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Abstract. We propose an algorithm based on satisfiability problem
(SAT) solving for determining the contension inconsistency degree in
propositional knowledge bases. In addition, we present a revised version
of an algorithm based on answer set programming (ASP), which serves
the same purpose. In an experimental analysis, we compare the two algo-
rithms to each other, as well as to a naive baseline method. Our results
demonstrate that both the SAT and the ASP approach expectedly out-
perform the baseline algorithm. Further, the revised ASP method is not
only superior to the SAT approach, but also to its predecessors from the
literature. Hence, it poses a new state of the art.

Keywords: Inconsistency Measurement · Answer Set Programming ·
Satisfiability Solving.

1 Introduction

The ubiquitous presence of conflicting information and the handling thereof con-
stitutes a major challenge in Artificial Intelligence. The field of inconsistency
measurement (see the seminal work by Grant [14], and the book by Grant and
Martinez [15]) allows for an analytical perspective on the subject of inconsistency
in formal knowledge representation formalisms. In inconsistency measurement,
the aim is to quantitatively assess the severity of inconsistency in order to both
guide automatic reasoning mechanisms and to help human modelers to identify
issues and compare different alternative formalizations. For example, inconsis-
tency measures have been used to estimate reliability of agents in multi-agent
systems [9], to analyze inconsistencies in news reports [17], to support collabora-
tive software requirements specifications [21], to allow for inconsistency-tolerant
reasoning in probabilistic logic [23], and to monitor and maintain quality in
database settings [4]. Hence, there is clearly a need for practically applicable
approaches.

There are numerous inconsistency measures, based on different concepts, such
as minimal inconsistent subsets (see, e.g., [16]) or maximal consistent sets (see,
e.g., [3]), or non-classical semantics (see, e.g., [13]); see [26] for an overview.
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A number of problems related to these measures lies on the first level of the
polynomial hierarchy, which renders them complexity-wise most likely to be
suitable for practical applications, compared to other measures where the asso-
ciated problems are located higher up the polynomial hierarchy [29]. Further,
a natural approach to computing these measures is using satisfiability problem
(SAT) solving, which is widely used in applications such as the automatic verifi-
cation of hardware specifications [31], or cryptanalysis [22]. Moreover, there exist
highly optimized SAT solvers (see the results of the annual SAT competition1 for
an overview). In this paper, we present a SAT-based approach for inconsistency
measurement. To be precise, we develop a SAT encoding for determining the
contension inconsistency measure (which we also simply refer to as contension
measure) [13] via binary search.

There already exist a couple of works that take an algorithmic perspective on
inconsistency measurement. In [18] and [19], the authors present approaches for
computing a number of inconsistency measures based on reductions to answer
set programming (ASP). A total of three inconsistency measures [13, 5, 27], where
the corresponding decision problems are all on the first level of the polynomial
hierarchy, were selected. The three measures were implemented and compared
to naive baseline implementations in an experimental analysis. As anticipated,
the results showed that the ASP-based implementations were clearly superior.

We compare the newly proposed SAT-based approach with a revised version
of the ASP approach that was presented in [19]. In an extensive experimental
evaluation, we additionally compare the two methods to a naive baseline method,
which is, to the best of our knowledge, the only other existing implementation of
the contension measure. Yet, we focus our analysis on the comparison between
the SAT approach and the ASP approach, as those are the more promising—and,
in terms of performance, more comparable—methods. The results reveal that,
as expected, the SAT approach is clearly superior to the naive one, however,
it cannot compete with the ASP approach. In addition, we draw a comparison
between the previous versions of the ASP-based method [18, 19] and the newly
proposed one. We demonstrate that the latter is superior, and thus represents a
new state of the art.

The remainder of this paper is organized as follows. In Section 2, we explain
fundamental definitions regarding inconsistency measurement, ASP, and SAT
solving. Sections 3 and 4, respectively, provide descriptions of the SAT-based
and ASP-based approaches for the contension inconsistency measure. In Section
5, we describe our experimental evaluation, including an in-depth discussion of
the results, and we conclude in Section 6. Due to space restrictions, all proofs
are omitted in the main paper, but are provided in an appendix2.

