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Abstract
The exact relationship between formal argumentation and nonmonotonic logics is a research
topic that keeps on eluding researchers despite recent intensified efforts. We contribute to
a deeper understanding of this relation by investigating characterizations of abstract dialec-
tical frameworks in conditional logics for nonmonotonic reasoning. We first show that in
general, there is a gap between argumentation and conditional semantics when applying
several intuitive translations, but then prove that this gap can be closed when focusing on
specific classes of translations.
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1 Introduction

It is well-known that argumentation and nonmonotonic resp. default logics are closely
connected: In [10] it is shown that Reiter’s default logic can be implemented by abstract
argumentation frameworks, a most basic form of computational model of argumentation
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to which many existing approaches to formal argumentation refer. On the other hand, it
is clear that argumentation allows for nonmonotonic, defeasible reasoning, and in [30]
computational models of argumentation are assessed by formal properties that have been
adapted from nonmonotonic logics. Nevertheless, argumentation and nonmonotonic rea-
soning are perceived as two different fields which do not subsume each other, and indeed,
often attempts to transform reasoning systems from one side into systems of the other side
have been revealing gaps that could not be closed (cf., e.g., [15, 17, 21, 34]). While one
might argue that this is due to the seemingly richer, dialectical structure of argumentation,
in the end the evaluation of arguments often boils down to comparing arguments with their
attackers, and comparing degrees of belief is a basic operation in qualitative nonmono-
tonic reasoning. Therefore, in spite of the abundance of existing work studying connections
between the two fields, the true nature of the relationship between argumentation and
nonmonotonic reasoning has not been fully understood.

We aim at deepening the understanding of the relationships between argumentation
and nonmonotonic logics and establishing a theoretical basis for integrative approaches by
focusing on most fundamental approaches on either side: Abstract Dialectical Frameworks
(ADFs) [7] for argumentation, and Conditional Logics1 (CL) [28, 31] for nonmonotonic
logics. ADFs are an approach to formal argumentation, which subsumes many other argu-
mentative formalisms in a generic, logic-based way. On the side of nonmonotonic logics,
conditionals have been shown (and often used) to implement nonmonotonic inferences and
provide expressive formalisms to represent knowledge bases; some of the most popular non-
monotonic inference systems (e. g., system Z [13]) make use of conditionals. Both ADFs and
CL can be considered as high-level formalisms implementing properly the basic nature of
the respective field without being restricted too much by subtleties of specific approaches,
and both are based on 3-valued logics.

In this paper we investigate the correspondence between abstract dialectical frameworks
and conditional logic. Syntactically, both frameworks focus on pairs of objects such as
(φ, ψ). In conditional logic, these pairs are interpreted as conditionals with the informal
meaning “if φ is true then, usually, ψ is true as well” and written as (ψ |φ). In abstract
dialectical frameworks, these pairs are interpreted as acceptance conditions, and interpreted
as “if φ is accepted then ψ is accepted as well”. The resemblance of these informal interpre-
tations is striking, but both approaches use fundamentally different semantics to formalise
these interpretations. In this paper, we use this syntactical similarities as the basis of a com-
parison between abstract dialectical frameworks and conditional logics. In more detail, here
we ask the question of whether, and how we can interpret abstract dialectical frameworks
in terms of conditional logic so that acceptance in the argumentative system is defined
by a nonmonotonic inference relation based on conditionals. We continue work from [22]
by considering several translations of ADFs into conditional knowledge bases and apply-
ing conditional inference relations based on ordinal conditional frameworks [31], including
the Z-inference relation [13], to these knowledge bases. We first show that there is a gap
between argumentation and conditional semantics when applying several intuitive transla-
tions, but then define a class of translations that are OCF-adequate or Z-adequate—i. e.

1In this paper, we set out to compare argumentation with conditional logics for non-monotonic reasoning.
There are many other logics for conditionals around, which formalise different kinds of monotonic condi-
tional reasoning, see e.g. [2] for an overview. The conditionals we employ are a well-accepted formalism,
which is, however, based on a rather restricted syntax when compared to monotonic conditional logics. For
example, these conditionals for non-monotonic reasoning are not allowed to be nested or occur in complex
formulas.
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they preserve the semantics, see Section 3 for the formal definition—for the 2-valued model
semantics of ADFs, and for other semantics under certain conditions on the ADFs. Fur-
thermore, we show that none of the translations studied in this paper are Z-adequate for
the grounded semantics and for the preferred and stable semantics in general. We further-
more show that our translations satisfy several desirable properties for translations between
formalisms for knowledge representation.

The results in this paper are a substantially extended and revised version of the paper
[15]. The main contributions beyond [15] are: (1) a new standard of evaluation, dubbed
OCF-adequacy (Definition 6); (2) two additional translations �6 and �7 (cf. Section 3); (3)
an in-depth study of the consistency of the translations (Section 4.2); (4) additional results
on the Z- and OCF-adequacy of our translations w.r.t. all of the well-known ADF-semantics
(Section 5 and 6).

Outline of this paper After stating all the necessary preliminaries in Section 2 on proposi-
tional logic (Section 2.1), nonmonotonic conditionals (Section 2.2) and abstract dialectical
argumentation (Section 2.3). Then we investigate a family of translations from ADFs into
conditional knowledge bases by first introducing the translations and defining OCF- and
Z-adequacy for such translations (Section 3), after which we investigate the translations in-
depth. In more detail, in Section 4 we study the OCF- and Z-adequacy of the translations
under the two-valued model semantics by investigating Z-adequacy (Section 4.1), consis-
tency of the translations (Section 4.2) and making some remarks on OCF-adequacy w.r.t.
two-valued semantics (Section 4.3). Thereafter, we investigate the Z- and OCF-adequacy
w.r.t. the stable and preferred semantics (Section 5) and w.r.t. the grounded semantics
(Section 6). Several properties of the translations presented in this paper are discussed in
Section 7. We finally discuss related work in Section 8 before concluding (Section 9).

2 Preliminaries

In the following, we we briefly recall some general preliminaries on propositional logic, as
well as technical details on conditional logic and ADFs [7].

2.1 Propositional logic

For a set At of atoms let L(At) be the corresponding propositional language constructed
using the usual connectives ∧ (and), ∨ (or), ¬ (negation) and → (material implication). A
(classical) interpretation (also called possible world) ω for a propositional language L(At) is
a function ω : At → {T, F}. Let �(At) denote the set of all interpretations for At. We simply
write � if the set of atoms is implicitly given. An interpretation ω satisfies (or is a model of)
an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = T. The satisfaction relation |= is
extended to formulas as usual. As an abbreviation we sometimes identify an interpretation
ω with its complete conjunction, i. e., if a1, . . . , an ∈ At are those atoms that are assigned T
by ω and an+1, . . . , am ∈ At are those propositions that are assigned F by ω we identify ω

by a1 . . . anan+1 . . . am (or any permutation of this). For example, the interpretation ω1 on
{a, b, c} with ω1(a) = ω1(c) = T and ω1(b) = F is abbreviated by abc. For � ⊆ L(At)
we also define ω |= � if and only if ω |= φ for every φ ∈ �. Define the set of models
Mod(X) = {ω ∈ �(At) | ω |= X} for every formula or set of formulas X. A formula or
set of formulas X1 entails another formula or set of formulas X2, denoted by X1 � X2, if
Mod(X1) ⊆ Mod(X2).
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2.2 Reasoning with nonmonotonic conditionals

There are many different conditional logics (cf., e. g., [23, 28]), we will just use basic
properties of conditionals that are common to many conditional logics and are especially
important for nonmonotonic reasoning: Basically, we follow the approach of de Finetti
([11]) who considered conditionals as generalized indicator functions for possible worlds
resp. propositional interpretations ω:

