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Abstract
Argumentation is inherently pervaded by uncertainty, which

can arise as a result of the context in which argumentation is used,
the kinds of agents that are involved in a given situation, the types
of arguments that are used, and more. One of the prominent ap-
proaches for handling uncertainty in argumentation is probabilistic
argumentation, which offers means of quantifying the level of un-
certainty we are dealing with. This chapter offers an overview of
the state-of-the-art research in this area.

1 Introduction
Argumentation is inherently pervaded by uncertainty. One of the core
concepts of defeasible reasoning and therefore argumentation is the fal-
libility of human perception, which forces us to be able to reason even
with incomplete information and to be prepared to retract our conclu-
sions in the face of new data. This is further compounded by applying
argumentation in real-life situations, where uncertainty can arise as a
result of the context in which argumentation is used, the kinds of agents
that are involved in a given situation, the types of arguments that are
used, and more. Thus, just like there are multiple sources of uncertainty
in argumentation, there are multiple proposals in the literature towards
modelling this kind of reasoning. One of the prominent approaches is
probabilistic argumentation, which often offers means of quantifying the
level of uncertainty we are dealing with. While using probability theory
as a means to model uncertain aspects of argumentation has been ques-
tioned even by Pollock [1995], recent developments in the field showed
its adequacy in practical matters and from the perspective of artificial
discussion, see also [Verheij, 2014] for a discussion on this. This chapter
offers an overview of the state-of-the-art research in this area, and we
start by considering various examples that can benefit from incorporat-
ing probabilities.

Example 1.1 (Taken from [Hunter, 2014]). Suppose that there are two
witnesses to a criminal escaping in a car. The first witness says that
the getaway car is red, and the other witness says that the getaway car
is orange. If we take a strict interpretation of the colours, then we have
two arguments a and b below, where each argument attacks the other.
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• a = “The getaway car is red”.

• b = “The getaway car is orange”.

For these arguments, it may be inappropriate to treat “red” and “or-
ange” as contradictory. There is some ambiguity, and hence some im-
precision, in the use of these terms. And so, it may be possible to regard
these two terms as consistent together. So if we consider the argument
graph, there is some uncertainty as to whether a attacks b and vice versa.

The above example highlights that uncertainty may arise when there
is ambiguity, a form of imprecision in the language used in the argu-
ments. Another important reason for uncertainty is that real-world ar-
guments presented in natural language are normally enthymemes [Wal-
ton, 1989], i. e. arguments with a support that is insufficient for the
claim to be entailed and/or a claim that is incomplete. This means that
a given enthymeme could be completed into a full argument in more
ways than one, and every interpretation may have a certain probability
of being the intended one. We consider this in the next example.

Example 1.2 (Taken from [Hunter, 2014]). Consider the following ar-
guments:

• a = “The sun is shining now, we should organize a BBQ for this
evening”.

• b = “The weather report predicts rain this evening”.

Here, a is an argument that has incomplete premises for obtaining the
claim (i. e. the premise “The sun is shining now” is insufficient for
entailing the claim “We should organize a BBQ for this evening”). And
b is an argument that has the premise “The weather report predicts rain
this evening”, but lacks a claim. Implicitly, the claim of b should negate
the premises or the claim of argument a.

When a counterargument is an enthymeme, there may be uncertainty
as to whether the argument being attacked is attacked because a premise
is being contradicted or because the claim is being contradicted. In the
above example, it could be that the implicit claim of b is negating the
premise “The sun is shining now”, or negating the claim “We should
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organize a BBQ for this evening”. Also, because a is an enthymeme
with incomplete premises, b could have a claim that contradicts a missing
premise of a. For instance, suppose we make the premises of argument
a explicit as follows:

• a1 = “The sun is shining now”.

• a2 = “If the sun is shining now, it will be warm and dry this
evening”.

• a3 = “If it is warm and dry this evening, then we should organize
a BBQ for this evening”.

So if the argument is explicit, it will have premises a1, a2 and a3,
and the claim “We should organize a BBQ for this evening”. Then the
claim of b can negate some combination of the explicit premises and/or
the claim of a. Similarly, we can make the argument b explicit.

• b1 = “If the weather report predicts rain this evening, then it will
not be warm and dry this evening”.

• b2 = “It will not be warm and dry this evening”.

Here b1 is used to make the premises explicit, and b2 is used to make the
claim explicit. This claim then explicitly contradicts the premises a1 and
a2. In other words, if we regard the premises of a as being represented
by a1, a2 and a3, and the premises of b being represented by b and b1,
and the claim of b being b2, then we get the argument graph visible in
Figure 1a.

However, there may be other interpretations of a and/or b, such that
the interpretation of b does not attack the interpretation of a, then we
get the argument graph in Figure 1b. In this way, there is doubt about
whether a does indeed attack b, and what the precise structure of a and
b is. All interpretations of the arguments and the resulting graphs are
only given with some likelihood.

Yet another kind of uncertainty concerns the degree to which a given
agent believes or disbelieves an argument or its premises or claims. In
real-life, people often tend to trust or agree with certain things only up to
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(a)

a b
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Figure 1: Possible argument graphs created from enthymemes.

a given degree, and being presented with counterarguments can weaken
this belief rather than lead to outright rejection of a given argument.
For instance, we might be inclined to have some doubt in the weather
forecasts or in the stories of a gossiping neighbour. The way a given piece
of information is presented to us also affects how we react to it, e. g.,
framing things a certain way or using particular language are classical
strategies used in many areas, from marketing to healthcare. Finally,
there is also the issue of imperfection. Human agents do not need to be
perfect reasoners and can reach decisions in a biased or flawed manner;
at the same time, we may accidentally deem them imperfect or not
following certain rules of reasoning because they do not disclose all of
their arguments and knowledge that would justify their position. Below
we provide examples based on the empirical study from [Polberg and
Hunter, 2018] that highlight some of the mentioned behaviours.

Example 1.3 (Taken from [Polberg and Hunter, 2018]). Consider two
listeners to the following discussion on flu shots between agents a and b.

• a1 = Hospital staff members do not need to receive flu shots.

• b2 = Hospital staff members are exposed to the flu virus a lot.
Therefore, it would be good for them to receive flu shots in order
to stay healthy.

• a3 = The virus is only airborne and it is sufficient to wear a mask
in order to protect yourself. Therefore, a vaccination is not neces-
sary.

• b4 = The flu virus is not just airborne, it can be transmitted through
touch as well. Hence, a mask is insufficient to protect yourself
against the virus.
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• a5 = The flu vaccine causes flu in order to gain immunity. Making
people sick, who otherwise might have stayed healthy, is unreason-
able.

• b6 = The flu vaccine does not cause flu. It only has some side
effects, such as headaches, that can be mistaken for flu symptoms.

When asked, the first listener identifies certain conflicts between what
the agents are uttering, as visible in Figure 2a. She admits to strongly
agreeing with everything that agent b has said, however, she does not
think that what agent a says is entirely wrong. She still, though to a
small degree, agrees with a1, and a3 prompts only slight disagreement
(a5 is completely disbelieved). She explains that while it is indeed a great
idea to get vaccinated and it would be very beneficial to do so, she does
not think that “needing” to do that is appropriate.

In addition to the conflicts identified by the first listener, the second
listener believes that a5 attacks b4 and b6 attacks a3 (see Figure 2b).
However, she holds a clear anti-vaccine stance and agrees (resp. dis-
agrees) with everything agent a (resp. b) says. The listener states that
agent b is expressing lies and inaccuracies and rejects the agent’s views
without providing any particular kind of evidence to the contrary, thus
exhibiting behaviour that could be deemed as biased or not rational.

