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Abstract. We revisit non-empty minimal admissible sets in abstract
argumentation frameworks, also called initial sets [7]. These sets are
a simple concept for analysing conflicts in an abstract argumentation
framework and to explain why certain arguments can be accepted. We
contribute with new insights on the structure of initial sets and devise
a simple non-deterministic construction principle for any admissible set,
based on iterative selection of initial sets of the original framework and
its induced reducts.
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1 Introduction

Formal argumentation [1, 3] encompasses approaches for non-monotonic reason-
ing that focus on the role of arguments and their interactions. The most well-
known approach is that of abstract argumentation frameworks [5] that model
arguments as vertices in a directed graph, where a directed edge from an argu-
ment a to an argument b denotes an attack from a to b. Formal semantics are
(usually) given to abstract argumentation frameworks by extensions, i. e., sets
of arguments that can jointly be accepted and represent a coherent standpoint
on the conflicts between the arguments.

In this extended abstract, we revisit one of the fundamental concepts under-
lying approaches to formal argumentation (and abstract argumentation in par-
ticular) for the purpose of explaining, namely admissibility. Informally speaking,
a set of arguments is admissible if each of its members is defended against any
attack from the outside (we will provide formal details in Section 2). Many pop-
ular semantics for abstract argumentation rely on the notion of admissibility. In
particular, a preferred extension is a maximal (wrt. set inclusion) admissible set
and preferred semantics satisfies many desirable properties [2]. However, since a
preferred extension is a maximal admissible set, it can hardly be used for explain-
ing why a certain argument is acceptable: such an extension may contain many
irrelevant arguments and its size alone distracts from the particular reasons why
a certain member is acceptable. Our aim is to investigate why certain arguments
are contained in, e. g., a preferred extension and how we can decompose such
large extensions into smaller sets that allow us to justify the reasoning process
behind such complex semantics.
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As a tool for our investigation, we consider initial sets, i. e., non-empty admis-
sible sets that are minimal wrt. set inclusion. Initial sets have been introduced
in [6] and further analysed in [8, 7]. We contribute to this analysis with new
insights on the structure of initial sets and, in particular, to the use of initial
sets for the task of explanation.

We proceed as follows. Section 2 presents preliminaries on abstract argumen-
tation and Section 3 introduces and further analyses initial sets. We provide a
characterisation result of admissible sets in Section 4 that can be used for the
task of explanation. Section 5 concludes this extended abstract.

2 Abstract Argumentation

An abstract argumentation framework AF is a tuple AF = (A,R) where A is a
(finite) set of arguments and R is a relation R ⊆ A × A [5]. For two arguments
a, b ∈ A the relation aRb means that argument a attacks argument b. For a set
X ⊆ A, we denote by AF|X = (X,R ∩ (X ×X)) the projection of AF on X. For
a set S ⊆ A we define

S+ = {a ∈ A | ∃b ∈ S, bRa} S− = {a ∈ A | ∃b ∈ S, aRb}

We say that a set S ⊆ A is conflict-free if for all a, b ∈ S it is not the case that
aRb. A set S defends an argument b ∈ A if for all a with aRb there is c ∈ S with
cRa. A conflict-free set S is called admissible if S defends all a ∈ S.

Different semantics can be phrased by imposing constraints on admissible
sets. In particular, an admissible set E

– is a complete extension iff for all a ∈ A, if E defends a then a ∈ E,
– is a grounded extension iff E is complete and minimal,
– is a stable extension iff E ∪ E+ = A,
– is a preferred extension iff E is maximal.

All statements on minimality/maximality are meant to be with respect to set
inclusion.

3 Initial Sets

Admissibility is a fundamental property for most abstract argumentation se-
mantics and it captures the basic intuition for an explanation why a certain
argument can be regarded as acceptable. More concretely, if S is an admissible
set then a ∈ S is accepted because all arguments S are accepted, every attacker
of a is attacked back by some argument in S. However, admissibility alone is not
sufficient to model explainability as it does not take relevance into account.

Example 1. Consider the argumentation framework AF0 depicted in Figure 1.
There are four admissible sets containing the argument d:

S1 = {a, d, f, g} S2 = {d, f, g} S3 = {a, d, g} S4 = {d, g}
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Fig. 1. The argumentation framework AF0 from Example 1.

S1 is also a preferred extension. However, it is also clear that arguments a and
f are not integral for defending d and the set S4 presents a concise description
of what is needed in order to deem d as acceptable (namely only g and d itself).

In the following, we take relevance into account by considering minimal (wrt.
set inclusion) admissible sets. Of course, a notion of minimal admissible set with-
out further constraints is not a useful concept as the empty set is always ad-
missible and constitutes the unique minimal admissible set. Non-empty minimal
admissible sets have been coined initial sets in [6].

Definition 1 (Xu and Cayrol 2016). For AF = (A,R), a set S ⊆ A with
S 6= ∅ is called an initial set if S is admissible and there is no admissible S′ ( S
with S′ 6= ∅. Let IS(AF) denote the set of initial sets of AF.

Example 2. We continue Example 1. There are three initial sets of AF0: {f},
{c, h}, and {g, d}.

We now contribute some new results on the structure of initial sets, therefore
extending the analysis from [6, 8, 7]. Initial sets have an interesting property with
respect to strongly connected components as follows. Recall that we can decom-
pose an abstract argumentation framework AF into its strongly connected com-
ponents. More precisely, an abstract argumentation framework AF′ = (A′,R′) is
a strongly connected component (SCC) of AF, if AF′ v AF s.t. there is a directed
path between any pair a, b ∈ A′ in AF′ and there is no larger AF′′ with that
property. Let SCC(AF) be the set of SCCs of AF. The following result shows that
initial sets are always completely contained in a single SCC.

