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Abstract

We address the problem of deciding skeptical ac-
ceptance wrt. preferred semantics of an argument in
abstract argumentation frameworks, i. e., the prob-
lem of deciding whether an argument is contained
in all maximally admissible sets, a.k.a. preferred
extensions. State-of-the-art algorithms solve this
problem with iterative calls to an external SAT-
solver to determine preferred extensions. We pro-
vide a new characterisation of skeptical acceptance
wrt. preferred semantics that does not involve the
notion of a preferred extension. We then develop a
new algorithm that also relies on iterative calls to
an external SAT-solver but avoids the costly part of
maximising admissible sets. We present the results
of an experimental evaluation that shows that this
new approach significantly outperforms the state of
the art. We also apply similar ideas to develop a
new algorithm for computing the ideal extension.

1 Introduction
Approaches to formal argumentation [Atkinson et al., 2017;
Baroni et al., 2018] are knowledge representation formalisms
that focus on the representation of arguments and their re-
lationships. The most well-known approach is that of ab-
stract argumentation frameworks [Dung, 1995] that model
arguments as vertices in a directed graph, where a directed
edge from an argument a to an argument b denotes an attack
from a to b. By focusing only on the attack relations between
arguments, they can seamlessly be used with a variety of ap-
proaches to structured argumentation such as ASPIC+ [Mod-
gil and Prakken, 2014] and ABA [Toni, 2014]. The main
purpose of abstract argumentation is to provide a machin-
ery, or semantics, to identify justified and defeated arguments.
One of the well-known semantics for abstract argumentation
frameworks is the preferred semantics. A preferred extension
is a maximal (wrt. set inclusion) admissible set, i. e., a set of
arguments that is conflict-free and defends each of its mem-
bers (we will provide definitions in Section 2). The computa-
tional problem of deciding whether an argument is contained
in every preferred extension, i. e., whether it is skeptically ac-
cepted, is ΠP

2 -complete [Dunne and Bench-Capon, 2002].

Interest in algorithms for solving reasoning problems in ap-
proaches to formal argumentation has recently increased, also
fostered by the biennial International Competition of Compu-
tational Models of Arguments (ICCMA)1, see also [Cerutti et
al., 2018] for a survey. Systems solving the skeptical accep-
tance problem wrt. preferred semantics often rely on SAT-
solver technology [Biere et al., 2009] or other paradigms such
as answer set programming [Gebser et al., 2012] to solve sub-
problems. A particular costly part in these algorithms is the
maximisation step where, e. g., a series of SAT-solver calls
are made to find ever larger admissible sets until a preferred
extension is found. This approach is implemented in solvers
such as Cegartix [Dvořák et al., 2014], ArgSemSAT [Cerutti
et al., 2019], and µ-toksia [Niskanen and Järvisalo, 2020].

In this paper, we present a new characterisation of skeptical
acceptance wrt. preferred semantics that does not rely on the
notion of a preferred extension. We show that skeptical ac-
ceptance can be decided by considering only those admissible
sets that are potentially conflicting with the acceptance status
of the argument in question, and verifying that those admis-
sible sets can be extended to include the argument, see The-
orem 11 for the formal characterisation. Using this insight,
we develop a new SAT-based algorithm that avoids the costly
aspect of maximising admissible sets when deciding skepti-
cal acceptance. Moreover, we apply similar concepts to the
problem of determining the ideal extension, i. e. the unique
maximal admissible set that is contained in every preferred
extension. We compare the runtime performance of our new
approaches with the best solvers from ICCMA19 [Bistarelli et
al., 2020] on the benchmark data of ICCMA19 and ICCMA17
[Gaggl et al., 2020], and on an additional set of particularly
hard problems. Our evaluation shows that our approaches sig-
nificantly outperform the state of the art on both problems.

In summary, the contributions of this work are as follows:
1. We provide theoretical insights on the notion of skeptical

acceptance wrt. preferred semantics and develop a new
SAT-based algorithm (Section 4).

2. We generalise our theoretical results for the ideal exten-
sion and derive a corresponding algorithm (Section 5).

3. We conduct a thorough experimental analysis that shows
that our approaches significantly outperform the former
state of the art (Section 6).