The aforementioned examples highlight various kinds of uncertainty
that can arise concerning the structure of the argument graph or the
degree to which a given argument is accepted. While they are fairly
straightforward, they are also quite common and reflect the ambiguity
and uncertainty that is present in daily life and communication. They
also represent challenges that any application of argumentation, partic-
ularly one involving human agents, will need to tackle.

The kinds of scenarios we have considered can be conveniently mod-
elled using probabilistic argumentation, particularly with the constella-
tions and the epistemic approaches [Hunter, 2013]. In the constellations
approach, the uncertainty is in the topology of the graph, by which we
understand that certain arguments or relations appear in the graph only
with a given probability. This approach is useful when one agent is not
sure what arguments and attacks another agent is aware of, or if ambi-
guity or imprecision of the arguments causes uncertainty in the structure
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Figure 2: Example of attacks between arguments acquired by two lis-
teners of a vaccine discussion.

of the graph. In the epistemic approach, the topology of the argument
graph is fixed, but there is uncertainty as to the degree to which each
argument is believed. This method can be harnessed when an agent is
not certain of their own or another agent’s opinion on the arguments, if
a given situation calls for a fine-grained way to judge arguments, or if
the perceived reasoning of a given agent escapes classical argumentation
semantics. In this chapter we will discuss these and further kinds of
probabilistic argumentation in more detail and explain how our exam-
ples can be modelled.

In Section 2 we recall certain basic notions that we will use through-
out this chapter. Sections 3 and 4 investigate the epistemic and constel-
lation approach to probabilistic argumentation, respectively, and Section
5 is dedicated to discussing other kinds of probabilistic approaches. We
close with additional discussion and conclusions in Section 6.
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2 Preliminaries
Within argumentation we frequently distinguish between the structured
(or logic-based) and abstract approaches. The former define the rela-
tions between arguments in terms of the assumed internal structure of
these arguments, and often offer means of constructing them from an
underlying knowledge base or data source [Besnard and Hunter, 2008;
Modgil and Prakken, 2014; Toni, 2014; Garcia and Simari, 2004]. In con-
trast, abstract argumentation [Dung, 1995; Brewka et al., 2014] takes a
very simple view on argumentation as it does not presuppose any in-
ternal structure of an argument. The arguments and relations between
them are assumed to have been constructed, and the focus is put on
determining what arguments can be deemed acceptable or not based
on how they interact with each other. Various negative and positive
kinds of relations have been studied in the literature [Brewka et al.,
2014], however, we will focus on the original argumentation framework
by Dung [1995] that considers only a binary attack relation.

Definition 2.1. An abstract argumentation framework AF is a tuple
AF = (Ar , att) where Ar is a set of arguments and att is a relation
att ⊆ Ar ×Ar.

Let A denote the set of all abstract argumentation frameworks. For
two arguments a, b ∈ Ar the relation (a, b) ∈ att means that argument
a attacks argument b. With b− = {a | (a, b) ∈ att} we denote the set
of attackers of an argument b. For convenience, with S− =

⋃
a∈S a

− we
will denote the set of all attackers of a set of arguments S ⊆ Ar .

Abstract argumentation frameworks can be concisely represented by
directed graphs, where arguments are represented as nodes and edges
model the attack relation (see Figure 2)1. The status of a given argu-
ment is determined through the appropriate argumentation semantics,
which often produce answers in the form of extensions [Dung, 1995] or
labellings [Wu and Caminada, 2010]. In this work, we use the latter,
though we note that for Dung’s frameworks, they can be used inter-
changeably.

1Note that we only consider finite argumentation frameworks here, i. e., argumen-
tation frameworks with a finite number of arguments.
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Definition 2.2. A labelling Lab for an abstract argumentation frame-
work AF = (Ar , att) is a function Lab : Ar → {in, out, undec}.

A labeling Lab assigns to each argument a ∈ Ar either the value in,
meaning that the argument is accepted, out, meaning that the argument
is rejected, or undec, meaning that the status of the argument is unde-
cided. Let in(Lab) = {a | Lab(a) = in} and out(Lab) resp. undec(Lab)
be defined analogously. The set in(Lab) for a labelling Lab is also called
extension [Dung, 1995].

We now recall the three basic semantics of argumentation frame-
works: the conflict-free, admissible, and complete semantics2. Conflict-
freeness represents a certain notion of consistency, i. e., we can jointly
accept only those arguments that are not in conflict. The intuition
behind admissibility is that an argument can only be accepted if all at-
tackers are rejected and if an argument is rejected then there has to be
some reasonable grounds. The idea behind the completeness property
is that the status of an argument is only undec if it cannot be classified
as neither in nor out.

Definition 2.3. Let Lab : Ar → {in, out, undec} be a labelling for
AF = (Ar , att). We say that Lab is

• conflict-free (CF) if for no a, b ∈ in(L) we have that a ∈ b−,

• admissible (AD) if and only if it is conflict-free and for every
a ∈ Ar

– if Lab(a) = out then there is b ∈ a− with Lab(b) = in, and
– if Lab(a) = in then Lab(b) = out for all b ∈ a−,

• complete (CO) if and only if it is admissible and for every a ∈ Ar,
if Lab(a) = undec then

– there is no b ∈ a− s.t. Lab(b) = in, and
– there exists c ∈ a− s.t. Lab(c) 6= out.

2We observe that in the literature, admissibility and conflict-freeness are some-
times viewed as semantics, and sometimes as properties. Given the increased impor-
tance of these notions due to the development of various new kinds of semantics and
frameworks, we choose to treat them as semantics in this work.
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Different additional types of classical semantics [Dung, 1995; Cam-
inada, 2006; Baroni et al., 2011] can be phrased by imposing further
constraints such as minimality or maximality.

Definition 2.4. Let Lab : Ar → {in, out, undec} be a complete labelling
of AF = (Ar , att). Then Lab is:

• grounded (GR) if and only if in(Lab) is minimal,

• preferred (PR) if and only if in(Lab) is maximal, and

• stable (ST ) if and only if undec(Lab) = ∅.

All statements on minimality/maximality are meant to be w.r.t. ⊆.

a1 a2 a3 a4 a5

Figure 3: The argumentation framework AF from Example 2.5

Example 2.5. Consider the abstract argumentation framework AF =
(Ar,att) where Ar = {a1, a2, a3, a4, a5} and att = {(a2, a1), (a2, a3),
(a3, a4), (a4, a5), (a5, a4), (a5, a3)} (see also Figure 3). The possible
labellings under the admissible, complete, grounded, preferred and stable
semantics for this framework are listed in Table 1.

Labeling a1 a2 a3 a4 a5 AD CO GR PR ST
Lab1 undec undec undec undec undec X × × × ×
Lab2 out in out undec undec X X X × ×
Lab3 undec undec out out in X × × × ×
Lab4 out in out out in X X × X X
Lab5 out in out in out X X × X X

Table 1: Possible labellings of the framework from Figure 3.

We note that a grounded labelling is uniquely determined and al-
ways exists [Dung, 1995] and that not every framework is guaranteed to
produce a stable labeling.
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One of the most common reasoning problems in argumentation con-
cerns the skeptical and credulous acceptance of arguments, by which we
understand that they are accepted in all (resp. some) labellings of a
given framework:

Definition 2.6. Let σ ∈ {CF ,AD, CO,PR,GR,ST } be any semantics.
An argument a ∈ Ar is credulously accepted in AF wrt. σ, written
AF |∼cσ a, iff a ∈ in(Lab) for some σ-labeling Lab. An argument a ∈ Ar
is skeptically accepted in AF wrt. σ, written AF |∼sσ a, iff a ∈ in(Lab)
for all σ-labelings Lab. We use ◦ ∈ {s, c} as a symbol to refer to any
inference mode.

