
Handling and Measuring Inconsistency in

Non-monotonic Logics

Markus Ulbricht1 and Matthias Thimm2 and Gerhard Brewka1

1Department of Computer Science, Leipzig University, Germany
2Institute for Web Science and Technologies, University of Koblenz-Landau, Germany

Abstract

We address the issue of quantitatively assessing the severity of inconsistencies
in non-monotonic frameworks. While measuring inconsistency in classical
logics has been investigated for some time now, taking the non-monotonicity
into account poses new challenges. In order to tackle them, we focus on
the structure of minimal strongly K-inconsistent subsets of a knowledge base
K—a sound generalization of minimal inconsistent subsets to arbitrary, pos-
sibly non-monotonic, frameworks which induces a generalization of Reiter’s
famous hitting set duality between minimal inconsistent and maximal consis-
tent subsets of a knowledge base. We propose measures based on this notion
and investigate their behavior in a non-monotonic setting by revisiting exist-
ing rationality postulates, analyzing the compliance of the proposed measures
with these postulates, and by investigating their computational complexity.
Motivated by the observation that a knowledge base of a non-monotonic
logic can also be repaired by adding formulas –whereas Reiter’s duality is
only concerned about removing–, we also investigate situations where we are
given potential additional assumptions to repair a knowledge base. For this,
we characterize the minimal modifications to a knowledge base in terms of a
hitting set duality.

Keywords: non-monotonic reasoning, inconsistency handling, inconsistency
measurement

1. Introduction

In applications such as decision-support systems, a knowledge base is usu-
ally compiled by merging the formalised knowledge of many different experts.
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It is unavoidable that different experts contradict each other and that the
merged knowledge base would become inconsistent. The field of Knowledge
Representation and Reasoning (KR) is the subfield of Artificial Intelligence
(AI) that deals with the issues of logical formalisations of information and
the modelling of rational reasoning behavior, in particular in light of incon-
sistent or uncertain information. One paradigm to deal with inconsistent
information is to abandon classical inference and define new ways of rea-
soning. Some examples of such formalisms are, e. g., paraconsistent logics
(Béziau et al., 2007), default logic (Reiter, 1980), answer set programming
(Gelfond and Leone, 2002), and, more recently, computational models of ar-
gumentation (Atkinson et al., 2017). Moreover, the fields of belief revision
(Hansson, 2001) and belief merging (Cholvy and Hunter, 1997; Konieczny
and Pérez, 1998) deal with the particular case of inconsistencies in dynamic
settings.

In the literature on inconsistency measurement, inconsistency measures
are functions that aim at assessing the severity of the inconsistency in knowl-
edge bases formalized in propositional logic (Hunter and Konieczny, 2004;
Grant and Hunter, 2006; Thimm, 2018). The basic intuition behind an in-
consistency measure nc is that the larger the inconsistency in K the larger
the value I(K). A simple but popular approach to measure inconsistency is
to take the number of minimal inconsistent subsets (Hunter and Konieczny,
2008), i. e., to define IMI(K) = |Imin(K)|, where Imin(K) is the set of all
minimal inconsistent subsets of a knowledge base K. This measure already
complies with many basic ideas of inconsistency measurement, in particular
IMI(K) = 0 iff K is consistent. By also taking the size and the relationships of
minimal inconsistent subsets into account, a wide variety of different incon-
sistency measures can be defined on top of that idea (Hunter and Konieczny,
2008; Jabbour et al., 2016; Jabbour and Sais, 2016).

Measuring inconsistency in non-monotonic logics has only recently gained
some attention (Ulbricht et al., 2016; Brewka et al., 2019) and a thorough
study is still needed. In this setting, a measure such as IMI is not applica-
ble as a consistent non-monotonic knowledge base K may contain minimal
inconsistent subsets. Recently, a refined notion of inconsistent subsets of
a knowledge base K of a possibly non-monotonic framework has been in-
troduced, called strong K-inconsistency (Brewka et al., 2017). The notion
of strong inconsistency generalizes classical inconsistency in a well-behaved
manner as it preserves many structural properties as e. g. the hitting set
duality with maximal consistent sets (Reiter, 1987). Moreover, this notion
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allows us to generalize existing inconsistency measures based on minimal
inconsistent sets to arbitrary logics, which is the topic of the present paper.

Research in inconsistency measurement is driven by rationality postulates,
i. e., desirable properties that should hold for concrete approaches. There is
a growing number of rationality postulates for inconsistency measurement
but not every postulate is generally accepted (Besnard, 2014, 2017). The
issue of measuring inconsistency in non-monotonic frameworks requires some
reconsideration compared to the classical setting. This becomes apparent
when considering the monotonicity postulate which is usually satisfied by
classical inconsistency measures and demands I(K) ≤ I(K′) whenever K ⊆
K′ holds, i. e., the severity of inconsistency cannot be decreased by adding new
information. However, in non-monotonic frameworks, adding information
may resolve conflicts. It is thus possible that K is inconsistent, while K′ is
not, so we would expect I(K′) < I(K) for any reasonable measure I in this
case.

In this paper, we provide a general account of measuring inconsistency
in logics that are not necessarily monotonic. We do so by relying on a very
general notion of a logic and we will phrase all our contributions in such a
general manner. More concretely, the main contributions of this paper can
be summarized as follows:

1. As the basis of our investigation, we consider generalized versions of
three measures based on minimal inconsistent sets (Section 3).

2. In order to assess the behavior of these measures, we develop rational-
ity postulates based on previous ones from the literature; some of the
postulates still make sense for a general, possibly non-monotonic logic,
but most of them require refinements (Section 4).

3. We analyze the measures with respect to the postulates (Section 5).

4. We assess the computational complexity of the measures by considering
natural decision and function problems (Section 6).

5. We extend the hitting set duality from previous work (Brewka et al.,
2019) to situations where knowledge bases can be repaired by adding
information; moreover the observation that conflicts may be resolved
due to additional formulas gives rise to the question of how to assess
inconsistencies of a knowledge base within the context of a larger one;
we analyze this setting in depth (Section 7).
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We introduce preliminaries in Section 2, discuss related work in Section 8,
and conclude in Section 9.

The paper combines and extends results from previous works (Ulbricht
et al., 2018; Ulbricht, 2019). In particular, a) the discussion on rationality
postulates is greatly extended, b) all full proofs are given, c) the discussion
on measuring inconsistent subsets in Section 7 is novel, and d) we give more
examples throughout the paper.

2. Background

In this paper, we will make use of a very general notion of a logic, but we
will provide examples in some concrete instantiations. For that we provide
the necessary background information on propositional logic (Section 2.1),
answer set programming (Section 2.2), and abstract argumentation (Sec-
tion 2.3). In Section 2.4 we give the general definition of a logic encompassing
the previously mentioned instantiations. In Section 2.5 and 2.6 we discuss
two important aspects of logics, which are the center of our work, namely
inconsistency and monotonicity, respectively.

2.1. Propositional Logic

We define propositional logic as usual, so let us briefly recall the standard
definitions. Let A be a (possibly infinite) set of propositional atoms, i. e., a
propositional signature. Any atom a ∈ A is a well-formed formula wrt. A. If
φ and ψ are well-formed formulas wrt. A, then ¬φ, φ∧ψ, and φ∨ψ are also
well-formed formulas wrt. A (we also assume that the usual abbreviations
→,↔ are defined accordingly). A literal is either an atom a or its negation
¬a. Let Lit(A) be the set of all literals over A. A formula φ is in conjunctive
normal form (CNF) if it is of the form φ = C1 ∧ . . . ∧ Cr where each Ck
is a clause, i. e., Ck is of the form Ck = ak,1 ∨ . . . ∨ ak,n(k) for literals ak,j
(for 1 ≤ k ≤ r and 1 ≤ j ≤ n(k)). If each Ck contains at most 3 literals,
then φ is in 3-CNF. We abuse notation and identify a formula φ of this form
with the set {C1, . . . , Cr} of clauses. Similarly, a formula φ is in disjunctive
normal form (DNF) if φ = C1 ∨ . . . ∨ Cr where Ck = ak,1 ∧ . . . ∧ ak,n(k) (for
1 ≤ k ≤ r and 1 ≤ j ≤ n(k)). If each Ck contains at most 3 literals, then φ
is in 3-DNF.

If ω : A→ {0, 1} is an assignment, then ω is extended to formulas in the
usual way:

• ω(¬a) = 1− a,
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• ω(φ ∧ ψ) = min{ω(φ), ω(ψ)} and

• ω(φ ∨ ψ) = max{ω(φ), ω(ψ)},

If ω(φ) = 1, then we say ω satisfies φ. A propositional knowledge base K is
a finite set of propositional formulas. As usual, ω satisfies K iff ω satisfies
φ for all φ ∈ K. We say K entails a formula φ, denoted by K � φ, iff each
assignment ω satisfying K also satisfies φ.

We call a knowledge base K consistent iff there is an assignment ω satis-
fying K, otherwise it is called inconsistent.

Example 2.1. Consider the propositional knowledge base K = {a, a →
b, ¬b, c, ¬c}. Obviously, no assignment satisfies K. Hence, K is inconsistent.

2.2. Answer Set Programming

Answer set programming (ASP) is a problem solving paradigm (Brewka
et al., 2011). It is based on logic programs under the answer set semantics
(Gelfond and Leone, 2002; Gelfond and Lifschitz, 1991), a popular non-mono-
tonic formalism for knowledge representation and reasoning which consists
of rules possibly containing default-negated literals. Inconsistencies occur in
ASP for two reasons (Schulz et al., 2015). First, the rules allow the derivation
of two complementary literals l and ¬l –also called incoherence (Madrid and
Ojeda-Aciego, 2010)– thus producing inconsistencies similar to propositional
logic. Second, due to the use of default negation it may happen that some
literal assumed to be false is again derived (called instability).

Let us consider logic programs with disjunction in the head of rules and
two kinds of negation, namely strong negation “¬” and default negation
“not”, under the answer set semantics (Gelfond and Leone, 2002; Gelfond
and Lifschitz, 1991). Such programs are also called extended disjunctive
databases (Gelfond and Lifschitz, 1991) or simply logic programs or A-Prolog
programs (Gelfond and Leone, 2002).

Assume we are given a (possibly infinite) set A of atoms. Then, a dis-
junctive logic program P (over A) is a finite set of rules r of the form

l0 ∨ ... ∨ lk ← lk+1, . . . , lm, not lm+1, . . . , not ln. (1)

where l0, . . . , ln are literals over A and 0 ≤ k ≤ m ≤ n. If k = 0 holds for
each rule r ∈ P , then we call P a normal logic program. When there is no
risk of confusion, we will simply speak of logic programs instead of disjunctive
logic programs resp. normal logic programs.
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For a rule r of the form (1) let head(r) = {l0, . . . , lk}, pos(r) = {lk+1, . . . , lm},
and neg(r) = {lm+1, . . . , ln}. If m = n = k, then r is written “head(r).” in-
stead of “head(r)← .” and if in addition k = 0 holds, then the rule is called
a fact.

Now we are ready to define answer sets of a given program.

Definition 2.2. Let P be a logic program over A such that neg(r) = ∅
holds for each rule r ∈ P . Then, a set M of literals is a model of P if for all
r ∈ P the following is true: If pos(r) ⊆ M , then head(r) ∩M 6= ∅. If M is
a model of P containing two complementary literals, then M is extended to
M = Lit(A). A model M is minimal if for all proper subsets M ′ of M , M ′

is not a model of P . A minimal model of P is called an answer set of P .

