
Algorithms for Inconsistency Measurement using Answer Set Programming

Isabelle Kuhlmann and Matthias Thimm
University of Koblenz-Landau

Universitätsstraße 1
56072 Koblenz, Germany

{iskuhlmann, thimm}@uni-koblenz.de

Abstract

We present algorithms based on answer set programming
(ASP) encodings for solving the problem of determining in-
consistency degrees in propositional knowledge bases. For
that, we consider the contension inconsistency measure, the
forgetting-based inconsistency measure, and the hitting set in-
consistency measure. Our experimental evaluation shows that
all three algorithms significantly surpass the state of the art.

1 Introduction
A major challenge in symbolic approaches to AI is the han-
dling of inconsistent information. The field of Inconsistency
Measurement—see the seminal work (Grant 1978) and the
book (Grant and Martinez 2018)—provides an analytical
perspective on the issue of inconsistency in formal knowl-
edge representation formalisms. Its aim is to quantitatively
assess the severity of inconsistency in order to both guide au-
tomatic reasoning mechanisms and to help human modellers
in identifying issues and compare different alternative for-
malizations. For example, inconsistency measures have been
used to estimate reliability of agents in multi-agent systems
(Cholvy, Perrussel, and Thevenin 2017), to analyze incon-
sistencies in news reports (Hunter 2006), to support collabo-
rative software requirements specifications (Martinez, Arias,
and Vilas 2004), to allow for inconsistency-tolerant reason-
ing in probabilistic logic (Potyka and Thimm 2017), and to
monitor and maintain quality in database settings (Bertossi
2018).

Previous research on the computational complexity of in-
consistency measures (Thimm and Wallner 2019) showed
that evaluating them is computationally hard in general.
However, as the list of application areas above shows,
there is a need to practical working solutions. In this pa-
per, we address this need by leveraging existing problem
solving paradigms to develop effective algorithmic solu-
tions to some prominent inconsistency measures. More pre-
cisely, we consider the contension inconsistency measure
(Grant and Hunter 2011), the hitting set inconsistency mea-
sure (Thimm 2016), and the forgetting-based inconsistency
measure (Besnard 2016) (we will give their formal defini-
tions in Section 2). Natural decision problems pertaining to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

those measures are hard for the first level of the polyno-
mial hierarchy, but still easier compared to many other mea-
sures (Thimm and Wallner 2019). We therefore believe that
these measures are most likely suitable for real-world ap-
plications, due to the existence of general problem solving
paradigms able to solve problems of this complexity in com-
parably short time. Here, we use Answer Set Programming
(ASP) (Gelfond and Lifschitz 1991; Gelfond and Leone
2002; Gebser et al. 2012) for this purpose, a non-monotonic
logic programming language that has been proven success-
ful to solve problems in many other areas such as formal
argumentation (Dvorák et al. 2020) and automated planning
(Erdem et al. 2013), see also (Erdem, Gelfond, and Leone
2016). We selected the contension, forgetting-based, and
hitting set inconsistency measure, as they are conceptually
more similar to each other than to the other measures which
Thimm and Wallner identified to be on the first level of the
polynomial hierarchy (Thimm and Wallner 2019). Part of
our ongoing research is, however, to investigate the other
measures on this level, for instance the distance-based in-
consistency measures proposed by Grant and Hunter (2017).

In summary, the contributions of this paper are as follows:

1. We introduce algorithms based on answer set encodings
for determining the inconsistency value wrt. the conten-
sion inconsistency measure, the forgetting-based incon-
sistency measure, and the hitting set inconsistency mea-
sure (Section 3).

2. We present our findings of an experimental evaluation of
these algorithms, where we compare their runtime with
the runtime of existing baseline implementations (Sec-
tion 4).

In Section 2 we give an overview on the necessary prelim-
inaries, in particular about inconsistency measurement and
answer set programming. We conclude with a discussion of
our findings and possible future work in Section 5.

A short paper introducing a preliminary version of the en-
coding for the contension inconsistency measure has been
published before (Kuhlmann and Thimm 2020). In this pa-
per, we present an improved encoding of that measure and
novel encodings for the other two measures.

2 Preliminaries
Let At be a fixed set of propositional atoms and let L(At) be
the corresponding propositional language constructed with
the usual connectives ∧ (conjunction), ∨ (disjunction), and
¬ (negation). A knowledge base K is a finite set of formu-
las K ⊆ L(At). Moreover, we define K as the set of all
knowledge bases. Further, At(X) denotes the set of atoms
appearing in a formula (or set of formulas) X .

Interpretations give semantics to propositional languages.
An interpretation i on At is a function i : At→ {true, false}.
We define Int(At) as the set of all interpretations wrt. At. An
interpretation i satisfies an atom x ∈ At, denoted i |= x,
iff i(x) = true. This concept is extended to formulas in the
usual manner. If an interpretation i satisfies a formula φ, it
is called a model of φ, respectively.

Let Φ ⊆ L(At) be a set of formulas. We define i |= Φ
iff i |= φ for all φ ∈ Φ. A formula (or set of formulas) X1

entails another formula (or set of formulas) X2, indicated as
X1 |= X2 if i |= X1 implies i |= X2 for every interpretation
i. If there exists no interpretation i with i |= X , we denote
this as X |= ⊥, and X is called inconsistent.

2.1 Inconsistency Measurement
In general, an inconsistency measure I is a function I :
K → R∞≥0 (Thimm 2019). The intuition behind such in-
consistency measures is that a higher value indicates a more
severe inconsistency than a lower one. The minimal value 0
is supposed to model the absence of inconsistency, i.e., con-
sistency.