1 http://www.satcompetition.org/
2 https://e.feu.de/sum2022-appendix
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2 Preliminaries

We define At to be a fixed set of propositions (also referred to as (propositional)
atoms), and L(At) to be the corresponding propositional language. L(At) is con-
structed by applying the usual connectives, i.e., ∧ (conjunction), ∨ (disjunction),
and ¬ (negation). A finite set of (propositional) formulas K ⊆ L(At) is called a
(propositional) knowledge base (KB). Let K denote the set of all KBs. Let F be
a formula or a set of formulas. We denote the set of propositions appearing in
F , i.e., the signature of F , as At(F ). Semantics of a propositional language is
determined by interpretations.

Definition 1. A propositional interpretation is a function ω : At → {true, false}.
Let Ω(At) be the set of all interpretations.

An interpretation satisfies an atom x ∈ At if and only if ω(x) = true. This is
also denoted as ω |= x, and ω is also referred to as a model of x. We extend this
concept to formulas and sets of formulas in the usual manner.

2.1 Inconsistency Measurement

If there exists no model for a formula or a set of formulas F , i.e., if ¬∃ω |= F ,
then F is inconsistent. The intuition behind an inconsistency measure is that
a higher value indicates a more severe inconsistency than a lower one. Besides,
the minimal value (0) is supposed to model the absence of inconsistency, i.e.,
consistency. Let R∞

≥0 be the set of non-negative real numbers, including infinity.

Definition 2. An inconsistency measure I is a function I : K → R∞
≥0 that

satisfies I(K) = 0 if and only if K is consistent, for all K ∈ K.

We further define UpperI to be the decision problem of deciding whether a
given value u ∈ R∞

≥0 is an upper bound of I(K) wrt. a given KB K, and we
define ValueI to be the functional problem of determining the value of I(K).

The contension inconsistency measure Ic [13] is based on Priest’s three-
valued propositional logic [24], which extends the two classical truth values true
(t) and false (f) by a third value, which indicates paradoxical, or both true and
false (b). The truth tables of this logic are presented in Table 1. A three-valued
interpretation ω3 : At(K) 7→ {t, f, b} assigns one of the three truth values to each
atom in a KB K. An interpretation ω3 is a three-valued model of an atom, if it
evaluates to either t or b. Again, we extend this concept to formulas, and sets of
formulas. We denote the set of all three-valued models wrt. an arbitrary KB K
as Models(K) = {ω3 | ∀α ∈ K, ω3(α) = t or ω3(α) = b}.

Furthermore, we can divide the domain of an interpretation ω3 into two sets,
of which one contains those atoms that are assigned a classical truth value (t,
f), and the other one contains those atoms that are assigned truth value b. The
latter is defined as Conflictbase(ω3) = {x ∈ At(K) | ω3(x) = b}. Consider the
interpretation ω3

B which sets all atoms in a KB K to b. Such an interpretation will
always satisfy K (i.e., ω3

B ∈ Models(K)). However, if we minimize the number
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Table 1. Truth tables for Priest’s propositional three-valued logic.

x y x ∧ y x ∨ y

t t t t
t b b t
t f f t
b t b t
b b b b
b f f b
f t f t
f b f b
f f f f

x ¬x
t f
b b
f t

of b assignments (i.e., |Conflictbase(ω3)|), it becomes evident which atoms are
involved in a conflict, because they are exactly those atoms that cannot be set
to t or f without rendering K unsatisfiable.

Definition 3. We define the contension inconsistency measure Ic wrt. a knowl-
edge base K as Ic(K) = min{|Conflictbase(ω3)| | ω3 ∈ Models(K)}.

The minimal number of atoms that are assigned b corresponds exactly to the
number of atoms which are involved in a conflict, as the following example
illustrates.