((ψ |φ))(ω) =
⎧
⎨

⎩

1 : ω |= φ ∧ ψ

0 : ω |= φ ∧ ¬ψ

u : ω |= ¬φ

(1)

where u stands for unknown or indeterminate. In other words, a possible world ω verifies
a conditional (ψ |φ) iff it satisfies both antecedent φ and conclusion ψ ((ψ |φ)(ω) = 1); it
falsifies, or violates it iff it satisfies the antecedence but not the conclusion ((ψ |φ)(ω) = 0);
otherwise the conditional is not applicable, i. e., the interpretation does not satisfy the
antecedence ((ψ |φ)(ω) = u). We say that ω satisfies a conditional (ψ |φ) iff it does not
falsify it, i. e., iff ω satisfies its material counterpart φ → ψ . Hence, conditionals are three-
valued logical entities and thus extend the binary setting of classical logics substantially in
a way that is compatible with the probabilistic interpretation of conditionals as conditional
probabilities. Such a conditional (ψ |φ) can be accepted as plausible if its verification φ ∧ψ

is more plausible than its falsification φ ∧ ¬ψ , where plausibility is often modelled by a
total preorder on possible worlds. This is in full compliance with nonmonotonic inference
relations φ |∼ψ [27] expressing that from φ, ψ may be plausibly/defeasibly derived. An
obvious implementation of total preorders are ordinal conditional functions (OCFs), (also
called ranking functions) κ : � → N∪{∞} [31]. They express degrees of (im)plausibility of
possible worlds and propositional formulas φ by setting κ(φ) := min{κ(ω) | ω |= φ}. OCFs
κ provide a particularly convenient formal environment for nonmonotonic and conditional
reasoning, allowing for simply expressing the acceptance of conditionals and nonmonotonic
inferences via stating that (ψ |φ) is accepted by κ iff φ |∼κψ iff κ(φ ∧ ψ) < κ(φ ∧ ¬ψ),
implementing formally the intuition of conditional acceptance based on plausibility men-
tioned above. For an OCF κ , Bel (κ) denotes the propositional beliefs that are implied by all
most plausible worlds, i. e. Bel (κ) = {φ | ∀ω ∈ κ−1(0) : ω |= φ}. We denote with CL the
framework of reasoning from conditional knowledge bases based on OCFs.

Specific examples of ranking models are system Z yielding the inference relation |∼Z
[13] and c-representations [20]. We focus on system Z defined as follows. A conditional
(ψ |φ) is tolerated by a finite set of conditionals 	 if there is a possible world ω with
(ψ |φ)(ω) = 1 and (ψ ′|φ′)(ω) = 0 for all (ψ ′|φ′) ∈ 	, i. e. ω verifies (ψ |φ) and does not
falsify any (other) conditional in 	. The Z-partitioning (	0, . . . , 	n) of 	 is defined as:

– 	0 = {δ ∈ 	 | 	 tolerates δ};
– 	1, . . . , 	n is the Z-partitioning of 	 \ 	0.

For δ ∈ 	 we define: Z	(δ) = i iff δ ∈ 	i and (	0, . . . , 	n) is the Z-partioning of 	.
Finally, the ranking function κZ

	 is defined via: κZ
	(ω) = max{Z(δ) | δ(ω) = 0, δ ∈ 	}+1,

with max ∅ = −1. We can now define 	 |∼Z φ iff φ ∈ Bel (κZ
	). Below the following results

about system Z will prove useful:

Lemma 1 ω ∈ (κZ
	)−1(0) iff δ(ω) = 0 for some δ ∈ 	.
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Proof This follows immediately in view of the fact that ω ∈ (κZ
	)−1(0) iff δ(ω) = 0 for

every δ ∈ 	.

Theorem 1 ([13], Theorem 4) 	 is consistent iff in every non-empty subset 	′ ⊆ 	 there
exists a rule tolerated by 	′.

Example 1 Let 	 = {(b|¬a), (a|¬b), (c|¬a ∨ ¬b)}. For this set of conditionals, 	 = 	0
and therefore we have:

ω κz
	 ω κz

	 ω κz
	 ω κz

	

abc 0 abc 0 abc 0 abc 1
abc 0 abc 1 abc 1 abc 1

Thus, (κZ
	)−1(0) = {abc, abc, abc, abc}. This means that, for example, 	 |∼Z a ∨ b and

	  |∼Z c.

2.3 Abstract dialectical frameworks

We now recall some technical details on ADFs following loosely the notation from [7].
We can depict an ADF D as a directed graph whose nodes represent statements or argu-
ments which can be accepted or not. With links we represent dependencies between nodes.
A node s is dependant on the status of the nodes with a direct link to s, denoted parent
nodes parD(s). With an acceptance function Cs we define the cases when the state-
ment s can be accepted (truth value �), depending on the acceptance status of its parents
in D.

An ADF D is a tuple D = (S, L,C) where S is a set of statements, L ⊆ S × S is a set
of links, and C = {Cs}s∈S is a set of total functions Cs : 2parD(s) → {�, ⊥} for each s ∈ S

with parD(s) = {s′ ∈ S | (s′, s) ∈ L}. By abuse of notation, we will often identify an
acceptance function Cs by its equivalent acceptance condition which models the acceptable
cases as a propositional formula.

Example 2 We consider the following ADF D1 = ({a, b, c}, L,C) with
L = {(a, b), (b, a), (a, c), (b, c)}; Ca = ¬b; Cb = ¬a; Cc = ¬a ∨ ¬b. The

corresponding graph for D1 can be found in Fig. 1.
Informally, the acceptance conditions can be read as “a is accepted if b is not accepted”,

“b is accepted if a is not accepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (S, L, C) is interpreted through 3-valued interpretations v : S →
{�, ⊥, u}, which assign to each statement in S either the value � (true, accepted), ⊥

Fig. 1 Graph representing links
between nodes for D1 in
Example 2
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(false, rejected), or u (unknown). A 3-valued interpretation v can be extended to arbitrary
propositional formulas over S via strong Kleene semantics:

1. v(¬φ) = ⊥ iff v(φ) = �, v(¬φ) = � iff v(φ) = ⊥, and v(¬φ) = u iff v(φ) = u;
2. v(φ ∧ ψ) = � iff v(φ) = c(ψ) = �, v(φ ∧ ψ) = ⊥ iff v(φ) = ⊥ or v(ψ) = ⊥, and

v(φ ∧ ψ) = u otherwise;
3. v(φ ∨ ψ) = � iff v(φ) = � or v(ψ) = �, v(φ ∨ ψ) = ⊥ iff v(φ) = c(ψ) = ⊥, and

v(φ ∨ ψ) = u otherwise.

V consists of all three-valued interpretations whereas V2 consists of all the two-valued
interpretations (i.e. interpretations such that for every s ∈ S, v(s) ∈ {�,⊥}). Then v is a
model of D if for all s ∈ S, if v(s) = u then v(s) = v(Cs). We define the information order
≤i over {�,⊥, u} by making u the minimal element: u <i � and u <i ⊥ and this order is
lifted pointwise as follows (given two valuations v,w over S): v ≤i w iff v(s) ≤i w(s) for
every s ∈ S. The truth ordering ≤t over {�, ⊥, u} is defined as ⊥ ≤t u ≤t � and is lifted
to interpretations similarly. The set of two-valued interpretations extending a valuation v is
defined as [v]2 = {w ∈ V2 | v ≤i w}. Given a set of valuations V , �iV (s) = v(s) if for
every v′ ∈ V , v(s) = v′(s) and �iV (s) = u otherwise. �D(v) : S → {�,⊥, u} where
s �→ �i{w(Cs) | w ∈ [v]2}.

Definition 1 Let D = (S, L,C) be an ADF with v : S → {�,⊥, u} an interpretation:

– v is a 2-valued model iff v ∈ V2 and v is a model.
– v is complete for D iff v = �D(v).
– v is preferred for D iff v is ≤i-maximally complete.
– v is grounded for D iff v is ≤i-minimally complete.2

We denote by 2mod(D), complete(D), preferred(D), grounded(D) respectively stable(D)

the sets of 2-valued models and complete, preferred, grounded respectively stable interpre-
tations of D. We will sometimes denote the grounded interpretation by vG.

We finally define consequence relations for ADFs:

Definition 2 Given sem ∈ {2mod, preferred, grounded, stable}, an ADF D = (S, L,C)

and s ∈ S we define: D |∼∩
sems[¬s] iff v(s) = �[⊥] for all v ∈ sem(D).3

Example 3 (Example 2 continued) The ADF of Example 2 has three complete models v1,
v2, v3 with:

v1(a) = � v1(b) = ⊥ v1(c) = �
v2(a) = ⊥ v2(b) = � v2(c) = �
v3(a) = u v3(b) = u v3(c) = u

v3 is the grounded interpretation whereas v1 and v2 are both preferred, stable and 2-
valued.

We recall the following relationships between the semantics defined above:

2We notice that [7] showed the grounded extension to be unique for any ADF.
3Since [7] showed the grounded extension to be unique for any ADF, we will omit ∩ from |∼grounded .
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Theorem 2 ([7]) Given any ADF D, the following relationships hold:

– stable(D) ⊆ 2mod(D);
– 2mod(D) ⊆ preferred(D);
– preferred(D) ⊆ complete(D);
– grounded(D) ⊆ complete(D).