The Contension Inconsistency Measure The contension
inconsistency measure (Grant and Hunter 2011) is based on
Priest’s three-valued logic (Priest 1979). In addition to true
and false, this logic introduces a third truth value denoted
both (true and false) or paradoxical. In the remainder of this
work we will also refer to these truth values as T , F , and
B, respectively. The truth tables of this logic are presented
in Table 1. A corresponding three-valued interpretation i3 is
a function that assigns one of the three truth values to each
atom in a knowledge base K:

i3 : At(K) 7→ {true, both, false}
Such an interpretation is called a model if each formula φ ∈
K evaluates to either true or both. The set of all models wrt.
K is defined as

Models(K) = {i3 | ∀φ ∈ K, i3(φ) = T or i3(φ) = B}
Further, we can divide the domain of an interpretation i3

into two sets. One contains those atoms that are assigned a
classical truth value (T , F), the other one contains those that
are assigned truth value B, i. e., those which are involved in
a conflict. The latter is defined as

Conflictbase(i3) = {x ∈ At(K) | i3(x) = B}.
Finally, we can define the contension inconsistency measure
Ic wrt. a knowledge base K as follows:

Ic(K) = min{|Conflictbase(i3)| | i3 ∈ Models(K)}.
Hence, Ic describes the minimum number of atoms that are
assigned truth value B wrt. a knowledge base K.

x y x ∧ y x ∨ y
T T T T
T B B T
T F F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

x ¬x
T F
B B
F T

Table 1: Truth tables for Priest’s propositional three-valued
logic.

Example 1 Consider the following inconsistent knowledge
base:

K1 = {a ∧ b,¬a ∧ c, a,¬a,¬b}
Let i31 be the interpretation that assigns T to c, and B to a
and b. Thus, Conflictbase(i31) = {a, b}. Because each for-
mula in K1 evaluates to either T or B given i31, then i31 is
also a model of K1. It is easy to see that a and b must be
assigned B in order to make the knowledge base satisfiable,
and that no lower number of atoms being assigned B could
make K1 satisfiable. Hence, we get Ic(K1) = 2.

The Forgetting-Based Inconsistency Measures The in-
tuition behind the forgetting-based inconsistency measure
(Besnard 2016) is to count how many atom occurrences in
a knowledge base K have to be “forgotten” in order to re-
cover consistency in K, where “forgetting” is interpreted as
replacing the atom occurrence with either > or ⊥. To illus-
trate this, we first label each atom occurrence according to
its position in K. For instance, we can give label “1” to the
first occurrence of an atom a, label “2” to the second occur-
rence, and so forth.

Example 2 Recall knowledge base K1 given in Example 1.
Assigning labels as described above yields the knowledge
base

Kl1 = {a1 ∧ b1,¬a2 ∧ c1, a3,¬a4,¬b2}.

For a formula φ, let φ[xn1
1 → ψ1, . . . , x

nk
p → ψk] de-

note the formula φ′ where the atoms x1, . . . , xp with labels
n1, . . . , nk are replaced by ψ1, . . . , ψk.

Example 3 Let φ1 := (a1 ∧ b1) ∨ (¬a2 ∧ b2).

φ1[a2 → >, b1 →⊥] = (a∧ ⊥) ∨ (¬> ∧ b)

Consequently, we can define the forgetting-based inconsis-
tency measure as

If (K) = min{k | (
∧
K)[xn1

1 → ψ1, . . . ,

xnk
p → ψk] 6|= ⊥, ψ1, . . . , ψk ∈ {>,⊥}}

for all K ∈ K with {x1, . . . , xp} ∈ At(K) and n1, . . . , nk
being the corresponding labels.

Example 4 With regard to the labeled knowledge base Kl1,
given in Example 2, we could replace a1, a3, and b1 by >,

i.e., we could forget a1, a3, and b1, in order to restore con-
sistency. Although there are other options to recover con-
sistency, e. g., by forgetting a2, a4, and b2, one can clearly
see that it is not possible to obtain consistency by forgetting
fewer than 3 atom occurrences. Hence, If (K1) = 3.

The Hitting Set Inconsistency Measure A subset H ⊆
Int(At) is a hitting set of a knowledge base K if for ev-
ery formula φ ∈ K there is an interpretation ω ∈ H with
ω |= φ. Thus, there only exists a hitting set for K iff there
is no φ ∈ K with φ |= ⊥, i.e., no formula φ ∈ K is con-
tradictory. Moreover, if there exists a hitting set H wrt. K,
and |H| = 1, the only element in H is a model of K. Thus,
in this case, K is consistent. Based on the preceding defini-
tions, the hitting set inconsistency measure Ih(K) (Thimm
2016) is defined as the minimum number of elements in the
hitting set, subtracted by 1. If there exists no hitting set wrt.
K, then Ih(K) =∞. Formally,

Ih(K) = min{|H| | H is a hitting set of K} − 1,

with min ∅ =∞ for all K ∈ K\{∅}. Further, Ih(∅) = 0.

Example 5 Consider again K1 as defined in Example 1. As
none of the formulas in K1 is contradictory, there must exist
a hitting set. Also, as the knowledge base is obviously in-
consistent, we need at least two interpretations to compile a
hitting set. Let interpretation i1 assign T to the formulas a,
b, and c, and let interpretation i2 assign F to a and b, and
T to c. Each formula φ ∈ K1 is satisfied by one of these two
interpretations. Hence, Ih(K1) = 2− 1 = 1.