In Example 2.5, argument a2 would be skeptically accepted under
the complete, grounded, preferred and stable semantics. a4 and a5 would
also be credulously accepted under the complete, preferred and stable
semantics, but not under grounded.

We observe that skeptical reasoning is not considered in the case
of conflict-free and admissible semantics since a labelling mapping all
arguments to undec is always conflict–free and admissible. Every argu-
ment that does not attack itself will be credulously accepted under the
conflict-free semantics.

3 The epistemic approach to probabilistic argu-
mentation

We now go beyond classical three-valued semantics of abstract argu-
mentation and turn to the epistemic approach to probabilistic argumen-
tation [Thimm, 2012; Hunter and Thimm, 2014; Baroni et al., 2014;
Hunter and Thimm, 2017]. Instead of evaluating abstract argumenta-
tion frameworks by labellings, we rely on probability functions. For this
section, we define a probability function as follows.

Definition 3.1. Let X be some finite set and 2X its power set. A
probability function P on X is a function P : 2X → [0, 1] that satisfies∑

Y ∈2X
P (Y ) = 1 .
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Here, a probability function is a function on the set of subsets of
some (finite) set which is normalized, i.e., the sum of the probabilities
of all subsets is one. Let P be the set of all probability functions.

We use the concept of subjective probability [Paris, 1994] for inter-
preting probabilities. That is, a probability P (Y ) for some Y ⊆ X
denotes the degree of belief we put into Y . Then a probability func-
tion P can be seen as an epistemic state of some agent that has uncer-
tain beliefs with respect to X. In probabilistic reasoning [Pearl, 1988;
Paris, 1994], this interpretation of probability is widely used to represent
and reason over uncertain knowledge.

In the following, we consider probability functions on sets of argu-
ments of an abstract argumentation framework.

Definition 3.2. Let AF = (Ar , att) be a fixed abstract argumentation
framework and let P(AF ) be the set of probability functions of the form
P : 2Ar → [0, 1]. For P ∈ P(AF ) and a ∈ Ar, the probability of a is
defined as

P (a) =
∑

a∈Y⊆Ar
P (Y ) .

Given some probability function P , the probability P (a) represents
the degree of belief that a is acceptable wrt. P . In order to bridge the
gap between probability functions and labellings, consider the following
definition from [Hunter, 2013].

Definition 3.3. Let AF = (Ar , att) and P : 2Ar → [0, 1] a probability
function on Ar. The labelling LabP : Ar → {in, out, undec} defined via
the following constraints is called the epistemic labelling of P

• LabP (a) = in iff P (a) > 0.5,

• LabP (a) = out iff P (a) < 0.5,

• LabP (a) = undec iff P (a) = 0.5.

In other words, an argument a is labelled in in LabP when it is
believed to some degree (which we identify as P (a) > 0.5), it is la-
belled out when it is disbelieved to some degree (which we identify as
P (a) < 0.5), and it is labelled undec when it is neither believed nor
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a = Ann will go to
the party and this
means that Bob will
not go to the party

b = Bob will go to
the party and this

means that Chris will
not go to the party

c = Chris will go to
the party and this

means that Ann will
not go to the party

Figure 4: Example of three arguments in a simple cycle.

disbelieved (which we identify as P (a) = 0.5). Furthermore, the epis-
temic extension of P is the set of arguments that are labelled in by the
epistemic labelling, i.e., X is an epistemic extension iff X = in(LabP ).
We say that a labelling Lab and a probability function P are congruent,
denoted by Lab ∼ P , if for all a ∈ Ar we have Lab(a) = in⇔ P (a) = 1,
Lab(a) = out ⇔ P (a) = 0, and Lab(a) = undec ⇔ P (a) = 0.5. Note
that if Lab ∼ P then Lab = LabP , i.e., if a labelling Lab and a probability
function P are congruent then Lab is also the epistemic labelling of P .

Example 3.4. To further illustrate epistemic labelings and extensions,
consider the graph given in Figure 4. Here, we may believe that, say, a
is valid and that b and c are not valid. In which case, with this extra
epistemic information about the arguments, we can resolve the conflict
and so take the set {a} as the “epistemic” extension. In contrast, there
is only one admissible set which is the empty set. So by having this extra
epistemic information, we get a more informed extension (in the sense
that it has harnessed the extra information in a sensible way).

In general, we want epistemic extensions to allow us to better model
the audience of argumentation. In particular, we can deviate from the
principles of classical labeling-based semantics for argumentation frame-
works. Consider, for example, when a member of the audience of a TV
debate listens to the debate at home, she can produce the abstract argu-
ment graph based on the arguments and counterarguments exchanged.
Then she can identify a probability function to represent the belief she
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has in each of the arguments. So she may disbelieve some of the ar-
guments based on what she knows about the topic. Furthermore, she
may disbelieve some of the arguments that are unattacked. As an ex-
treme, she is at liberty of completely disbelieving all of the arguments
(so to assign probability 0 to all of them). If we want to model audi-
ences, where the audience either does not want to or is unable to add
counterarguments to an argument graph being constructed in a given
argumentation scenario, we need to take the beliefs of the audience into
account. Thus, we need to consider which arguments they believe or
disbelieve, which may not correspond to how classical argumentation
semantics would evaluate the arguments.

Nevertheless, a completely arbitrary probability function is not very
informative, and there are various conditions we can impose on proba-
bility functions in order to be able to reason with argumentation frame-
works in the probabilistic setting. Recall that in the classical case, se-
mantical conditions such as conflict-freeness and admissibility (see Def-
inition 2.3) play such a role to constrain the set of labellings. In the
literature on the epistemic approach, several rationality postulates have
been proposed to lift these conditions to the probabilistic setting, see
also [Hunter and Thimm, 2017] for an overview.

The first property we consider here is a generalization of the conflict-
freeness property. Using a probability function to interpret an abstract
argumentation framework, means that—in order to reason rationally—
we cannot have both high degree of belief in an argument and its attacker
at the same time. Let AF = (Ar , att) be an abstract argumentation
framework and P : 2Ar → [0, 1] a probability function over Ar . There
are two variants how the notion of conflict-freeness can be lifted to the
probabilistic case:

COH P is coherent wrt. AF if for every a, b ∈ Ar , if (a, b) ∈ att then
P (a) ≤ 1− P (b).

RAT P is rational wrt. AF if for every a, b ∈ Ar , if (a, b) ∈ att then
P (a) > 0.5 implies P (b) ≤ 0.5.

Both postulates model the general requirement that, if belief in an ar-
gument is high, then the belief in an argument attacked by it should be
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low. While RAT models a rather crisp version of the requirement, COH
is a continuous interpretation.

The other important requirement of argumentative reasoning is that,
if all attackers of an argument are believed to a rather low belief, then
the argument should be believed to a rather high belief. In the classi-
cal setting this is the general reinstatement principle and implemented
through the completeness property [Baroni et al., 2011]. Aspects of this
requirement can be modelled through the following postulates:

FOU P is founded wrt. AF if P (a) = 1 for every a ∈ Ar with a− = ∅.

TRU P is trusting wrt. AF if for every a s.t. for every b ∈ a−,
P (b) < 0.5, then P (a) > 0.5.

OPT P is optimistic wrt. AF if P (a) ≥ 1 −
∑
b∈a− P (b) for every

a ∈ Ar .

The property FOU states that unattacked arguments should receive
maximal degree of belief. The property TRU states that arguments
whose attackers are disbelieved, should be believed. The property OPT
is a generalisation of that idea and states the degree of belief in an
argument should be bounded from below by one minus the sum of the
beliefs in the attackers. Note that in the special case of having zero
belief in all attackers this property requires to have maximal belief in
a, just as in the classical case where an argument is accepted if all its
attackers are defeated.