Below we will make use of the following semantic ADF-subclasses:

Definition 3 ([9]) An ADF D is called:

– weakly coherent if 2mod(D) ⊆ stable(D);
– coherent if preferred(D) ⊆ stable(D);
– semi-coherent if preferred(D) ⊆ 2mod(D).

Notice that any coherent ADF is also semi-coherent in view of Theorem 2 and transitivity
of ⊆.

We furthermore recall some syntactic ADF-subclasses. We first have to distinguish
between different kinds of links:

Definition 4 ([9]) Given an ADF D = (S, L,C):

– the update of an interpretation v with a truth value x ∈ {�,⊥} for a node b ∈ S v|bx is
defined as:

{
v|bx(a) = v(a) if a = b

v|bx(b) = x otherwise

– a link (b, a) ∈ L is called:

1. supporting (in D) if for every v ∈ V2, v(Ca) = � implies v|b�(Ca) = �.
2. attacking (in D) if for every v ∈ V2, v(Ca) = ⊥ implies v|b�(Ca) = ⊥.
3. redundant (in D) if it is both attacking and supporting.
4. dependent (in D) it if is neither attacking nor supporting.

The set of supporting, respectively attacking links of an ADF D = (S, L,C) will be
denoted by L+, respectively L−.

Example 4 Let D = ({a, b, c, d}, L,C) with:

Ca = a ∧ ¬a; Cb = a; Cc = ¬a; Cd = (¬a ∧ ¬b) ∨ (a ∧ b)

The corresponding graph can be found in Fig. 2.
(a, b) is a supporting link, (a, c) is an attacking link, (a, a) is a redundant and (a, d) is

dependent.

We can now define the following syntactic subclasses of ADFs:

Definition 5 ([9]) An ADF D = (S, L,C) is called:

– acyclic (in short, AADF) if its corresponding directed graph (S, L) is acyclic.
– symmetric if its corresponding directed graph (S, L) is irreflexive and symmetric and

L does not contain any redundant links.
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Fig. 2 Graph representing links
between nodes for D in
Example 4

– bipolar if every link in L is either attacking, supporting or redundant.
– support free (in short, SFADF) if it is bipolar and does not have any supporting links.
– support free symmetric (in short, SFSADF) if it is symmetric and does not have any

supporting links.
– acyclic support symmetric (in short, ASSADF) if it is symmetric, bipolar, and (S, L+)

is acyclic.

We will furthermore denote the class of SFADFs that do not contain any odd-length

cycles as ASSADF
OLC

s.
The following results on syntactic subclasses of ADFs will prove useful below:

Theorem 3 ([9]) – For any acyclic ADF D, 2mod(D) = grounded(D) ([9, Theorem 2]).
– The class of SFADFs that do not contain any odd-length cycle is coherent ([9, Corollary

20]).
– The class of SFSADFs is weakly coherent ([9, Theorem 8]).
– The class of ASSADFs is weakly coherent ([9, Theorem 5]).

3 Translations from ADFs to conditional logics

The general aim of this paper is to study translations of ADFs in CL. In more detail,
where S is a set of atoms and DS is the set of all ADFs defined on the basis of S (i.e.
all ADFs D = (S, L,C)), and (L(S)|L(S)) is the set of all condtionals over the proposi-
tional language generated by S, we investigate mappings T : DS → ℘((L(S)|L(S))) (for
arbitrary S).

Definition 6 Let S be a set of atoms and T : DS → ℘((L(S)|L(S))) be a translation from
ADFs to conditional knowledge bases. T is:

– OCF-adequate with respect to semantics sem if: for every D = (S, L, C) there is some
κ s.t. (1) κ |= T(D) and (2) for every s ∈ S, D |∼∩

sems iff s ∈ Bel (κ).
– Z-adequate with respect to semantics sem if: for every D = (S, L,C) and every s ∈ S

it holds that: D |∼∩
sems iff T(D) |∼Z s.

We notice that, given some semantics sem, any translation T that is Z-adequate (w.r.t.
sem) is also OCF-adequate (w.r.t. sem). The other direction, however, does not necessarily
hold.
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There is a whole family of translations from ADFs to conditional logics which are prima
facie apt to express the links between nodes s and their acceptance conditions Cs :

– �1(D) = {(s|Cs) | s ∈ S}
– �2(D) = {(Cs |s) | s ∈ S}
– �3(D) = �1(D) ∪ �2(D)

– �4(D) = �1(D) ∪ {(¬s|¬Cs) | s ∈ S}
– �5(D) = {((Cs ≡ s)|�) | s ∈ S}
– �6(D) = �2(D) ∪ {(¬Cs |¬s) | s ∈ S}.
– �7(D) = {(¬s|¬Cs) | s ∈ S} ∪ {(¬Cs |¬s) | s ∈ S}.

Notice that all of these translations are based on the idea that there is a strong con-
nection between the acceptance of an acceptance condition Cs and the acceptance of the
corresponding node s. Indeed, as [7] puts it: “each node s has an associated acceptance
condition Cs specifying the exact conditions under which s is accepted”. However, in this
formulation, it is not specified (1) when a formula is true according to a three-valued inter-
pretation (i.e. is a ∨ ¬a true according to an interpretation v with v(a) = u? Different
three-valued logics give different answers to this question), (2) what to accept when there
are conflicts between different acceptance conditions (e.g. if Ca = ¬b and Cb = ¬a)
and (3) under which conditions we are justified in rejecting a node. Therefore, we sys-
tematically investigate different forms of conditionals based on the common idea that “the
influence a node may have on another node is entirely specified through the acceptance
condition” [7].

We now explain in more detail every translation. �1 formalizes the intuition that when-
ever the condition of a node s is believed, normally, s should be believed as well. Likewise,
�2 formalizes the idea that if a node is believed, its condition should be believed as well. �3
combines the two aforementioned intuitions. �4 is a slight variation on this idea, combin-
ing �1 with the constraint that whenever the negation of a condition of a node is believed,
the negation of the node itself should be believed as well. �5 postulates that a node should
be equivalent to its condition. �6, formalizes the following intuition: if s is believed, Cs

has to be believed, and if ¬s is believed, ¬Cs has to be believed as well. Finally, �7 is a
formalization of the idea that whenever the negation of a node, respectively the negation of
the condition of a node is believed, the negation of the condition of the node, respectively
the negation of the node should be believed. Note that �1 has already been investigated
to some small extent in [22]. In the following sections, we will study the Z-adequacy and
OCF-adequacy of these translations in depth. In Table 1 these results are summarized.

There are, of course, many more translations possible, for example one could suggest
instead of �1(D) the following �′

1(D) = {(Cs → s|�) | s ∈ S}. However, “shifting” the
conditional to the right hand side does not impact the consequences of a translation under
system Z:

Proposition 1 Given a set of conditionals 	, 	∪{(ψ |φ)} |∼Z θ iff 	∪{(φ → ψ |�)} |∼Z θ .

Proof Suppose 	 is a set of conditionals. In what follows, we will denote κZ
	∪{(ψ |φ)} by κ

and κZ
	∪{(φ→ψ |�)} by κ ′. We show that κ−1(0) = κ ′−1(0), which implies the proposition.

For this, suppose towards a contradiction that ω ∈ κ ′−1(0) yet ω ∈ κ−1(0). By Lemma 1 this
means that there is some (λ|δ) ∈ 	∪{(ψ |φ)} s.t. (λ|δ)(ω) = 0.Since κ ′ accepts 	, (λ|δ) =
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Table 1 Schematic summary of the results on Z-adequacy and OCF-adequacy of the translations in this paper

Z-adequacy

i 2mod Preferred Stable Grounded

1 × × × ×
2 × × × ×
3 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

4 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF
OLC

s]) × (�[AADFs])
5 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

6 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF
OLC

s]) × (�[AADFs])
7 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

OCF-adequacy

i 2mod Preferred Stable Grounded

1 � × × ×
2 � × × ×
3 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

4 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF
OLC

s]) × (�[AADFs])
5 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

6 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF
OLC

s]) × (�[AADFs])
7 � × (�[ASSADFs ∪ SFSADFs]) × (�[ASSADF

OLC
s]) × (�[AADFs])

� means that the selected form of adequacy w.r.t. the semantics of the respective column is satisfied for
the translation in the respective row. × means that the translation in the respective row is Z- resp. OCF-
inadequate w.r.t. the semantics in the respective column. ×(�[xADF]), finally, means that the translation in
the respective row is Z- resp. OCF-inadequate w.r.t. the semantics in the respective column in general, but is
Z- resp. OCF-adequate w.r.t. the semantics for the class of xADFs in square brackets