2.2 Answer Set Programming

Answer set programming (ASP) (Gebser et al. 2012; Lif-
schitz 2008; Brewka, Eiter, and Truszczynski 2011) is a
declarative problem solving approach targeted at difficult
search problems. ASP incorporates ideas of logic program-
ming and Reiter’s default logic (Reiter 1980). A problem is
modeled as an extended logic program which consists of a
set of rules. An ASP rule is of the form

r = H ← A1, . . . , An, notB1, . . . , notBm. (1)

where H , Aj with j ∈ {1, . . . , n}, and Bk with k ∈
{1, . . . ,m} are classical literals. ASP rules consist of a head
and a body, both of which can be empty. We denote the
sets of literals contained in the head and body of a rule
r as head(r), and body(r), respectively. A rule with an
empty body is called a fact, a rule with an empty head is
referred to as a constraint. In (1), head(r) = {H}, and
body(r) = {A1, . . . , An, B1, . . . , Bm}. An extended logic
program is positive if it does not contain any instance of not.
Moreover, a set of literals L is called closed under a positive
program P if and only if for any rule r ∈ P , head(r) ∈ L
whenever body(r) ⊆ L. The set L is consistent if it does
not contain both A and ¬A for some literal A. The small-
est of such sets wrt. a positive program P , which is always
uniquely defined, is referred to as Cn(P). With regard to
an arbitrary program P , a set L is an answer set of P if

L = Cn(PL) and L is consistent, with

PL = {H ← A1, . . . , An |
H ← A1, . . . , An, notB1, . . . , notBm. ∈ P,
{B1, . . . , Bm} ∩ L = ∅}

The head of an ASP rule is not necessarily comprised of
only one literal. Some ASP dialects allow for more com-
plex structures, such as cardinality constraints, which can
be used as both body elements and heads. A cardinality con-
straint with lower bound l and upper bound u is defined as

l{A1, . . . , An, notB1, . . . , notBm}u.
This can be interpreted as follows: if at least l and at most
u of the literals A1, . . . , An, B1, . . . , Bm are included in an
answer set, a cardinality rule is satisfied by this answer set.

ASP additionally offers the option to express cost func-
tions involving minimization and/or maximization in order
to solve optimization problems (Gebser et al. 2012). Here,
we only need optimisation statements of the form

minimize{`1, . . . , `n}
which instruct the ASP solver to include only a minimal
number of the literals `1, . . . , `n in any answer set.

3 Measuring Inconsistency Using ASP
The proposed algorithms involve the development of ASP
encodings for each one of the three previously described in-
consistency measures. Although the specifics of each incon-
sistency measure have to be considered individually, there
are some aspects that all ASP-based algorithms we propose
have in common. To begin with, each atom is supposed to
be assigned a unique truth value.
Example 6 In classical propositional logic, we could model
that an atom x is supposed to be assigned either T or F by
introducing two corresponding ASP atoms exT

and exF
. An

atom is true, if it is not false, and vice versa. The respective
ASP rules can be defined as follows:

exT
← not exF

.

exF
← not exT

.

In the remainder of this paper, we refer to this part as unique
atom evaluation. Note that ASP atoms eφT

, eφF
represent-

ing the evaluation of a formula φ can be created in the same
manner as shown above wrt. propositional atoms.

Moreover, within the encoding, each formula φ must be
satisfied, i.e., no formula should evaluate to F . This is
achieved through integrity constraints of the form

← eφF
.

for every φ ∈ K. Another element that is common in all
three encodings is that the relations between elements within
a formula have to be encoded. More precisely, encodings for
the connectors ∧, ∨, and ¬ have to be created.
Example 7 The evaluation of a conjunction of two propo-
sitional formulas φ, ψ can be modeled in ASP by encoding
that it is only true if both φ and ψ are true, and false other-
wise:

e(φ∧ψ)T ← eφT
, eψT

.

e(φ∧ψ)F ← not e(φ∧ψ)T .

In the following, we will refer to this part as connector en-
codings.

Since the possible inconsistency values regarding all three
considered measures are natural numbers from a well-
defined interval (Thimm and Wallner 2019), we can make
use of a minimization statement to compute the desired in-
consistency value.
Example 8 Let our aim be to minimize the number of atoms
x ∈ At(K) that are assigned truth value B in three-valued
logic, wrt. a knowledge base K. Let the ASP atom exB

en-
code the assignment ofB to atom x. The corresponding min-
imize statement can be expressed as

minimize{ex1
B
, . . . , exn

B
}.

with {x1, . . . , xn} = At(K)

The subsequent sections describe the specific ASP encod-
ings for Ic, Ih, and If .

3.1 The Contension Inconsistency Measure
With regard to the contension inconsistency measure Ic, we
can construct an extended logic program Pc(K) to compute
Ic(K) wrt. a knowledge base K as follows.

1. We first include rules that guess a three-valued interpreta-
tion. For that, we need to ensure unique atom evaluation
for each x ∈ At(K) wrt. Priest’s three-valued logic. Thus,
an atom is true if it is neither both nor false. The other two
cases follow analogously:

exT
← not exB

, not exF
.

exB
← not exT

, not exF
.

exF
← not exB

, not exT
.

2. The connector encodings for each (sub)formula in K fol-
low from the truth tables given in Table 1. For instance,
a conjunction is only true if both conjuncts are true. It is
false, if at least one of its conjuncts is false, and it is both
if it is neither true nor false. The rules for disjunction and
negation are created in the same fashion.
φ ∧ ψ 7→ e(φ∧ψ)T ← eφT

, eψT
.

e(φ∧ψ)F ← eφF
.

e(φ∧ψ)F ← eψF
.

e(φ∧ψ)B ← not e(φ∧ψ)F , not e(φ∧ψ)T .