A series of further rationality postulates have been proposed in the
literature. We refer to [Baroni et al., 2014; Hunter and Thimm, 2017]
for a deeper discussion of this topic.

Example 3.5. Consider the abstract argumentation framework AF =
(Ar , att) depicted in Figure 5 and the probability functions depicted in
Table 2 (note that these functions are only partially defined by giving the
probabilities of arguments). The following observations can be made:

• P1 is founded and trusting, but neither rational, coherent, nor op-
timistic.

• P2 is coherent and rational, but neither founded, trusting nor op-
timistic.
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a1 a2 a3

a4

a5 a6

Figure 5: A simple argumentation framework

a1 a2 a3 a4 a5 a6

P1 0.2 0.7 0.6 0.3 0.6 1
P2 0.7 0.3 0.5 0.5 0.2 0.4
P3 0.7 0.3 0.7 0.3 0 1
P4 0.7 0.8 0.9 0.8 0.7 1

Table 2: Some probability functions for Example 3.5

• P3 is coherent, rational, founded, trusting and optimistic.

• P4 is founded, trusting and optimistic but neither coherent nor
rational.

There are correspondences between probability functions satisfying
certain rationality postulates and labellings satisfying certain semantics
[Hunter and Thimm, 2017]. For example, if Lab is an admissible labelling
in AF then there is a probability function P satisfying COH and OPT
with Lab ∼ P [Thimm, 2012]. Moreover, if Lab is the grounded labelling
and P the one probability function satisfying COH and OPT and having
maximal entropy3 then Lab ∼ P [Thimm, 2012].

The framework developed so far already allows for reasoning with
abstract argumentation frameworks in a way that incorporates proba-
bilistic interpretations of argumentative principles. For example, fixing a
set of rationality postulates, one can determine upper and lower bounds
for probabilities of arguments by considering the set of a probability

3Define the entropy H(P ) of P as H(P ) = −
∑

E⊆Ar P (E) log P (E).
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functions satisfying these rationality postulates [Hunter and Thimm,
2017]. If evidence, i. e., bounds or correct degrees of beliefs of some of
the arguments, is available, then this can be incorporated in the model
and new bounds for the remaining arguments can be calculated [Hunter
and Thimm, 2014; Hunter and Thimm, 2017]. In [Hunter and Thimm,
2017], also a method is proposed to allow for probabilistic reasoning if
the available evidence is contradictory.

The framework discussed in this section has been extended and anal-
ysed in a number of ways. For example, [Gabbay and Rodrigues, 2015]
interprets the epistemic approach within the equational approach and
[Baroni et al., 2014] extends the epistemic approach to imprecise prob-
abilities. Moreover, Prakken [Prakken, 2017; Prakken, 2018] provides
some first thoughts on how probabilistic reasoning can be applied to
structured argumentation approaches and relates his ideas with the epis-
temic approach. In the remainder of this section, we briefly discuss some
further extensions.

3.1 Beliefs in Attacks

A natural extension of the epistemic approach is to not only consider
degrees of beliefs of arguments but also of attacks [Polberg et al., 2017;
Thimm et al., 2018b]. The intuition here is that a high belief in an attack
makes the attack effective while low belief in attack means that the
attack could almost be ignored. This allows for handling both situations
in which the belief in an attack is strongly coupled with the belief one has
in the argument carrying it out, as well as those where this dependency
is much weaker [Polberg and Hunter, 2018].

From the technical side, this generalization can be achieved either
by introducing an additional probability function over the attacks of
the framework [Polberg et al., 2017] or considering a single probability
function of the union of arguments and attacks [Thimm et al., 2018b].
Rationality postulates for the extended setting are then defined by tak-
ing uncertainty of attacks into account and new relationships with the
classical abstract argumentation can be found [Polberg et al., 2017].
Furthermore, there are also strong relationships with the approach of
[Villata et al., 2011] that introduced the notion of acceptability of at-
tacks, see [Thimm et al., 2018b] for a detailed discussion.
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3.2 Dynamics

The epistemic approach provides a static perspective on the abstract
argumentation framework under consideration. However, as in classical
abstract argumentation semantics, we can also consider a more dynamic
setting where agents are situated in a particular environment and ex-
change arguments. There, agents possess opponent models of the other
agents and need to update these models as the dialogue progresses. Epis-
temic probability distributions can be taken as opponent models, caus-
ing non-trivial issues to arise when updates have to be performed. In
[Hunter and Potyka, 2017; Hunter, 2016] this setting is discussed in more
detail and several approaches to updating such models are presented.
Section 5.3 of this chapter offers additional discussion on dynamics and
probabilistic argumentation.

3.3 Epistemic Graphs

Abstract argumentation frameworks provide a limited expressivity when
it comes to the relationships between arguments. The only relationship
that can be modelled is the attack, modelling the intuition that an ar-
gument cannot be accepted if one of its attackers is accepted. As the
epistemic approach is built on top of abstract argumentation it suffers
from the issue. However, for abstract argumentation several extensions
have been defined to allow for further relationships such as support (see
Chapter 1 in this handbook [Cayrol et al., 2021]). To allow for maximal
flexibility, abstract dialectical frameworks (ADFs) [Brewka et al., 2018;
Polberg, 2016] were proposed as a generalisation of abstract argumenta-
tion frameworks that allow to define the acceptability function for any
argument.

We can find epistemic approaches that aim to combine probabil-
ities with more expressive frameworks. For instance, [Potyka, 2019]
introduces several epistemic postulates for modelling support. This
can be further generalized to epistemic graphs [Hunter et al., 2018b;
Hunter et al., 2020; Hunter et al., 2018a; Hunter et al., 2019] which
were introduced as a general means for bringing argumentative and
probabilistic reasoning capabilities together. Inspired by the freedom
of ADFs, epistemic graphs allow the argument graph to be accompa-
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nied by a collection of arbitrary probabilistic constraints which impose
restrictions between the degrees of belief of different arguments. The
existing analysis considers both modelling and technical aspects of epis-
temic graphs [Hunter et al., 2018b; Hunter et al., 2020; Hunter and Pol-
berg, 2019] as well as their use in a dynamic setting [Hunter et al., 2018a;
Hunter et al., 2019], in particular with respect to opponent modelling in
dialogues.

4 The constellation approach to probabilistic
argumentation

Another natural approach to introduce probabilities into abstract ar-
gumentation is to consider a probability distribution over the possible
graph structures of the argumentation framework. Every graph struc-
ture can then be seen as the true structure in one possible world. In this
way, every possible world can again be associated with a set of accepted
arguments. Namely, those arguments that are accepted in the particu-
lar graph structure under a given classical semantics. The probability
of an argument can then again be computed as the probability of being
in a world where the argument is accepted. This approach is called the
constellation approach to probabilistic argumentation. Here we review
the constellation approach to probabilistic argumentation from [Hunter,
2012; Hunter and Thimm, 2016], which extends the methods from [Dung
and Thang, 2010] and [Li et al., 2011].

4.1 Motivating Examples

To begin with, we illustrate the usefulness of the constellation approach
by means of some examples.

Example 4.1. Consider the following arguments in a legal case:

• a= “John says he was not in town when the robbery took place,
and therefore denies being involved in the robbery.”

• b= “Peter says he was at home watching TV when the robbery took
place, and therefore denies being involved in the robbery.”
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• c= “Harry says that he is certain that he saw John outside the bank
just before the robbery took place, and he also thinks that possibly
he saw Peter there too.”

The arguments a and b are arguments that each claim that the speaker is
not involved in the robbery, and the argument c is by a potential witness
casting doubt on the premises of arguments a and b by undercutting their
premises. Also, we see that argument c attacks a with explicit certainty
and c attacks b with explicit uncertainty.