Example 1. Consider K1 = {x ∧ y,¬x, y ∨ z}. Let ω3
1 be an interpretation with

ω3
1(y) = ω3

1(z) = t, and ω3
1(x) = b, i.e., ω3

1 is a model of K, and Conflictbase(ω3
1) =

{x}. It is easy to see that x must be assigned b in order to make K1 satisfiable,
and that no lower number of atoms being assigned b could achieve this. Hence,
Ic(K1) = |Conflictbase(ω3

1)| = |{x}| = 1.

2.2 Satisfiability Solving

One of the major problems of propositional logic is the Boolean Satisfiability
Problem, which is one of the most-studied problems of computer science, and
which is NP-complete [7].

Definition 4. The Boolean Satisfiability Problem (SAT) is the problem of de-
ciding if there exists an interpretation that satisfies a given propositional formula.

A SAT solver is a program that solves SAT for a given formula. There exist nu-
merous high-performance SAT solvers (see [10] for a recent overview). Note that
the input formula of a SAT solver must be in Conjunctive Normal Form (CNF),
i.e., it must be a conjunction of clauses. Although every propositional formula
can be transformed to CNF, a naive conversion using Boolean transformation
rules may result in a formula which is exponentially larger than the original for-
mula. For this reason, in this work we use the Tseitin method [30] for converting
formulas to CNF, which yields an equisatisfiable formula in CNF, with only a
linear increase in size. We further have a concept of modeling cardinality con-
straints in SAT, which represent that at least, at most, or exactly some number
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k out of a set of propositional atoms are allowed to be true. Using the formal
definition of Abio et al. [1], we define a cardinality constraint to be of the form
a1 + . . .+ an ▷◁ k, where a1, . . . , an are propositional atoms with |At| = n, k is a
natural number, and ▷◁ ∈ {<,≤,=,≥, >}. The meaning of the + operator is that
for every true atom the number 1 is added and for every false atom the number
0 is added, thereby counting the number of true atoms. To encode Ic, we merely
require at-most-k constraints, i.e., constraints of the form a1 + . . . + an ≤ k. A
straightforward approach to realize at-most-k constraints is to add all clauses
which are disjunctions of subsets Ai ⊆ {¬a1, . . . ,¬an} with |Ai| = k + 1 to the
SAT encoding. Since this method creates

(
n
k+1

)
clauses (binomial encoding), it

does not scale well, and it is often not suitable for practical applications. There
are, however, more efficient approaches, such as the sequential counter encoding
[25], which is used in our experiments (see Section 5).

2.3 Answer Set Programming

Answer set programming (ASP) [11, 20, 8] is a declarative problem solving ap-
proach targeted at difficult search problems. Thus, rather than modeling in-
structions on how to solve a problem, a representation of the problem itself is
modeled. More precisely, a problem is modeled as an extended logic program
which consists of a set of rules of the form

r = H:- A1, . . . , An, not B1, . . . , not Bm. (1)

where H, Ai with i ∈ {1, . . . , n}, and Bj with j ∈ {1, . . . ,m} are classical
literals. ASP rules consist of a head and a body, separated by “:-”, of which
one may be empty. Wrt. a rule r, we denote the sets of literals contained in the
head and body as head(r), and body(r), respectively. In Eq. (1), head(r) = {H},
and body(r) = {A1, . . . , An, B1, . . . , Bm}. We refer to a rule with an empty
body as fact, and to one with an empty head as constraint. An extended logic
program is positive if it does not contain any default negation (not). A set of
literals L is called closed under a positive program P if and only if for any rule
r ∈ P , head(r) ∈ L whenever body(r) ⊆ L. A set L is consistent if it does not
contain both A and ¬A for some literal A. We denote the smallest of such sets
wrt. a positive program P , which is always uniquely defined, as Cn(P ). Wrt. an
arbitrary program P , a set L is called an answer set of P if L = Cn(PL), with

PL = {H:- A1, . . . , An |
H:- A1, . . . , An, not B1, . . . , not Bm. ∈ P, {B1, . . . , Bm} ∩ L = ∅}.