φ ∨ ψ 7→ e(φ∨ψ)F ← eφF
, eψF

.

e(φ∨ψ)T ← eφT
.

e(φ∨ψ)T ← eψT
.

e(φ∨ψ)B ← not e(φ∨ψ)F , not e(φ∨ψ)T .

¬φ 7→ e(¬φ)B ← eφB
.

e(¬φ)T ← eφF
.

e(¬φ)F ← eφT
.

3. Every formula φ ∈ K must be evaluated to true or both in
three-valued logic, i.e., it must not be evaluated to false.
We therefore add an integrity constraint for each formula:

← eφF
.

4. Finally, we want to minimize the number of atoms in K
that are assigned the truth value B. Hence, we add the
following minimize statement:

minimize{ex1
B
, . . . , exn

B
}.

Now Pc(K) is the union of all rules defined in 1–4. Further,
let i3M be the three-valued interpretation represented by an
answer set M of Pc(K).

Theorem 1 LetM be an optimal answer set of Pc(K). Then
|i3M (B)−1| = Ic(K)1.

The proof of the above theorem as well as further technical
results are omitted due to space restrictions, but can be found
in the appendix2.

3.2 The Forgetting-Based Inconsistency Measure
The forgetting-based inconsistency measure If (K) is deter-
mined by the number of atom occurrences that need to be
“forgotten” in order to make the knowledge base K con-
sistent. An extended logic program Pf (K) which computes
If (K) wrt. a knowledge base K can be constructed as de-
scribed below.

1. We first include rules that guess a model for the knowl-
edge base after forgetting operations took place, in order
to ensure that the knowledge base is consistent. Although
individual atom occurrences may be replaced by > or ⊥,
an atom must be either true or false in that interpretation.
Thus, for every x ∈ At(K):

exT
← not exF

.

exF
← not exT

.

2. We need to ensure that each atom occurrence is evaluated
uniquely. This means that an atom occurrence xn can ei-
ther be true, false, or forgotten, i.e., replaced by either
> or ⊥. If an atom occurrence xn is supposed to be re-
placed by > or ⊥, we represent this using the ASP atoms
exn

forget>
or exn

forget⊥
, respectively:

exn
forget>

← not exn
T
, not exn

F
, not exn

forget⊥
.

exn
forget⊥

← not exn
T
, not exn

F
, not exn

forget>
.

We also need to ensure that an individual atom occurrence
is only set to true or false if the atom as a whole is evalu-
ated to true or false, respectively.

exn
T
← exT

, not exn
F
, not exn

forget>
, not exn

forget⊥
.

exn
F
← exF

, not exn
T
, not exn

forget>
, not exn

forget⊥
.

3. The connector encodings for all (sub)formulas φ, ψ in K

1For any function f : X 7→ Y and y ∈ Y we define f−1(y) =
{x ∈ X | f(x) = y}

2http://mthimm.de/misc/nmr21 ikmt.pdf

simply model propositional entailment:

φ ∧ ψ 7→ e(φ∧ψ)T ← eφT
, eψT

.

e(φ∧ψ)F ← not e(φ∧ψ)T .

φ ∨ ψ 7→ e(φ∨ψ)F ← eφF
, eψF

.

e(φ∨ψ)T ← not e(φ∨ψ)F .

¬φ 7→ e(¬φ)T ← eφF
.

e(¬φ)F ← not e(¬φ)T .

4. If a (sub)formula φ is actually an atom occurrence xn, it
can either be set to true or false, or forgotten:

eφT
← exn

T
.

eφT
← exn

forget>
.

eφF
← exn

F
.

eφF
← exn

forget⊥
.

5. All formulas φ ∈ K must evaluate to true after the for-
getting operation is applied. Hence, we add the following
integrity constraint for each φ ∈ K:

← eφF
.

6. Lastly, we minimize the number of atom occurrences
which are forgotten:

minimize{exn
forget>

, exn
forget⊥

, . . . ,

eynforget>
, eynforget⊥

, . . . }.

Note that the rules described in 2. ensure that no atom
occurrence is simultaneously replaced by > and ⊥.

The union of all rules defined above (in 1–6) constitute the
extended logic program Pf (K). We denote the set of atom
occurrences that are replaced by > wrt. a knowledge base K
as TM , and the set of atom occurrences that are replaced by
⊥ as FM . With M being an answer set of Pf (K) we define

TM = {xn | x ∈ At(K), exn
forget>

∈M},

FM = {xn | x ∈ At(K), exn
forget⊥

∈M}.

Theorem 2 LetM be an optimal answer set ofPf (K). Then
|TM |+ |FM | = If (K).

3.3 The Hitting Set Inconsistency Measure
The hitting set inconsistency measure Ih(K) is defined by
the size of the minimal hitting set wrt. a knowledge base K,
subtracted by 1. The maximal size of such a hitting set is de-
termined by the number of formulas in K. In the following,
we denote the number of formulas in K as N . Further, in
refers to the n-th interpretation out of the N possible inter-
pretations we need to consider, assuming that the interpreta-
tions have an arbitrary, but fixed order. An interpretation in
is represented as ωn in our ASP encoding. Note that the no-
tation ωn does not only appear as an ASP atom on its own,

but also serves the purpose of a label linking the representa-
tions of formulas and atoms to specific interpretations. For
example, the ASP atom eφT ,ωn

represents the formula φ be-
ing evaluated to T under the interpretation in. We construct
an extended logic program Ph(K) which computes Ih(K)
as follows.