(ψ |φ). Thus, ω |= φ ∧¬ψ . This means that ω |= �∧¬(φ → ψ), i.e. (φ → ψ |�)(ω) = 0.
This contradicts κ ′(ω) = 0 and the assumption that κ ′ accepts 	 ∪ {(φ → ψ |�)} and thus
we have shown that κ ′−1(0) ⊆ κ−1(0). Analogously, we can show that κ ′−1(0) ⊇ κ−1(0)

and thus κ ′−1(0) = κ−1(0). This implies Bel (κ) = Bel (κ ′)

The above proposition thus establishes that within our perspective, it does not matter if
we consider the conditional “ψ is plausible if φ is the case” or the conditional “φ → ψ is
plausible”. Notice that this does not imply that we can equivalently consider φ → ψ to be
true. However, the above proposition does not generalize for arbitrary κ , i.e. there might be
an OCF κ that accept (ψ → φ|�) but not (φ|ψ):

Example 5 Consider an OCF over the signature {p, q} with:
ω pq pq qp p q

κ 1 1 1 0
Notice that κ(�∧ (q → p)) = κ(¬q ∨p) = 0 < κ(�∧¬(q → p)) = κ(q ∧¬p) = 1,

whereas κ(q ∧ p) = 1 = κ(q ∧ ¬p). Therefore, κ accepts (q → p|�) but not (p|q).
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Remark 1 We have implemented a reasoner in java by use of the TweetyProject4 library
which calculates the translations �1, . . . , �7 and compares |∼Z -inference of these trans-
lations with inferences of the translated ADF under the grounded, preferred, stable and
two-valued model-semantics.

4 Two-valued semantics

In this section we discuss the adequacy of our translations w.r.t. the 2mod-semantics. We
will show the Z-inadequacy of the translations �1 and �2 w.r.t. the 2mod-semantics and
the Z-adequacy of �3,. . . , �7 w.r.t. the 2mod-semantics in Section 4.1. The results in
Section 4.2 establish conditions for the consistency of these translations. In Section 4.3, we
finally make some observations on the OCF-adequacy of the translations �3,. . . , �7.

4.1 Z-adequacy w.r.t. two-valued semantics

In this section we study Z-adequacy with respect to the 2mod-semantics for the translations
suggested in the previous section. In particular, we will show that �1 and �2 are not Z-
adequate whereas �3, �4, �5, �6 and �7 are in fact Z-adequate for the 2mod-semantics.

We first observe that �1 and �2 are not Z-adequate w.r.t. two-valued semantics.

Example 6 (Z-Inadequacy of �1 w.r.t. 2mod) We consider the following ADF D1 from
Example 2. Notice that �1(D1) = {(b|¬a), (a|¬b), (c|¬a ∨ ¬b)}, which is the conditional
knowledge base considered in Example 1. We therefore see that �1(D1)  |∼Z c even though
D |∼∩

2modc and thus �1 is not Z-adequate with respect to the 2mod-semantics.

Example 7 (Z-Inadequacy of �2 w.r.t. 2mod) We consider the following ADF D2 =
({a, b, c}, L,C) where: Ca = ¬b Cb = ¬a Cc = a ∨ b D2 has three complete
models v1, v2, v3 with: v1(a) = v2(b) = v1(c) = v2(c) = �, v1(b) = v2(a) = ⊥ and
v3(a) = v3(b) = v3(c) = u. Only v1 and v2 are 2-valued.

Moving to �2(D) = {(¬a|b), (¬b|a), (a ∨ b|c)}, we see that (κZ
�2(D))

−1(0) =
{abc, abc, abc, abc, abc}. This means that �2(D2)  |∼Z c even though D |∼∩

2modc, i.e. �2
is not Z-adequate with respect to the 2mod-semantics.

We will now show that the translations �3, �4, �5, �6 and �7 are Z-adequate for 2-
valued models. For these results, the following conditions on translations will prove useful:

– C1: κZ
�(D)(Cs ∧ ¬s) > 0 and κZ

�(D)(¬Cs ∧ s) > 0 for every s ∈ S.
– C2: {∧s∈S Cs ≡ s} � ∧

(ψ |φ)∈�(D)(φ → ψ)

�3, �4, �5, �6 and �7 satisfy both of the above conditions:

Proposition 2 For any i ∈ {3, 4, 5, 6, 7} and any ADF D, if�i(D) is consistent then�i(D)

satisfies C1 and C2.

4http://tweetyproject.org/index.html

http://tweetyproject.org/index.html
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Proof We show the claim for i = 3 and C1, the proofs for i ∈ {4, 5, 6, 7} and C2 are
analogous. Suppose towards a contradiction that there is some ADF D = (S, L,D) and
some s ∈ S s. t. κZ

�3(D)(Cs ∧ ¬s) = 0 or κZ
�3(D)(¬Cs ∧ s) = 0. Suppose the former.

Then κZ
�3(D)(Cs ∧ ¬s) ≥ κZ

�3(D)(Cs ∧ s), which contradicts (s|Cs) ∈ �3(D). Likewise,

κZ
�3(D)(¬Cs ∧ s) = 0 contradicts (Cs |s) ∈ �3(D).

Proposition 3 For any � that satisfies C1 for the ADF D, ω ∈ (κZ
�(D))

−1(0) implies ω ∈
2mod(D).

Proof Suppose that �(D) satisfies C1 for the ADF D = (S, L,C) and that ω ∈
(κZ

�(D))
−1(0). We show that ω is a two-valued model of D. Indeed suppose towards a con-

tradiction that ω(s) = ω(Cs) for some s ∈ S. This means that ω |= s∧¬Cs or ω |= ¬s∧Cs .
Since ω ∈ (κZ

�(D))
−1(0), this contradicts �(D) satisfying C1 for D. Thus, it has to be the

case that ω is a model of D. That ω ∈ V2 is clear from the fact that ω |= s ∨ ¬s for every
s ∈ S.

Proposition 4 For any � that satisfies C2 for the ADF D, ω ∈ (κZ
�(D))

−1(0) if ω ∈
2mod(D).

Proof Suppose that �(D) satisfies C2 for the ADF D, and suppose that ω is a 2-valued
model of D. Suppose towards a contradiction that ω ∈ (κZ

�(D))
−1(0). By Lemma 1 this

means that ω |= φ′ ∧ ¬ψ ′ for some (ψ ′|φ′) ∈ �(D). But then since {∧s∈S Cs ≡ s} �∧
(ψ |φ)∈�(D)(φ → ψ), by contraposition, and since {φ′ ∧ ¬ψ ′} � ¬(

∧
(ψ |φ)∈�(D)(φ →

ψ)), ω |= ¬ ∧
s∈S Cs ≡ s. But then there is some s ∈ S s. t. ω |= s ∧ ¬Cs or ω |= ¬s ∧ Cs .

But then ω(s) = ω(Cs), contradiction to ω being a 2-valued model of D.

We can now derive the Z-adequacy with respect to the 2-valued model semantics for the
translations �3, �4, �5, �6 and �7, under the condition that �i(D) is consistent:

Theorem 4 For any ADF D, and i ∈ {3, 4, 5, 6, 7}: if �i(D) is consistent then
D |∼∩

2mods[¬s] iff �i(D) |∼Z s[¬s] for any s ∈ S.

Proof Let i ∈ {3, 4, 5, 6, 7} and D be an ADF. By definition, D |∼∩
2mods[¬s] iff for every

model v ∈ V2, v(s) = �[⊥]. By Propositions 2, 3 and 4, (κZ
�i(D))

−1(0) = {ωv | v ∈
V2, v ∈ 2mod(D)}. Thus, D |∼∩

2mods[¬s] iff for every ω ∈ (κZ
�i(D))

−1(0), ω |= s[¬s],
which implies: D |∼∩

2mods[¬s] iff �i(D) |∼Z s[¬s].