Example 2.3. Consider the program P :

P : a ∨ b.

The program has two answer sets {a} and {b}, as well as the model {a, b}.
The latter is no answer set.

Example 2.4. The program P

P : a ∨ b. a← b. c. ¬c.

possesses the answer set Lit(A).

We extend the definition of an answer set now to arbitrary logic programs.
For that assume we are given a logic program P and a set M of literals. We
call

PM = {head(r)← pos(r) | head(r)← pos(r), neg(r) ∈ P, neg(r) ∩M = ∅}

the reduct of P wrt. M . Observe that PM itself is a logic program and
neg(r) = ∅ holds for each r ∈ PM . Now we define:

Definition 2.5. Let P be a logic program over A. A set M of literals is an
answer set of P iff M is an answer set of PM .

Example 2.6. Let P be the program

P : a← not a.
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Let us consider M1 = ∅ and M2 = {a}. We find

PM1 = {a.} PM2 = {}.
In particular, both M1 and M2 are not answer sets of P , because M1 is not
a model of PM1 and M2 –although being a model of PM2– is not minimal.

Example 2.7. Now consider the following program P , which will be one of
our running examples:

P : a ∨ b. a← b.

c← not b. ¬c← not b.

The program has no answer set. To see this, consider the three candidates
{a}, {b} and {a, b} with

P {a} : a ∨ b. a← b. c. ¬c.
P {b} : a ∨ b. a← b.

P {a,b} : a ∨ b. a← b.

We see that {a} is not a model of P {a}, {b} is not a model of P {b} and {a, b}
is a model of P {a,b}, but not minimal.

Note that so far, we defined what an answer set is, no matter whether
it is consistent or not. Recall that if a model contains two complementary
literals, it is extended to Lit(A). Clearly, this should not be considered a
consistent answer set. Moreover, in order for a program to be consistent, it
should possess consistent answer sets. Hence, we define:

Definition 2.8. Let P be a logic program over A. An answer set M is
consistent if it does not contain two complementary literals. The program P
is consistent if it possesses at least one consistent answer set.

We thus see that the program from Example 2.7 is inconsistent.
Finally, we call a rule of the form

r : a← l1, . . . , lm, not lm+1, . . . , not ln, not a. (2)

where a is an atom that does not occur elsewhere in a given program P a
constraint. The intuitive meaning is that no answer set of P is allowed to
contain all literals l1, . . . , lm and none of the literals lm+1, . . . , ln. We use the
established shorthand

← l1, . . . , lm, not lm+1, . . . , not ln.

for constraints of the form (2).
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2.3. Abstract Argumentation Frameworks

In the original formulation (Dung, 1995), an abstract argumentation
framework (AF) F is a directed graph F = (A,R) where nodes in A rep-
resent arguments and the relation R models “attacks”, i. e., for a, b ∈ A, if
(a, b) ∈ R then a is a counterargument for b and we say a attacks b. Abstract
argumentation frameworks consider the problem of argumentation only at
this abstract level and do neither consider the inner structure of arguments
nor how the attack relation is derived. Semantics are given to an abstract ar-
gumentation framework F = (A,R) by identifying sets E ⊆ A of arguments
(called extensions) that can be “jointly accepted”. The literature offers vari-
ous approaches on how to define “jointly accepted”, see (Baroni et al., 2018)
for an overview.

Throughout this paper, we will focus on so-called stable semantics (Dung,
1995). This is an intuitive semantics that is easy to understand and thus
an appropriate tool to illustrate our results with examples from abstract
argumentation.

Definition 2.9. Let F = (A,R) be an AF. A set E ⊆ A is called stable
extension if

• a, b ∈ E implies (a, b) /∈ R,

• c ∈ A \ E implies there is an a ∈ E with (a, c) ∈ R.

We denote the set of stable extensions of an AF F by stable(F ).

The first item ensures that E is conflict free, i. e., there are no two “ac-
cepted” arguments that attack each other. The second item is what char-
acterizes stable semantics: each argument which is not included in E shall
be attacked by E. This is a rather decisive requirement, partitioning the
arguments in “accepted” and “rejected” ones.

Example 2.10. Consider the AF F = (A,R) where

A = {a, b, c, d} R = {(a, b), (b, a), (c, b), (c, c), (d, c)}.

The AF is depicted in Figure 1. The stable extensions of F are

stable(F ) = {{a, d}, {b, d}}
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dcba

Figure 1: The argumentation framework F from Example 2.10

In comparison to other semantics, stable semantics possess a rare prop-
erty, namely that an AF might have no extension at all. This is, for example
the case for the following simplified version of the previous AF.

Example 2.11. Consider the AF F = (A,R) (see Figure 2) with

A = {a, b, c} R = {(a, b), (b, c), (c, c)} :

The argument c attacks itself, so c /∈ E if E is conflict free. However, we see

cba

Figure 2: The argumentation framework F from Example 2.11

that in order to attack c, the argument b must be included in our extension
E, but then, a can neither be included in E nor attacked.

This motivates our definition of inconsistency of an AF: similar to ASP
where we call a program inconsistent whenever there is no (consistent) answer
set, we will call an AF inconsistent whenever there is no stable extension.

Definition 2.12. Let F be an AF. If stable(F ) = ∅, then we call F incon-
sistent wrt. stable semantics. If there is no risk of confusion, we will call F
simply inconsistent.

2.4. Logics - A General Approach

Most of the main results in this work are independent of the actual logic,
i. e., they hold for propositional logic, ASP, AFs and many other frameworks.
It is thus natural to phrase those results for an arbitrary but fixed logic L.

9



To achieve this, we require a general definition of a logic, covering a wide
range of frameworks as special cases.

We follow notation of previous work (Brewka et al., 2019) for a general
logical framework. In a nutshell, a logic L consists of syntax and semantics
of formulas. To model the syntax properly, we stipulate a set WF of so-
called well-formed formulas. Any knowledge base K is a (finite) subset of
WF. To model the semantics, we let BS be a set of so-called belief sets.
Intuitively, given a knowledge base K, the set of all formulas that can be
inferred from K is B ⊆ BS. To formalize this, a mapping ACC assigns the set
B of corresponding belief sets to each knowledge base K. For example, if our
knowledge base is a logic program P , then we want to assign all answer sets
of P to it. Hence, BS should contain all potential answer sets of P and we
expect ACC(P ) = {M | M is an answer set of P}. Finally, some belief sets
are considered inconsistent. We call the set of all inconsistent belief sets INC.
The inconsistent belief sets are supposed to model conflicting conclusions.
We thus expect them to be upward-closed in BS, i. e., if B,C ∈ BS with
B ⊆ C and B is in INC, then C ∈ INC as well.1

Hence, our definition of a logic is as follows.

Definition 2.13. A logic L is a tuple

L = (WF,BS, INC,ACC)

where WF is a set (of well-formed formulas), BS is a set (of belief sets),
INC ⊆ BS is upward closed wrt. BS and ACC : 2WF → 2BS assigns a collection
of belief sets to each subset of WF. A knowledge base K of L is a finite subset
of WF.

In order to familiarize us with this abstract definition of a logic, let us
illustrate how to model propositional logic, ASP and AFs under stable se-
mantics as a logic according to Definition 2.13.

Example 2.14 (Propositional logic). Let A be a set of propositional atoms.
We define a logic

LP
A =

(
WFP

A,BS
P
A, INC

P
A,ACC

P
A

)
.

1Do not confuse upward-closure of a belief set with monotonicity of the logic itself; we
assume this property also holds for non-monotonic logics.
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We let WFAP be the well-formed formulas over A (see the inductive definition
in Section 2.1) and BSAP the deductively closed sets of formulas, i. e.,

BSP
A =

{
K ⊆ WFP

A | K = {φ | K � φ}
}
.

The set INCP
A is supposed to contain the inconsistent belief sets. Since

INCP
A ⊆ BSAP , any set in INCP

A needs to be deductively closed as well. As
anything can be derived from an inconsistent knowledge base, we define
INCP

A =
{
WFP

A

}
. Finally, the mapping ACCP

A assigns to each K ⊆ WFP
A

the singleton set containing its set of theorems, i. e.,

ACCP
A(K) = {{φ | K � φ}}.

During the remainder of this work, we omit the superscript A whenever there
is no risk of confusion.

Example 2.15 (Disjunctive logic programs). Let A be a set of propositional
atoms. Logic programs under answer set semantics over A can be modeled
as logic

LASP
A =

(
WFASP

A ,BSASP
A , INCASP

A ,ACCASP
A

)
.

Here, WFASP
A is the set of all rules of the form (1) over A (see Section 2.2).

Moreover, BSASP
A consists of the sets of literals over A, i. e.,

BSASP
A = 2A

and INCASP
A = {Lit(A)}. The mapping ACCASP

A assigns to a logic program
P ⊆ WFASP

A the set of all answer sets of P , i. e.,

ACCASP
A (P ) =

{
M ∈ 2A |M is an answer set of P

}
.

As before we omit the superscript A whenever there is no risk of confusion.

It is a quite simple, yet pleasing observation that moving to a subclass of
a certain logic just requires restricting WF.

Example 2.16 (Normal logic programs). If we let WFASP∗

A ⊆ WFASP
A be the

set of all rules of the form (1) with k = 0, then

LASP∗

A =
(
WFASP∗

A ,BSASP
A , INCASP

A ,ACCASP
A

)
is the logic corresponding to normal logic programs under answer set seman-
tics.
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Example 2.17 (Abstract argumentation frameworks). Representing an AF
F = (A,R) as a logic according to Definition 2.13 requires some caution since
a knowledge base is supposed to be a subset of WF, but an AF is a tuple. In
order to obtain a simple and intuitive representation of AFs as a set, let us
assume a finite set A of arguments is given. Now, each well-formed formula
corresponds to one attack within the AF.

More precisely, we define a logic

LAAF
A =

(
WFAAF

A ,BSAAF
A , INCAAF

A ,ACCAAF
A

)
.

The set WFAAF
A is the set of all possible attacks, i. e., WFAAF

A = (A × A).
Note that by this treatment, we do not cover abstract argumentation frame-
works with isolated arguments, i. e., arguments that are neither attacked nor
attacking another argument. However, as those are always included in every
stable extension anyway, we do not consider them for reasons of simplicity.

Belief sets are arbitrary sets of arguments, i. e., BSAAF
A = 2A. We consider

no notion of an inconsistent set of arguments (recall that an AF F is incon-
sistent if stable(F ) = ∅). We thus let INCAAF

A = ∅. Hence, to represent an
AF F = (A,R), we fix the set A of arguments and let R be our knowledge
base. Now, the AF under consideration is F , but the knowledge base is the
set R. So we have

ACCAAF
A (R) = stable(F ), where F = (A,R).

We will thus sometimes abuse terminology and speak of the AF R instead of
F = (A,R) when A is given. As usual, we omit the superscript A whenever
it is implicitly clear.