1. We first include rules that guess the N interpretations,
some of those may be used in the final hitting set. We
need to ensure unique atom evaluation wrt. each atom
x ∈ At(K), as we did with the previous two encodings.
However, this time we need to take each possible inter-
pretation into account as well, because an atom may be
assigned the truth value T wrt. one interpretation in the
hitting set, but F wrt. another one. Thus, for each atom
x ∈ At(K) and each interpretation in, n ∈ {1, . . . , N},
we define:

exT ,ωn ← not exF ,ωn .

exF ,ωn
← not exT ,ωn

.

2. We ensure that at least one ASP atom ωn representing an
interpretation is contained in the answer set by construct-
ing the following cardinality constraint:

1{ω1, . . . , ωN}N.

3. The connector encodings for each (sub)formula in K fol-
low classical propositional entailment. Again, each rule
has to be created with regard to each possible interpreta-
tion:

φ ∧ ψ 7→ e(φ∧ψ)T ,ωn
← eφT ,ωn

, eψT ,ωn
.

e(φ∧ψ)F ,ωn
← not e(φ∧ψ)T ,ωn

.

φ ∨ ψ 7→ e(φ∨ψ)F ,ωn
← eφF ,ωn , eψF ,ωn .

e(φ∨ψ)T ,ωn
← not e(φ∨ψ)F ,ωn

.

¬φ 7→ e(¬φ)T ,ωn
← eφF ,ωn

.

e(¬φ)F ,ωn
← not e(¬φ)T ,ωn

.

4. In order to meet the definition of a hitting set, we need to
ensure that each formula φ ∈ K is satisfied wrt. at least
one interpretation:

eφT
← eφT ,ωn

, ωn.

eφF
← not eφT

.

5. Again, we add an integrity constraint for each formula
φ ∈ K:

← eφF
.

6. We minimize the number of interpretations that are re-
quired to satisfy each formula in the given knowledge
base using the following minimize statement:

minimize{ω1, . . . , ωN}.

As opposed to the minimize statements of the other two
encodings, the minimal value is not 0, but 1. This is be-
cause we minimize the number of interpretations required

Data-
set

Signature
size

Formulas
per

knowl.
base

Atoms
per

formula
(mean)

Atoms
per

formula
(max)

Timeouts
Ic naive

Timeouts
Ic ASP

Timeouts
Ih naive

Timeouts
Ih ASP

Timeouts
If naive

Timeouts
If ASP

A 3 5–15 2.22 6 0 0 0 0 116 0
A 5 15–25 3.10 11 0 0 107 0 200 0
A 10 15–25 3.14 10 0 0 74 0 200 0
A 15 15–25 3.11 11 25 0 108 0 200 0
A 15 25–50 3.11 11 195 0 179 0 200 0
A 20 25–50 3.12 11 199 0 198 0 200 0
B 25 25–50 3.08 13 198 0 199 0 200 0
B 25 50–100 3.11 11 200 0 200 24 200 116
B 30 50–100 3.10 13 200 0 200 9 200 140

Table 2: Overview of the sets of knowledge bases making up dataset A and dataset B.

to make a knowledge base consistent. Hence, if we only
need one interpretation, the respective knowledge base is
consistent. Consequently, we need to subtract 1 from the
computed minimum in order to get the correct value of
Ih(K).

It should be noted that there are knowledge bases which con-
tain one or more contradictory formulas, such as a ∧ ¬a. In
such a case, there exists no interpretation (in classical propo-
sitional logic) which could satisfy the respective formula. If
a formula φ ∈ K is contradictory, we cannot include eφT

in any answer set of Ph(K). We therefore needed to include
eφF

in the answer set—which is not allowed due to the in-
tegrity constraint. Thus, no answer set of Ph(K) exists, and
Ih(K) has the value∞.

We define Ph(K) to be the extended logic program spec-
ified by the union of all rules defined in 1–6. For each
ωn ∈ M , with M being an answer set of Ph(K), we de-
fine iM,ωn via

iM,ωn(x) =

{
> eaT ,ωn ∈M
⊥ eaF ,ωn

∈M

for all x ∈ At(K). Further, we define

Ω(M) = {iM,ωn
| ωn ∈M},

which corresponds to the minimal hitting set of K.
Theorem 3 LetM be an optimal answer set ofPh(K). Then
|Ω(M)| − 1 = Ih(K). If no answer set of Ph(K) exists,
Ih(K) =∞.

4 Experiments
The goal of our experimental evaluation is to compare the
empirical runtime of our ASP-based implementations with
existing baseline implementations of the individual mea-
sures.

The three introduced ASP encodings for inconsistency
measurement were constructed by means of the Java li-
braries provided by TweetyProject3. The actual calculation
of the answer sets is performed by the Clingo solver, ver-
sion 5.4.0 (Gebser et al. 2016). TweetyProject also includes

3http://tweetyproject.org/

naive (brute-force) implementations of all three inconsis-
tency measures. More precisely, Ic is implemented by iter-
ating through all subsets of atoms (with increasing cardinal-
ity), forgetting all occurrences of the atoms of the current set
in the knowledge base (thus effectively setting their three-
valued truth value to B), and then checking whether the
resulting knowledge base is consistent by means of a SAT
solver (here, Sat4j v2.3.54). Once a consistent knowledge
base is found, the cardinality of the current set of atoms is re-
turned. The measure If is implemented by iterating through
all possible forgetting operations (with increasing number)
and checking whether the resulting knowledge base is con-
sistent (again using Sat4j v2.3.5). The measure Ih is imple-
mented by considering every set of interpretations (with in-
creasing cardinality) and checking whether each formula of
the knowledge base is satisfied by at least one interpretation.
To the best of our knowledge, no further implementations of
the three inconsistency measures exist.