4.2 Consistency of translations

We now discuss the requirement in Theorem 4 of �i(D) being consistent.5 We first show
that there might be ADFs D for which �i(D) is inconsistent (for i ∈ {3, 4, 6}):

5In [15] it was claimed that if �i is inconsistent, there will be no two-valued models. However, the claim
that (Cs ∧ s) being unsatisfiable leads to there being no two-valued model of D is false, since as Example 8
shows, we can still have a two-valued model for which ω |= ¬Cs ∧ ¬s.
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Example 8 Let D = ({a, b}, L,C) with Ca = ¬a ∧ ¬b and Cb = b. Notice that
2mod(D) = {ab}. Then we have �3(D) = {(a|¬a ∧¬b), (¬a ∧¬b|a), (b|b)}. For the first
two conditionals, there is no κ that accepts these conditionals, since this would mean that
κ(a ∧¬a ∧¬b) < κ(¬a ∧¬b) respectively κ(a ∧¬a ∧¬b) < κ(a ∧ (a ∨b)). It can easily
be seen that also for i ∈ {4, 6}, there is no κ that accepts �i(D).

We now show that also for �7, there might be ADFs D for which the translation is
inconsistent:

Example 9 Let D = ({a}, L,C) with Ca = �. Notice that 2mod(D) = {a}. We have
�7(D) = {(¬a|⊥), (⊥|¬a)}. There is no κ that accepts (⊥|¬a) since this would mean that
κ(⊥ ∧ ¬a) < κ(� ∧ ¬a).

Observe that �5(D) is consistent for D as in Example 9. In fact, we can show the follow-
ing proposition, which not only establishes consistency of �5(D) whenever 2mod(D) = ∅,
but also ascertains that consistency of �5(D) guarantees 2mod(D) = ∅:

Theorem 5 Given an ADF D = (S, L,C), 2mod(D) = ∅ iff �5(D) is consistent.

Proof We first show that if 2mod(D) = ∅ then �5(D) is consistent. We show this by
constructing a κ that accepts �5(D). Take some ω ∈ 2mod(D). Since ω is a two-valued
model of D, for every s ∈ S, either ω |= s ∧ Cs or ω |= ¬s ∧ ¬Cs , which implies †:
ω |= s ≡ cs for every s ∈ S. We construct κ by setting κ(ω) = 0 and κ(ω′) = 1 for any
ω′ ∈ �(S) \ ω. Since ω |= s ≡ Cs for any s ∈ S, κ(� ∧ (s ≡ Cs)) = 0. Since κ(ω′) = 1
for any ω′ ∈ �(S) \ {ω}, we know that for any ω′ ∈ �(S) s.t. ω′ |= ¬(s ≡ Cs), κ(ω′) = 1.
Thus, κ(�∧¬(s ≡ Cs)) = 1, which implies κ(�∧ (s ≡ Cs)) < κ(�∧¬(s ≡ Cs)). Thus,
κ accepts (s ≡ Cs |�) for any s ∈ S which implies that κ accepts �5(D).

We now show that 2mod(D) = ∅ if �5(D) is consistent. Indeed, if �5(D) is consistent,
there is an OCF κ s.t. κ accepts �5(D). By definition of an OCF, there is an ω ∈ �(S) s.t.
κ(ω) = 0, i.e. (s ≡ Cs |�)(ω) = 0 for any s ∈ S. Thus, ω |= s ≡ Cs for any s ∈ S. But
then ω ∈ 2mod(D).

We can now show the Z-adequacy of �5 w.r.t. two-valued model semantics (without
having to assume the consistency of �5):

Corollary 1 For any ADF D, D |∼∩
2mods[¬s] iff �i(D) |∼Z s[¬s] for any s ∈ S.

Proof Follows from Theorem 4 and Theorem 5.

Remark 2 It is perhaps interesting to notice that we can obtain a translation �′(D) closer
to the translations �i for i ∈ {3, 4, 6, 7} which is consistent. Indeed, we can do this by
using our “shifting” procedure (see e.g. Proposition 1). For the conditional (a|¬a ∧ ¬b) in
example above, we do this as follows:

(a|¬a ∧ ¬b)

((¬a ∧ ¬b) → a|�) with “shifting down”

(¬a → (a ∨ b)|�) with contraposition

(a ∨ b|¬a) with “shifting up”
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Likewise, we can transform (¬a ∧ ¬b|a) into (¬a|a ∨ b), and we obtain �′(D) =
{(a ∨ b|¬a), (¬a|a ∨ b), (b|b)}. We easily observe that (κZ

�′(D)
)−1(0) = {ab}, which gives

use Z-adequacy w.r.t. the two-valued semantics for 	.

One could ask now, for the translations �3, �4, �6 and �7, whether there are conditions
under which they are consistent. One conjecture could be that ADFs without self-attacking
nodes make �3 consistent.

Definition 7 An ADF D = (S, L,C) contains no self-attacking nodes iff for no s ∈ S,
Cs � ¬s.

We now give an example of an ADF without self-attacking nodes for which �3 is incon-
sistent. For this it is convenient to define an exclusive disjunction φ∨ψ := (φ ∨ψ)∧¬(ψ ∧
φ).

Example 10 Let D = ({a, b, c}, L,C) with Ca = Cb = a∨b and Cc = �. Then the unique
two-valued model of D is v with v(a) = ⊥, v(b) = ⊥ and v(c) = �. We have �3(D) ={
(a|a∨b), (b|a∨b), (c|�), (a∨b|a), (a∨b|b), (�|c) }

We now show that there is no κ

s.t. κ |= �3(D). For this, with Theorem 4, it suffices to there is a 	 ⊆ �3(D) s.t. no
δ ∈ 	 is tolerated in 	. Setting 	 = {(a|a∨b), (b|a∨b)}, we see that there is no ω s.t.
ω |= a∨b ∧ a and ω |= (a∨b) → b. For reasons of symmetry, it is also clear that 	 does
not tolerate (b|a∨b) either.

The node c in the above example is meant to take away the presumption that the incon-
sistency of �3(D) is caused by there being no two-valued model for which some node is
validated (i.e. there existing no ω ∈ 2mod(D) s.t. for some s ∈ S, ω(s) = �). Observe that
for D = ({a, b}, L,C) with Ca = Cb = a∨b, this would be the case.

Definition 8 An ADF D = (S, L,C) is:

– non-refuting if there is no s ∈ S s.t. �i2mod(s) = ⊥.
– non-validating if there is no s ∈ S s.t. �i2mod(s) = �.

Theorem 6 Given an ADF D, �3(D) is consistent if D is non-refuting.

Proof Suppose that D is non-refuting, i.e. for every s ∈ S, �i2mod(D)(s) ∈ {u,�}. This
means that (†): for every s ∈ S, there is an ω ∈ 2mod(D) s.t. ω(s) = �. We show now
that for every non-empty 	 ⊆ �3(D), there is some δ ∈ 	 s.t. δ is tolerated by 	, which
with Theorem 1 suffices to show consistency. Indeed, consider some arbitrary but fixed
non-empty 	 ⊆ �3(D). Suppose first there is some s ∈ S s.t. (s|Cs) ∈ 	. With †, there is
some ω ∈ 2mod(D) s.t. ω(s) = �. Since ω ∈ 2mod(D), ω(Cs) = � and thus ω |= s ∧ Cs .
Furthermore, for every s′ ∈ S, ω |= s′ ≡ Cs′ , i.e. ω |= Cs′ → s′ and ω |= s′ → Cs′ . But
then ω((Cs′ |s′)) = 0 and ω((s′|Cs′)) = 0. A fortiori, ω(δ′) = 0 for any δ ∈ 	. Suppose
now that (s|Cs) ∈ 	 for any s ∈ S. Since 	 = ∅, there is some s ∈ S for which (Cs |s) ∈ 	.
With †, there is some ω ∈ 2mod(D) s.t. ω(s) = �. Since ω ∈ 2mod(D), ω(Cs) = � and
thus ω |= s ∧ Cs . Furthermore, for every s′ ∈ S, ω |= s′ ≡ Cs′ , i.e. ω |= Cs′ → s′ and
ω |= s′ → Cs′ . But then ω((Cs′ |s′)) = 0 and ω((s′|Cs′)) = 0. A fortiori, ω(δ′) = 0 for
any δ ∈ 	.
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Unfortunately, non-refutingness of D is not a necessary condition for the consistency of
�3(D):

Example 11 Consider the ADF D = ({a, b}, L,C) with Ca = � and Cb = ¬a. Notice that
D is refuting since 2mod(D) = {ab} and thus �i2mod(D)(b) = ⊥. However, �3(D) is
not inconsistent, since e.g. κ with κ(ab) = 0, κ(ab) = 1 and κ(ab) = κ(ab) = 2 accepts
�3(D).

The following example shows that non-refutingness of D is not a sufficient condition for
consistency of �4(D), �6(D) or �7(D):

Example 12 Let D = ({a}, L,C) with Ca = �. Then �4(D) = {(b|�), (¬b|⊥)}. Notice
that {(¬b|⊥)} does not tolerate (¬b|⊥) since there is no world ω ∈ �({b}) s.t. ω(⊥∧¬b) =
�. Thus, with Theorem 1, �4(D) is inconsistent (and likewise for �6(D) and �7(D)).