1http://argumentationcompetition.org

http://argumentationcompetition.org


Necessary background on abstract argumentation is given in
Section 2 and related works are discussed in Section 3. We
conclude with a discussion in Section 7.

Proofs of technical results are omitted due to space restric-
tions but can be found in an online appendix.2

2 Abstract argumentation
An abstract argumentation framework AF is a tuple AF =
(A,R) where A is a set of arguments and R is a relation R ⊆
A × A [Dung, 1995]. For this work, we assume that A is
always a finite set. For two arguments a, b ∈ A the relation
aRb means that argument a attacks argument b. For a set
S ⊆ A we define

S+ = {a ∈ A | ∃b ∈ S, bRa}, S− = {a ∈ A | ∃b ∈ S, aRb}.
We say that a set S ⊆ A is conflict-free if for all a, b ∈ S it
is not the case that aRb, i. e., if S ∩ S+ = ∅. A set S ⊆ A
defends an argument b ∈ A if for all a with aRb there is c ∈ S
with cRa, i. e., if {b}− ⊆ S+. A conflict-free set S is called
admissible if S defends all a ∈ S, i. e., if S− ⊆ S+.

Different semantics can be phrased by imposing further
constraints on admissible sets [Dung, 1995; Dung et al.,
2007]. In this paper, we only consider preferred and ideal
semantics. More precisely, an admissible set E

• is a preferred extension (PR) iff E is maximal (with re-
spect to set inclusion),

• is an ideal extension (ID) iff E ⊆ E′ for all preferred
extensions E′ and E is maximal (with respect to set in-
clusion).

Note that the ideal extension always exists and is uniquely
defined [Dung et al., 2007, Thm. 2.1], while preferred ex-
tensions are also guaranteed to exist but are generally not
uniquely defined [Dung, 1995]. For AF = (A,R), we say
an argument a ∈ A is skeptically accepted wrt. preferred
semantics in AF if a ∈ E for every preferred extension E.
We denote by Acc(AF) the set of all arguments a ∈ A that
are skeptically accepted wrt. preferred semantics in AF. The
problem of deciding whether a ∈ Acc(AF) is ΠP

2 -complete
[Dunne and Bench-Capon, 2002]. Deciding whether an argu-
ment is contained in the ideal extension is ΘP

2 -complete under
randomised reductions [Dunne, 2009].3

Example 1. Consider the abstract argumentation framework
AF = (A,R) depicted in Figure 1. The admissible sets of AF
are

∅, {a}, {b}, {f}, {a, f}, {b, f}, {a, d, f}, {b, d, f}
Here, {a, d, f} and {b, d, f} are preferred, making d and f
skeptically accepted wrt. preferred semantics. The ideal ex-
tension of AF is {f}.

2http://mthimm.de/misc/proofs ijcaj21 tcv.pdf
3ΘP

2 is the class of decision problems that can be solved in poly-
nomial time by a deterministic Turing machine that can make a log-
arithmic number of calls to an NP oracle. A randomised reduction
is, informally, a reduction that is valid “almost surely,” see [Dunne
and Bench-Capon, 2002] for technical details.
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Figure 1: The argumentation framework AF from Example 1.

3 Related work
In the following, we briefly review the state of the art in al-
gorithms and systems for deciding whether an argument is
skeptically accepted wrt. preferred semantics.

In general, when designing algorithms for problems on the
second level of the polynomial hierarchy, a popular way is
to decompose them into sub-problems of propositional sat-
isfiability (SAT) [Biere et al., 2009], which in turn can be
solved with calls to SAT solvers. A prominent family of ap-
proaches for this is the Counter-Example-Guided Abstraction
Refinement (CEGAR) strategy [Clarke et al., 2000]. This is
the approach followed by the abstract argumentation solver
Cegartix [Dvořák et al., 2014] and subsequently in other ap-
proaches, including the winners for the preferred semantics
tracks of the last two International Competitions of Compu-
tational Models of Argumentation (ICCMA): ArgSemSAT in
2017 [Cerutti et al., 2019] and µ-toksia in 2019 [Niskanen
and Järvisalo, 2020]. In the following, we focus on a detailed
description of the CEGAR approach, due to its popularity and
similarity to our own approach.