All experiments were run on a computer with 16 GB
RAM and a quad core Intel Core i7-8550U CPU which has
a maximum clock speed of 4000 MHz.

4.1 Datasets
For evaluation, we consider both some existing benchmarks
as well as a set of newly compiled knowledge bases which
were created using TweetyProject. It should be noted that, to
the best of our knowledge, in the field of inconsistency mea-
surement no dedicated dataset exists that could be utilized
to evaluate different implementations against each other.
Hence, we compile our own dataset. More specifically, we
generated four different sets of knowledge bases (datasets
A–D)5 tailored for different purposes as elaborated in the
following.

To get a fundamental overview of the behavior of our im-
plementations, we compiled dataset A, which consists of
overall rather small random knowledge bases of varying
complexity. To be precise, the dataset is comprised of six
subsets, each containing 200 knowledge bases. The simplest
subset contains between 5 and 15 formulas per knowledge

4https://www.sat4j.org
5All datasets will be made publicly available.

Figure 1: Overview of the inconsistency values of the knowl-
edge bases in dataset A.

base wrt. a signature size of 3, the most complex one be-
tween 25 and 50 wrt. a signature size of 20. More details can
be obtained from the upper left part of Table 2. To generate
these knowledge bases, the SyntacticRandomSampler6 pro-
vided by TweetyProject was utilized. A few knowledge bases
in dataset A are consistent, and some knowledge bases con-
tain contradictory formulas (i. e., wrt. the latter knowledge
bases, Ih = ∞). More details regarding the inconsistency
values of the knowledge bases of dataset A are provided in
Figure 1.

As dataset A already reveals the limits of some of the im-
plementations, dataset B is designed to be a bit more chal-
lenging for the remaining ones. Again, the SyntacticRan-
domSampler was used for the generation process, and again,
the dataset consists of subsets of 200 formulas each. Over-
all, the dataset is comprised of 600 knowledge bases which
contain between 25 and 150 formulas with signature sizes
of 25 or 30. More details are given in the lower left part of
Table 2. Besides, an overview of the inconsistency values of
dataset B is provided in Figure 2.

In addition to the sampled knowledge bases, we consid-
ered benchmark data from different SAT competitions in
dataset C. Because the subject of this work is to measure in-
consistency, only inconsistent instances were considered. In
total, we gathered 105 instances from four different sources:

1. 5 instances referring to the Pigeon Hole problem7. They
consist of between 42 and 110 variables as well as be-
tween 133 and 561 clauses.

2. 8 knowledge bases encoding the two-coloring of a graph
consisting of 60 to 160 variables and 160 to 400 clauses.

3. 8 knowledge bases from circuit fault analysis which com-
prise between 435 and 10,410 variables, and between
1027 and 34,238 clauses.

6http://tweetyproject.org/api/1.17/net/sf/tweety/logics/pl/util/
SyntacticRandomSampler.html

7Those instances referring to the two-coloring of graphs, to cir-
cuit fault theory, and to the Pigeon Hole problem are available at
https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

Figure 2: Overview of the inconsistency values of the knowl-
edge bases in dataset B. Note that the set of values regard-
ing If is incomplete due to both implementations timing out
wrt. 256 out of the 600 instances.

4. 84 DaimlerChrysler benchmarks8 with between 1608 and
2038 variables and between 4496 and 11,352 clauses.

The inconsistency values of the knowledge bases in dataset
C are 1 in all cases wrt. Ic and If . Regarding Ih, the incon-
sistency values are either 1 or ∞. Note that we refer only
to those knowledge bases which did not cause a timeout for
both implementations of If and Ih.

Dataset D consists of knowledge bases extracted from
benchmark data of the International Competition on Compu-
tational Models of Argumentation 2019 (ICCMA’19)9. An
abstract argumentation framework (Dung 1995) is a directed
graphF = (A,R) whereA is a set of arguments andRmod-
els a conflict relation between arguments. A computational
task here is to find a stable extension, i. e., a set E ⊆ A with
(a, b) /∈ R for all a, b ∈ E and (a, c) ∈ R for all c ∈ A \ E
and some a ∈ E. For each instance from ICCMA’19, we
encode the instance and the problem of finding such a sta-
ble extension via the approach from (Besnard, Doutre, and
Herzig 2014) and, additionally, add constraints to ensure that
20% of randomly selected arguments have to be contained in
E. Note that the latter constraints usually make the knowl-
edge base inconsistent.

4.2 Results
To begin with, we measure the runtime of both the naive
(brute-force) and the ASP-based versions of all three in-
consistency measures Ic, Ih, and If on dataset A. A time-
out is set to 120 seconds. The results clearly demonstrate
the limitations of all three brute-force algorithms. Figure 3
shows a cactus plot which illustrates a direct comparison be-
tween the naive versions of all measures and their respec-
tive ASP-based counterparts. The measured execution times
were sorted from low to high wrt. each algorithm. None
of the ASP-based algorithms produced a timeout, while all

8Available at https://web.archive.org/web/20080820084020/
http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/

9http://argumentationcompetition.org/2019/

Figure 3: Runtimes of Ic, Ih, and If regarding both the
naive and the ASP-based algorithms wrt. dataset A. The red
dashed line indicates the timeout of 120 seconds.