The reader may verify that a wide spectrum of other logics can be modeled
as well, e. g., first-order logic, modal logic, probabilistic and fuzzy logics. This
also includes examples where INC has more than one element, and examples
where ACC(K) has elements in INC, but is not contained in INC. Consider
disjunctive rules with classical negation (no default negation) and define the
belief sets as minimal sets of literals closed under the rules, where a set of
literals S is closed under a disjunctive rule r if S contains at least one of the
disjuncts in the head of r whenever all body literals of r are in S; inconsistent
belief sets are those containing a complementary pair of literals. Consider
the rules {a ∨ b, c ← a,¬c ← a}. We obtain two belief sets, namely {b}
and {a, c,¬c}, the first consistent, the latter inconsistent. We do not see any
reason to exclude formalisms of this kind from our definition of logics.
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2.5. Inconsistency

Consider a logic L = (WF,BS, INC,ACC). Until now, the meaning of the
set INC—the inconsistent belief sets—is only intuitively clear. The definition
of inconsistency is quite natural: A knowledge base should possess at least
one consistent belief set in order to be consistent, otherwise we call it in-
consistent. For example, a logic program should have at least one consistent
answer set, as already noticed in Definition 2.8. A knowledge base K is thus
inconsistent if all belief sets ACC(K) are.

Definition 2.18. A knowledge base K is called inconsistent iff ACC(K) ⊆
INC. Let I (K) denote the collection of all inconsistent subsets of K, that is

I (K) = {M ⊆ K | ACC(M) ⊆ INC}

Let Imin(K) be the set of all minimal (wrt. set inclusion) inconsistent subsets
of K, i. e., Imin(K) = {M ∈ I (K) | there is no M ′ ∈ I (K) with M ′ (M}.

To be precise, inconsistency is a property a knowledge base has with
respect to a given logic L. We should thus write Imin(K)L instead of Imin(K).
However, in most cases the underlying logic will be clear, so we may omit
the superscript without risking confusion.

Now let us discuss the above definition of inconsistency. For proposi-
tional logic, inconsistency means that every formula can be inferred from a
knowledge base.

Example 2.19 (Inconsistency in propositional logic). Consider the propo-
sitional knowledge base K = {a., a → b., ¬b., c., ¬c.} from above. Recall
that K entails a contradiction, so by definition of propositional logic we have
ACCP(K) = {{a,¬a, b, . . .}} =

{
WFP

}
. In particular, ACCP(K) ⊆ INC.

Thus, K is as expected inconsistent according to Definition 2.18.

Observe that our definition of inconsistency also captures cases where a
given knowledge base K has no belief set at all. Formally, if ACC(K) = ∅,
then ACC(K) ⊆ INC holds trivially. At a first glance, this may look like an
overlooked technical detail. It is however intended and of importance for
many non-monotonic frameworks, including ASP and AFs. The following
example illustrates such a case.
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Example 2.20 (Inconsistency in ASP). Consider again the logic program
P given as

P : a ∨ b. a← b.

c← not b. ¬c← not b.

As pointed out in Example 2.7, P has no answer set. Therefore,

ACCASP(P ) = ∅ ⊆ INCASP

and hence P is considered inconsistent as well.

In fact, this is a quite common reason for a logic program to be incon-
sistent. In the original formulation, a logic program only contains atoms of
the form “a” and no literals of the form “¬a”, so there is no notion of incon-
sistent answer sets. Hence, a program of this kind can only be inconsistent
when possessing no answer set. Inconsistency in AFs is similar. Due to our
definition, a given AF F is considered inconsistent whenever stable(F ) = ∅.

Example 2.21 (Inconsistency in AFs). Let us consider again the AF F =
(A,R) depicted in Figure 2 above. Recall that we assume A to be implicit,
so our knowledge base is R = {(a, b), (b, c), (c, c)}. Since F has no stable
extension we obtain

ACCAAF(R) = ∅ ⊆ INCAAF.

The framework is thus considered inconsistent, as expected.

Having established a formal meaning of inconsistency, our definition of
consistency is straightforward.

Definition 2.22. A knowledge base K is consistent if ACC(K) * INC, i. e., it
is not inconsistent. We let C (K) and Cmax (K) denote the set of all consistent
and maximal (wrt. set inclusion) consistent subsets of K, respectively.

2.6. Monotonicity

As already mentioned, the central issue of this work is to investigate the
behavior of inconsistency in non-monotonic logics. We thus require a formal
definition of a monotonic logic in our setting. The intuitive understanding of
monotonicity is that a conclusion which is inferred from a knowledge base K
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is never withdrawn due to additional information. We want to formalize this
idea for our general logic while taking the usual reasoning modes, i. e., skepti-
cal and credulous reasoning, into account. Our definition generalizes the one
of Brewka and Eiter (2007). Whereas the latter requires monotonic logics
to associate unique belief sets to knowledge bases, our definition shows that
a reasonable notion of monotonicity can be defined for logics with multiple
belief sets.

Definition 2.23. A logic L = (WF,BS, INC,ACC) is skeptically monotonic
or simply monotonic whenever K ⊆ K′ ⊆ WF implies:

• if B′ ∈ ACC(K′) then B ⊆ B′ for some B ∈ ACC(K).

The name “skeptically” monotonic is motivated by the observation that
in a skeptically monotonic logic, skeptical reasoning based on the intersection
of belief sets is monotonic. More precisely, we have:

Proposition 2.24. Let L be a skeptically monotonic logic. If K and K′ are
consistent knowledge bases and K ⊆ K′, then⋂

B∈ACC(K)

B ⊆
⋂

B′∈ACC(K′)

B′.

Proof. Let p ∈
⋂
B∈ACC(K) B, i. e., p ∈ B for each B ∈ ACC(K). Now consider

an arbitrary B′ with B′ ∈ ACC(K′). Due to skeptical monotonicity, there is
a B ∈ ACC(K) with B ⊆ B′. We thus have p ∈ B ⊆ B′, so p ∈ B′. Since B′

was an arbitrary set in ACC(K′), p ∈
⋂
B′∈ACC(K′) B

′.

In this sense, the natural counterpart would be a notion of a “credulously”
monotonic logic. This is indeed possible by requiring B ⊆ B′ for some
B′ ∈ ACC(K′) if B ∈ ACC(K). However, within the scope of this work the
crucial monotonicity notion is the one given in Definition 2.23. The reason
is that it ensures that conflicts within a knowledge base cannot be resolved
by adding new information (see Lemma 2.29 below).

When there is no risk of confusion, we will call a knowledge base mono-
tonic whenever its associated logic is. This is a slight abuse of terminology
since monotonicity is a property of a logic, not of a knowledge base. However,
leaving the actual logic implicit does no harm in many cases, and we prefer
the simpler terminology.
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Example 2.25 (Monotonicity in propositional logic). Consider the proposi-
tional knowledge bases K = {a ∧ b} and K′ = {a ∧ b, b → c.}. Observe that
both ACCP(K) as well as ACCP(K′) are singletons. More precisely,

ACCP(K) = {{a, b, a ∧ b, a ∨ b, a ∨ c, . . .}},
ACCP(K′) = {{a, b, c, c, a ∧ b, a ∧ c, b ∧ c, . . .}}.

So set B = {a, b, a∧b, a∨b, a∨c, . . .} and B′ = {a, b, c, c, a∧b, a∧c, b∧c, . . .}.
Since B ⊆ B′ we see monotonicity according to Definition 2.23. As this is
the case for any two propositional knowledge bases K ⊆ K′, we see that this
logic is skeptically monotonic.

The following example illustrates that ASP is non-monotonic. The intu-
itive reason is as follows: Given two logic programs P ⊆ P ′, it might happen
that P ′ possesses a novel answer set in the sense that it is not a superset
of an answer set of P . Within ASP, this is a common feature. It is thus
sufficient to consider a rather simple example.

Example 2.26 (Monotonicity in ASP). Consider P ⊆ P ′ given as follows:

P : a← not b. P ′ : a← not b.

b← not a.

We have

ACCASP(P ) = {{a}}, ACCASP(P ′) = {{a}, {b}}.

If we set B′ = {b} ∈ ACCASP(P ′), then there is no B ∈ ACCASP(P ) with
B ⊆ B′. ASP is thus not skeptically monotonic.

It is also a straightforward observation that AFs are non-monotonic as
well.

Example 2.27 (Monotonicity in AFs). Recall the AF from Figure 2 which
we represent as knowledge base R = {(a, b), (b, c), (c, c)}. Consider R′ = R ∪
{(a, c)} which yields an AF with one additional attack. We see ACCAAF(R) =
{} and ACCAAF(R′) = {{a}}. If we set B′ = {a}, then there is no B ∈
ACCAAF(R) satisfying B ⊆ B′ which is trivial since ACCAAF(R) is empty.
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Example 2.28. We already mentioned that skeptical monotonicity implies
monotonicity of sceptical reasoning (see Proposition 2.24) above. To see this
observation at work, let us consider the following example: Let us denote
by WFASP−not rules of the form (1) with m = n, i. e., rules r such that
neg(r) = ∅. The induced logic

LASP−not =
(
WFASP−not ,BSASP, INCASP,ACCASP

)
is skeptically monotonic. Now consider for example the programs P and P ′

with P ⊆ P ′

P : a ∨ b. P ′ : a ∨ b.
c← a. c← a. d← a.

c← b. c← b. e← b.

By ACCASP(P ) = {{a, c}, {b, c}} we see that c is skeptically accepted in P .
By skeptical monotonicity of this logic, given M ′ ∈ ACCASP(P ′), there is
M ∈ ACCASP(P ) with M ⊆ M ′. Indeed, ACCASP(P ′) contains {a, c, d} and
{b, c, e} which are supersets of {a, c} and {b, c}, respectively. It can hence
immediately be seen that c is also skeptically accepted in P ′.

Lemma 2.29 (Brewka et al., 2019). Let L = (WF,BS, INC,ACC) be mono-
tonic and K ⊆ K′. If K is inconsistent, then so is K′.

Throughout this work, our results regarding monotonic logics depend
especially on the above Lemma 2.29 which states that inconsistency survives
moving to supersets. Regarding inconsistency in non-monotonic logics, the
loss of this property is the central issue we need to handle.

3. Measures for Strong Inconsistency

We can now define strong inconsistency (Brewka et al., 2019) for our
general setting, which is the central notion used for the measures developed
in this paper.

Definition 3.1. For H,K ⊆ WF with H ⊆ K, H is called strongly K-
inconsistent if H ⊆ H′ ⊆ K implies H′ is inconsistent. The set H is simply
called strongly inconsistent if there is no risk of confusion. Denote by SI (K)
and SImin(K) the set of all strongly inconsistent and all minimal (wrt. set
inclusion) strongly inconsistent subsets of K, respectively.
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In other words, a subset of a knowledge base K is strongly inconsistent if
all its supersets within K are inconsistent as well. Intuitively, one can think
of a conflict that cannot be resolved by formulas in K itself.

Example 3.2. Consider again K = {a, a→ b, ¬b, c, ¬c}. Recall that {c,¬c}
is an inconsistent subset of K. Of course, any set H′ with {c,¬c} ⊆ H′ ⊆ K
is inconsistent as well. Hence, {c,¬c} is strongly K-inconsistent.

More generally, Lemma 2.29 ensures that classical and strong inconsis-
tency coincide whenever our logic is monotonic (Brewka et al., 2019). Let us
thus consider examples involving non-monotonic logics to see the definition
at work.

Example 3.3. Consider again the logic program P from above.

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Recall that H = {c ← not b., ¬c ← not b.} is an inconsistent subset of P .
There is a consistent program H ′ with H ⊆ H ′ ⊆ P , namely

H ′ : a ∨ b. c← not b. ¬c← not b.