If we consider both attacks made by argument c, then we get the
argument graph given in Figure 6a. However, if we also take into account
the doubt in the attack by c on b, then we get the argument graph given in
Figure 6b. This means that there is uncertainty over whether the actual
argument graph should be Figure 6a or Figure 6b. We can deal with this
uncertainty by regarding the set of spanning subgraphs of Figure 6a (i.e.
the four subgraphs given in Figure 6) as a sample space, and assigning
a probability to each of them such that the sum is 1. For instance, if
Harry has only weak confidence in c attacking b, then the probabilities
might be 0.2 for Figure 6a and 0.8 for Figure 6b (i.e. P (AF1) = 0.2 and
P (AF2) = 0.8).

a

c

b

(a)

a

c

b

(b)

a

c

b

(c)

a

c

b

(d)

Figure 6: For argument graph AF1, the subgraphs are (a) AF1, (b) AF2,
(c) AF3 and (d) AF4.
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In the example given above, there is explicit uncertainty expressed
qualitatively in the attacks made by the arguments. Other situations
where uncertainty arises is when there is ambiguity, a form of imprecision
in the language used in the arguments, as illustrated in Example 1.1

Another reason for uncertainty in attacks is that real-world argu-
ments presented in natural language are normally enthymemes [Walton,
1989]. An enthymeme is an argument with a support that is insufficient
for the claim to be entailed and/or a claim that is incomplete. We see
this in Example 1.2 (though Example 1.1 and Example 4.1 also contain
enthymemes).

So to summarize, we see at least three kinds of uncertainty that arise
in argumentation that we want to capture by quantifying the probability
of attack.

Explicit uncertainty of attack Arguments may include some explic-
it qualification of the attacks made on other arguments. This
explicit qualification is usually qualitative (as in Example 4.1),
but sometimes it can involve quantitative qualification (such as “I
am 99% sure that what John said is a lie”).

Implicit imprecision of argument Many arguments have a degree
of imprecision in the terminology used (as in Example 1.1). Un-
less all the language is formally defined, and all participants use
the same definitions, it is difficult to avoid some imprecision. This
means that when considering two arguments it is not always cer-
tain whether or not one attacks the other. For instance, it is
possible that “red” and “orange” are consistent together as the
description of the same object.

Incomplete premises/claims Most arguments in natural language
are enthymemes, which means that they do not explicitly present
all their premises and/or claims (as in Example 1.2). With this
incompleteness, it is difficult to be certain whether one argument
attacks another. If a counterargument has an explicit claim, there
may be uncertainty as to whether the attacked argument has the
premise that the attacker has contradicted. And if a counterargu-
ment has an implicit claim, there may be further uncertainty as to
what is being contradicted.
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Argumentation often involves multiple agents. This further increases
uncertainty in various ways. Consider a typical argumentation scenario
where one or more agents are presenting arguments in front of an audi-
ence, with the aim of each participant being to persuade the audience
to adopt a certain statement. Each participant and the audience have
some arguments and counterarguments in mind and may be willing to
assimilate further arguments and counterargument.

From an audience’s perspective, there may be uncertainty as to
what arguments or attacks are in play. The audience may hear
various comments in a debate, for example, but they are not sure
about the exact set of arguments and attacks that are being put
forward. For instance, there may be uncertainty about whether
someone has put forward a complex multifaceted argument, or a
number of smaller more focused arguments or there may doubt
about whether some arguments are just rephrasings of previous
arguments. Also, there may be uncertainty about which argu-
ments are meant to be attacked by some argument, which occurs
frequently when enthymemes are presented.

From a participant’s perspective (i. e., from the perspective of an
agent who is about to present arguments and/or attacks during
some monological or dialogical argumentation scenario), there may
be uncertainty about the audience’s opinions, knowledge, values,
etc. So when a participant (such as a politician) considers pre-
senting arguments to an audience, the participant might not know
for sure which arguments and attacks the audience has in mind.
In other words, even before a participant has started, the audi-
ence may already have specific arguments and counterarguments
in mind and the participant will be adding to those. To handle
this, the participant may work with a collection of arguments and
counterarguments which he/she assumes will subsume the possi-
bilities for what is held by the audience.

So in general, whether in monological or dialogical situations, we see
that there is potentially uncertainty about both arguments and attacks.
To address these kinds of uncertainty, we can identify all the possible
arguments and attacks that need to be considered. This creates an
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argument graph, and from this we can identify a probability distribution
over the subgraphs of this argument graph. From this distribution, we
can then determine the probability that a set of arguments is admissible,
or an extension, and the probability that an argument is in an extension.

4.2 Basic definitions

The constellation approach allows us to represent the uncertainty over
the topology of the graph. Each subgraph of the original graph is as-
signed a probability which is understood as the chances of it being the
actual argument graph of the agent. It can be used to model what ar-
guments and attacks an agent is aware of. Two important classes of
subgraphs are full subgraphs that remove arguments, but keep all edges
associated with the remaining arguments, and spanning subgraphs that
keep all arguments, but may remove some of the edges.

Definition 4.2. Let AF = (Ar , att) and AF ′ = (Ar ′, att ′) be two argu-
ment graphs. AF ′ is a subgraph of AF , denoted AF ′ v AF , iff Ar ′ ⊆ Ar
and att ′ ⊆ (Ar ′ ×Ar ′) ∩ att.

• ℘(AF ) = {AF ′ | AF ′ v AF} denotes the set of all subgraphs of
AF .

• A subgraph (Ar ′, att ′) is called full iff att ′ = (Ar ′ ×Ar ′) ∩ att.

• A subgraph (Ar ′, att ′) is called spanning iff Ar ′ = Ar and att ′ ⊆
att.

Dependent on the application, we may want to restrict our attention
to particular subgraphs. If our uncertainty is about which arguments
appear in the graph, then only the full (induced) subgraphs of the ar-
gument graph have a non–zero probability. If we are only uncertain
about which attacks appear, then it is only the spanning subgraphs of
the argument graph that can have a non–zero probability.

Definition 4.3. A subgraph distribution P c is a function P c :
℘(AF )→ [0, 1] with

∑
AF ′∈℘(AF ) P

c(AF ′) = 1.

• P c is a full subgraph distribution iff P c(AF ′) = 0 whenever
AF ′ is not a full subgraph.
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• P c is a spanning subgraph distribution iff P c(AF ′) = 0 when-
ever AF ′ is not a spanning subgraph.

Note that the above definition follows the notation of [Hunter, 2014],
a slightly different notation (but equivalent formalisation) can be found
in [Fazzinga et al., 2019].

The constellation approach can be applied for different purposes.
One application is to define the probability that a set of arguments or
a labeling follows the semantics of a particular type (e. g. grounded,
preferred, etc.). This can be done by collecting the probabilities of the
subgraphs producing the desired extensions or labelings.

Definition 4.4. For W ⊆ Ar and σ ∈ {CF ,AD, CO,PR,GR,ST },
the probability Pσ(Lab) that a labeling Lab : W → {in, out, undec} is a
σ–labeling is defined as:

Pσ(Lab) =
∑

AF ′∈℘(AF ) s.t. Lab∈Lσ(AF ′)

P c(AF ′),

where Lσ(AF ′) is the set of all σ–labelings of AF ′.

Another natural application is to define the probability that an ar-
gument is accepted under a given semantics.

Definition 4.5. Given a semantics σ ∈ {AD, CO,PR,GR,ST }, the
probability that a ∈ Ar is assigned an in status in a σ–labeling is

Pσ(a) =
∑

AF ′∈℘(AF ) s.t. Lab∈Lσ(AF ′) and a∈in(Lab)

P c(AF ′),

where Lσ(AF ′) is the set of all σ–labelings of AF ′.