Figure 4: Runtimes of the ASP-based algorithms wrt. dataset
B. Because the naive algorithms produced timeouts for all
instances (except Ic in two cases and Ih in one case), they
are not visualized in the plot. The red dashed line indicates
the timeout of 120 seconds.

three naive versions did so in several hundred cases. In par-
ticular, the naive algorithm for If performs very poorly. The
right part of Table 2 reveals that it could only handle some
instances of the simplest subset of dataset A at all—for all
other instances, it produced a timeout. Another noteworthy
point is that both implementations for Ic performed com-
paratively well. The reason for this presumably lies in the
nature of the inconsistency measure itself. For example, the
number of possible values is, in most cases, smaller than that
of Ih or If .

Next, we applied all algorithms on dataset B. However,
it turned out that all three naive algorithms produce time-
outs in almost all instances. The only exceptions are two in-
stances that could be solved by the naive variant of Ic and
one instance that could be solved by the naive variant of Ih.
Hence, when considering dataset B, we focus on the ASP-
based algorithms. Although the knowledge bases in dataset
B are not much more complex than those of dataset A (see
Table 2 for details), the ASP-based algorithms for Ih and

If exhibit some difficulties, as Figure 4 visualizes. More
precisely, the ASP-based implementation of Ih produces a
timeout in 33 out of 600 cases, and the implementation for
If even in 256 cases. More details regarding the number of
timeouts for each implementation wrt. each subset of dataset
B are provided in the lower right section of Table 2. Never-
theless, it should be noted that the ASP-based implementa-
tion of the contension inconsistency measure behaved differ-
ently: not only did it not produce any timeouts, it took only
< 1 second for each knowledge base in dataset B.

We also applied all algorithms on dataset C. Because
of the large size of some of the knowledge bases (up to
2038 variables and 11,352 clauses), we increased the time-
out from 2 to 5 minutes. As Figure 5 shows, both implemen-
tations of Ic as well as both implementations of If were
able to compute inconsistency values for most knowledge
bases. However, regarding both measures, the ASP version
produced fewer timeouts than its respective naive counter-
part. The naive implementation of Ih could not solve a sin-
gle instance of dataset C. The corresponding ASP-based im-
plementation could at least compute the inconsistency val-
ues of 11 knowledge bases.

The overall rather poor performance of both implemen-
tations of Ih compared to the implementations of the other
two measures is presumably due to the nature of dataset C:
all knowledge bases are given in the DIMACS10 file format.
This means that all knowledge bases are in conjunctive nor-
mal form and each clause is considered an individual for-
mula. Moreover, the inconsistency value is always 1, except
for some instances regarding Ih, where the inconsistency
value is ∞. Further, most knowledge bases contain a large
number of clauses. The size of the ASP encodings regarding
Ic and If largely depends on the number of atoms, or atom
occurrences, respectively, as well as the size and complexity
of the individual formulas. The size of the ASP encoding of
Ih, on the other hand, highly depends on the number of pos-
sible interpretations, i. e., the number of formulas, because
every formula, subformula and atom needs to be encoded
wrt. each of these interpretations. Consequently, with a large
number of formulas in a knowledge base, we also get an an-
swer set program containing a vast number of rules. This
makes Ih slower and less practically applicable as the other
two measures in a dataset which possesses properties like
datset C.

Another aspect that strikes out with regard to dataset C
is that the naive implementations of Ic and If perform rel-
atively well in comparison to dataset A and B. The reason
for this lies most probably in the inconsistency values of
the knowledge bases in dataset C, which is always 1 for
Ic and If . The inconsistency values of most instances in
both dataset A and B are significantly higher (see Figures
1 and 2). Since the brute-force implementations of Ic and
If check the lowest possible values first, they can compute
lower inconsistency values faster than higher ones, given the
size of the respective knowledge bases is the same.

Finally, we run all implementations on dataset D. As with

10http://www.satcompetition.org/2011/format-
benchmarks2011.html

Figure 5: Runtimes of Ic, If , and Ih regarding dataset C.
The naive implementation of Ih produced a timeout for all
instances, so it is not shown in the plot. The red dashed line
indicates the timeout of 300 seconds.

Figure 6: Runtimes of Ic, Ih, and If regarding both the
naive and the ASP-based algorithms wrt. dataset D. The red
dashed line indicates the timeout of 300 seconds.

dataset C, we set a timeout to 5 minutes. As Figure 6 visual-
izes, all six implementations could solve a non-empty sub-
set of the knowledge bases in the dataset. Nonetheless, it is
noticeable that none of the implementations could compute
inconsistency values for the entire dataset. All implementa-
tions produced a timeout for at least 100 instances. Again,
each ASP-based implementation had fewer timeouts than its
respective naive counterpart.

5 Conclusion
In the course of this paper, we presented algorithms based
on reductions to ASP for the contension inconsistency mea-
sure, the forgetting-based inconsistency measure, and the
hitting set inconsistency measure. Moreover, we experimen-
tally evaluated them against corresponding brute-force algo-
rithms wrt. execution time. The evaluation showed that the
novel ASP-based implementations perform clearly superior.
We also learned that the naive implementations perform rel-
atively worse when inconsistency values are large. The ASP
encodings, on the other hand, are not dependent on the level

of inconsistency.
With regard to future work, one aim is to utilize answer

set programming to encode other inconsistency measures
as well. For example, measures with higher computational
complexity than those considered in this paper may be ex-
amined. Furthermore, it is of interest to investigate how our
ASP-based algorithms perform in real-world applications.
For instance, Nagel et al. presented a study about inconsis-
tencies in business rules, which takes a quantitative perspec-
tive (Nagel, Corea, and Delfmann 2019), and thus could ben-
efit from practically applicable algorithms. Other possible
areas of application are mentioned in Section 1.

