directly work-
ing on the notion of preferred semantics (as hinted by the
quote), Baumann et al. provide an alternative definition of
admissibility.

Definition 1. Let F = (A,R) be an AF. A set S ⊆ A is weakly
admissible (S ∈ wadm(F)) iff

1. S ∈ cf(F) and
2. for every a ∈ S−F , a /∈

⋃
wadm(FS).

In other words, a set S of arguments is weakly admissible
if for every attacker a of this set, S either attacks a (then a
is not in FS anymore) or S does not need to defend against
a, which is the case if a itself is not a member of a weakly
admissible set of the reduct FS. Note that {b} is a weakly
admissible set for both frameworks F0 and F1 from above.

The definition of weak admissibility is recursive and in
order to show that an argument a is or is not a member of
a weakly admissible set one has to consider further reducts
of the initial reduct, and so on. This recursive definition is

1In the remainder of the paper, we treat adm and also cf as
semantics as well for simplicity of presentation.



also the main culprit for the complexity of weak admissibil-
ity. In particular, deciding whether an argument is contained
in a weakly admissible set is PSPACE-complete (Dvořák,
Ulbricht, and Woltran 2021).

Other approaches (Kakas and Mancarella 2013; Dauphin,
Rienstra, and van der Torre 2020; Dondio and Longo 2019)
to weaken admissibility in order to solve the issues of frame-
works F0 and F1 use different formalisations and sometimes
even more involved constructions. For example, the fami-
lies of (semi-)qualified semantics from (Dauphin, Rienstra,
and van der Torre 2020) are based on the decomposition of
an AF into strongly connected components (SCCs) and use
the SCC-decomposition schema from (Baroni et al. 2014) to
define their semantics.

In the remainder of this paper we present another alterna-
tive for addressing the issues in frameworks F0 and F1 (and
similar ones) by relying on a conceptually simpler approach.

4 Undisputed Sets
Let us recall that in the quote of Dung before, he explicitly
mentioned that the issue with F0 is wrt. to preferred seman-
tics (and not necessarily with the notion of admissibility).
Therefore, in this section, we will present a generalised ver-
sion of preferred semantics directly. We will do this by first
presenting a new characterisation of preferred semantics that
relies on the notion of vacuity.

Definition 2. Let σ be a semantics. An AF F is σ -vacuous
iff σ(F)⊆ { /0}.

The notion of σ -vacuity models a relaxed concept of in-
consistency for AF semantics and can be used to identify
non-sensical situations such as the ones in F0 and F1 from
above. We use this notion here to define what we call a vac-
uous reduct semantics.

Definition 3. Let σ , τ be two semantics and F = (A,R) an
AF. A set S ⊆ A is a σ τ -extension iff S is a σ -extension and
FS is τ-vacuous.

In other words, a set S is a σ τ -extension iff it is a σ -
extension and the “remaining” framework is non-sensical
wrt. τ . Let σ τ(F) denote the set of all σ τ -extensions of F .
The definition of vacuous reduct semantics provides a tem-
plate for defining completely new semantics, but we leave
a further investigation of this concept for future work. Here,
we are only interested in some special cases of this template.
In particular, we can observe that preferred semantics is ac-
tually a very specific instance (note that the following result
has essentially already been shown in (Baumann, Brewka,
and Ulbricht 2020a), Proposition 3.2 items 2 and 3, but since
we use different notation and concepts, we give a complete
proof).

Proposition 1. pr = admadm.

Proof.

• “⊆”: Let S be preferred (and therefore admissible). As-
sume that FS = (A,R) is not adm-vacuous. Then there is
non-empty admissible S′ ⊆ A. Define S′′ = S∪S′ and ob-
serve that S′′ is conflict-free: no argument in S attacks an
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Figure 2: The AF F2 from Example 1.

argument in S′ as all arguments attacked by S are not in
A; furthermore, no argument in S′ attacks an argument in
S as S was admissible in F and would have defended the
attack. Furthermore, S′′ is admissible: this follows induc-
tively from Dung’s fundamental lemma (Dung 1995). It
follows that S is not preferred since S′′ is admissible and
a proper superset of S, contradicting the assumption.