Proposition 1. If S is an initial set of AF then there is AF′ = (A′,R′) ∈
SCC(AF) s.t. S ⊆ A′.

The proofs of the above and the following results are omitted due to space
limitations.

If S is an initial set let SCC(S) denote its SCC as in the above proposition.
Initial sets can actually be characterised by their SCC as follows.

Proposition 2. S is an initial set of AF if and only if S is an initial set of
SCC(S) = (A′,R′) and S− ⊆ A′.
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In other words, a set S is an initial set iff it is an initial set of a single SCC and
it is not attacked by arguments outside the SCC.

4 Characterising Admissibility-based Semantics

In [6, 8] it has been shown that any admissible set (and in particular every
complete and preferred extension) can be constructed by 1.) selecting a set
of non-conflicting initial sets, 2.) adding further defended arguments, and 3.)
iterating this procedure taking so-called “J-acceptable” sets into account. In
particular, the described mechanism involves iterative application of the charac-
teristic function [5], computation of the grounded extension, and said notion of
J-acceptability to provide those characterisations (and some further concepts).
In this section, we provide a (arguably) more elegant formalisation of these ideas.

Our characterisations rely on the notion of the reduct [4].

Definition 2. For AF = (A,R) and S ⊆ A, the S-reduct AFS of AF is defined
via AFS = AF|A\(S∪S+).

The following results show that by an iterative selection of initial sets on the cor-
responding reducts, we can re-construct every admissible set (these observations
have already been hinted at in [6, 8, 7]).

Theorem 1. Let AF = (A,R) be an abstract argumentation framework and S ⊆
A. S is admissible if and only if either

– S = ∅ or
– S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is admissible in AFS1 .

By recursively applying the above theorem, we obtain the following corollary.

Corollary 1. Every non-empty admissible set S can be written as S = S1 ∪
. . . ∪ Sn with pairwise disjoint Si, i = 1, . . . , n, S1 is an initial set of AF and
every Si, i = 2, . . . , n is an initial set of AFS1∪...∪Si−1 .

Let us now discuss the wider significance of Theorem 1 and Corollary 1. For that,
recall the standard approach to compute and justify the (uniquely determined)
grounded extension of an argumentation framework AF = (A,R) [5], cf. also the
discussion in [6]. Basically, the grounded extension E of AF can be computed
by selecting any non-attacked argument a ∈ A, add it to E, remove a and all
arguments attacked by a from AF (so move from AF to AF{a}), and continue
the process until no further unattacked argument can be found. Observe the
similarity of this procedure to the procedure indicated by Theorem 1: in order
to construct any admissible set S of AF, first select any initial set S′ of AF,
add it to S (which is initially empty), remove S′ and all arguments attacked
by S′ from AF, and continue the process. Therefore, initial sets allow us to
serialise the construction of any admissible set into smaller steps, each of these
steps solving a single conflict in the framework under consideration. Depending
on how initial sets are selected at each step and how we end the process, we
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can also recover different semantics. Let us be more formal and consider the
following transition rule on states of the form (AF, S) where AF is an abstract
argumentation framework and S is a set of arguments:

(AF, S)
S′∈IS(AF)−−−−−−→ (AFS′ , S ∪ S′) (1)

If (AF′, S′) can be reached from (AF, S) via a finite number of steps (this includes
no steps at all) with the above rule we write (AF, S) (AF′, S′). We can make
the following observations.

Theorem 2. Let AF be an abstract argumentation framework.

1. A set S is admissible if and only if (AF, ∅) (AF′, S) (for some AF′).

2. A set S is complete if and only if (AF, ∅) (AF′, S) (for some AF′) and AF′

contains no unattacked argument.

3. A set S is grounded if and only if (AF, ∅)  (AF′, S) (for some AF′), AF′

contains no unattacked argument, and a set S′ can only be selected in (1) if
S′ = {a} and a is unattacked.

4. A set S is preferred if and only if (AF, ∅)  (AF′, S) (for some AF′) and
IS(AF′) = ∅.

5. A set S is stable if and only if (AF, ∅) ((∅, ∅), S).

Note that item 3 also shows that the standard algorithm to compute the grounded
extension is a special case of our transition rule.

Example 3. We continue Example 2. Suppose we first select C1 = {c, h}. For
the reduct AF1 = AFC1

0 = ({a, e, f}, {(e, a), (f, e)} we obtain IS(AF1) = {{f}}.
If we now select {f} we obtain AF2 = AF

{f}
1 = ({a}, ∅) with IS(AF2) = {{a}}.

Selecting now {a} we end up with AF3 = AF
{a}
2 = (∅, ∅). It is clear that {c, h} ∪

{f} ∪ {a} = {a, c, f, h} is a complete, preferred, and stable extension.

5 Summary and conclusion

We investigated initial sets as a means to decompose the derivation of extensions
wrt. certain semantics. This decomposition can, in particular, be used to explain
why a certain argument is contained in a specific extension. The initial sets
selected in the decomposition show exactly what is needed for a certain argument
to be included.

Part of ongoing work consists in a deeper analysis of the concepts of initials
sets, as well as deriving characterisations for further semantics based on admis-
sibility. Also the exploitation of these characterisations for algorithmic purposes
is part of future work.
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