Hence, H is not strongly inconsistent. However,

H ′′ : a← b. c← not b. ¬c← not b.

is strongly inconsistent; even minimal. In particular, there is no other mini-
mal strongly inconsistent set, therefore

SImin(P ) = {{a← b., c← not b., ¬c← not b.}}.

Example 3.4. Recall the AF depicted in Figure 2 which corresponds to the
knowledge base R = {(a, b), (b, c), (c, c)}. We already found the inconsistent
subset {(c, c)}. However, the framework over A = {a, b, c} with attacks
{(b, c), (c, c)} has a stable extension, namely {b}. Hence, the set {(c, c)} of
attacks is not strongly inconsistent. The reader may verify that

SImin(R) = {{(a, b), (c, c)}}.
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It has been shown that the notion of strong inconsistency faithfully gen-
eralizes classical inconsistency to arbitrary logics (Brewka et al., 2019). In
particular, the notions coincide for monotonic logics and the existence of a
strongly inconsistent subset of K is a necessary and sufficient condition for
inconsistency of K itself. Moreover, removing from K any minimal hitting
set2 of SImin(K) yields a maximal consistent subset of K, which is also known
as the hitting set duality in classical logics (Reiter, 1987). We refer to our
previous work (Brewka et al., 2017) for a more thorough discussion of strong
inconsistency.

We now introduce the inconsistency measures we are going to consider
throughout most of this paper. Assume an arbitrary but fixed logic L. In clas-
sical inconsistency measurement, minimal inconsistent subsets of a knowledge
base play an important role since they can be seen as the “atomic conflicts”
within K. A rather simple but still popular approach to measure inconsis-
tency is thus taking the value |Imin(K)|. The notion of strong inconsistency
facilitates the following generalization of this measure to arbitrary logics.

Definition 3.5. Define IMSI : 2WF → R∞≥0 via IMSI(K) = |SImin(K)|.

We want to emphasize that the co-domain of IMSI (and the other measures
we introduce as well) is explicitly restricted to non-negative numbers. The
reason is that inconsistency measures aim at generalizing the binary view
of “consistency” vs. “inconsistency”. For an inconsistency measure I, the
intuitive meaning of I(K) = 0 is that K is consistent and I(K′) ≤ I(K′′)
means K′′ is “at least as inconsistent as” K′. Since an inconsistency measure
does not distinguish between consistent knowledge bases, there is no need for
negative values.

One drawback of the approach from the previous definition is that the
size of a set H ∈ SImin(K) is not taken into account. Usually, a minimal
inconsistent subset is considered more severe the smaller it is, i. e., the fewer
formulas are required in order to yield a contradiction. A famous example
to illustrate this is the so-called lottery paradox Knight (2001).

Example 3.6. Assume there is a lottery with n tickets. Consider atoms
t1, . . . , tn with the intuitive meaning that ti is true iff the i-th ticket wins.
Assume the lottery is fair and one ticket wins, i. e., t1 ∨ . . . ∨ tn. However,

2A set S is called a hitting set of a set of sets M = {M1, . . . ,Mn} iff S ∩Mi 6= ∅ for
i = 1, . . . , n. It is minimal of no proper subset of it is a hitting set.
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considering an individual ticket ti it appears reasonable to assume that it
loses, so we have ¬t1, . . . ,¬tn. We thus obtain the inconsistent knowledge
base Kn = {t1 ∨ . . . ∨ tn,¬t1, . . . ,¬tn}. Now consider a lottery where n is
quite small, e.g., n = 1. In this case, the assumption that t1 loses is not as
reasonable anymore given that at least one ticket wins. However, the bigger
n is, the more reasonable this assumption becomes, e.g., n = 106 yields a
negligible chance for each ti to win. Hence, even though both K1 and K106

are inconsistent, the latter appears quite reasonable while the former is hardly
reasonable.

So commonly, the bigger a minimal inconsistent set is, the less severe
the conflict is viewed. This is obviously ignored by IMSI. For example,
IMSI(Kn) = 1 for any n for the knowledge base Kn from the lottery para-
dox. The measure IMIc has been proposed to take this into account (Hunter
and Konieczny, 2008). Making use of strong inconsistency, we obtain the
following measure:

Definition 3.7. Define IMSIC : 2WF → R∞≥0 via IMSIC(K) =
∑
H∈SImin (K)

1
|H| .

Instead of counting the number of sets in SImin(K), one could also consider
the number of formulas which are considered problematic. Based on an
existing measure (Grant and Hunter, 2011), we have the following, quite
simple approach:

Definition 3.8. Define Ip : 2WF → R∞≥0 via Ip(K) = |
⋃
H∈SImin (K)H|.

Note that there are further measures based on minimal inconsistent sets
(Hunter and Konieczny, 2008; Jabbour and Sais, 2016; Jabbour et al., 2016).
An investigation of generalizations of those is left for future work.

Example 3.9. Consider our running examples from the previous section,
i. e., the propositional knowledge base K = {a, a→ b, ¬b, c, ¬c} with

SImin(K) = {{a, a→ b, ¬b}, {c, ¬c}},

the logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.
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with

SImin(P ) = {{c← not b., ¬c← not b., a← b.}}

and the argumentation framework over A = {a, b, c} represented by the
knowledge base R = {(a, b), (b, c), (c, c)} with

SImin(R) = {{(a, b), (c, c)}}.

The inconsistency measures from above assign the following values:

IMSI(K) = 2 IMSIC(K) = 5/6 Ip(K) = 5

IMSI(P ) = 1 IMSIC(P ) = 1/3 Ip(P ) = 3

IMSI(R) = 1 IMSIC(R) = 1/2 Ip(R) = 2

We observe that IMSIC and Ip differ for P and R even though both possess
one minimal strongly inconsistent subset.

Whenever we are given an inconsistency measure I, we oftentimes call
the value I(K) the inconsistency degree of a knowledge base K.

4. Rationality Postulates for General Logics

We are going to revisit rationality postulates for inconsistency measures
from the literature and phrase them within the context of an arbitrary, pos-
sibly non-monotonic, logic. We will start by considering the four postu-
lates that a basic inconsistency measure should have (Hunter and Konieczny,
2010). We will then continue our investigation with a collection of other pos-
tulates that can be lifted to our general setting. If not stated otherwise, we
assume an arbitrary but fixed logic L = (WF,BS, INC,ACC) and an inconsis-
tency measure I : 2WF → R∞≥0 for the remainder of this section.

4.1. Basic Postulates

The most basic (and undisputed) property that an inconsistency measure
should have is the ability to distinguish between consistency and inconsis-
tency, i. e., I(K) = 0 if and only if K is consistent. Undoubtedly this makes
sense in non-monotonic frameworks as well.

Consistency For any knowledge base K ⊆ WF, I(K) = 0 if and only if K
is consistent.
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In contrast to non-monotonic logics, for consistent K the consistency postu-
lates implies I(H) = 0 for each H ⊆ K if the underlying logic is monotonic.
This follows immediately from Lemma 2.29.

Proposition 4.1. If L is monotonic, K is consistent and I satisfies consis-
tency, then we also have I(H) = 0 for each H ⊆ K.

Since we do not see any reason to doubt the consistency postulate for our
setting, let us continue with the second one, which is monotonicity. Mono-
tonicity is a fairly accepted postulate which formalizes the intuition that
moving from a monotonic knowledge base to a superset should not decrease
the inconsistency degree since adding information to a knowledge base does
not resolve conflicts.

Monotonicity If K and K′ are knowledge bases, then I(K) ≤ I(K ∪ K′).

In non-monotonic frameworks, monotonicity does not make sense because
additional information might resolve some conflicts or even render K consis-
tent. We should thus only expect a monotonic behavior if K′ does not resolve
conflicts occurring in K. More precisely, if H ⊆ K is strongly inconsistent,
i. e., H ∈ SI (K), then there should be no subset H′ ⊆ K′ such that H ∪H′
is consistent. Otherwise, if H ∪ H′ is consistent, then it is unclear whether
H even contributes to inconsistency of K ∪ K′, which makes a comparison
between I(K) and I(K ∪ K′) questionable. To illustrate this, consider the
following example:

Example 4.2. Recall our logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Consider P ′ = {b., d., ¬d.} containing “b.”, which resolves the conflict
within P : The subprogram H ∈ SImin(P ) with H = {c ← not b., ¬c ←
not b., a ← b.} is not strongly (P ∪ P ′)-inconsistent due to the consistent
superprogram H ∪H ′ with H ′ = {b.} ⊆ P ′:

H ∪H ′ : c← not b. ¬c← not b. a← b. b.

In particular, P ∪ {b.} is consistent as well, but P ′ involves the conflict “d.”
vs. “¬d.”. We have SImin(P ∪ P ′) = {{d., ¬d.}} which only represents the
conflict within P ′. So the comparison between inconsistency of P and P ∪P ′
does not seem to make sense.
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We thus need to adjust the monotonicity postulate in order to obtain a
meaningful one for non-monotonic frameworks. Intuitively, we do not want
monotonicity to hold for each additional piece of information. We have to
restrict the postulate to the case where the additional information has no
influence on the conflicts contained in the original knowledge base; in other
words, where the original conflicts are preserved by the new information. We
have already seen that the conflicts relevant for non-monotonic frameworks
are those that manifest themselves as strongly inconsistent subsets. This
leads to the following notion of conflict preservation:

Definition 4.3. Let K and K′ be knowledge bases. We say that K′ preserves
conflicts of K if H ∈ SI (K ∪ K′) for any H ∈ SI (K).

We observe that this property transfers to minimal strongly inconsistent
subsets as well:

Proposition 4.4. If K and K′ are knowledge bases and K′ preserves conflicts
of K, then SImin(K) ⊆ SImin(K ∪ K′).

Proof. Let H ∈ SImin(K). Since K′ preserves conflicts, H ∈ SI (K∪K′). Now
assume there is a set H′ ( H with H′ ∈ SI (K ∪ K′). Since H′ ⊆ H, we
have H′ ∈ SI (K), yielding a contradiction as H was assumed to be minimal.
Hence H ∈ SImin(K ∪ K′).

Let us now consider our running examples again to see the definition at
work. We first start with the monotonic propositional knowledge base from
before. As the reader may already expect, monotonicity renders the property
of preserving conflicts trivial.

Example 4.5. Recall K = {a, a→ b, ¬b, c, ¬c}. Any propositional knowl-
edge base K′ preserves conflicts of K due to monotonicity of the logic, so we
have {c,¬c} ∈ SImin(K ∪ K′).

More generally, the following statement can be easily inferred from Lemma 2.29.

Proposition 4.6. Let L be monotonic and K and K′ be two knowledge bases
of L. Then K′ preserves conflicts of K.

Example 4.7. Recall the logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.
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The program P ′ = {b., d., ¬d.} from Example 4.2 does not preserve conflicts
of P as we already noted above. More precisely, we saw that H = {c ←
not b., ¬c ← not b., a ← b.} is not strongly (P ∪ P ′)-inconsistent since P ′

contains the fact “b.”.

Example 4.8. Now consider the running example AF F = (A,R) with
A = {a, b, c} represented by the knowledge base R = {(a, b), (b, c), (c, c)}. A
quite simple choice of a knowledge base R′ which preserves conflicts of R is
R′ = {(c, b)}, which induces the AF F ′ = (A,R′):

cbaF : cbaF ′:

We see that SImin(R ∪ R′) = {{(a, b), (c, c)}} = SImin(R). The AF repre-
sented by R ∪ R′ is the following:

cba

With the notion of conflict preservation at hand, we are ready to formulate
the restriction of monotonicity we were aiming for. The obvious idea is to
require K′ not to resolve conflicts within K.