In addition to the “basic” rules (as described above), modern ASP dialects
allow for more complex structures. An example of such is the cardinality con-
straint, which is of the form

l{A1, . . . , An, not B1, . . . , not Bm}u,

where l is a lower bound, u is an upper bound, and A1, . . . , An, B1, . . . , Bm
are literals. It can be interpreted as follows: if at least l and at most u of the
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literals are included in an answer set, the cardinality rule is satisfied by that
answer set. ASP solvers also offer the option to express cost functions involving
minimization and/or maximization in order to solve optimization problems [11].
In this work, we only require a specific type of optimization statements of the
form #minimize{A1, . . . , An}. Such a minimize statement instructs the ASP
solver to include only a minimal number of the literals A1, . . . , An in any answer
set. We refer to an answer set that corresponds to the minimization (i.e., that
contains a minimal number of A1, . . . , An) as an optimal answer set.

As of yet, we introduced a basic propositional syntax and semantics of ASP,
in order to define the different language concepts in a concise manner. Note,
however, that we model Ic in ASP using first-order predicates and functions.
This serves the purpose of a) easing readability, and b) facilitating an improved
automated grounding process. The use of first-order concepts allows us to set
variables which range over constant symbols. Following the Clingo syntax [20],
we use capitalized identifiers for variables and non-capitalized ones for constants.
Replacing the variables in a rule by the corresponding constant symbols is re-
ferred to as grounding. In addition, we express the arity n of a predicate or
function f as f/n.

Example 2. Our aim is to model a KB K2 with At(K2) = {a, b} in ASP. To
represent the concept of an atom, we introduce the predicate atom/1. We also
use the constant symbols a and b to represent the atoms a and b, and create the
facts atom(a) and atom(b). If we now wish to use atom/1 in a rule, we do not
have to explicitly state atom(a) and atom(b), but we can simply use a variable,
e.g., X, and write atom(X). During the grounding process, X will then be replaced
by a and b.

3 An Algorithm for Ic Based on SAT

In order to compute the value of Ic(K) wrt. a KB K, i.e., in order to solve
ValueIc

, we use the standard approach to solve the functional problemValueIc

by iterative calls to a SAT solver which determines the answers to the decision
problem UpperIc [29]. The range of Ic(K) is clearly defined (with 0 being the
minimal and |At(K)| the maximal value), which enables us to use binary search to
find the exact value. To be precise, we start with u = ⌊|At(K)|/2⌋, and determine
a SAT encoding for UpperIc

wrt. the KB K and the value u as the upper bound.
If u is in fact an upper bound of UpperIc

, we continue the binary search in the
lower interval, if it is not, we continue in the upper interval. After log2(|At(K)|)
iterative calls to a SAT solver, we know the lowest possible value for which
UpperIc

returns true, i.e., we know the solution to ValueIc
.

In the following, we illustrate how to construct a set of formulas S(K, u) wrt.
a KB K and a non-negative integer value u, which is satisfied if and only if u is an
upper bound of Ic(K). To encode Priest’s tree-valued logic in propositional logic,
we require additional variables. To begin with, for every atom x in the original
signature At(K), we introduce three new atoms xt, xb, xf (S1) to represent the
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three truth values t, b, f . In order to ensure that only one of such atoms is true
wrt. some x ∈ At(K), we add the following rule:

(xt ∨ xf ∨ xb) ∧ (¬xt ∨ ¬xf ) ∧ (¬xt ∨ ¬xb) ∧ (¬xb ∨ ¬xf ) (S2)