Algorithm 1 illustrates the CEGAR approach for decid-
ing skeptical acceptance wrt. preferred semantics following
[Dvořák et al., 2014]. In order to describe the algorithm, we
use some utility functions:

• AdmArgAtt(AF, a) returns an admissible set S with a ∈
S+ or FALSE if no such set exists.

• AdmNotArg(AF, a, {S1, . . . , Sn}) returns an admissi-
ble set S with a /∈ S and S * S1,. . . , S * Sn or FALSE
if no such set exists.

• AdmSup(AF, S) returns an admissible set S′ with S (
S′ or FALSE if no such set exists.

Observe that a single call to each of the above functions
can be solved by a single call to a SAT-solver [Besnard and
Doutre, 2004]. In the algorithm, it is first checked (lines 2–3)
whether there is an admissible set that attacks the argument
in question. Then we can already conclude that this argu-
ment cannot belong to every preferred extension. Line 4 then
searches for an admissible set that does not contain the ar-
gument we are considering, and that is not a subset of the
admissible sets we already considered before (stored in the
variable E which has been initialised in line 1). Once such an
admissible set is identified, the CEGAR procedure begins at
line 5 where supersets of such an admissible set are searched
for to identify a preferred extension. If then the argument in
question does not belong to those supersets, we can conclude
that it is not skeptically accepted.

http://mthimm.de/misc/proofs_ijcaj21_tcv.pdf


Algorithm 1 Cegartix algorithm for skeptical acceptance wrt.
preferred semantics [Dvořák et al., 2014].

Input: AF = (A,R), a ∈ A
Output: YES iff a ∈ Acc(AF), NO otherwise
1: E := ∅
2: if AdmArgAtt(AF, a) 6= FALSE then
3: return NO
4: while S := AdmNotArg(AF, a, E) 6= FALSE do
5: while S′ := AdmSup(AF, S) 6= FALSE do
6: S := S′

7: if a /∈ S then
8: return NO
9: else

10: E := E ∪ {S}
return YES

4 Skeptical acceptance revisited
We start our investigation with some auxiliary notions and
general observations on skeptical acceptance wrt. preferred
semantics, many of which have been used implicitly in other
works. Let AF = (A,R) be fixed throughout the rest of this
paper.

A core property of skeptical acceptance for an argument
a ∈ A is that a is “compatible” with every admissible set
S ⊆ A. Here, the notion of “compatibility” carries two con-
straints. First, it is necessary that a is contained in some ad-
missible set. Second, every admissible set can be “extended”
to include a. We make these aspects more concrete in the
following.

Let us first define the admissible core as the set of all argu-
ments that are in at least one admissible set.
Definition 2. The admissible core AC(AF) of AF is
AC(AF) = {a ∈ A | there is an admissible S with a ∈ S}.

As preferred extensions are maximal admissible sets, it is
clear that arguments not contained in any admissible set can-
not be skeptically accepted wrt. preferred semantics. The fol-
lowing observation is therefore given without proof.
Proposition 3. Acc(AF) ⊆ AC(AF).

Now, the second aspect of skeptical acceptance wrt. pre-
ferred semantics is that admissible sets can be “extended” to
include the argument in question. One observation regard-
ing this—which is already exploited in Algorithm 1—is that
arguments attacked by some admissible set cannot be skepti-
cally accepted. The following notion of attacks between sets
of arguments will come in handy.
Definition 4. A set S ⊆ A attacks an argument a ∈ A in
AF, denoted as SRa, if a ∈ S+. A set S1 ⊆ A attacks a set
S2 ⊆ A in AF if S+

1 ∩ S2 6= ∅.
We define the preferred super-core as the set of arguments

which are not attacked by an admissible set as follows.
Definition 5. The preferred super-core PSC(AF) of AF is

PSC(AF) = {a ∈ A | there is no admissible S with SRa}
As every admissible set is a subset of some preferred exten-

sion, an admissible set S with SRa is included in a preferred

extension that does not contain a (otherwise this extension
would not be conflict-free). Therefore, the following obser-
vation is also clear.

Proposition 6. Acc(AF) ⊆ PSC(AF).

Together with Proposition 3 we obtain the following corol-
lary.

Corollary 7. Acc(AF) ⊆ AC(AF) ∩ PSC(AF).