Theorem 7 Given an ADF D, �4(D) is consistent if D is non-validating and non-refuting.

Proof Suppose that D is non-validating, i.e. for every s ∈ S, �i2mod(D)(s) ∈ {u,⊥}.
This means that (†): for every s ∈ S, there is an ω ∈ 2mod(D) s.t. ω(s) = ⊥. We show
for every 	 ⊆ �4(D) tolerates some δ ∈ 	, by Theorem 1 suffices to show consistency.
Indeed, consider some arbitrary but fixed 	 ⊆ �4(D). Suppose first that for some s ∈ S,
(¬s|¬Cs) ∈ 	. Since D is non-validating, there is some ω ∈ 2mod(D) s.t. ω(s) = ⊥.
Since ω(s) = ω(Cs), ω |= ¬Cs . Thus, ω |= ¬s ∧ ¬Cs . Since ω ∈ 2mod(D), for every
s′ ∈ S, ω(s′) = ω(Cs′) and thus ω |= Cs′ ∧ ¬s′ and ω |= ¬Cs′ ∧ s′, i.e. ω(δ) = 0 for any
δ ∈ �4(D). A fortiori, ω(δ) = 0 for any δ ∈ 	. The proof for (s|Cs) ∈ 	 is similar.

Theorem 8 Given an ADF D, �6(D) is consistent if D is non-validating and non-refuting.

Proof The proof is similar to that of Theorem 7.

Theorem 9 Given an ADF D, �7(D) is consistent if D is non-validating.

Proof The proof is similar to that of Theorem 7.

These theorems allow us to make the following statements about the Z-adequacy of the
translations �3, �4, �6 and �7:

Corollary 2 For any D = (S, L,C):

– If D is non-refuting, D |∼∩
2mods[¬s] iff �3(D) |∼Z s[¬s] for any s ∈ S.

– For any i ∈ {4, 6}, if D is non-refuting and non-validating, D |∼∩
2mods[¬s] iff

�i(D) |∼Z s[¬s] for any s ∈ S.
– If D is non-validating, D |∼∩

2mods[¬s] iff �7(D) |∼Z s[¬s] for any s ∈ S.

Proof Follows from Theorems 6, 7, 8 and 9.
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Table 2 Summary of the conditions for consistency of translations �3, . . . , �7 established in this section

i Condition on D for Consistency of �i(D) Result

3 non-refuting Theorem 6

4 non-refuting and non-validating Theorem 7

5 2mod(D) = ∅ Theorem 5

6 non-refuting and non-validating Theorem 8

7 non-validating Theorem 9

We close this sub-section by making some obeservations on both the consequence
relations resulting from non-refuting and non-validating ADFs and their corresponding
translations. We first observe that from a conditional logic perspective, non-refuting and
non-validating ADFs are rather simple

Proposition 5 For any ADF D:

– If D is non-refuting �3(D) = (�3(D))0.6

– If D is non-refuting and non-validating, �i(D) = (�i(D))0 for i ∈ {4, 6}.
– If D is non-validating, �7(D) = (�7(D))0.

Proof Notice that in the proof of Theorem 7, we have actually established that for every
s ∈ S, (s|Cs) and (Cs |s) are tolerated by �3(D). Similarly for �4, �5 and �7, using
Theorems 7, 8 respectively 9 instead of Theorem 7.

We furthermore observe that ADFs that are both non-validating and non-refuting are
inconclusive, in the sense that they do not allow to infer a conclusive judgement about any
node:

Proposition 6 If D is non-refuting and non-validating, D |∼ 2modṡ for any s ∈ S.

Proof Suppose D is non-refuting and non-validating. Then �i2mod(s) = u for any s ∈ S

and thus D |∼ ∩
2modṡ for any s ∈ S.

Table 2 summarizes the conditions for consistency established in this section.

4.3 OCF-adequacy w.r.t. two-valued semantics

In this section, we generalize some of the results from the previous section in order to show
OCF-adequacy of translations based on �3,. . . , �7 w.r.t. the two-valued model semantics.

We first show the OCF-adequacy of �1 and �2:

Proposition 7 �1 (respectively �2) is OCF-adequate w.r.t. 2mod for the class of ADFs for
which �1(D) (respectively �2(D)) is consistent.

6Recall, (�3(D))0 = {δ ∈ �3(D) | 	 tolerates δ} is the set of conditionals tolerated by �3(D) (i.e. the set
of conditionals which have Z�3(D)-rank 0).
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Proof We first show that for any 1 ≤ i ≤ 2 and any ADF D, 2mod(D) ⊆ (κZ
�i(D))

−1(0).
Indeed, consider ω ∈ 2mod(D). For any s ∈ S, ω(s) = � iff ω(Cs) = �, i.e. (Cs |s)(ω) ∈
{1, u} and (s|Cs)(ω) ∈ {1, u}. Thus, κZ

�i(D)(ω) = 0.
We can now obtain an OCF κ that accepts �i(D) by setting κ(ω) = 0 iff ω ∈ 2mod(D)

and κ(ω) = κZ
�i(D)(ω) + 1 otherwise. We show that κ accepts �i(D) for i = 1, the case

for i = 2 is similar. Indeed consider (s|Cs) ∈ �1(D). Suppose first that for some ω ∈
2mod(D), ω |= Cs . Then κ(s ∧Cs) = 0 < κ(¬s ∧Cs) = κZ

�1(D) +1. Suppose now that for

no ω ∈ 2mod(D), ω |= Cs . Since �1(D) is consistent, κZ
�1(D)(Cs ∧ s) < κZ

�1(D)(Cs ∧ ¬s),

thus, κ(Cs ∧ s) = κZ
�1(D)(Cs ∧ s) + 1 < κZ

�1(D)(Cs ∧ ¬s) + 1 = κ(Cs ∧ s¬s).

Finally, notice that since κ−1(0) = 2mod(D), D |∼∩
2mods iff s ∈ Bel (κ). Thus, �i is

OCF-adequate w.r.t. 2mod for 1 ≤ i ≤ 2.

We now show the following result on the relationship between OCFs induced by a Z-
partitioning and other OCFs.

Proposition 8 Given a set of conditionals 	, for any κ s.t. κ |= 	, κ−1(0) ⊆ (κZ
	)−1(0).

Proof Suppose that for some ω ∈ �, κ(ω) = 0 yet κZ
	(ω) = 0. The latter means (with

Lemma 1) that ω |= φ ∧ ¬ψ for some (ψ |φ) ∈ 	. But then κ(φ ∧ ψ) < κ(φ ∧ ¬ψ),
contradiction to κ |= 	.

For any OCF κ that accepts �3, �4, �5 or �6, the most plausible worlds according to κ

will be a subset of the two-valued models of the translated ADF:

Proposition 9 For any 3 ≤ i ≤ 7, if �i(D) is consistent and κ |= �i(D) then κ−1(0) ⊆
2mod(D).

Proof By Propositions 2, 3 and 4, for any 3 ≤ i ≤ 7, (κZ
�i(D))

−1(0) = 2mod(D). By

Proposition 8, if κ |= θi(D) then κ−1(0) ⊆ (κZ
�i(D))

−1(0).

Notice that this result is, in a sense, stronger than just establishing OCF-adequacy. In
fact, OCF-adequacy of �3, . . . , �7 follows from the Z-adequacy of these translations. What
Proposition 9 establishes is that any κ that accepts �i (for 3 ≤ i ≤ 7) will give rise to a
set of beliefs that is determined by 2mod(D), in the sense that the beliefs also follow from
a subset of the two-valued models. Furthermore, |∼∩

2mod forms a lower bound on Bel (κ) in
the sense that everything that is derivable using |∼∩

2mod from D will be in Bel (κ). These two
insights are shown in the following proposition:

Proposition 10 For any 3 ≤ i ≤ 7, if �i(D) is consistent and κ |= �i(D):

– if D |∼∩
2modφ then φ ∈ Bel (κ).

– if φ ∈ Bel (κ) then there is some 	 ⊆ 2mod(D) s.t. Bel (κ) = {φ | ∀ω ∈ 	 : ω |= φ}.

Proof Both statements follow immediately from Proposition 9.
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5 Z-adequacy and OCF-adequacy w.r.t. stable and preferred semantics

In this section, we study the Z- and OCF-adequacy of the translations �3,. . . , �7 w.r.t. the
stable and preferred semantics.