In addition, we must model the evaluation of formulas in three-valued logic
(see Table 1). We introduce three variables vtϕ, v

f
ϕ, v

b
ϕ (S3) for every sub-formula

ϕ of every formula α ∈ K to represent when each of the three possible valuations
of ϕ occurs. For each of these atoms we add an equivalence relation which defines
the evaluations based on the operator of the sub-formula. Thus, we need to model
conjunction, disjunction, and negation. To encode a conjunction ϕc = ψc,1∧ψc,2,
we need to model that ϕc is t if both conjuncts are t, ϕc is f if at least one of
the conjuncts is f , and ϕc is b if at least one of the conjuncts is b and the other
one is not f :

vtϕc
↔ vtψc,1

∧ vtψc,2
(S4)

vfϕc
↔ vfψc,1

∨ vfψc,2
(S5)

vbϕc
↔ (vbψc,1

∨ vbψc,2
) ∧ ¬vfψc,1

∧ ¬vfψc,2
(S6)

In the same fashion, we can encode that a disjunction is f if both of its disjuncts
are f , it is t if at least one of the disjuncts is t, and it is b if at least one disjunct
is b and the other one is not t:

vtϕd
↔ vtψd,1

∨ vtψd,2
(S7)

vfϕd
↔ vfψd,1

∧ vfψd,2
(S8)

vbϕd
↔ (vbψd,1

∨ vbψd,2
) ∧ ¬vtψd,1

∧ ¬vtψd,2
(S9)

Negations ϕn = ¬ψn are encoded as follows:

vtϕn
↔ vfψn

vfϕn
↔ vtψn

vbϕn
↔ vbψn

(S10–12)

Further, we add variables for each sub-formula ϕa which represents an individual
atom x:

vtϕa
↔ xt vfϕa

↔ xf vbϕa
↔ xb (S13–15)

Moreover, we need to represent a formula α ∈ K being satisfied in three-
valued logic. This is the case when the sub-formula which contains the entire
formula evaluates to t or b. Thus, we add the formula vtα ∨ vbα (S16). Finally, we
add a cardinality constraint representing that at most u of the b-atoms can be
true: at most u(Atb) (S17). We define S(K, u) to be comprised of (S1–17).

Theorem 1. For a given value u, the encoding S(K, u) is satisfiable if and only
if Ic(K) ≤ u.
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4 An Algorithm for Ic Based on ASP

There already exist two ASP-based approaches for computing Ic in the litera-
ture. In [18], the authors introduce a method similar to our SAT approach (see
Section 3), which uses ASP encodings for the problem UpperIc , in order to
find ValueIc

via binary search. A revised version of this approach is proposed
in [19], which calculates ValueIc

directly within ASP by means of a minimize
statement. Note that in both versions, only propositional language concepts are
used, which leads to a program that is already ground (i.e., the program is es-
sentially ground manually, instead of by a grounder). In the present work, we
demonstrate yet another revision of the ASP approach, which is very similar
to the one in [19], but makes use of first-order predicates and variables, which
enables an automated, and internally optimized, grounding procedure.

We address the problem of computing Ic(K) wrt. a KB K by constructing an
extended logic program as follows. First, we define some facts that describe the
composition of K. Every atom x ∈ At(K) is represented in ASP as atom(x) (A1),
and every formula α ∈ K as kbMember(α) (A2). Further, every conjunction ϕc =
ψc,1 ∧ψc,2 is encoded as conjunction(ϕc,ψc,1,ψc,2) (A3). In the same fashion,
every disjunction ϕd = ψd,1 ∨ ψd,2 is encoded as disjunction(ϕd,ψd,1,ψd,2)
(A4). Each negation, i.e., each ϕn = ¬ψn, is represented as negation(ϕn,ψn)
(A5). Further, each formula ϕa that consists of an individual atom x is encoded as
formulaIsAtom(ϕa,x) (A6). Moreover, we represent the truth values of Priest’s
three-valued logic (t, f , b) as tv(t), tv(f), and tv(b) (A7).