We can also define the probability that a set of arguments is an
extension.

Definition 4.6. Given a semantics σ ∈ {AD, CO,PR,GR,ST }, the
probability Pσ(W ) that a set W ⊆ Ar is a σ–extension is:

Pσ(W ) =
∑

AF ′∈℘(AF ) s.t. ∃Lab∈Lσ(AF ′):W=in(Lab)

P c(AF ′),

where Lσ(AF ′) is the set of all σ–labelings of AF ′.
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Example 4.7. Consider the graph AF = ({a, b}, {(a, b)}. Its subgraphs
are AF1 = ({a, b}, {(a, b)}, AF2 = ({a, b}, ∅), AF3 = ({a}, ∅), AF4 =
({b}, ∅) and AF5 = (∅, ∅) (see Figure 7). Out of them, AF1, AF3, AF4
and AF5 are full, and AF1 and AF2 are spanning. Consider the following
subgraph distribution P c: P c(AF1) = 0.09, P c(AF2) = 0.81, P c(AF3) =
0.01 and P c(AF4) = 0.09 and P c(AF5) = 0. The probability of a given
set being a grounded extension is as follows: PGR({a, b}) = P c(AF2)
= 0.81; PGR({a}) = P c(AF1) + P c(AF3) = 0.1; PGR({b}) = P c(AF4)
= 0.09; and PGR({}) = P c(AF5) = 0. Therefore PGR(a) = 0.91 and
PGR(b) = 0.9.

a

b

(a) AF

a

b

(b) AF1

a

b

(c) AF2

a

(d) AF3

b

(e) AF4

∅

(f) AF5

Figure 7: Argument graph AF and its subgraphs.

The proposal for the probabilistic assumption-based argumentation
approach of [Dung and Thang, 2010] was the first to consider uncertainty
in the topology of the argument graph. It incorporated a probability dis-
tribution over sets of arguments, where each set was effectively inducing
a subgraph with a probability assignment. It also introduced that the
probability of extensions for grounded extensions. Then in a proposal
that explicitly considered abstract argumentation, a probability assign-
ment to each argument and to each attack was introduced [Li et al.,
2011]. From these two probability functions, a probability distribution
over the subgraphs of the argument graph can be obtained. We consider
this proposal in detail in the next subsection, and as we will see, it relies
on independence between the arguments and between the attacks. This
independence assumption does have shortcomings as we will show.

The probability of extensions (first defined by [Dung and Thang,
2010] for grounded semantics) was presented for all semantics in [Li et
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al., 2011]. The probability of labellings was first proposed by [Riveret
et al., 2017].

Probabilistic argumentation that is based on explicitly specifying
a probability distribution over full subgraphs was first proposed by
[Hunter, 2012; Rienstra, 2012]. Subsequently, it was extended to span-
ning subgraphs [Hunter and Thimm, 2014], and to all subgraphs [Hunter
and Thimm, 2016].

For the probabilistic assumption-based argumentation approach of
[Dung and Thang, 2010] a dialectical proof procedure was proposed
for grounded semantics in [Thang, 2016] and for credulous and ideal
semantics in [Hung, 2016b], and a proof procedure based on Bayesian
network algorithms was proposed in [Hung, 2016a; Hung, 2017b], as
well as algorithms for approximate calculations [Hung, 2018]. In the
remainder of this section, we briefly discuss some further extensions.

4.3 Assuming independence

As mentioned above, in [Li et al., 2011] there is a probability assignment
to each argument and to each attack. This can be regarded as the
uncertainty as to whether the argument or attack should appear in the
argument graph. From these two probability functions, a probability
distribution over the subgraphs of the argument graph can be obtained.
In this subsection, we will review this proposal.

We will consider a simplified version of the proposal by [Li et al.,
2011]. In our simplification, we only consider probabilities of arguments
(in contrast to the general case of [Li et al., 2011]) where probabilities
of attacks are allowed as well).

Definition 4.8. A probabilistic argumentation framework PAF is a
triple PAF = (Ar , att, P ) where (Ar , att) is an abstract argumentation
framework and P is a function P : Ar → [0, 1].

For every argument a ∈ Ar of a probabilistic argumentation frame-
work PAF the value P (a) is the probability that a is actually present in
the argumentation framework. By assuming probabilistic independence
between the presence of different arguments, we obtain a probability
distribution over sets of arguments. By abuse of notation we denote this
probability distribution P as well, which is defined as
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a b c d

Figure 8: The argumentation framework from Example 4.9

P (X) =
∏
a∈X

P (a)
∏
a/∈X

(1− P (a))

for all X ⊆ Ar . It can be easily shown that
∑
X⊆Ar P (X) = 1, so P

is indeed a probability distribution. Given a set X ⊆ Ar of arguments,
we denote by AF↓X the induced subgraph of X, i. e. AF↓X = (X, att ∩
(X ×X)).

Let now σ ∈ {CO,GR,PR} be a semantics and ◦ ∈ {s, c} be an
inference mode. The probability of acceptance of a, denoted by PPAF

◦,σ (a),
is then defined via

PPAF
◦,σ (a) =

∑
a∈X⊆Ar ,AF↓X |∼◦σ a

P (X) .

In other words, PPAF
◦,σ (a) is the sum of the probabilities of the subgraphs

of (Ar , att) where a is accepted wrt. σ and ◦.

Example 4.9. Let AF = (Ar , att) be the abstract argumentation frame-
works shown in Figure 8 and consider credulous reasoning wrt. grounded
semantics. Let PAF = (Ar , att, P ) be a probabilistic argumentation
framework with P (x) = 0.5 for all x ∈ Ar. Table 3 lists each sub-
set of X ⊆ Ar, together with the set of arguments x ∈ Ar such that
AF↓X |∼cGR x. For each X ⊆ Ar we have P (X) = 0.54 = 0.0625. Thus,
for each x ∈ Ar we can calculate the probability PPAF

c,GR(x) by multiplying
the number of subsets of Ar that make x accepted by 0.0625. This yields

PPAF
c,GR(a) = 0.5, PPAF

c,GR(b) = 0.25,
PPAF
c,GR(c) = 0.375, PPAF

c,GR(d) = 0.3125.

Whilst assuming independence brings some advantages, there are sit-
uations where it is not appropriate as it does not capture the uncertainty
correctly. To illustrate this, we consider the following example.
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X Accepted
∅ ∅
a a

b b

a, b a

c c

a, c a, c

b, c b

a, b, c a, c

d d

a, d a, d

b, d b, d

a, b, d a, d

c, d c

a, c, d a, c

b, c, d b, d

a, b, c, d a, c

Table 3: Choices of X and corresponding accepted arguments in Exam-
ple 8

Example 4.10. Consider the argument graph AF1 in Figure 9 where
the meaning for the arguments is as follows.

• a = According to John, Peter hit John first.

• b = According to Peter, John hit Peter first.

Assuming that John and Peter are two children having a playground
contratemps, and each is accusing the other of having thrown the first
punch, we may regard the argument graph AF1 as a good reflection of
the situation. However, if we also suppose that Peter is regularly getting
into fights with other children in the playground, then we might want
to use probabilistic argumentation. For instance, we may regard AF2
as the most likely scenario, AF3 as less likely but not impossible, and
AF6 as impossible because there has clearly been punching and someone
is lying. This can easily be captured in the constellations approach with
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Figure 9: For argument graph AF1, the subgraphs are (a) AF1, (b) AF2,
(c) AF3, (d) AF4, (e) AF5, and (f) AF6 (which is the empty graph).

a probability distribution over the graphs where for instance, argument
graph AF2 has probability 0.9 and argument graph AF3 has probability
0.1. But using Definition 4.8, we see we cannot obtain this distribution.
We can only get a probability distribution over AF1, AF4, AF5, and
AF6. This is because the definition forces us to drop arguments and the
attacks that involve them, but does not allow us to just drop attacks.