One of the insights gained throughout the course of this
work is that large-sized knowledge bases are still problem-
atic. With regard to datasets B and C, the ASP-based im-
plementations for both If and Ih produced some timeouts,
and with regard to dataset D, none of the three implemen-
tations could compute inconsistency values for a number of
knowledge bases within the time limit. Therefore, another
area of research that may be relevant with respect to the al-
gorithmic perspective on inconsistency measures is that of
approximate algorithms.

Acknowledgements This research is supported by the
German Research Association (DFG), project number
424710479.

References
Bertossi, L. 2018. Measuring and Computing Database In-
consistency via Repairs. In Proceedings of the 12th Inter-
national Conference on Scalable Uncertainty Management
(SUM’18).

Besnard, P. 2016. Forgetting-based inconsistency measure.
In International Conference on Scalable Uncertainty Man-
agement, 331–337. Springer.

Besnard, P.; Doutre, S.; and Herzig, A. 2014. Encoding
argument graphs in logic. In International Conference on
Information Processing and Management of Uncertainty in
Knowledge-based Systems - IPMU 2014.

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12): 92–103.

Cholvy, L.; Perrussel, L.; and Thevenin, J.-M. 2017. Using
inconsistency measures for estimating reliability. Interna-
tional Journal of Approximate Reasoning 89: 41–57.

Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77(2): 321–358.

Dvorák, W.; Gaggl, S. A.; Rapberger, A.; Wallner, J. P.;
and Woltran, S. 2020. The ASPARTIX System Suite. In
Prakken, H.; Bistarelli, S.; Santini, F.; and Taticchi, C.,
eds., Computational Models of Argument - Proceedings of
COMMA 2020, Perugia, Italy, September 4-11, 2020, vol-
ume 326 of Frontiers in Artificial Intelligence and Applica-
tions, 461–462. IOS Press.

Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of answer set programming. AI Magazine 37(3): 53–68.

Erdem, E.; Patoglu, V.; Saribatur, Z. G.; Schüller, P.; and
Uras, T. 2013. Finding optimal plans for multiple teams of
robots through a mediator: A logic-based approach. Theory
and Practice of Logic Programming 13(4-5): 831–846.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with clingo 5. In Technical Communications of the 32nd
International Conference on Logic Programming (ICLP
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer set solving in practice. Synthesis lectures on
artificial intelligence and machine learning 6(3): 1–238.

Gelfond, M.; and Leone, N. 2002. Logic programming and
knowledge representation—the A-Prolog perspective. Arti-
ficial Intelligence 138(1-2): 3–38.

Gelfond, M.; and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9(3-4): 365–385.

Grant, J. 1978. Classifications for Inconsistent Theories.
Notre Dame Journal of Formal Logic 19(3): 435–444.

Grant, J.; and Hunter, A. 2011. Measuring consistency gain
and information loss in stepwise inconsistency resolution. In
Proceedings ECSQARU’11, 362–373. Springer.

Grant, J.; and Hunter, A. 2017. Analysing Inconsistent In-
formation Using Distance-Based Measures. Int. J. Approx.
Reasoning 89(C): 3–26.

Grant, J.; and Martinez, M. V., eds. 2018. Measuring In-
consistency in Information, volume 73 of Studies in Logic.
College Publications.

Hunter, A. 2006. How to act on inconsistent news: Ignore,
resolve, or reject. Data & Knowledge Engineering 57(3):
221–239.

Kuhlmann, I.; and Thimm, M. 2020. An Algorithm for
the Contension Inconsistency Measure using Reductions to
Answer Set Programming. In International Conference on
Scalable Uncertainty Management, 289–296. Springer.

Lifschitz, V. 2008. What is answer set programming? In
Proceedings AAAI’08, 1594–1597.

Martinez, A. B. B.; Arias, J. J. P.; and Vilas, A. F. 2004. On
Measuring Levels of Inconsistency in Multi-Perspective Re-
quirements Specifications. In Proceedings of the 1st Confer-
ence on the Principles of Software Engineering (PRISE’04).

Nagel, S.; Corea, C.; and Delfmann, P. 2019. Effects of
quantitative measures on understanding inconsistencies in
business rules. In Proceedings of the 52nd Hawaii Inter-
national Conference on System Sciences, 146–155.

Potyka, N.; and Thimm, M. 2017. Inconsistency-tolerant
reasoning over linear probabilistic knowledge bases. Inter-
national Journal of Approximate Reasoning 88: 209–236.

Priest, G. 1979. Logic of Paradox. Journal of Philosophical
Logic 8: 219–241.

Reiter, R. 1980. A logic for default reasoning. Artificial
intelligence 13(1-2): 81–132.
Thimm, M. 2016. Stream-based inconsistency measure-
ment. International Journal of Approximate Reasoning 68:
68–87.
Thimm, M. 2019. Inconsistency Measurement. In Amor,
N. B.; Quost, B.; and Theobald, M., eds., Proceedings of
the 13th International Conference on Scalable Uncertainty
Management (SUM’19), 9–23. Springer International Pub-
lishing.
Thimm, M.; and Wallner, J. 2019. On the Complexity of
Inconsistency Measurement. Artificial Intelligence 275.