• “⊇”: Let S be admissible and FS is adm-vacuous. As-
sume that S is not preferred, so there is S′ with S ⊊ S′
and S is preferred. Let S′′ = S′ \S. With the converse ar-
gumentation as above, it can be seen that S′′ is admissi-
ble in FS, contradicting the assumption that FS is adm-
vacuous.

One interesting aspect of this above characterisation of
preferred semantics is that it does not explicitly mention any
form of maximisation (recall that preferred extensions are
defined as subset-maximal admissible sets). It states that a
preferred extension is an admissible set such that the “re-
maining” framework does not possess any non-empty ad-
missible set.

We now come to our aim of defining a generalised version
of preferred semantics that allows us address the issues dis-
cussed in Section 3. We do so by relaxing the requirement of
admissibility to conflict-freeness on the base of the charac-
terisation from Proposition 1. We call these sets undisputed.
Definition 4. Let F = (A,R) be an AF. A set S ⊆ A is undis-
puted iff it is a cfadm-extension.

Let ud(F) denote the set of all undisputed sets of F .
Example 1. Consider the AF F2 in Figure 2. There are 3
undisputed sets in F2: ud(F2)= {{a},{a,c},{a, f}}. For ex-
ample, consider {a, f}. Clearly, {a, f} is conflict-free. Fur-
thermore, the reduct F{a, f}

2 is depicted in Figure 3 and it can
be clearly seen that F{a, f}

2 is adm-vacuous, showing that
{a, f} is an undisputed set. For symmetry reasons, {a,c}
is also undisputed. Finally, {a} is also undisputed as F{a}

2
consists of the arguments c,d,e, f ,g and their correspond-
ing attacks and there is also no non-empty admissible sets of
that framework as well.
Example 2. Recall the AFs F0 and F1 from Figure 1. Here
we have ud(F0) = { /0,{b}} and ud(F1) = { /0,{b}} In par-
ticular, note that the reduct F{b}

0 consists only of the self-
attacking argument a and /0 is its only admissible set. Also,
F{b}

1 consists of the cycle with the arguments a1,a2,a3,
which also has /0 as its only admissible set. Furthermore, /0
is also undisputed in both frameworks since both are adm-
vacuous as well. Note also that no superset of {b} in F1
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Figure 3: The reduct F{a, f}
2 (only black arguments and at-

tacks) from Example 1.

can be undisputed since it either becomes conflicting or the
reduct will not be adm-vacuous. For example, the reduct of
the set {b,a2} consists of the single argument a3 and no at-
tacks. Clearly, {a3} is a non-empty admissible set in F{b,a2}.

As can be seen in the above examples, undisputed sets
are a quite general concept that captures sets of arguments
that do not necessarily defend themselves from all attacks
(as motivated in the previous section), but also the classi-
cal admissible point of view (as, e. g., the empty set is also
undisputed in F0 and F1). The reason for this is also clear,
since undisputed sets are a generalisation of preferred exten-
sions, so every preferred extension is also an undisputed set.
We can actually exactly characterise preferred extensions as
a specific subclass of undisputed sets as follows. Define

udmin(F) = {S ∈ ud(F)|¬∃S′ ∈ ud(F) : S′ ⊊ S}
udmax(F) = {S ∈ ud(F)|¬∃S′ ∈ ud(F) : S′ ⊋ S}

In other words, udmin(F) is the set of subset-minimal undis-
puted sets of F and udmax(F) is the set of subset-maximal
undisputed sets of F . Our next result shows preferred exten-
sions are exactly those undisputed sets that are also admissi-
ble, which in turn are exactly those minimal undisputed sets
that are also admissible.
Theorem 1. For all F, pr(F) = ud(F) ∩ adm(F) =
udmin(F)∩adm(F).

Proof. We show the claim by showing pr(F)⊆ udmin(F)∩
adm(F), udmin(F) ∩ adm(F) ⊆ ud(F) ∩ adm(F), and
ud(F)∩adm(F)⊆ pr(F).