To encode the actual functionality of the contension measure, we need to
create a rule which “guesses” a three-valued interpretation. To achieve this, we
model that each atom is assigned exactly one truth value by using the cardinality
constraint

1{truthValue(A,T): tv(T)}1:- atom(A). (A8)

As with the SAT approach, we need to represent the role of the operators ∧, ∨,
and ¬ in three-valued logic. In order for a conjunction ϕc = ψc,1 ∧ ψc,2 to be t,
both of its conjuncts need to be t:

truthValue(F,t):- conjunction(F,G,H),

truthValue(G,t), truthValue(H,t). (A9)

For a conjunction to be f , on the other hand, it is sufficient if only one of the
conjuncts is f :

truthValue(F,f):- conjunction(F,G,H),

1{truthValue(G,f), truthValue(H,f)}. (A10)

Finally, a conjunction is b if it is neither t nor f :

truthValue(F,b):- conjunction(F, , ),

not truthValue(F,t), not truthValue(F,f). (A11)
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In the same fashion, a disjunction ϕd = ψd,1∨ψd,2 is only f if both of its disjuncts
are f (A12), it is t if at least one disjunct is t (A13), and it is b if it is neither t
nor f (A14). A negation is t in three-valued logic if its base formula is f , i.e.,

truthValue(F,t):- negation(F,G), truthValue(G,f). (A15)

and vice versa, and it is b if its base formula is also b. Hence, the other two cases
(A16–17) follow accordingly. Moreover, if a (sub-)formula consists of a single
atom, it must have the same truth value as the referred atom:

truthValue(F,T):- formulaIsAtom(F,G),

truthValue(G,T), tv(T). (A18)

In order to compute Ic, we still need to ensure that the ASP solver finds
an interpretation that satisfies all formulas α ∈ K. Consequently, every α ∈ K
must evaluate to either t or b—in other words, no formula must evaluate to f .
We realize this using the following integrity constraint:

:- truthValue(F,f), kbMember(F). (A19)

Finally, as our aim is to find the minimal number of atoms being evaluated to
b, we add

#minimize{1,A: truthValue(A,b), atom(A)}. (A20)

We define P c to be the union of all rules (A1–20) defined above. Further, let
ω3
M be the three-valued interpretation represented by an answer setM of P c(K).

Theorem 2. Let M be an optimal answer set of P c(K). Then |(ω3
M )−1(b)| =

Ic(K).3

5 Experimental Analysis

The central aspect of our experimental evaluation is a comparison between the
SAT-based and ASP-based approaches introduced in Sections 3 and 4, as well as
a naive baseline algorithm. The latter, which is provided by TweetyProject4, is
implemented by first converting the KB to CNF, followed by iterating through
all subsets of atoms (with increasing cardinality), deleting all clauses in which
one of the atoms of the current set appears (thus, effectively setting their three-
valued truth value to b). At each interation we check whether the resulting KB
is consistent by means of a SAT solver (here, CaDiCal sc20215 [6]). If it is, the
cardinality of the current set of atoms is returned.

Although the ASP approach has been proven to be clearly superior to the
naive one in terms of runtime (see [19]), and we can expect the same for the

3 For any function φ : X 7→ Y and y ∈ Y we define φ−1(y) = {x ∈ X | f(x) = y}
4 https://e.feu.de/tweety-contension
5 https://github.com/arminbiere/cadical
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SAT approach, we still draw this comparison in order to concretely quantify this
assumption. Besides, the naive algorithm is, to the best of our knowledge, the
only existing alternative to compute Ic. However, as the result of comparing
the SAT and ASP approaches is far less predictable (both SAT and ASP are
established formalisms for dealing with problems on the first level of the polyno-
mial hierarchy), we examine the two methods more closely. We consider how the
runtimes of the approaches are composed, e.g., how much time the respective
solvers require, or the time it takes to compute the encodings. Moreover, we
draw a comparison between previous versions of the ASP approach [18, 19] and
the newly proposed one.