We can strengthen Theorem 4 to obtain Z-adequacy with respect to the stable and
preferred semantics for specific subclasses of ADFs:

Theorem 10 For any i ∈ {3, 4, 5, 6, 7} the following results hold:

1. �i is Z-adequate w.r.t. the stable semantics for the class of weakly coherent ADFs for
which �i(D) is consistent.

2. �i is Z-adequate w.r.t. the preferred semantics for the class of semi-coherent ADFs for
which �i(D) is consistent.

Proof Ad 1. By Theorem 2, 2mod(D) ⊇ stable(D) for any ADF D. If D is weakly coherent,
this means 2mod(D) = stable(D). Thus for any s ∈ S, D |∼∩

stables[¬s] iff D |∼∩
2mods[¬s].

By Theorem 4 D |∼∩
stables[¬s] iff �i(D) |∼Z s[¬s].

Ad 2. By Theorem 2, preferred(D) ⊇ 2mod(D). If D is semi-coherent, this means
preferred(D) = 2mod(D). Thus for any s ∈ S, D |∼∩

preferreds[¬s] iff D |∼∩
2mods[¬s]. By

Theorem 4, D |∼∩
preferreds[¬s] iff �i(D) |∼Z s[¬s].

These results can now be rephrased for syntactic subclasses of ADFs as follows:

Corollary 3 For any i ∈ {3, 4, 5, 7} the following results hold:

1. �i is Z-adequate w.r.t. the stable semantics for the class of ASSADFs and the class of
SFSADFs, whenever �i(D) is consistent.

2. �i is Z-adequate w.r.t. the preferred semantics for the class of SFADFs that do not
contain any odd-length cycles, whenever �i(D) is consistent.

Proof This follows from Theorem 3 and Theorem 10.

In general, however, any translation based on �3, . . . , �7 will be OCF-inadequate w.r.t.
preferred semantics as well:

Proposition 11 There is an ADF D s.t. for no 3 ≤ i ≤ 7, �i(D) is OCF-adequate w.r.t.
preferred semantics.

Proof We consider the following ADF D = ({a, b, c}, L,C) where:
Ca = ¬b; Cb = ¬a; Cc = ¬b ∧ ¬c; This ADF has the following unique 2-

valued models: v(a) = v(c) = ⊥ and v(b) = �. Thus, by Proposition 9, if �i(D) is
consistent, this implies that if κ |= �i(D) for some 3 ≤ i ≤ 7 then κ |= b. However, there
is a second preferred interpretation v′ with v′(a) = �, v′(b) = ⊥ and v′(c) = u. Thus,
D |∼∩

preferredb.

A critical reader might remark that the above example is pathological since it depends on
the node c being “self-attacking” in the sense that Cc � ¬c. The following alternative yet
more involving example shows that a similar behaviour can be created with an odd cycle
(notice that an example without an odd-length cycle cannot be found, since any SFADF
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without odd-length cycle is coherent and therefore any preferred interpretation will also be
a two-valued interpretation):

Example 13 We consider the following ADF D = ({a, b, c, d, e}, L,C) where:
Ca = ¬b; Cb = ¬a; Cc = ¬b ∧ ¬e; Cd = ¬c; Ce = ¬d;
This ADF has one 2-valued model: v(a) = v(c) = v(e) = ⊥ and v(b) = v(d) = �.

Thus, by Proposition 9, this implies that if κ |= �i(D) for some 3 ≤ i ≤ 7 then κ |= d .
However, there is a second preferred interpretation v′ with v′(a) = �, v′(b) = ⊥ and
v′(c) = v′(d) = v′(e) = u. Thus, D |∼∩

preferredd .

Remark 3 Notice that these propositions also imply the Z-inadequacy of �3, �4 and �5
w.r.t. preferred semantics.

One proposal to avoid the impossibility result of Proposition 11 above would be to add
some conditionals to �i (for 3 ≤ i ≤ 7). Unfortunately, such an escape route does not hold
much promise:

Proposition 12 Where � ⊇ �i and κ |= �, κ−1(0) ⊇ {ωv | v ∈ 2mod(D)} (for any
3 ≤ i ≤ 7).

Proof To show this proposition we first show the following Lemma:

Lemma 2 For two sets of conditionals 	 and 	′, (κZ
	)−1(0) ⊇ (κZ

	∪	′)−1(0).

Proof Suppose ω ∈ (κZ
	∪	′)−1(0), i.e. ω |= φ ∧ ¬ψ for any (ψ |φ) ∈ 	 ∪ 	′. Then clearly

ω |= φ ∧ ¬ψ for any (ψ |φ) ∈ 	 and thus ω ∈ (κZ
	)−1(0).

Consider now some � ⊇ �i (for some 3 ≤ i ≤ 7). By Proposition 8, any κ s.t. κ |= �,
κ−1(0) ⊆ (κZ

�)−1(0). By Lemma 2, (κZ
�)−1(0) ⊆ (κZ

�i
)−1(0). By Propositions 2, 3 and 4,

this means that κ−1(0) ⊆ 2mod(D).

We can now reproduce the inadequacy results we had before (Proposition 11) for any
� ⊇ �i (for 3 ≤ i ≤ 7):

Proposition 13 There is an ADF D s.t. for every 3 ≤ i ≤ 7, there is no � ⊇ �(D) is
OCF-adequate w.r.t. preferred semantics.

Proof The proof of claim 1 respectively claim 2 is identical to the proofs of Proposition 15
respectively 11 except that instead of Proposition 9 we use Proposition 12.

Remark 4 Again these propositions imply the Z-inadequacy of any � ⊇ �i (for 3 ≤ i ≤
7).
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6 OCF- and Z-inadequacy w.r.t. the grounded semantics

In this section we show the OCF- and Z-inadequacy of all translations �1, . . . , �7 w.r.t. the
grounded semantics.

We start by showing the OCF- and Z-inadequacy of �1 w.r.t. the grounded semantics:

Example 14 Consider the ADF D = ({p, q, r}, L,C) with Cp = �, Cq = ¬p, Cr =
¬q. The grounded interpretation vG of D assigns vG(p) = vG(r) = � and vG(q) = ⊥.
However, �1(D) = {(p|�), (q|¬p), (p|q)}. Then (κZ

�1(D))
−1 = {pq r, pqr} and thus

�1(D)  |∼Z r whereas D |∼grounded r .

Example 15 Consider the ADF D = ({p, q}, L,C) with Cp = � and Cq = ¬p. The
grounded interpretation of D assigns v(p) = � and v(q) = ⊥. �2(D) = {(�|p), (¬p|q)}.
Then (κZ

�2(D))
−1 = {pq, pq, pq} and thus �2(D)  |∼Z p whereas D |∼grounded p.

Theorem 4 can also be used to derive the Z-inadequacy of �3, �4, �5, �6 and �7 with
respect to the grounded semantics:

Proposition 14 For any �(D) that satisfies C1 and C2, � is not Z-adequate with respect
to grounded.

Proof We consider the following ADF D = ({a, b, c, d}, L,C) where:
Ca = ¬b; Cb = ¬a; Cc = ¬a ∧ ¬b; Cd = ¬c This ADF has the following 2-

valued models: v1 which assigns v1(a) = v1(d) = � and v1(b) = v1(c) = ⊥ and v2
with v2(b) = v2(d) = � and v2(a) = v2(c) = ⊥. Since v1(d) = v2(d) = �, by
Proposition 3 and Proposition 4, �(D) |∼Z d . However, the grounded assignment vG sets
vG(a) = vG(b) = vG(c) = vG(d) = u.

We can generalize this result for OCF-inadequacy (w.r.t. grounded semantics):

Proposition 15 There is an ADF D s.t. for no 3 ≤ i ≤ 7, �i(D) is OCF-adequate w.r.t.
grounded semantics.

Proof We consider the following ADF D = ({a, b, c, d}, L,C) where:
Ca = ¬b; Cb = ¬a; Cc = ¬a ∧ ¬b; Cd = ¬c. This ADF has the following

2-valued interpretation: v1 which assigns v1(a) = v1(d) = � and v1(b) = v1(c) = ⊥
and v2 with v2(b) = v2(d) = � and v2(a) = v2(c) = ⊥. Since v1(d) = v2(d) = �, by
Proposition 9, this implies that if κ |= �i(D) for some 3 ≤ i ≤ 5 then κ |= d . However,
the grounded assignment vG sets vG(a) = vG(b) = vG(c) = vG(d) = u.