Now we make precise what it means that every admissible
set can be extended to include a skeptically accepted argu-
ment.

Proposition 8. For a ∈ Acc(AF) and an admissible set S
there is an admissible set S′ with S ⊆ S′ and a ∈ S′.

Putting things together, we can actually characterise skep-
tical acceptance wrt. preferred semantics as follows.

Theorem 9. a ∈ Acc(AF) if and only if

1. a ∈ AC(AF) and

2. for every admissible set S there is an admissible set S′
with S ⊆ S′ and a ∈ S′.

The interesting aspect of the above theorem is that it char-
acterises skeptical acceptance wrt. preferred semantics with-
out the notion of a preferred extension. It shows that skep-
tical acceptance wrt. preferred semantics can be fully char-
acterised by admissibility and subset relationships of admis-
sible sets. Therefore, the computationally expensive part of
maximising an admissible set to yield a preferred extension
can be avoided in algorithmic solutions. However, one caveat
of Theorem 9 in that regard is that possibly many admissi-
ble sets have to be checked to verify whether an argument
is skeptically accepted. Using the following observation—
which is a straightforward generalisation of Dung’s Funda-
mental Lemma [Dung, 1995]—we can strengthen our above
characterisation even further.

Lemma 10. For admissible sets S and S′, if not SRS′ and
not S′RS then S ∪ S′ is admissible.

The above lemma suggests that we do not have to consider
all admissible sets in step 2 of Theorem 9 but only those that
provide some conflict with admissible sets containing the ar-
gument under consideration. Taking this into account, our
final characterisation of skeptical acceptance under preferred
semantics is as follows.

Theorem 11. a ∈ Acc(AF) if and only if

1. a ∈ AC(AF) and

2. for every admissible set S with a ∈ S and every admissi-
ble set S′ with S′RS, there is an admissible set S′′ with
S′ ∪ {a} ⊆ S′′.

Theorem 11 states that we can decide skeptical acceptance
wrt. preferred semantics by considering only those admissible
sets that attack an admissible set containing the argument in
question.

Algorithm 2, denoted CDAS (Conflict-Driven Admissibil-
ity Search), exploits Theorem 11 to determine skeptical ac-
ceptance wrt. preferred semantics. For that, we will use some
further utility functions:



Algorithm 2 CDAS algorithm for skeptical acceptance wrt.
preferred semantics

Input: AF = (A,R), a ∈ A
Output: YES iff a ∈ Acc(AF), NO otherwise
1: S := AdmExt(AF, {a})
2: if S = FALSE then
3: return NO
4: E := ∅
5: while TRUE do
6: S′ := AdmExtAtt(AF, {a}, E)
7: if S′ = FALSE then
8: return YES
9: S′′ := AdmExt(AF, S′ ∪ {a})

10: if S′′ = FALSE then
11: return NO
12: E := E ∪ {S′′}

• AdmExt(AF, S) returns an admissible set S′ with S ⊆
S′ or FALSE if no such set exists.
• AdmExtAtt(AF, S, {S1, . . . , Sn}) returns an admissible

set S′ s.t. there is an admissible set S′′ with
1. S ⊆ S′′,
2. S′RS′′, and
3. S′ * Si for i = 1, . . . , n.

If there is no such S′ then FALSE is returned.
Observe that a single call to each of the above functions can
be solved by a single call to a SAT-solver.4

Lines 1–3 of Algorithm 2 verify condition 1 of Theo-
rem 11: if the argument a is not contained in an admissible
set, the algorithm terminates with answer NO. Lines 4–12
verify condition 2 of Theorem 11. Here, the set E keeps track
of admissible sets already containing the argument a. Line 6
looks for an admissible set S′ that attacks some admissible
set containing a. Those sets which are subsets of previously
considered sets in E are ignored. If such a set S′ cannot be
found, we have shown that amust be skeptically accepted and
the algorithm terminates with YES (lines 7–8). Otherwise, S′
should be extended to include a, yielding an admissible set
S′′. If no such set can be found, the algorithm terminates
with NO (lines 10–12). Otherwise, the set S′′ is stored in E
to avoid considering subsets of S′′ later (line 12).
Theorem 12. Algorithm 2 is sound and complete.