As we said earlier, in this review, we only provided a simplified ver-
sion of the proposal by [Li et al., 2011]. In our simplification, we only
consider probabilities of arguments (in contrast to the general case of [Li
et al., 2011]) where probabilities of attacks are allowed as well). Using
the original version, we still would be unable to get the probability dis-
tribution of AF2 having probability 0.9 and argument graph AF3 having
probability 0.1. The following example, is a further illustration of the
shortcoming of the independence assumption over attacks.

Example 4.11. Consider argument graph AF1 in Figure 10a where the
meaning for the arguments is as follows.

• a = CheapAir is going bust.

• b = The CheapAir tickets to Paris are a bargain; We should buy
them for our holiday.

• c = The CheapAir tickets to New York are a bargain; We should
buy them for our conference trip.
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a
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(a)

a

b

c

(b)

a

b

c

(c)

a

b

c

(d)

Figure 10: For argument graph AF1, the subgraphs are (a) AF1, (b)
AF2, (c) AF3 and (d) AF4.

Here the attack by a on b and the attack by a on c are not independent.
For instance, if the attack by a on b is shown to be true, then there is a
raised probability that the attack by a on c is true.

So the above example illustrates how assuming independence over
attacks means that the example is not correctly modelled. In contrast,
if we assume a probability distribution over the subgraphs, then the ex-
ample can be correctly modelled as illustrated in the following example.

Example 4.12. Continuing Example 4.11, if we start with graph AF1
in Figure 10a, then there are four subgraphs to consider. Suppose we let
the probability function over subgraphs be the following:

P (AF1) = 0.7, P (AF2) = 0, P (AF3) = 0, P (AF4) = 0.3.

The marginals for the attacks are as follows:

P (a, b) = P (AF1) + P (AF3) = 0.7,
P (a, c) = P (AF1) + P (AF2) = 0.7.

So in some settings, it is reasonable to start with a probability distri-
bution over arguments (and attacks), and assume independence between
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the arguments (and attacks) in order to construct a probability distri-
bution over the subgraphs. In general, it may not be justified to assume
independence.

4.4 Further work

For further reading concerning the constellation approach to proba-
bilistic argumentation we refer the readers to [Hunter, 2012; Dung and
Thang, 2010; Li et al., 2011; Hunter, 2013; Dondio, 2014a; Hunter, 2014].
Computational results can be found in [Dondio, 2014a; Dondio, 2014b;
Fazzinga et al., 2013; Fazzinga et al., 2015; Fazzinga et al., 2019]. In
[Doder and Woltran, 2014], we can find a characterization of one of the
versions of the constellation approach in terms of probabilistic logic.

Whilst using the constellations approach is computationally expen-
sive [Fazzinga et al., 2015], developments in approximation [Fazzinga et
al., 2013; Fazzinga et al., 2018a; Fazzinga et al., 2016b; Fazzinga et al.,
2016a; Alfano et al., 2020] and automated reasoning could be harnessed
[Bistarelli et al., 2018; Mantadelis and Bistarelli, 2020].

The constellations approach has been generalized to bipolar argu-
mentation [Fazzinga et al., 2018c; Fazzinga et al., 2018b], and to abstract
dialectical frameworks [Polberg and Doder, 2014], and it has been used
as the basis of a proposal for graded semantics [Thimm et al., 2018a]. In
order to deal with uncertainty in the probability assignment, the constel-
lations approach has been extended to support upper and lower bounds
on the probability assignments by using credal sets [Morveli-Espinoza
et al., 2019], and extended to support Dempster-Shafer theory [Hung,
2017a; Hung, 2017c].

Applications of the constellations approach include modelling the
argument graph held by opponents in argumentative discussions [Hunter
and Thimm, 2016], aggregating different perspectives on an argument
graph [Hunter and Noor, 2020], and evaluating plans [Hung et al., 2015].

5 Other Topics in Probabilistic Argumentation
In the previous sections, we reviewed the two main approaches to prob-
abilistic argumentation, namely the epistemic approach and the constel-
lation approach. In this section, we will give an overview of some other
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topics in probabilistic argumentation. To begin with, we review some
ideas for combining the epistemic and the constellation approach. Sub-
sequently, we will look at some ideas to apply probabilistic techniques in
order to learn argumentation frameworks from data. Probabilistic ideas
have also been applied to model changing beliefs in argumentation. We
will review some ideas in the third subsection. Finally, we sketch some
ideas about how argumentation technology can be applied to enhance
other probabilistic models.

5.1 Combinations of the Epistemic and the Constella-
tions approach

The Labelling Framework for Probabilistic Argumentation [Riveret et
al., 2018] is a framework that subsumes and combines a number of ap-
proaches considered before. The framework, based on a defeasible logic
instantiation of abstract argumentation, deals with three representations
of uncertainty, where each representation induces the next. These are
probabilistic theory frames (PTFs), probabilistic graph frames (PGFs),
and probabilistic labelling frames (PLFs). Roughly speaking, a PTF
is a probability distribution over subsets of rules of a given knowledge
base. A PTF induces a PGF, which is a probability distribution over
subgraphs consisting of arguments constructed on the basis of a set of
rules. An argument is either on (included) or off (not included) in a
subgraph. Given a labelling-based semantics, a PGF induces a PLF,
which is a probability distribution over labellings. Finally, a PLF can
be used to calculate the probability that a statement is accepted. The
notion of PGF subsumes the constellations approach but does not en-
force independence of different arguments being on or off. Furthermore
it is shown that there exists a correspondence between the notion of PLF
and a probability distribution over extensions as used in the epistemic
approach described in Section 3. Some of the postulates for the epis-
temic approach are shown to hold under various assumptions about the
labelling-based semantics that is used. The presented framework repre-
sents a combination of both the constellations and epistemic approach,
as it deals with both uncertainty about the topology of an argumen-
tation framework, which arises from uncertainty about elements of the
knowledge base, as well as the resulting uncertainty about whether ar-
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gument is accepted. A similar combination of the constellations and
epistemic approach appears in [Rienstra, 2012].

5.2 Learning approaches

The work [Riveret and Governatori, 2016] proposed an anytime algo-
rithm for learning the structure of argumentation graphs from a data
stream of labellings. The authors restrict their discussion to grounded
labellings, but many ideas can be extended easily to other semantics.
The basic idea is to start from a complete graph over the arguments and
to collect information about the plausibility of attack edges as labellings
arrive. For example, if two arguments are labelled in simultaneously,
the attack edge between them can be eliminated. The authors present
an algorithm based on 4 rules that allow increasing or decreasing the
credibility of edges online while receiving labelling information. If the
labellings in the stream are sampled from an unknown argumentation
graph such that every labelling has a positive probability of being sam-
pled, then the algorithm will eventually find an argumentation graph
that is equivalent to the original graph (in the sense that they have the
same complete extensions) with probability 1.