• pr(F)⊆ udmin(F)∩adm(F):
Let S ∈ pr(F). Since S is clearly admissible, it remains
to show that S ∈ udmin(F). By Proposition 1 it fol-
lows that S is undisputed, i. e., S ∈ ud(F). Assume that
S /∈ udmin(F), which means there is S′ ⊊ S with S′ ∈
udmin(F). Consider S′′ = S \ S′ in FS′ = (A,R). Clearly,
S′′ is conflict-free as it is a subset of the conflict-free S.
Furthermore, let a ∈ S′′ and b ∈ A with (b,a) ∈ R. Since
S is admissible, there is c ∈ S that attacks b in F . If c ∈ S′

then b /∈ A as it would have been removed in FS′ . It fol-
lows c ∈ S′′ and therefore a is defended by S′′. It follows
that S′′ is admissible, contradicting S′ ∈ udmin(F). It fol-
lows S ∈ udmin(F).

• udmin(F)∩adm(F)⊆ ud(F)∩adm(F):
As udmin(F) ⊆ ud(F) by definition, udmin(F) ∩
adm(F)⊆ ud(F)∩adm(F) follows directly.

• ud(F)∩adm(F)⊆ pr(F):
This follows directly from Proposition 1.
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Figure 4: The AF F3 from Example 3.

The above theorem shows that our new notion is generally
compatible with classical semantics, insofar that preferred
extensions are a special case of undisputed sets. A simple
corollary of the above observation is that the notion of an
undisputed set is always defined.

Corollary 1. For all F, ud(F) ̸= /0.

Proof. Follows directly from F having at least one preferred
extension and pr(F)⊆ ud(F), cf. Theorem 1.

Before we continue with analysing the behaviour of
undisputed sets in more detail, let us first dwell a bit more on
their relationship to preferred extensions. The works men-
tioned in Section 3—and we as well—already motivated the
need for relaxing the notion of admissibility when it comes
to attackers that should be deemed irrelevant. So one can ask
what happens to our new semantical notion if such attackers
do not exist? In fact, if we consider odd-cycle-free AFs2 then
undisputed sets coincide with preferred extensions.

Proposition 2. If F is odd-cycle-free, pr(F) = ud(F).

Proof. Let F = (A,R) be an argumentation framework. Ob-
serve that for every set S ⊆ A, if F is odd-cycle-free then
FS is also odd-cycle-free. Furthermore, recall that for odd-
cycle free F , preferred and stable semantics coincide (Dung
1995). So assume that there is an undisputed set E which is
not a preferred/stable extension. As E is undisputed, it fol-
lows that FE = (A′,R′) has no non-empty admissible sets.
But as E is not stable, it follows A′ ̸= /0 and since FE is odd-
cycle-free, it must possess a (non-empty) stable extension
(which is also admissible).

Note that odd-cycle-free argumentation frameworks also
subsume acyclic and bipartite argumentation frameworks,
so undisputed sets and preferred extensions also coincide in
these settings. The previous result (or more specifically, its
proof strategy) may lead to the hypothesis that undisputed
sets coincide with preferred extensions whenever the frame-
work is coherent (Dung 1995), i. e., whenever preferred and
stable extensions coincide (odd-cycle-free frameworks are
coherent). This is not the case as the following example
shows.

Example 3. Consider the AF F3 in Figure 4. Here we have

pr(F3) = st(F3) = {{a}}

so F3 is coherent. However we have ud(F3) = {{a},{b}}.

2An AF F = (A,R) is odd-cycle free if there are no arguments
a1, . . . ,ak ∈ A with k being odd and aiRai+1 for all i = 1, . . . ,k−1
and akRa1.



There is another subclass of AFs where preferred exten-
sions and undisputed sets coincide, namely the set of sym-
metric AFs (an AF F = (A,R) is symmetric, if aRb implies
bRa, for all a,b ∈ A).

Proposition 3. If F is symmetric, pr(F) = ud(F).