Strong Monotonicity If K′ preserves conflicts of K, then I(K) ≤ I(K ∪
K′).

The name strong monotonicity emphasizes the role of strongly inconsistent
subsets. It is obvious, though, that the new postulate actually weakens mono-
tonicity due to its additional precondition. From Prop. 4.6 we immediately
obtain that for monotonic logics strong and regular monotonicity coincide,
since in these logics additional information is always conflict preserving.

We now turn to the free formula independence postulate (Hunter and
Konieczny, 2010). Intuitively, a formula α of a knowledge base K is free in K
if it does not cause any conflicts. The classical definition of a free formula—
which we also use a starting point for our discussion—is a formula that is
not a member of any minimal inconsistent subset. Mu (2019) provides an-
other interpretation where “freeness” is not based on minimal inconsistency
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on a formula level but on an atom level (using three-valued semantics to
discover which atoms take part in inconsistencies). In any interpretation, a
free formula should thus not be “blamed” for inconsistency of K and hence
not change the inconsistency degree. We consider two ways to generalize the
classical definition of a free formula to arbitrary logics, which we believe to
be reasonable. We leave an investigation of Mu’s interpretation for future
work.

Consider a monotonic logic. Formally, a free formula α ∈ K is one that
does not occur in a minimal inconsistent subset H ∈ SImin(K) = Imin(K).

Definition 4.9. Let K be a monotonic knowledge base. A formula α ∈ K is
called free if

α ∈ K \
⋃

H∈Imin (K)

H. (3)

Denote by Free(K) the set of all free formulas of K.

This notion matches the intuition that α is not responsible for any conflict
within K. Whenever there is a consistent subset H ⊆ K, then H ∪ {α}
is consistent as well, so α does not cause any harm. In fact, for classical
inconsistency measurement, the postulate free formula independence—which
requires I(K) = I(K \ {α}) for α ∈ Free(K)—requires that free formulas do
not play a role in assessing the inconsistency degree.

Example 4.10. Recall that the propositional knowledge base K = {a, a→
b, ¬b, c, ¬c} possesses Imin(K) = {{a, a→ b, ¬b}, {c, ¬c}}. Hence it does not
contain any free formula since every formula occurs in a minimal inconsistent
subset.

In order to generalize the postulate free-formula independence, let us
first take a look at an alternative way to define free formulas. Assume we are
given a monotonic logic. Recall Reiter’s hitting set duality (Reiter, 1987),
i. e., K \ S ∈ Cmax (K) iff S is a minimal hitting set of Imin(K). This strong
connection between minimal inconsistent and maximal consistent subsets
facilitates a definition of free formulas via the maximal consistent subsets of
K. Indeed,

K \
⋃

H∈Imin (K)

H =
⋂

H∈Cmax (K)

H (4)
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holds and hence, a formula α is free iff it occurs in every maximal consistent
subset of K. We note that the intuition is the same: Since α can be added
to any subset H ⊆ K without introducing inconsistency, it occurs in any
H ∈ Cmax (K). For the purpose of our generalization to non-monotonic logics,
we observe that (4) is a corollary of Reiter’s hitting set duality, which has
been generalized to arbitrary logics (Brewka et al., 2019) (Theorem 3.6). We
thus expect a similar result when replacing Imin(K) with SImin(K). Indeed:

Corollary 4.11. Let K be a knowledge base. Then

K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Proof. “⊆”: Let α ∈ K \
⋃
H∈SImin (K)H. Hence, α does not occur in any

minimal hitting set of SImin(K) and thus, due to Theorem 3.6 of Brewka et
al. (2019), it occurs in all maximal consistent sets H ∈ Cmax (K).

“⊇”: Now assume α /∈ K \
⋃
H∈SImin (K)H, i. e., α ∈ H for a minimal strongly

inconsistent set H ∈ SImin(K). Hence, H \ {α} /∈ SImin(K) and thus, there
is a maximal consistent set H′ with H \ {α} ⊆ H′. This means α /∈ H′
because otherwise, H′ would contain a strongly inconsistent set. It follows
that α /∈

⋂
H∈Cmax (K)H.

Corollary 4.11 suggests a very natural and smooth generalization of free
formulas, which lifts the intuitive as well as the formal meaning with respect
to both aspects: A free formula α does not introduce conflicts (“α /∈ H
for each H ∈ SImin(K)”), with “conflict” of a non-monotonic knowledge
base being a minimal strongly inconsistent subset; and α can be added to
any subset of K without introducing inconsistency (“α ∈ H for each H ∈
Cmax (K)”). So we define:

Definition 4.12. Let K be a knowledge base. A formula α ∈ K is called
free with respect to strong inconsistency (or SI-free or simply free if there is
no risk of confusion) if

α ∈ K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Denote by FreeSI (K) the set of all SI-free formulas of K.
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Example 4.13. Consider our program P again:

P : a ∨ b. a← b.

c← not b. ¬c← not b.

As already discussed, SImin(P ) = {c ← not b., ¬c ← not b., a ← b.}. We
thus obtain FreeSI (P ) = {a ∨ b.}. To see Corollary 4.11 at work we recall

Cmax (P ) = {{a ∨ b., a← b., c← not b.},
{a ∨ b., a← b., ¬c← not b.},
{a ∨ b., c← not b., ¬c← not b.}}.

Since “a ∨ b.” is the only formula occurring in all maximal consistent sets,
we obtain

⋂
H∈Cmax (P ) H = {a ∨ b.}.

Example 4.14. For the AF represented by R = {(a, b), (b, c), (c, c)} we ob-
tain the set FreeSI (R) = {(b, c)}.

As expected, FreeSI (K) generalizes Free(K) to non-monotonic logics in
the sense that they coincide in the monotonic case.

Proposition 4.15. Let K be a monotonic knowledge base. Then, Free(K) =
FreeSI (K).

Proof. Due to monotonicity we have Imin(K) = SImin(K). In particular,

Free(K) = K \
⋃

H∈Imin (K)

H = K \
⋃

H∈SImin (K)

H = FreeSI (K),

which proves our claim.

Finally, let us mention that FreeSI (K) can also be defined without explic-
itly mentioning minimality.

Proposition 4.16. Let K be a knowledge base. If α ∈ K, then α ∈ FreeSI (K)
iff

∀H ⊆ K : H /∈ SI (K)⇒ H∪ {α} /∈ SI (K). (5)
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Proof. The implication “⇐” is trivial, so we show “⇒”: Assume (5) is wrong,
i. e., there is a set H /∈ SI (K) with H ∪ {α} ∈ SI (K). Then H ∪ {α} con-
tains a minimal strongly inconsistent set H′. Observe that α ∈ H′, because
otherwise, H′ has a consistent superset as it is the case for H. Since H′ is
minimal, it holds that H′ \ {α} /∈ SImin(K), but H′ ∈ SImin(K) and thus,
α /∈ FreeSI (K).

The similarities between Free(K) and FreeSI (K) motivate a rationality
postulate similar in spirit to free formula independence. Analogously, one
might expect that adding an SI-free formula α to a knowledge base K will
not increase the inconsistency degree ofK, since it does not introduce strongly
inconsistent subsets. It could still resolve conflicts, motivating the following
postulate, similar to free formula dilution (Mu et al., 2011):

SI-Free If α ∈ FreeSI (K), then I(K) ≤ I(K \ {α}).

However, SI-free formulas are not as well-behaving as free formulas in mono-
tonic logics. The issue we need to take into account is that ordinary inconsis-
tency of a subset H ⊆ K merely depends on H, where strong inconsistency
is a property H has with respect to the whole knowledge base K. Removing
an SI-free formula α ∈ K might thus change the structure of SImin(K) in an
unexpected way. To see this, let us consider the following example.

Example 4.17. Let P be the following logic program:

P : a← not a, b. a← not c. d← not d. b. c. d.

The reader may verify that

SImin(P ) = {{a← not a, b., b., c.}}.

In particular,

r1 = d.

r2 = a← not c.

are in FreeSI (P ). However, removal of r1 turns {d← not d.} into a strongly
inconsistent subset, while removal of r2 renders “c.” irrelevant regarding the
conflicts of P , so

SImin(P \ {r1, r2}) = {{a← not a, b., b.}, {d← not d.}}.

We make the following observations:
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• the conflict “d← not d.” appears,

• the conflict {a← not a, b., b., c.} does not rely on “c.” anymore since
the option to infer a is removed,

• the number of minimal conflicts increased.

It is thus hard to predict what happens when an SI-free formula is removed
from a given knowledge base. In particular, we do not have SImin(K) =
SImin(K \ {α}) for each α ∈ FreeSI (K) which means that not even IMSI—a
measure based on minimal strongly inconsistent subsets—satisfies the SI-free
postulate (cf. Section 5 below). Another observation regarding FreeSI (K) is
relevant: Although free formulas are not supposed to participate in minimal
conflicts, the set FreeSI (K) itself is in general not consistent.

Example 4.18. Consider the logic program

P : a. ¬a. ← not a, not ¬a.

We see that SImin(P ) = {{a., ¬a.}} and hence, FreeSI (P ) = {← not a, not ¬a.}
is an inconsistent program.

The previous considerations suggest that this notion depends heavily
on the particular knowledge base. We will thus continue by introducing
a stronger notion.

For this, we consider an alternative to the definition of free formulas in a
way that they “do not induce strong inconsistency”. Let us have a look at the
monotonic case again. Since a free formula α does not induce inconsistency,
one can see that α satisfies

∀H ⊆ K : H ∈ C (K)⇒ H∪ {α} ∈ C (K). (6)

In a monotonic framework, (6) formalizes that α is irrelevant regarding con-
flicts of K as it cannot turn a consistent set H ⊆ K into an inconsistent one.
In a non-monotonic logic, α could resolve conflicts, so we need to strengthen
the condition:

∀H ⊆ K : H ∈ C (K)⇔ H∪ {α} ∈ C (K). (7)

This motivates the following definition.
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Definition 4.19. Let K be a knowledge base. A formula α ∈ K is called
neutral if it satisfies

∀H ⊆ K : H ∈ C (K)⇔ H∪ {α} ∈ C (K).

The neutral formulas in K are denoted by Ntr(K).

It is easy to see that both notions coincide for monotonic logics.

Proposition 4.20. If K is monotonic, then Ntr(K) = Free(K).

Proof. This is clear due to Lemma 2.29.

Note that in general, Ntr is a stronger notion than FreeSI .

Proposition 4.21. If K is a knowledge base, then Ntr(K) ⊆ FreeSI (K)

Proof. Let α ∈ Ntr(K). Due to (6), it can be added to any setH ⊆ K without
introducing inconsistency. Hence, α ∈

⋂
H∈Cmax (K)H = FreeSI (K).

We note that in contrast to SI -free formulas, the neutral ones do not
make use of strong inconsistency. Even though the hitting set duality from
Theorem 3.6 of Brewka et al. (2019) suggests to utilize this notion, the neutral
formulas are still quite well-behaving. The reason is that neutral formulas do
not depend as much on the structure of the knowledge base and vice versa,
do not influence K and in particular the structure of SImin(K).