5.1 Experimental Setup

As there is, to the best of our knowledge, no dedicated benchmark dataset for
inconsistency measurement, we need to compile our own dataset. One option to
achieve this is to generate completely synthetic data; another one is to “trans-
late” benchmark data from a different research field. Therefore, we use both a
synthetic and a “translated” dataset. The SRS dataset6 consists of synthetic
KBs generated by the SyntacticRandomSampler7 provided by TweetyProject.
This dataset corresponds exactly to the union of datasets A and B in [19].
Hence, the SRS dataset contains a total of 1800 KBs of varying complexity.
The smallest instances have a signature size of 3, and contain between 5 and 15
formulas, the biggest ones have a signature size of 30, and contain between 50
and 100 formulas. As the formulas are created randomly, and independently of
one another, most KBs are highly inconsistent8. The ML dataset9 consists of a
total of 1920 KBs learned from the Animals with Attributes10 (AWA) dataset,
which is widely used in the area of machine learning. It describes 50 types of
animals using 85 binary attributes. Following [28], we used the Apriori algorithm
[2] to mine association rules from the AWA dataset for a given minimal confi-
dence value c and minimal support value s. These rules were then interpreted as
propositional logic implications. We finally selected one animal at random and
added all its attributes as facts, likely making the KB inconsistent, as even rules
with low confidence values were interpreted as strict implications. We set

c ∈ {0.6, 0.65, 0.70, 0.75, 0.8, 0.85, 0.90, 0.95},
s ∈ {0.6, 0.65, 0.70, 0.75, 0.8, 0.85, 0.90, 0.95},

and allowed a maximum of 4 literals per rule.
Both the SAT-based and the ASP-based approach are implemented in C++.

The SAT solver we use is CaDiCal sc2021 (as with the naive method), and the

6 Download: https://e.feu.de/srs-dataset
7 https://e.feu.de/tweety-syntactic-random-sampler
8 Overview of inconsistency values: https://e.feu.de/sum2022-tables
9 Download: https://e.feu.de/ml-dataset

10 http://attributes.kyb.tuebingen.mpg.de
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Fig. 1. Runtime comparison of the ASP-based, SAT-based, and naive approach on
the SRS dataset (left). Further runtime comparison of the ASP-based and SAT-based
methods on the ML dataset (right). Timeout: 10 minutes.

ASP solver we use is Clingo 5.5.111 [12]. For the computation of cardinality
constraints in SAT we use sequential counter encoding, and for transforming
formulas to CNF we use Tseitin’s method. All experiments were run on a com-
puter with 125GB RAM and an Intel Xeon E5-2690 CPU which has a basic
clock frequency of 2.90GHz.

5.2 Results

We first consider the overall runtime per KB of all three approaches wrt. the
SRS dataset. Figure 1 (left) shows a cactus plot of the measured runtimes, i.e.,
wrt. each method it shows the runtimes wrt. each KB of the dataset, sorted from
low to high, with a timeout set to 10 minutes. We can see that both the SAT
and the ASP approach fare quite well compared to the naive method. While
the latter produces a total of 664 timeouts, the former are able to compute
all inconsistency values easily within the time limit. However, even though the
SAT method clearly outperforms the naive method, it cannot match the ASP
approach. A comparison of the SAT method and the ASP method wrt. the more
challenging ML dataset shows the same pattern (see the right part of Figure 1).
Here, the SAT method actually times out in 237 cases.

We now proceed to a more detailed examination of how the SAT and ASP
runtimes are composed. To achieve this, we measure the amount of time required
to compute the SAT/ASP encoding, the respective solving time, and, in the SAT
case, the time required to transform the formulas to CNF. Note that wrt. SAT,
we measure the total time needed for encoding, solving, and transforming, as
the iterative nature of the approach requires multiple calls. Further, in the ASP
case, “solving” includes the grounding process, and in both the ASP and the
SAT case, it includes initializing the solver, and feeding it the program/clauses.
Figure 2 visualizes how the runtimes of both approaches are composed on average
(regarding the SRS dataset). The category “other” included in the figure covers