Proof. pr(F) ⊆ ud(F) follows from Theorem 1. Let E ∈
ud(F). Since E is conflict-free, no a ∈ E attacks itself. Since
F is symmetric, E is also admissible (in fact, every argument
a ∈ E defends itself). Due to Theorem 1, E ∈ pr(F).

Let us now turn to some more general properties of undis-
puted sets. The next observation is about the inclusion of
defended arguments. Theorem 3.11 of (Baumann, Brewka,
and Ulbricht 2020b) extended Dung’s fundamental lemma
(Dung 1995) by showing that adding defended arguments
to a weakly admissible set yields again a weakly admissible
set. For undisputed sets, inclusion of defended arguments is
already built into the definition.

Proposition 4. Let F = (A,R) be an AF, S ⊆ A be an undis-
puted set, and a ∈ A some argument. If S defends a then
a ∈ S.

Proof. Let S be an undisputed set and let a− ⊆ S+. Assume
that a /∈ S. Since S does not attack a (otherwise S would not
be conflict-free since it defends a) and S attacks all argu-
ments attacking a, it follows that a is an isolated argument
in FS. It follows that {a} is admissible in FS, contradicting
the fact that S is undisputed. It follows that a ∈ S.

The above proposition shows that arguments defended by
an undisputed set, are always included in that set. This prop-
erty is also called reinstatement (van der Torre and Vesic
2018).

Our final result of this section shows that undisputed sets
can be decomposed along the reduct.

Proposition 5. Let F = (A,R) be an AF, E ∈ ud(F), and
E ′ ⊊ E with E ′ ∈ ud(F). Then E \E ′ ∈ ud(FE ′

).

Proof. Let E ∈ ud(F) and E ′ ⊊ E with E ′ ∈ ud(F). Since
E is conflict-free in F , E \ E ′ is also conflict-free in FE ′

.
Furthermore, (FE ′

)E\E ′
= FE ′∪(E\E ′) = FE and adm(FE)⊆

{ /0} as E is undisputed. It follows that E \E ′ ∈ ud(FE ′
).

Note that the above property is an inverse version of
the property of modularization (Baumann, Brewka, and Ul-
bricht 2020a).

So far we have seen that the notion of undisputed sets
provides an elegant concept that both extends classical se-
mantical notions and can be used to analyse matters related
to irrelevant attacks. However, there are also certain draw-
backs of this notion, one of them being its failure to satisfy
I-maximality (van der Torre and Vesic 2018), i. e., undis-
puted sets may be in a subset relation with each other (see,
e. g., Example 1 where both {a} and {a, f} are undisputed),
and satisfaction of I-maximality is usually desired. Another
drawback is shown in the next example, which is also exhib-
ited by the approach of (Dondio and Longo 2019).

a b c

Figure 5: The AF F4 from Example 4.

Example 4. Consider the AF F4 in Figure 5. Here we have
ud(F4) = { /0,{b},{c}}

In particular, {c} is undisputed. Whether {c} is an accept-
able extension is debatable, since we already argued strongly
for {b} being an acceptable extension due to its only attack
being the self-attacking argument a. However, if {b} is an
acceptable extension then {c} should probably not be an ac-
ceptable extension, as b attacks c (and {c} does not defend
itself from this relevant attacker).

In the next section we present a stronger notion of undis-
puted sets that solves both issues mentioned above.

5 Strongly Undisputed Sets
The reason for {c} being an undisputed set in Example 4
is that the corresponding reduct is adm-vacuous and there-
fore b is not recognised as a relevant attacker that must be
defended against. However, we recover this aspect if we ad-
ditionally require that the reduct is also ud-vacuous.
Definition 5. Let F = (A,R) be an AF. S ⊆ A is strongly
undisputed in F if it is undisputed and FS is ud-vacuous.

In other words, a strongly undisputed set S is a conflict-
free set such that FS possesses no non-empty admissible or
undisputed sets. Let sud(F) denote the set of strongly undis-
puted sets of F . Since it can easily be seen that non-existence
of non-empty undisputed sets implies non-existence of non-
empty admissible sets, we obtain the following simpler char-
acterisation.
Proposition 6. sud = cfud.