We will see in Section 6 that our approach is feasible in
practice and significantly outperforms the former state of the
art.

5 Ideal semantics revisited
Note that Theorem 11 characterises when a single argument
is skeptically accepted wrt. preferred semantics. This charac-
terisation is actually a special case of the following more gen-
eral result about the set Acc(AF) of all skeptically accepted
arguments wrt. preferred semantics.

4In particular, note that AdmExtAtt basically consists of guess-
ing two sets S′ and S′′ satisfying the listed conditions.

Theorem 13. Let T ⊆ A satisfy the following conditions:
1. there is an admissible set S with T ⊆ S,
2. for every admissible set S with T ⊆ S and every admis-

sible set S′ with S′RS there is an admissible set S′′ with
T ∪ S′ ⊆ S′′, and

3. there is no T ′ with T ( T ′ satisfying conditions (1) and
(2).

Then T exists, is uniquely determined, and T = Acc(AF).
In other words, Acc(AF) is the maximal set of arguments

that is contained in at least one admissible set and is “com-
patible” with every admissible set.

Recall now that the ideal extension Eid of an abstract ar-
gumentation framework AF = (A,R) is the unique maximal
admissible set contained in Acc(AF). Then Theorem 13 can
also be slightly adapted to characterise the ideal extension in-
stead.
Theorem 14. Let T ⊆ A satisfy the following conditions:

1. T is admissible,
2. for every admissible set S with T ⊆ S and every admis-

sible set S′ with S′RS there is an admissible set S′′ with
T ∪ S′ ⊆ S′′, and

3. there is no T ′ with T ( T ′ satisfying conditions (1) and
(2).

Then T is the ideal extension.
In other words, the ideal extension is the maximal admis-

sible set that is “compatible” with every other admissible set.
Another characterisation of the ideal extension, which

yields even better performance when exploited in algo-
rithms,5 can be found in [Dung et al., 2007]. Using our nota-
tion, this characterisation is as follows.
Theorem 15 (Theorem 3.3 in [Dung et al., 2007]). The ideal
extension Eid of AF is the largest (wrt. set inclusion) admis-
sible set in PSC(AF).

The interesting aspect of the above theorem—which seems
to have been overlooked for algorithms until now—is that
ideal semantics, although defined based on skeptical accep-
tance wrt. preferred semantics, does not rely on that no-
tion. Only one aspect of skeptically accepted arguments wrt.
preferred semantics is needed to define the ideal extension,
namely the property of not being attacked by an admissible
set. This characterisation can be exploited by algorithms, par-
ticularly because of the following observation.
Proposition 16. Given PSC(AF), the ideal extensionEid can
be computed in polynomial time.

Algorithm 3 outlines our algorithm for computing the ideal
extension, denoted CDIS (Conflict-Driven Ideal Search). For
that, we will use the following utility function:
• AdmAttExt′(AF, P ) returns an admissible set S that at-

tacks P or FALSE if no such set exists.
Note also that AdmAttExt′(AF, S) can be implemented by a
single call to a SAT solver.

5This insight has been gained from preliminary experiments we
do not report here.



Algorithm 3 CDIS algorithms for computing the ideal exten-
sion
Input: AF = (A,R)
Output: The ideal extension Eid of AF
1: P := A
2: while TRUE do
3: S := AdmAttExt′(AF, P )
4: if S = FALSE then
5: break
6: P := P \ S+

7: P := P \ P+

8: while P 6= P \ ( P− \ P+ )+ do
9: P := P \ ( P− \ P+ )+

10: return P

In lines 1–6, the algorithm computes the preferred super-
core P of AF, i. e., the set of arguments which are not attacked
by any admissible set. It iteratively looks for an admissible
set S that attacks at least one argument in the candidate set P
(line 3) and then removes all arguments attacked by S from
the candidate set P (line 6). Afterwards (see also the proof of
Proposition 16), it removes all arguments attacked by another
argument in P (line 7) as those cannot be defended. Then it
iteratively removes arguments from P that are attacked but
not defended within P . In particular, note that (P− \ P+)+

is the set of all arguments attacked by some argument a that
attacks some argument in P and is not attacked back by any
argument in P . The arguments that remain form the ideal
extension.

Theorem 17. Algorithm 3 is sound and complete.