11 https://potassco.org/clingo/
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Fig. 2. Overview of the average runtime composition of the ASP-based and SAT-based
approaches wrt. the SRS dataset.

factors such as loading the KB. As the cactus plot in Figure 1 (left) already
indicates, the average runtime of the ASP-based method is several times shorter
than the runtime of the SAT-based method (0.026 seconds vs. 0.580 seconds).
With regard to the ASP approach, it is noticeable that the encoding generation
only takes up a tiny fraction of the overall runtime (with 0.0008 seconds it is
barely even visible in Figure 2), while the “other” category takes up more than
half the runtime. However, since the average total runtime of this method is
very low in general, this observation should be taken with a grain of salt, as
the ratio of the different runtime shares could shift with an increasing size and
complexity of the KBs at hand. One striking observation wrt. the SAT approach
is that the encoding generation represents the largest fraction of the overall
runtime. This is mainly due to the fact that a new cardinality constraint is
required for each iteration, and its calculation can be costly even when using
a non-trivial method. The transformation to CNF, on the other hand, hardly
contributes to the overall runtime. It should also be noted that the pure solving
time (excluding any preprocessing) is only 0.0064 seconds on average, which
demonstrates the extent to which modern SAT solvers are optimized. Hence, we
see that SAT solvers are in fact able to solve UpperIc quite fast, however, the
iterative nature of the approach leads to a large overhead, in particular wrt. the
generation of cardinality constraints.

Yet another aspect we aim to investigate is how well the newly proposed
revision of the ASP approach performs in comparison to its predecessors in [18]
and [19] (see Section 4 for an overview of the two approaches). We apply exactly
those Java implementations which were used in the two corresponding papers.
To conduct our analysis, we use the SRS dataset. The results of this experiment,
which are illustrated in Figure 3, show that the new version of the method in
fact outperforms the older ones. The first ASP approach [18], which is based on
a binary search procedure, clearly performs the poorest, and hits the timeout
of 10 minutes in 600 cases. The second version of the approach [19] yields more
consistent results, nevertheless it performs on average roughly 7 times slower
than the newest version (0.266 vs. 0.037 seconds). Although the new version
might have an advantage by being implemented in C++, both rely on the same
ASP solver. In fact, the solving time itself is around 3 times shorter wrt. the new
ASP version compared to the previous one (0.010 vs. 0.028 seconds on average).



ASP/SAT Algorithms for the Contension Inconsistency Measure 13

Fig. 3. Runtime comparison of the different versions of the ASP approach on the SRS
dataset. “ASP binary search” refers to the version from [18], “ASP minimize v1” to
the version from [19], and “ASP” to the new version. Timeout: 10 minutes.

6 Conclusion

In the course of this work, we addressed the problem of computing the con-
tension inconsistency measure from an algorithmic perspective. To be specific,
we introduced a SAT-based approach, as well as a revised version of an ASP-
based approach. We have subjected the two methods to extensive experimental
analysis and have learned the following. SAT is generally a suitable formalism
to compute Ic (as our SAT-based method clearly outperforms a naive base-
line approach), however, due to its iterative nature, it cannot compete with the
ASP-based method. In particular, our new version of the ASP approach outper-
forms not only the SAT-based one, but also its previous two versions from the
literature. Besides, the performance of the ASP approach can now be more ac-
curately assessed—a comparison with a SAT-based method is more appropriate
than merely with a naive algorithm.

There are still numerous aspects to be examined in future work. For instance,
wrt. SAT, one can compare different SAT solvers, different methods of converting
formulas to CNF, different techniques of generating cardinality constraints, or
exploit approaches to MaxSAT. Furthermore, both SAT and ASP approaches for
other inconsistency measures could be developed and compared. Moreover, other
formalisms, such asQuantified Boolean Formulas (QBF), might be interesting for
computing inconsistency measures. One could also consider measures of higher
complexity.
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