We can again reproduce the inadequacy results we had before (Proposition 15) for any
� ⊇ �i (3 ≤ i ≤ 7):

Proposition 16 There is an ADF D s.t. for any 3 ≤ i ≤ 7, for no � ⊇ �i(D) is �

OCF-adequate w.r.t. grounded semantics.

Proof The proof of claim 1 respectively claim 2 is identical to the proofs of Proposition 15
respectively 11 except that instead of Proposition 9 we use Proposition 12.
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Nevertheless, we can report on some classes of ADFs for which �3,. . . ,�7 are Z-
adequate. In particular, for acyclic ADFs, Z-adequacy w.r.t. the grounded semantics is
guaranteed:

Theorem 11 Given some 3 ≤ i ≤ 7, �i is Z-adequate w.r.t. the two-valued model
semantics w.r.t. the class of acyclic ADFs for which �i is consistent.

Proof Follows from Theorem 3 and Propositions 2, 3 and 4.

7 Properties of the translations

In this section, we study several general properties of our translations. In Section 7.1, we
study several desirable properties for translations between non-monotonic formalisms, orig-
inally proposed by [14]. In Section 7.2, we make some remarks on the properties of the
translations from a conditional perspective.

7.1 Properties for translations between non-monotonic formalisms

In this section we want to look at several desirable properties, proposed by [14] for transla-
tions between non-monotonic formalisms like adequacy, polynomiality and modularity. In
Section 3 we already discussed adequacy in-depth and we have shown, that translations �1
and �2 are never OCF- or Z-adequate where as �3, �4, �5, �6 and �7 are OCF- and Z-
adequate for 2mod-semantics (Section 4.1). However these translations are not inadequate
for preferred and grounded semantics as shown in Proposition 11 and Proposition 15.

A translation satisfies polynomiality if the translation is computable with reasonable
bounds, i.e. within time bounded by a polynomial of the input. It is easy to see, that our
translations are polynomial in the number of statements.

For modularity we follow the formulation of [32] for a translation from ADFs to a target
formalism, even though modularity was originally defined for translations between circum-
scription and default logic [19]. In more detail, a translation being modular means that
“local” changes in the translated ADF results in “local” changes in the translation. A mini-
mal notion of modularity of a translation � would be that given two syntactically disjoint
ADFs D1 and D2, i.e. two ADFs D1 = (S1, L1, C1) and D2 = (S2, L2, C2) s.t. S1 ∩S2 = ∅,
�(D1∪D2) = �(D1)∪�(D2). Clearly the translations presented in this paper are modular
in this sense.

None of our translations needs a language extensions therefore they are language-
preserving.

Finally, it is clear, that the translations are syntax-based, in the sense that the translations
�i(D) (for any 1 ≤ i ≤ 7) can be derived purely on the basis of the syntactic form of the
ADF D.

7.2 Properties from a conditional perspective

In this section we make some observations on the conditional structure of the translations
suggested in this paper. In particular, we observe that for any consistent translation, the
conditional structure is flat in the sense that all conditionals get assigned the same Z-rank
0. We first show this for �5:
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Proposition 17 �5(D) = (�5(D))0 for any ADF D for which 2mod(D) = ∅.

Proof We show that there is an ω ∈ �(S) s.t. for every δ ∈ �5(D), ω(δ) = 1. Indeed,
consider some ω ∈ 2mod(D). Then since ω |= Cs ≡ s for any s ∈ S, we immediately see
that for any (s ≡ Cs |�) ∈ �5(D), ω |= �∧Cs ≡ s. Since �5(D) = {(s ≡ Cs |�) | s ∈ S},
this concludes the proof.

A similar result has already been shown in Theorem 5 for �i for any 3 ≤ i ≤ 7 for
which �i(D) is consistent. We summarize these results in the following corollary:

Corollary 4 For any 3 ≤ i ≤ 7, if �i(D) is consistent �i(D) = (�i(D))0.

8 Related works

Our aim in this paper is to lay foundations of integrative techniques for argumentative and
conditional reasoning. There are previous works, which have similar aims or are otherwise
related to this endeavour. We will discuss those in the following.

First, there is huge body of work on structured argumentation (see e. g. [3]). In these
approaches, arguments are constructed on the basis of a knowledge base possibly consist-
ing of conditionals. An attack relation between these arguments is constructed based on
some syntactic criteria. Acceptable arguments are then identified by applying argumentation
semantics to the resulting argumentation frameworks. Thus, even though structured argu-
mentation syntactically uses conditional knowledge bases, it relies semantically on formal
argumentation.

There have been some attempts to bridge the gap between specific structured argumen-
tation formalisms and conditional reasoning. For example, in [21] conditional reasoning
based on system Z [13] and DeLP [12] are combined in a novel way. Roughly, the paper pro-
vides a novel semantics for DeLP by borrowing concepts from system Z that allows using
plausibility as a criterion for comparing the strength of arguments and counterarguments.
Our approach differs both in goal (we investigate the correspondence between argumenta-
tion and conditional logics instead of integrating insights from the latter into the former) and
generality (DeLP is specific and arguably rather peculiar argumentation formalism whereas
ADFs are the most general formalism around).

Several works investigate postulates for nonmonotonic reasoning known from condi-
tional logics [23] for specific structured argumentation formalisms, such as assumption-
based argumentation [1, 8, 16, 18] and ASPIC+ [25]. These works revealed gaps between
nonmonotonic reasoning and argumentation which we try to bridge in this paper.

Besnard et al. [4] develop a structured argumentation approach where general condi-
tional logic is used as the base knowledge representation formalism. Their framework is
constructed in a similar fashion as the deductive argumentation approach [5] but they also
provide with conditional contrariety a new conflict relation for arguments, based on condi-
tional logical terms. Even though insights from conditional logics are used in that paper, this
approach stays well within the paradigm of structured argumentation. In [35] a new seman-
tics for abstract argumentation is presented, which is also rooted in conditional logical terms.
In more detail, a ranking interpretation is provided for extensions of arguments instantiated
by strict and defeasible rules by using conditional ranking semantics. Thus, Weydert pre-
supposes a conditional knowledge base that is used to contruct an argumentation framework
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whereas we investigate what are sensible translations of ADFs into conditional knowledge
bases. In [33] Strass presents a translation from an ASPIC-style defeasible logic theory to
ADFs. While actually Strass embeds one argumentative formalism (the ASPIC-style theory)
into another argumentative formalism (ADFs) and shows how the latter can simulate the
former, the process of embedding is similar to our approach.

9 Conclusion

In this paper we investigated the correspondence between abstract dialectical frameworks
and conditional logics based on the syntactic similarities between the two frameworks. We
have investigated seven different translations from ADFs into conditional logics and were
able to show the OCF- and Z-adequacy of five of these translations under the two-valued
semantics. Furthermore, we have shown that for certain classes of ADFs, these results carry
on to the preferred and stable semantics, whereas for the grounded semantics there is a
signifcant difference between the semantics of ADFs and conditional logics. Furthermore
we have shown several desirable properties of these translations.

Since this paper investigates connections between two highl-level formalisms imple-
menting the basic nature of two fields which have co-existed peacefully but largely
independent of each-other for at least 25 years, it sheds important light on the exact rela-
tionship between these two fields by showing precisely where these two formalisms behave
similarly and where these approaches are actually different. As such, this paper provides
a foundation for cross-fertilization between the two fields as well as a justification for
the adaption of ideas from conditional reasoning into ADFs. For example, in view of the
OCF- and Z-adequacy of five of the presented translations with respect to the two-valued
semantics, we can look at other inference relations for CL (e.g. c-representations [20],
lexicographic closure [24] or disjunctive rational entailment [6]) and compare these with
|∼∩

2mod. On the other hand, our results showed that for preferred, stable and grounded
semantics in general, the translations are neither OCF- nor Z-adequate. This can be used
as a justification for incorporating ideas from conditional reasoning into argumentative
formalisms. For example, one might extend ADFs to allow for conditional acceptance con-
ditions (e.g. “ if φ then normally s is accepted if and only if Cs is accepted”). Furthermore,
in view of the findings in Section 7.2, we plan to take the investigation of the correspon-
dences between ADFs and conditional logics beyond the level of beliefs (i.e. beyond κ(0)).
We plan to do this by defining conditional derivations in ADFs based on the Ramsey-test
[29], which says that a conditional (φ|ψ) is valid in a context if φ is believed after revision
of the knowledge context by ψ . To model such conditionals, we will make use of work on
revision of ADFs [26].
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