Proposition 4.22. Let K be a knowledge base and let α ∈ Ntr(K). Then,

SImin(K) = SImin(K \ {α}).

Proof. By definition of Ntr(K) we have H ∈ SI (K) if and only if H ∈
SI (K \ {α}) for any set H ⊆ K \ {α}. Hence, the claim follows since no set
H ∈ SImin(K) contains α.

Moreover, in contrast to FreeSI (K), the neutral formulas always form
consistent subsets of a knowledge base, as long as the empty knowledge base
is considered consistent. Without proof, we state the following obvious fact:

Proposition 4.23. If L is a logic such that ∅ is consistent and K a knowledge
base of L, then Ntr(K) is consistent.
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As before, we expect a neutral formula α ∈ K not to increase the inconsis-
tency degree of K since it does not induce inconsistency to any subsetH ⊆ K.
By definition, resolving conflicts is impossible as well, motivating:

Independence If α ∈ Ntr(K), then I(K) = I(K \ {α}).

As neutral is a quite strong property, our independence postulate seems to
be rather basic. However, note that independence is a generalization of free
formula independence (Hunter and Konieczny, 2010) which is not free from
criticism. For example, it has been noted that the knowledge base K =
{a ∧ c, b ∧ ¬c} should be considered less problematic than K ∪ {¬a ∨ ¬b}
even though the additional formula is free (Besnard, 2014). We want to
emphasize that the same concerns apply to independence. A weaker version
can be found in Thimm (2013), where a formula α ∈ K is called safe if the
atoms in α do not occur elsewhere in K \ {α}. The corresponding postulate
weak independence is similar to free formula independence. However, this
requirement is hard to phrase for an arbitrary logic L as in Definition 2.13.
This suggests that weaker versions of independence should be tailored for a
specific framework like the postulate safe-rule independence for answer set
programming (see Section 8.1).

The final rationality postulate belonging here is dominance (Hunter and
Konieczny, 2010). In the propositional setting, dominance requires that for
two formulas α and β such that α is satisfiable and α � β, then I(K∪{α}) ≥
I(K ∪ {β}) should hold. The postulate formalizes that α carries more in-
formation and is hence more likely to be involved in conflicts than β. Of
the postulates we considered so far, it is probably the most disputed one
(Besnard, 2014; Jabbour et al., 2014). One of the most notable problems
with this postulate was pointed out by De Bona and Hunter (2017). They
state the following is true for a propositional knowledge base K: If I satis-
fies monotonicity and dominance, then I(K) = I(K ∪ {β}) if α � β for a
satisfiable formula α ∈ K. They continue with describing the following case:
Say K = {α1, . . . , αn} where each αi is satisfiable and let K′ = {β1, . . . , βn}
where βi ≡ αi for each i. Then, monotonicity and dominance already imply
I(K) = I(K∪K′), so copying all conflicts does not change the inconsistency
degree. They thus propose a refined version dominance’ of dominance, where
α, β /∈ K is additionally required.

For our setting of an arbitrary logic, distinguishing between dominance
and dominance’ does not make a significant difference, and we do not need to
be too concerned about the above objections. The reason is simply that there
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is a much more fundamental issue with this postulate here. Since adding in-
formation to a knowledge base may not only induce, but also potentially
resolve conflicts, the intuition does not hold anymore: There is simply no
reason why α, which carries more information than β, should be considered
more problematic in general. We thus believe there is no meaningful gener-
alization of dominance for arbitrary (in particular non-monotonic) logics.

4.2. Extended Postulates

Many concrete approaches to inconsistency measurement depend on the
syntax of a knowledge base. The most common example is the difference
between the conjunction {a ∧ b} and two formulas {a, b}. To illustrate this
issue, let us recall the lottery paradox from above.

Example 4.24. We considered the knowledge base Kn = {t1 ∨ . . . ∨ tn,¬t1,
. . . ,¬tn} and argued that the inconsistency degree of Kn should be lower
the bigger n is. This was due to the number of formulas required in order
to obtain a contradiction. However, if we express Kn as the two formulas
K′n = {t1 ∨ . . .∨ tn,¬t1 ∧ . . .∧¬tn}, then the single minimal inconsistent set
of K′ contains two formulas, independent of n.

One could now argue that even when considering K′n, the number n of
tickets still effects the size of the formulas within K′n; but then again, tak-
ing the size of a formula into account raises some other issues: It enforces
distinguishing equivalent formulas depending on how they are written down.
There are thus rationality postulates in the literature that are concerned
about the behavior of inconsistency measures when dealing with equivalent
formulas resp. equivalent knowledge bases. Of course, it is desirable that a
measure I is robust wrt. the syntax of K.

The postulate adjunction invariance (Besnard, 2014) formalizes the idea
that there should be no difference between {a∧b} and {a, b}, i. e., I(K∪{a∧
b}) = I(K∪ {a, b}). There are more postulates considering situations where
(parts of) semantically equivalent knowledge bases are compared (Thimm,
2013).

In non-monotonic frameworks, a notion of equivalence of the form “K
has the same models as K′” is too weak as conclusions can be withdrawn
due to non-monotonicity. This observation has led to the development of
strong equivalence (Eiter et al., 2005; Lifschitz et al., 2001; Oikarinen and
Woltran, 2011). Strong equivalence can be generalized to arbitrary logics in
the following way (Brewka et al., 2019):
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Definition 4.25. Let L = (WF,BS, INC,ACC) be a logic. The knowledge
bases K and K′ are strongly equivalent, denoted by K ≡s K′, if ACC(K∪G) =
ACC(K′ ∪ G) for each knowledge base G of L.

Thus, if a subset H of a knowledge base K is strongly equivalent to a set
H′ then H can be replaced in K by H′ without changing the inferences one
can draw from K. This also means that H and H′ should be interchangeably
when it comes to the inconsistency they contribute to K. By generalizing
this idea to the whole knowledge base, we obtain that strongly equivalent
knowledge bases should have the same degree of inconsistency.

Strong Equivalence If K ≡s K′, then I(K) = I(K′).

However, whether or not this is desirable depends on the framework under
consideration. In many cases, this postulate does not make sense. For exam-
ple, in monotonic logics we have K ≡s K′ for any two inconsistent knowledge
bases K and K′, thus satisfying strong equivalence contradicts the idea of
quantitatively assessing the inconsistency of a knowledge base. In ASP it still
allows to distinguish between, e.g., P = {a. ¬a.} and P ′ = {a← not b. ¬a←
not b.} as they are both inconsistent, but not strongly equivalent.

The issue with strong equivalence is quite straightforward: Consideration
of the whole knowledge base is not fine-grained enough. One should look at
the single formulas within K instead. This allows to compare equivalent and
in particular consistent parts of a knowledge base. The technique we utilize
is similar to the approach of Thimm (2013) for the postulate “irrelevance of
syntax”. For our setting we define:

Definition 4.26. Let K and K′ be two knowledge bases. We call K and K′
formula-wise strongly equivalent, denoted by K ≡α K′, if there is a bijection
ρ : K → K′ such that {α} ≡s {ρ(α)} holds for all α ∈ K.

Equipped with this notion we may phrase a refinement of strong equiva-
lence. Instead of requiring K ≡s K′, we consider two formula-wise strongly
equivalent knowledge bases which yields a more meaningful rationality pos-
tulate. We thus obtain the following generalization of irrelevance of syntax
(Thimm, 2013) (FW=formula-wise):

FW-Strong Equivalence If K ≡α K′, then I(K) = I(K′).

In contrast to strong equivalence, the postulate comes with a quite strong
premise. To illustrate this, let us mention that K ≡α K′ induces the same
property for any subset of K and K′.
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Proposition 4.27. If K and K′ are formula-wise strongly equivalent, then
there is a bijection ρ̃ : 2K → 2K

′
such that H ≡s ρ̃(H) for any H ⊆ K. In

particular, |H| = |ρ̃(H)|.

Proof. By assumption, there is a bijection ρ : K → K′ with {α} ≡s {ρ(α)}
for all α ∈ K. So let ρ̃ : 2K → 2K

′
be the mapping with

ρ̃(H) :=
⋃
α∈H

{ρ(α)}.

Then the claim follows by induction from

γ ≡s γ′ ∧ δ ≡s δ′ ⇒ {γ, δ} ≡s {γ′, δ′},

which is easy to see.

A further refinement of this notion is to consider the replacement of a
formula α with a strongly equivalent formula α′. Note that this postulate is
similar to exchange (Besnard, 2014).

Strong Equivalent Replacement If {α} ≡s {α′} and α /∈ K as well as
α′ /∈ K, then I(K ∪ {α}) = I(K ∪ {α′}).

To conclude this discussion on extended postulates, let us consider two
final ones which are concerned about modularisation of K. The first one
is separability (Hunter and Konieczny, 2010) which has a straightforward
representation in our general context.

Separability If SImin(K∪K′)=SImin(K)∪SImin(K′) and SImin(K)∩SImin(K′)=
∅ then I(K ∪ K′)=I(K) +I(K′).

In other words, if the conflicts of two knowledge bases K and K′ are indepen-
dent, the inconsistency value of their union should decompose as the sum of
the individual values.

As in the propositional case, a measure satisfying separability also satisfies
independence.

Proposition 4.28. Let L be a logic such that ∅ is a consistent knowledge
base. Let I be an inconsistency measure satisfying separability and consis-
tency. Then I satisfies independence.
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Proof. Assume I satisfies separability, i. e., SImin(K ∪ K′) = SImin(K) ∪
SImin(K′) and SImin(K) ∩ SImin(K′) = ∅ imply I(K ∪ K′) = I(K) + I(K′).
Now let K be a knowledge base and let α ∈ Ntr(K). By Proposition 4.22 we
know that SImin(K) = SImin(K \ {α}).

Set H = K \ {α} and H′ = {α}. We have

SImin(H ∪H′) = SImin(K) = SImin(K \ {α}) = SImin(H) ∪ SImin(∅)

as well as

SImin(H) ∩ SImin(H′) = SImin(H) ∩ ∅ = ∅

Hence satisfaction of the separibility postulate yields

I(H ∪H′) = I(H) + I(H′) = I(H) + I({α}).

Since I satisfies consistency and {α} is consistent (see Proposition 4.23) we
conclude I({α}) = 0, turning the above equation into

I(H ∪H′) = I(H).

By Definition of H this yields

I(K) = I(K \ {α}),

i. e., independence.

Finally, we end our investigation with a generalization of monotonicity,
namely supper-additivity (Thimm, 2009). It states that I(K)+I(K′) ≤ I(K∪
K′) should hold whenever K and K′ are disjoint. As for strong monotonicity,
we need to take into account that adding information might resolve conflicts
in non-monotonic frameworks. Therefore, we add the additional condition of
conflict preservation to our version of super-additivity.

Strong Super-Additivity If K′ and K preserve each other’s conflicts and
K ∩ K′ = ∅, then I(K) + I(K′) ≤ I(K ∪ K′).

5. Analysis

As already mentioned, we are going to discuss the behavior of the mea-
sures with respect to the introduced postulates. For postulates that are not
satisfied by a particular measure in general, we give counterexamples within
the logic LASP. We also briefly discuss relations between the measures in
terms of order compatibility (Grant and Hunter, 2011) and their relation to
inconsistency graphs (De Bona et al., 2018).
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5.1. Compliance with Rationality Postulates

In general, we obtain the following result on the compliance of our mea-
sures with the rationality postulates, see also the table below.