Proof.

• “⊆”:
Let S be a strongly undisputed set. As S is undisputed
it is also conflict-free. As FS is (by definition) also ud-
vacuous it follows that S is a cfud-extension.

• “⊇”:
Let S be a cfud-extension. By definition FS is ud-vacuous
and S is conflict-free. So it remains to show that FS is
adm-vacuous. Assume that FS is not adm-vacuous, then
there exists a non-empty set S′ that is admissible in FS.
Then it also follows that there is a non-empty preferred
extension S′′ with S′ ⊆ S′′ in FS. Since preferred exten-
sions are also undisputed sets, it follows that FS has the
non-empty undisputed set S′′, in contradiction to the as-
sumption that FS is ud-vacuous.

Let us now consider the examples from before.
Example 5. Consider again F0 and F1 from Figure 1, see
also Example 2. We have sud(F0) = sud(F1) = {{b}} as
desired. In particular, note that /0 is not strongly undisputed
in both F0 and F1 since the corresponding reducts contain
non-empty undisputed sets (see Example 2).



Example 6. Consider again F2 from Figure 2, see also Ex-
ample 1. We have sud(F2) = {{a,c},{a, f}}.

Example 7. Consider again F4 from Figure 5, see also Ex-
ample 4. We have sud(F3) = {{b}}. In particular, note that
{c} is not strongly undisputed since its reduct F{c}

3 is the
same as the AF F0 (see Figure 1), which has the non-empty
undisputed set {b}.

The above examples show that strongly undisputed se-
mantics behaves well with the considered examples. In par-
ticular, Example 7 showed that we solved one of the two
issues we raised at the end of the previous section. The other
issue will be shown to have been solved below (in fact as a
corollary of the very next result).

Theorem 2. For all F, sud(F) = udud(F) = udud
max(F).

Proof. The equality sud(F) = udud(F) follows directly
from Definition 5. The subset relation udud

max(F)⊆ udud(F)
follows also directly from udmax(F) ⊆ ud(F). It remains
to show udud(F) ⊆ udud

max(F). Let S ∈ udud(F) and as-
sume S /∈ udud

max(F). Then there is S′ with S ⊊ S′ and S′ ∈
udud

max(F). From S′ ∈ udud
max(F) it follows S′ ∈ ud(F). From

S ∈ udud(F) it follows S ∈ ud(F). With S ⊊ S′ and Proposi-
tion 5 it follows S′ \ S ∈ ud(FS), contradicting the fact that
S ∈ udud(F) and FS being ud-vacuous.

The above theorem paints a nice symmetric picture in
light of Theorem 1. There, preferred extensions could
be characterised by combining admissibility with minimal
undisputed sets (where “combination” was implemented
through intersection). Above, strongly undisputed sets are
characterised by combining ud-vacuity with maximal undis-
puted sets (where “combination” was implemented through
vacuous reduct construction).

Theorem 2 gives us the following nice properties of
strongly undisputed sets.

Corollary 2. sud satisfies I-maximality, i. e., for all AFs
F = (A,R), S,S′ ∈ sud(F) with S ̸= S′, we have S ̸⊆ S′ and
S′ ̸⊆ S.

Proof. Theorem 2 showed that strongly undisputed sets are
maximal undisputed sets. By definition, no two maximal
undisputed sets can be in any subset relation.

Corollary 3. For all F = (A,R), st(F)⊆ sud(F).

Proof. Any stable extension S is preferred and therefore
undisputed, see Theorem 1. Since S attacks all arguments
it does not contain, FS is empty and therefore ud-vacuous.
The claim follows then from Theorem 2.