In a similar spirit, [Kido and Okamoto, 2017] consider the problem
of estimating the attack relation between arguments from the accep-
tance statuses given by different users. That is, given sets of arguments
accepted by different users, find an attack relation that explains the ac-
cepted arguments. To this end, the authors propose a Bayesian network
model that defines the probability of extensions and acceptability stat-
ues based on the attack relation and the acceptability semantics that
can be preferred, stable, grounded or complete. The authors propose
definitions for the local probability models in their Bayesian network.
Their main assumptions are that larger attack relations are less likely,
that all semantics are equally likely and that all extensions under a given
semantics and attack relation are equally likely. Probabilistic inference
methods can be used to compute the most likely attack relation under
the Bayesian network model given the sets of accepted arguments and
an acceptability semantics. The authors demonstrate the applicability
in an online discussion scenario and prove some analytical guarantees.
In general, the true attack relation may not be identifiable from data
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alone, but in some special cases, it is.
[Riveret et al., 2017] train Boltzman machines on sets of grounded la-

bellings and demonstrate that the trained models can be used to generate
grounded labellings with a similar distribution. The sampling algorithm
is sound in the sense that it is guaranteed to return only grounded la-
bellings and complete in the sense that every grounded labelling can be
generated.

5.3 Dynamics of argumentation and dialogues

The work [Hunter, 2015] proposed epistemic probabilistic argumenta-
tion as a model for the belief state of agents in persuasion dialogues.
Roughly speaking, the current belief state of the persuadee is repre-
sented as a probability distribution over extensions. The persuader can
posit arguments that the persuadee may accept or reject. Dependent on
the persuadee’s judgement, the current belief state can be updated. For
this purpose, different update functions have been proposed in [Hunter,
2015] that basically redistribute probability mass such that the per-
suadee’s feedback is taken into account. These update functions can be
employed to simulate the outcome of possible persuasion dialogues in
order to find an optimal persuasion strategy. Another family of update
operators based on the idea of minimizing the distance to the prior be-
liefs has been introduced in [Hunter and Potyka, 2017] and compared
to the redistribution update operators. The language for updates has
been extended in [Hunter et al., 2018a] and a fragment that guarantees
polynomial runtime guarantees can be found in [Potyka et al., 2019].

In [Shakarian et al., 2016], Belief Revision has been considered for
structured probabilistic argumentation. The approach combines Nils-
son’s probabilistic logic [Nilsson, 1986] and defeasible logic program-
ming with presumptions [Martinez et al., 2012]. Probabilistic logic
is used to define an environmental model that captures case-specific
knowledge which may be uncertain. Defeasible logic programming with
presumptions is used to define an analytical model that contains gen-
eral background knowledge which may be inconsistent when combined
naively. Both models are combined via an annotation function that
connects formulas in the environmental and analytical model. The
need for belief revision results from the fact that probabilistic logic
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requires consistent assumptions even if defeasible logic programming
does not. The authors study different types of inconsistencies and ways
to perform belief revision on the environmental model, the analytical
model and the annotation function. In particular, postulates for re-
vising the analytical model and the annotation function are proposed
similar to the more general belief revision literature [Hansson, 1997;
Falappa et al., 2012] and representation theorems are provided. The
usefulness of the approach is demonstrated by an apllication in cyber
security [Shakarian et al., 2016]. The approach has been refined in
[Simari et al., 2016] by taking quantitative aspects into account like how
the probabilities change due to revision.

5.4 Using argumentation for probabilistic models

While this survey deals mainly with probabilistic approaches in mod-
elling uncertainty in argumentation, there are also approaches which
use argumentation as a tool to reason about probabilistic models.

[Timmer et al., 2017] proposed an argumentation-based method for
explaining inferences in Bayesian networks. They note that Bayesian
networks, while widely used and well-understood, are hard to interpret
for non-statistical experts. Thus, argumentation may help in explain-
ing Bayesian networks in a way that corresponds to everyday reasoning.
Starting with a Bayesian network together with a chosen variable of
interest, their method is based on constructing a support graph, which
consists of reasoning chains that start with potential pieces of evidence
and end with the variable of interest. The support graph is then used
to construct arguments which are represented within the ASPIC+ argu-
mentation framework [Modgil and Prakken, 2014]. However, the use of
argumentation in this setting is somewhat limited when compared with
typical argumentation-based methods, as one argument attacks another
only if the latter is weaker. As a result, the grounded extension of the
resulting argumentation framework coincides with the set of arguments
that receive no attacks. This grounded extension acts as an intuitive
explanation for the calculation of the likelihood ratio or posterior prob-
ability of the variable of interest.

The work [Nielsen and Parsons, 2007] developed an argumentation-
based method for Bayesian network fusion. The setting they consider is
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of a set of agents where each agent is equipped with a Bayesian network
representing the agent’s domain model. They then address the problem
of having the agents compromise and agree on a single Bayesian network.
Their model builds on an extension of Dung’s [1995] abstract argumenta-
tion model supporting set-based attacks. An argumentation framework
is defined such that the preferred extensions correspond to possible com-
promises, as well as a formal multi-agent debate model where a debate
ends with finding one of these compromises. The debate model enjoys
the property that a debate is guaranteed to end up with the best pos-
sible compromise according to a given compromise score function. Note
that the method developed here is concerned purely with obtaining a
compromise on the structure of the agent’s Bayesian networks. It does
not specify how probabilistic parameterisations of the different Bayesian
networks are be fused.

6 Summary and Conclusion

The two main approaches to probabilistic (abstract) argumentation are
the constellations and the epistemic approaches. In the constellations
approach, there is uncertainty over the topology of the argument graph,
whereas in the epistemic approach, the topology of the argument graph
is fixed, but there is uncertainty about whether an argument is believed.
The epistemic approach has been extended to also allow a probability
distribution over subsets of attacks, and thereby represent belief in each
attack. A further approach is based on labellings for arguments using
in, out, and undecided, augmented with off for denoting that the ar-
gument does not occur in the graph. A probability distribution over
labellings gives a form of probabilistic argumentation that overlaps with
the constellations and epistemic approaches.

There are many other ideas of how to combine probability theory
and argumentation, some of which we sketched in the previous section.
Others, in particular those relating to probabilistic reasoning with struc-
tured argumentation such as [Haenni, 2009] had to left out of this survey.

One particular natural application is learning argumentation graphs
from data. Since data is usually noisy and uncertain, probability theory
is a natural tool in this area. The additional expressiveness of probabilis-
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tic argumentation also raises new questions when it comes to dynamics
of argumentation and novel ideas have been studied to model changing
beliefs in or by means of probabilistic models. Conversely, argumenta-
tion technology has also been used to enhance other probabilistic models,
for example, by adding explanation capabilities.

Some research has investigated relationships between Bayesian net-
works and argumentation. Bayesian networks can be used to model argu-
mentative reasoning with arguments and counterarguments [Vreeswijk,
2004]. In a similar vein, Bayesian networks can be used to capture as-
pects of argumentation in the Carneades model where the propagation
of argument applicability and statement acceptability can be expressed
through conditional probability tables [Grabmair et al., 2010]. Argu-
mentation can also be used to help construct Bayesian networks [Bex
and Renooij, 2016; Wieten et al., 2019]. Going the other way, argu-
ments can be generated from a Bayesian network, and this can be used
to explain the Bayesian network [Timmer et al., 2015]. This involves
constructing arguments involving a rule-based language in ASPIC+ for
reflecting the network structure. Finally, argumentation can be used to
combine multiple Bayesian networks [Nielsen and Parsons, 2007].

Looking forward, we envisage some important developments that
will harness key advantages of probabilistic argumentation. These in-
clude explaining knowledge learned from data using probabilistic argu-
mentation (see for example [Hunter, 2020]), aggregating and analysing
potentially conflicting information from multiple sources (see for exam-
ple [Hunter and Noor, 2020]), using probabilistic argumentation to dy-
namically model participants during dialogues so that strategically good
moves are made (see for example [Hunter, 2015; Hunter and Thimm,
2016; Hunter et al., 2019]), and using probabilistic argumentation for
modelling non-normative behaviour by participants (see for example
[Polberg and Hunter, 2018]).
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