Proposition 5.1. The measures IMSI, IMSIC and Ip satisfy consistency,
strong monotonicity, independence, FW-strong equivalence, strong equiva-
lent replacement, and strong super-additivity. The measures IMSI and IMSIC

also satisfy separability.

Proof. Consistency : Since SImin(K) = ∅ if and only if K is consistent, IMSI,
IMSIC and Ip satisfy consistency.

Strong monotonicity : Let K and K′ be knowledge bases such that K′ pre-
serves conflicts of K. Let H ∈ SImin(K). By Proposition 4.4, we have
H ∈ SImin(K ∪ K′). Hence, we see IMSI(K) ≤ IMSI(K ∪ K′), IMSIC(K) ≤
IMSIC(K ∪ K′) and Ip(K) ≤ Ip(K ∪ K′) follow straightforwardly.

Independence: Let α ∈ Ntr(K). Then we have SImin(K) = SImin(K \ {α})
according to Proposition 4.22. It follows that IMSI, IMSIC and Ip satisfy in-
dependence.

FW-strong equivalence: Let K and K′ be such that K ≡α K′. Proposi-
tion 4.27 implies that there is a bijection ρ̃ : 2K → 2K

′
such that H ≡s ρ̃(H)

for any H ⊆ K. Furthermore, observe that if H is strongly K-inconsistent
then any H′ with H′ ≡s H is strongly K \ H ∪ H′-inconsistent. It follows
that H ∈ SImin(K) if and only if ρ̃(H) ∈ SImin(K′). Since |H| = |ρ̃(H)| is
also guaranteed in Proposition 4.27, IMSI, IMSIC and Ip satisfy FW-strong
equivalence.

Strong equivalent replacement : Similar.

Strong super-additivity : Let K′ and K preserve each other’s conflicts and
K ∩ K′ = ∅. Proposition 4.4 implies SImin(K) ∪ SImin(K′) ⊆ SImin(K ∪ K′).
Since K ∩ K′ = ∅ yields SImin(K) ∩ SImin(K′) = ∅ we see that the measures
satisfy strong super-additivity.

Separability : Straightforward for IMSI and IMSIC .

As already mentioned in Section 4, SI-free is not satisfied by any of the
measures.

Example 5.2. Consider the program P given as follows:

P : a← not a, b. a← not c, not d. b. c. d.
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IMSI IMSIC Ip
Consistency 3 3 3

Strong monotonicity 3 3 3

SI-Free 7 7 7

Independence 3 3 3

Strong Equivalence 7 7 7

FW-Strong Equivalence 3 3 3

Strong Equivalent Replacement 3 3 3

Separability 3 3 7

Strong Super-Additivity 3 3 3

Table 1: Compliance of measures with rationality postulates

We have r = a ← not c, not d. ∈ FreeSI (P ): the rule “a ← not a, b.” com-
bined with the fact “b.” is responsible for P being inconsistent and r cannot
restore consistency as long as “c.” or “d.” are present. Hence, SImin(P ) con-
sists of {a ← not a, b., b., c.} and {a ← not a, b., b., d.}, i. e., IMSI(P ) = 2,
IMSIC(P ) = 2

3
and Ip(P ) = 4. However SImin(P \ {r}) = {a← not a, b., b.},

i. e., IMSI(P \ {r}) = 1, IMSIC(P \ {r}) = 1
2

and Ip(P \ {r}) = 2.

Example 5.3. Consider the programs P and P ′ given via

P : a. ¬a. P ′ : a. ¬a. a← ¬a. ¬a← a.

It is easy to see that P ≡s P ′ as the inconsistency in both programs cannot
be repaired in any extension of them. However, we have that I(P1) 6= I(P2)
for all I ∈ {IMSI, IMSIC , Ip} thus showing that strong equivalence is violated
by all three measures.

A counterexample for strong equivalence is easy to find since K ≡s K′ for
any two inconsistent propositional knowledge bases. For a counterexample
of separability wrt. Ip see Thimm (2017) (already in the propositional case).

Observe that for those postulates that are generalizations of classical
ones—i. e., consistency, strong monotonicity, independence, strong super-additivity,
and separability—the compliance of our three measures generalizes their
compliance with the corresponding postulates in the classical case (Thimm,
2017). The results are summarized in Table 1.
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5.2. Further Aspects

We investigate the measures we introduced wrt. two further aspects from
the literature. First, we recall the notion of an IG measure (De Bona et al.,
2018). Afterwards, we discuss order comparability of our measures. Both
aspects can be seen as straight generalizations from the propositional setting.

IG measures. The notion of the inconsistency graph is utilized in order to
classify inconsistency measures (De Bona et al., 2018). Let us briefly recall
the required notions.

Definition 5.4. An inconsistency graph for a monotonic knowledge base K
is a bipartite graph IG(K) = (U, V,E) such that there are bijections fU : U →⋃

Imin(K) as well as fV : V → Imin(K) with E = {{u, v} | fU(u) ∈ fV (v)}.

Then, the class of so called IG measures is defined: A measure I is IG if it
can be written as I(K) = f(IG(K)) for a mapping f assigning non-negative
real values to inconsistency graphs.

Example 5.5. Consider the knowledge base K = {a, a → b, ¬b, c, ¬c}.
Observe that

Imin(K) = {{a, a→ b, ¬b}, {c, ¬c}}.
The graph IG(K) = (U, V,E) is depicted in Figure 3. It is easy to see that
the measure IMI(K) = |Imin(K)| is an IG measure since IMI(K) = |V |.

v1 v2

u1 u2 u3 u4 u5

Figure 3: The IG graph of K from Example 5.5.

It is quite clear that the inconsistency graph is not appropriate for non-
monotonic logics. We thus consider the straightforward refinement we need.

Definition 5.6. A strong inconsistency graph for an arbitrary knowledge
base K is a bipartite graph SIG(K) = (U, V,E) such that there are bijections
fU : U →

⋃
SImin(K) and fV : V → SImin(K) with E = {{u, v} | fU(u) ∈

fV (v)}.
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We define SIG measures in the canonical way. As a corollary of Proposi-
tion 1 of De Bona et al. (2018), we see:

Proposition 5.7. The measures IMSI, IMSIC and Ip are SIG measures.

More precisely, it is easy to see that IMSI, IMSIC and Ip can be obtained
from the graph SIG the same way their propositional counterparts can be
obtained from the graph IG. For example, given SIG(K) = (U, V,E), we have
IMSI(K) = |V | analogously to propositional logic (see Example 5.5).

De Bona et al. (2018) are mostly concerned about classifying inconsis-
tency measures. For the measures considered in the present section, this
classification is quite obvious: All of them are SIG measures. The classifi-
cation might be more insightful (and more challenging) when it comes to
further inconsistency measures, e. g., ones that are specifically tailored for
certain logics. We believe this is a promising research direction for future
work.

Order compatibility. In order to compare inconsistency measures we can
use the notion of order compatibility (Grant and Hunter, 2011). We say that
two inconsistency measures I1 and I2 are order-compatible if I1(K) ≤ I1(K′)
iff I2(K) ≤ I2(K′) for all knowledge bases K,K′. So I1 and I2 induce the
same ranking on knowledge bases without necessarily assigning the same
inconsistency values. As a corollary of the corresponding result from for the
propositional case (Grant and Hunter, 2011), we obtain:

Proposition 5.8. The measures IMSI, IMSIC and Ip are pairwise not order-
compatible.

Hence, all measures are incompatible and provide different points of view on
inconsistency.

6. Computational Complexity

We now address the complexity of several computational problems re-
lated to the measures we considered in this paper. Following Thimm and
Wallner (2016; 2019), we consider the three decision problems ExactI ,
UpperI , LowerI , and the natural function problem ValueI . Let L =
(WF,ACC,BS, INC) be a logic.
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ExactLI Input: K ⊆ WF, x ∈ [0,∞]
Output: true iff I(K) = x

UpperLI Input: K ⊆ WF, x ∈ [0,∞]
Output: true iff I(K) ≤ x

LowerLI Input: K ⊆ WF, x ∈ (0,∞]
Output: true iff I(K) ≥ x

ValueLI Input: K ⊆ WF
Output: The value of I(K)

After giving necessary preliminaries concerning computational complexity,
we start by giving some general membership results for the given problems.
Then, we demonstrate that these bounds are tight in general by giving cor-
responding hardness results for the frameworks LASP∗ and LASP.

6.1. Background

We assume the reader to be familiar with the classes P, NP and coNP.
Furthermore, we consider the polynomial hierarchy as usual: We let Σp

0 =

Πp
0 = P and for any m ≥ 0, Σp

m+1 = NPΣp
m and Πp

m+1 = coNPΣp
m . Thereby,

as usual, CD is the class of decision problems solvable in C having access to
an oracle for some problem that is complete in D.

A quantified Boolean formula (QBF) Φ is a formula

Φ = Q1X1 . . . QmXm φ

with quantifiers Q1, . . . , Qm ∈ {∀,∃}, pair-wise disjoint sets of variables
X1, . . . , Xm, and a propositional formula φ over the variables X1 ∪ . . .∪Xm.
A QBF Φ is true if φ evaluates to true with respect to the quantifiers, e. g.,
∀x1∃x2(x1 ∨ ¬x2) is true as for every truth value of x1 one can find a truth
value of x2 such that x1 ∨ ¬x2 evaluates to true. A QBF Φ is in prenex
normal form if the quantifiers Q1, . . . , Qm alternate between ∀ and ∃. The
problem of deciding whether a QBF Φ with m alternating quantifiers start-
ing with ∃ (resp. starting with ∀) is true is the canonical Σp

m-complete (resp.
Πp
m-complete) problem (Papadimitriou, 1994).

We will also consider open QBFs. They are defined similar as QBFs, but
also contain free variables. Thus, an open QBF is of the form

Φ = Φ(X) = Q1X1 . . . QmXm φ(X,X1, . . . , Xn).
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If Φ = Φ(X) is an open QBF, then Mod(Φ) is the set of all models of Φ, i. e.,
the set of all assignments to the X-variables rendering φ true with respect
to the quantifiers.

We also make use of the classes Dp
m, which are the classes of languages

that are intersections of a language in Σp
m and a language in Πp

m (Papadim-
itriou, 1994). For example, the generic Dp

1-complete problem is SAT-UNSAT,
where we are given two propositional formulas φ1 and φ2, and have to decide
whether φ1 is satisfiable while φ2 is not.

Examining IMSI leads to the consideration of counting complexity classes
(Valiant, 1979). They are defined using witness functions w that assign words
from an input alphabet Σ to finite subsets of an alphabet Γ. Given a string
x from the alphabet Σ, the task is to return |w(x)|, i. e., the number of
witnesses. Given a class C of decision problems, by #·C we denote the class
of counting problems such that

• for every input string x, each y ∈ w(x) is polynomially bounded,

• the decision problem “Is y ∈ w(x)?” is in C.

For example, the generic #·coNP-complete problem is counting |Mod(Φ)|
for an open QBF Φ = ∀Y φ(X, Y ). Here, Mod(Φ) is the witness function
assigning to a given formula the corresponding models. As required, each
truth assignment is polynomial bounded and given an assignment to the
X-variables, the decision problem whether ∀Y φ(X, Y ) holds is in coNP.