Taken together Theorem 1, Corollary 3, as well as estab-
lished relationships (Dung 1995), and the definitions of our
new semantical notions, we obtain the picture in Figure 6.
It shows that the relationships between strongly undisputed
sets, undisputed sets, and conflict-free sets mirror the rela-
tionships between stable extensions, preferred extensions,

st

prsud

admud

cf

Figure 6: Relationships between our new semantics ud and
sud and the existing notions of stability (st), preferredness
(pr), admissibility (adm), and conflict-freeness (cf). An ar-
row from σ1 to σ2 implies σ1(F)⊆ σ2(F) for all F .

a

bc

d

Figure 7: The AF F5 from Example 8.

and admissible sets. In particular, note that for odd-cycle-
free F , pr(F) = st(F) = ud(F) = sud(F), cf. Proposition 2.

The relationship between stable and strongly undisputed
semantics comes with one caveat, namely that strongly
undisputed semantics can also be undefined for certain AFs.
Example 8. Consider AF F5 in Figure 7 with ud(F5) =
{ /0,{a},{b},{c}}. In particular, note that adm(F5) = { /0}
and that, e. g., F{a}

5 consists of the self-attacking d that at-
tacks c (which is isomorphic to F0 from Figure 1). The undis-
puted sets {a}, {b}, and {c} are maximal (and therefore
the only candidates for strongly undisputed sets). However,
ud(F{a}

5 ) = { /0,{c}} and, likewise, F{b}
5 and F{c}

5 are also
not ud-vacuous. It follows sud(F5) = /0.

Weak admissibility behaves a little different in the previ-
ous example, where it classifies /0 as the only weakly ad-
missible set (in contrast to strongly undisputed semantics
that states that there is no strongly undisputed set, not even
/0). However, both weakly admissible semantics as well as
strongly undisputed semantics agree that there is no accept-
able argument in F5 (i. e., an argument that is contained in at
least one acceptable set).

Note that due to Proposition 4, strongly undisputed se-
mantics also satisfies the reinstatement property (i. e., de-
fended arguments are always contained in a strongly undis-
puted set).

Dauphin et al. (Dauphin, Rienstra, and van der Torre
2020) introduced the principle of reduct admissibility as a
weaker form of admissibility that generalises the issue ob-
served in the AFs F0 and F1 from Section 3. In general, a
semantics σ satisfies reduct admissibility if for every AF



F = (A,R), every E ∈ σ(F), and every a ∈ E, if bRa then
b /∈

⋃
σ(FE). In other words, every attacker of an extension

of σ(F) is not acceptable in the reduct FE .

Proposition 7. sud satisfies reduct admissibility.

Proof. For F = (A,R) and E ∈ sud(F), we have ud(FE)⊆
{ /0} and therefore sud(FE) ⊆ { /0}. So

⋃
sud(FE) = /0 and

for every b with bRa with a ∈ E, b /∈ /0.

The following observation is a variant of Proposition 5
and shows that strongly undisputed sets can also be decom-
posed along the reduct.

Proposition 8. Let F = (A,R) be an AF, E ∈ sud(F), and
E ′ ⊊ E with E ′ ∈ ud(F). Then E \E ′ ∈ sud(FE ′

).

Proof. Let E ∈ sud(F) and E ′ ⊊ E with E ′ ∈ ud(F). Since
E is conflict-free in F , E \E ′ is also conflict-free in FE ′

. Fur-
thermore, (FE ′

)E\E ′
= FE ′∪E\E ′

= FE and adm(FE)⊆ { /0}
and ud(FE) ⊆ { /0} as E is strongly undisputed. It follows
that E \E ′ ∈ sud(FE ′

).

In this section, we showed that strongly undisputed se-
mantics is a conceptually simple approach to model a
weaker form of admissibility that complies with the intuition
behind the AFs F0 and F1 discussed in Section 3. Moreover,
(strongly) undisputed sets nicely fit into the general classifi-
cation of classical semantics due to their mirrored relation-
ships wrt. preferred and stable semantics, cf. Figure 6. In the
next section, we will analyse the computational complexity
of reasoning with (strongly) undisputed sets.