Algorithm 3 differs from previous approaches to compute
the ideal extension but is complementary to the algorithm
from [Dunne, 2009], which is also implemented in, e. g., Ce-
gartix [Dvořák et al., 2014]. Roughly speaking, that algo-
rithm first computes all arguments that are contained in an ad-
missible set and then iteratively removes the arguments that
are attacked within that set. Conversely, our algorithm first
computes all arguments that are attacked by an admissible set
and then removes the undefended arguments until only the
ideal extension remains. Under the assumption that there are
fewer arguments not attacked by any admissible set than there
are arguments contained in an admissible set, the advantage
of our algorithm is that the handled arguments are fewer and
it converges sooner to the ideal extension. We will provide
experimental evidence for that in the next section.

6 Experiments
The goal of our experimental evaluation is to show that our
algorithms solve the decision problem of skeptical accep-
tance wrt. preferred semantics (also denoted as DS-PR in the
ICCMA competitions) and the computation of the ideal ex-
tension (SE-ID) faster than the state-of-the-art algorithms.

6.1 Experimental setup
We evaluate the runtime performance on the same bench-
mark data as used in the previous competitions ICCMA17

and ICCMA19, and on an additional benchmark set contain-
ing particularly hard problems. In more detail:

1. For DS-PR we used the benchmark data instances
A2–A5 from ICCMA17 (350 instances) and the whole
benchmark data set from ICCMA19 (326 instances),
both with the prescribed query arguments.

2. For SE-ID we used the benchmark data instances D1–D5
from ICCMA17 (350 instances) and the whole bench-
mark data set from ICCMA19 (326 instances).

3. For both DS-PR and SE-ID, we additionally generated
252 random graphs (WS-hard) of the Watts-Strogatz
graph model [Watts and Strogatz, 1998] using the
AFBenchGen2 suite [Cerutti et al., 2016].6 These
graphs have a number of arguments between 300 and
600 and were generated using parameter values be-
tween 10 and 40 for -WS baseDegree, between 0.2
and 0.6 for -WS beta, and between 0.2 and 0.6 for
-BA WS probCycles, see [Cerutti et al., 2016] for a de-
tailed description of these parameters. Query arguments
for DS-PR have been selected for each generated graph
uniformly at random.

We implemented our algorithms CDAS (Algorithm 2) and
CDIS (Algorithm 3) in C++ using standard data structures
and used Glucose 4.1 in its non-parallel version [Audemard
and Simon, 2018] for all SAT calls. The resulting system has
been called Fudge.7

For both DS-PR and SE-ID, we compared Fudge with the
top three solvers of ICCMA198 for the DS-PR track: µ-toksia
[Niskanen and Järvisalo, 2020] (version 2020.03.12), Co-
QuiAAS [Lagniez et al., 2019] (version 3.0), and ASPARTIX
[Dvořák et al., 2020] (version V19). Note that µ-toksia was
the best solver for both DS-PR and SE-ID in ICCMA19.

The experiments were conducted on a dedicated server
with an Intel Xeon CPU (2.9 GHz) and 128 GB RAM run-
ning Ubuntu 20.04.1. We set a 600s CPU-time cutoff time,
which is the same used for the ICCMA competitions. Re-
sults are presented in terms of cumulative runtime over solved
instances (RT), number of instances not solved within the
cutoff time (TO), and P10 (Penalised average runtime 10).
P10 is a metric usually exploited for algorithm configuration,
where the average runtime is calculated by considering runs
that did not solve the problem as ten times the cutoff time.

6.2 Results
The results of our experimental analysis are summarised in
Table 1. Our solver Fudge is consistently delivering the
best performance, according to the considered metrics, on
the benchmark sets. In some cases (such as for DS-PR
on WS-hard), the cumulative runtime is higher than those
of other solvers, but the number of solved instances is also
significantly larger. Also note that, e. g., for DS-PR on

6These graphs seem to be particularly hard for both problems
DS-PR and SE-ID. For example, the benchmark set A5 from
ICCMA17 contained 20 such instances and all of them resulted in
a timeout for, e. g., µ-toksia on DS-PR.

7The source code is available at http://taas.tweetyproject.org.
8http://argumentationcompetition.org/2019/results

http://taas.tweetyproject.org
http://argumentationcompetition.org/2019/results


DS-PR
ICCMA17 (350) ICCMA19 (326) WS-hard (252)
RT TO P10 RT TO P10 RT TO P10

ASPARTIX 6765.9 55 962.2 1327.0 0 4.1 3905.8 111 2658.4
µ-toksia 5976.2 46 805.6 194.7 0 0.6 2782.6 103 2463.4
CoQuiAAS 5375.7 85 1472.5 1014.0 0 3.1 2415.8 124 2962.0
Fudge 3550.2 21 370.1 101.5 0 0.3 5272.4 71 1711.4

SE-ID
ICCMA17 (350) ICCMA19 (326) WS-hard (252)
RT TO P10 RT TO P10 RT TO P10

ASPARTIX 9519.5 55 970.1 1311.3 3 59.2 5278.5 108 2592.4
µ-toksia 5593.5 18 324.6 607.3 0 1.9 2119.9 104 2484.6
CoQuiAAS 6200.5 65 1132.0 1501.2 1 23.0 2426.0 124 2962.0
Fudge 5637.5 11 204.7 240.6 0 0.7 3748.8 98 2348.2

Table 1: Performance of the considered systems on the selected
benchmark sets when dealing with the DS-PR (top) and SE-ID (bot-
tom) problems, numbers between brackets refer to the number of
instances of the set. RT, TO, P10 indicates, respectively, cumula-
tive runtime over all solved instances, number of timeouts, and Pe-
nalised Average Runtime 10 score. Boldface entries highlight best
performance in the respective column; for column RT, the best per-
formance among systems with the minimal number of timeouts is
highlighted.

the ICCMA17 data set, Fudge was able to solve consider-
ably more instances in less time than the other solvers. A
Wilcoxon signed-rank test (p < 0.05) confirms that the dif-
ferences between the performance of Fudge and the perfor-
mance of the other considered solvers are statistically signif-
icant.

Figure 2 shows a cactus plot on how the number of solved
instances is affected by the available CPU-time, when deal-
ing with DS-PR and SE-ID, accumulated over all instances
from all three benchmark sets. Finally, Figure 3 presents a
comparison between the runtimes of µ-toksia, winner of the
DS-PR track of ICCMA19, and Fudge for DS-PR. The dots
above (below) the diagonal represent instances where Fudge
was faster (slower) than µ-toksia.

It is worth mentioning that both Fudge and the runner-up
µ-toksia used the exact same SAT-solver for solving sub-
problems, i. e., Glucose 4.1 in its non-parallel version [Aude-
mard and Simon, 2018] (CoQuiAAS and ASPARTIX rely on
different problem solving paradigms). Furthermore, the en-
codings used in utility functions of the form Adm* in both µ-
toksia and Fudge are derived from the encodings of [Besnard
and Doutre, 2004] and quite similar. Therefore, the differ-
ence in the performances of these two systems can only be
explained by the general strategy used for decomposing the
argumentation problems into a series of satisfiability checks.
An analysis of the number of SAT calls each solver makes
during a single instance reveals that Fudge only makes about
1/3 as many SAT calls as µ-toksia does (median value over
all instances that were solved by both solvers).

7 Summary and conclusion
We presented new insights into the concept of skeptical ac-
ceptance wrt. preferred semantics (and to some extent also
into the concept of the ideal extension) by showing that skep-
tical acceptance can be characterised without relying on the
notion of a preferred extension. On this basis, we developed
new algorithms that have been shown to clearly outperform
the previous state of the art.
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Figure 2: Number of solved instances according to the available
CPU-time, when dealing with DS-PR (top) and SE-ID (bottom).
The data is accumulated over all instances from all tested bench-
mark sets (928 instances for both problems).
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Figure 3: Scatter plot comparing the runtime of µ-toksia (y-axis)
and Fudge (x-axis) when dealing with DS-PR over all considered
instances (928). Instances outside the green area indicate runtime
differences up to an order of magnitude.

For future work we plan, among others, to extend our work
to deal with dynamic problems as well, i. e., problems where
the acceptance status of an argument has to be recomputed
after addition or deletion of attacks, cf. the dynamics track of
ICCMA 2021.
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