6 Computational Complexity
We assume familiarity with basic concepts of computational
complexity and basic complexity classes such as P, NP,
coNP, see (Papadimitriou 1994) for an introduction. For two
complexity classes C and D , the class C D is the class of
decision problems solvable by an algorithm in class C that
has access to an oracle of class D (which means that the
algorithm can obtain the answer of any problem in class D
within one step). We also consider complexity classes of the
polynomial hierarchy, which are defined via ΠP

0 = ΣP
0 = P

and ΣP
i = NPΣP

i−1 , ΠP
i = coNPΣP

i−1 for i > 0.
We consider the following computational tasks for σ ∈

{ud,sud}, cf. (Dvořák and Dunne 2018):

Verσ Given F = (A,R) and E ⊆ A,
decide whether E ∈ σ(F).

Existsσ Given F = (A,R),
decide whether σ(F) ̸= /0.

Exists¬ /0
σ Given F = (A,R),

decide whether there is an E ∈ σ(F) with E ̸= /0.
Credσ Given F = (A,R) and a ∈ A,

decide whether there is E ∈ σ(F) with a ∈ E.
Skeptσ Given F = (A,R) and a ∈ A,

decide whether for all E ∈ σ(F), a ∈ E.

The following theorems summarise our results regarding the
computational complexity of the above tasks for (strongly)

undisputed sets. The proofs are omitted due to space restric-
tions, but can be found in an online appendix.3

Theorem 3. Verud is coNP-complete, Existsud is trivial,
Exists¬ /0

ud is ΣP
2 -complete, Credud is ΣP

2 -complete, and Skeptud
is ΠP

2 -complete.
Theorem 4. Versud is ΠP

2 -complete, Existssud is ΣP
3 -

complete, Exists¬ /0
sud is ΣP

3 -complete, Credsud is ΣP
3 -complete,

and Skeptsud is ΠP
3 -complete.

It can be observed that the computational complexity of
reasoning with (strongly) undisputed sets is relatively high,
in particular compared to classical admissibility-based se-
mantics (Dvořák and Dunne 2018). However, it should be
noted that skeptical reasoning with undisputed sets is of
the exact same complexity as skeptical reasoning with pre-
ferred semantics, which is insofar interesting as undisputed
sets were defined as a generalisation of preferred extensions.
Moreover, compared to weak admissibility-based seman-
tics, where all reasoning problems are PSPACE-complete
(Dvořák, Ulbricht, and Woltran 2021), our new semantical
notions are significantly easier (under standard complexity-
theoretic assumptions).

As with regards to subclasses of abstract argumentation
frameworks where the above tasks become tractable (or just
easier), we can exploit the observations from Propositions 2
and 3, which showed that (strongly) undisputed semantics
coincides with preferred (and stable) semantics in certain
subclasses. For example, for odd-cycle-free argumentation
frameworks, skeptical reasoning with strongly undisputed
sets is “only” coNP-complete (since it is equivalent to skep-
tical reasoning with stable semantics).

7 Summary and Conclusion
We introduced the notions of undisputed sets and strongly
undisputed sets as an approach to define a weaker version of
admissibility that deals with the issue of irrelevant attacks.
Our notions rely on the property of σ -vacuity, i. e., the prop-
erty of an AF to have no non-empty σ -extension. Then an
undisputed set is any conflict-free set such that its reduct is
adm-vacuous and a strongly undisputed set is any conflict-
free set such that its reduct is ud-vacuous. We analysed both
notions in-depth and showed that they comply with desir-
able properties of weak versions of admissibility. In addi-
tion, they are founded on a conceptually simple idea and
mirror classical relationships between stable, preferred, and
admissible sets. We analysed the computational complexity
and showed that most problems lie on the second and third
level of the polynomial hierarchy.

Part of future work is to analyse the properties of
(strongly) undisputed sets in more detail, in particular wrt.
argumentation principles discussed in, e. g., (van der Torre
and Vesic 2018). We will also investigate vacuous reduct se-
mantics in more detail. In particular, it would be interesting
to investigate whether further semantics can be characterised
in the same way as preferred extensions have been charac-
terised as admadm-extensions. For example, it is also quite
easy to see that co = admgr.

3http://mthimm.de/misc/aaai23 appendix.pdf
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