Hardness results for ExactLIMSI
are going to be given under subtractive

reductions (Durand et al., 2005). For that, let #V and #W be counting
problems with witness functions v and w. The problem #V reduces to #W
under strong subtractive reductions if there are polynomial-time computable
functions f and g such that for each input x we have w(f(x)) ⊆ w(g(x))
and |v(x)| = |w(g(x))| − |w(f(x))|. Subtractive reductions are the transitive
closure of strong subtractive reductions.

We also make use of the counting polynomial hierarchy (Wagner, 1986).
We start by defining the counting quantifier C. Given a predicate R(x, y)
with free variables x and y, let

CkyR(x, y) :⇔ |{y | R(x, y) true }| ≥ k. (8)

Now for any class C of problems, A is in CC if there is a B ∈ C, a function
f computable in P and a polynomial p such that

x ∈ A :⇔ C
f(x)
|y|≤p(|x|)R(x, y).
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where |x| denotes the length of x. Hence there are at least f(x) many (by a
polynomial in x bounded) values y (whose length is bonded by a polynomial
p(|x|)) such that a given predicate R holds for (x, y). Checking whether
R(x, y) is true shall be in B. We will also use the class C=NP Wagner (1986)
which is a variation of CNP where “≥” is replaced by “=” in Equation (8).

Example 6.1. A generic complete problem for the class CP is the following:
Given a propositional formula φ, is it true that |Mod(φ)| ≥ k? Indeed, k is
just a constant, assignments to the x-variables have polynomial length and
checking whether φ holds given an assignment is in P.

To give a generic example for the class CcoNP, we make use of open QBFs:
Given an open QBF Φ = ∀Y φ(X, Y ), is it true that |Mod(Φ)| ≥ k?

First, we consider an arbitrary, possibly non-monotonic logic L = (WF,
ACC,BS, INC). Since hardness results cannot be expected in general (these
depend on the concrete logic), we will only give membership statements here.
Our results will depend on the complexity of the satisfiability check of L.

SatL Input: K ⊆ WF
Output: true iff K is consistent

To keep this section within a reasonable amount of space, we restrict most
of our discussion to the measure IMSI.

6.2. Minimal Strong Inconsistency in General

Let us start with some general membership results which can be obtained
dependent on the satisfiability check of the logic. Let us start by checking
whether a given input integer is an upper bound for IMSI.

Theorem 6.2. Let m ≥ 1. If the decision problem SatL is in

(a) Σp
m, then UpperLIMSI

is in CΣp
m,

(b) Πp
m, then UpperLIMSI

is in CΣp
m+1,

(c) Πp
m and L is monotonic, then UpperLIMSI

is in CΣp
m.

Proof.
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(a) Given an integer k, (K, k) is a positive instance of LowerLIMSI
if there

are at least k minimal strongly K-inconsistent sets. Due to Theorem 4.5
of Brewka et al. (2017), deciding whether H ⊆ K is in SImin(K) is in
Dp
m. Moreover, any H ⊆ K is of polynomial bounded size. Due to

CDp
m = CΣp

m (see Theorem 4 of Wagner (1986)3), LowerLIMSI
is in CΣp

m.
Regarding UpperLIMSI

, again due to Theorem 4 of Wagner (1986), CΣp
m

is closed under complement and (K, k) is a yes instance iff (K, k+ 1) is
a no instance of LowerLIMSI

.

(b) Similar, note that deciding whether H ∈ SImin(K) holds is in Dp
m+1 due

to Theorem 4.5 by Brewka et al. (2017).

(c) Similar, note that deciding whether H ∈ SImin(K) holds is in Dp
m due

to Theorem 4.5 by Brewka et al. (2017).

When considering the proof of the above theorem, it becomes apparent
that the complexity of a counting problem heavily depends on the complex-
ity of the underlying decision problem. Besides general properties of the
counting polynomial hierarchy (Wagner, 1986), the proof only makes use of
the complexity results about verifying minimal strong inconsistency given
in Theorem 4.5 of Brewka et al. (2017). The same is true for the function
problem:

Theorem 6.3. Let m ≥ 1. If the decision problem SatL is in

(a) Σp
m, then ValueLIMSI

is in #·Πp
m,

(b) Πp
m, then ValueLIMSI

is in #·Πp
m+1,

(c) Πp
m and L is monotonic, then ValueLIMSI

is in #·Πp
m.

Proof. We make use of the observation that

#·∆p
m+1 = #·Πp

m

by Hemaspaandra and Vollmer (1995). Furthermore, it is clear that

Dp
m ⊆ ∆p

m+1.

Due to Theorem 4.5 by Brewka et al. (2017), we obtain:

3More precisely, Theorem 4, item 5 of Wagner (1986) states CΣp
m = CB(Σp

m) where
B(Σp

m) is the boolean closure of Σp
k implying Dp

m ⊆ B(Σp
m) and CDp

m = CΣp
m.
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(a) If SatL is in Σp
m, then checking whether H ∈ SImin(K) holds is in Dp

m

and hence, ValueLIMSI
is in #·∆p

m+1 = #·Πp
m.

Items (b) and (c) follow analogously from Theorem 4.5 of Brewka et al.
(2017).

This finishes our discussion regarding general membership results. As the
reader may have already observed, they are quite simply corollaries of the
results for the corresponding decision problems. We want to emphasize that
these results are in accordance with results from the literature for monotonic
logics. For example, it has been shown that computing |Imin(K)| is in #·coNP
for a propositional knowledge base K (Thimm and Wallner, 2016, Proposi-
tion 11). This is a special case of Theorem 6.3, item (a) with satisfiability
check in Σp

1 = NP.

6.3. Hardness Results for Answer Set Programming

We are going to give some exemplary hardness results for the observations
we made above by considering the concrete logics LASP∗ (disjunction-free
logic programs under the answer set semantics) and LASP (disjunctive logic
programs under the answer set semantics). Recall that deciding whether
a program P within the framework LASP∗ is consistent is NP-complete in
general, while the decision problem for programs P in LASP is Σp

2-complete
(Eiter and Gottlob, 1995).

The following results show that, for LASP∗ , the computational complexity
of the problems we consider is similar to the results for the propositional case
(Thimm and Wallner, 2019). This seems natural as the satisfiability check
for propositional logic is NP-complete as well. As expected, considering LASP

involves going up one level within the corresponding hierarchy. We will give
some of the proofs resp. constructions in order to demonstrate the required
techniques. However, in order to keep this section within a reasonable space,
most of the proofs can be found in Appendix A.

As already mentioned, the groundwork for our hardness results is the
following observation. It establishes a required link between minimal strongly
inconsistent sets of a program P to models of an open QBF Φ.

Lemma 6.4. Given an open QBF Φ = ∀Y φ(X, Y ), there is a disjunction-
free logic program P (Φ) ⊆ WFASP∗ of polynomial size with

|SImin(P (Φ))| = |X|+ |Mod(Φ)|.
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Now the desired hardness results for disjunction-free answer set program-

ming follow via the above lemma. We start with Lower
LASP∗

IMSI
and Up-

per
LASP∗

IMSI
.

Proposition 6.5. The problems Lower
LASP∗

IMSI
and Upper

LASP∗

IMSI
are CNP-

complete.

Proof. Membership of Lower
LASP∗ and Upper

LASP∗ follows from Theorem 6.2,

so we need to show hardness. We consider the CNP-complete problem of de-
ciding whether |Mod(Φ)| ≥ k for an open QBF Φ = ∀Y φ(X, Y ) (recall
CΣp

m = CΠp
m, see Theorem 4 by Wagner (1986)). Since we can construct

the program P (Φ) as in Lemma 6.4 in P, we already found a polynomial
reduction: Mod(Φ) ≥ k if and only if SImin(P ) ≥ k + |X|.

Corollary 6.6. Exact
LASP∗

IMSI
is C=NP-hard.

Next we show that Value
LASP∗

IMSI
is #·coNP-complete under subtractive re-

ductions. For #·coNP, computing |Mod(Φ)| for an open QBF Φ = ∀Y φ(X, Y )
is the generic complete problem under subtractive reductions. Recall the idea
behind this kind of reduction: We first overcount the value we actually aim
at. Then, we correct this by subtracting unintended items. Consequently,
the above construction where we found a program P = P (Φ) satisfying
SImin(P )| = |X| + |Mod(Φ)| is a suitable starting point for a subtractive
reduction (corresponding to the “overcount” part). We have left to find a
program P ′ with

• SImin(P ′) ⊆ SImin(P ),

• Mod(Φ) = SImin(P )− SImin(P ′).

Given these programs P and P ′ we have shown that Mod(Φ) can be computed
for an open QBF Φ = ∀Y φ(X, Y ) via |SImin(P )| − |SImin(P ′)| in #·coNP
(Durand et al., 2005). This yields completeness under subtractive reductions.
The proof which is based on Lemma 6.4 can be found in Appendix A.

Theorem 6.7. The problem Value
LASP∗

IMSI
is #·coNP-complete under subtrac-

tive reductions.
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This ends our discussion pertaining to LASP∗ . As already mentioned, the
case LASP is similar but involves going up one level in the corresponding
hierarchy. Analogously, the fundamental step is constructing a program P
with |SImin(P (Φ))| = |X|+|Mod(Φ)| for an open QBF Φ = ∀Y ∃Z φ(X, Y, Z).
The construction is rather similar: We augment our previous construction
with features from the program in the proof of Theorem 3.1 by Eiter and
Gottlob (1995) which is used to show Σp

2-completeness of the satisfiability
check for disjunctive logic programs. Then, the subsequent steps are as
above:

Lemma 6.8. Given an open QBF Φ = ∀Y ∃Z φ(X, Y, Z), there is a disjunc-
tive logic program P (Φ) ⊆ WFASP of polynomial size with

|SImin(P (Φ))| = |X|+ |Mod(Φ)|.

Proposition 6.9. The problems Lower
LASP

IMSI
and Upper

LASP

IMSI
are CΣp

2-complete.

The problem Exact
LASP

IMSI
is C=Σp

2-hard. The problem Value
LASP

IMSI
is #·Πp

2-
complete under subtractive reductions.

6.4. Summary of Results for IMSIC and Ip
As already mentioned, we restrict most of the discussion in this section

to the measure IMSI. Hence most of the work is done. In order to complete
the picture, we report the results established for the other measures briefly
in this section. Proofs can be found in Appendix A.

Regarding general membership results we find the following for Ip.

Theorem 6.10. Let m ≥ 1. If the decision problem SatL is in

(a) Σp
m, then LowerLIp is in Σp

m+1,

(b) Πp
m, then LowerLIp is in Σp

m+2,

(c) Πp
m and L is monotonic, then LowerLIp is in Σp

m+1.

Within the scope of the proof techniques we worked with in the present
paper, it does not appear to be straightforward to establish membership
results for the measure IMSIC . This problem is thus left for future work.
The results in Theorem 6.10 can however used to infer corresponding upper
bounds for Upper, Exact and Value for the measure Ip:
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Corollary 6.11. Let m ≥ 81. If the decision problem SatL is in

(a) Σp
m, then UpperLIp is in Πp

m+1, ExactLIp is in Dp
m+1 and ValueLIp is

in FPΣp
m+1[logn],

(b) Πp
m, then UpperLIp is in Πp

m+2, ExactLIp is in Dp
m+2 and ValueLIp is

in FPΣp
m+2[logn],

(c) Πp
m and L is monotonic, then UpperLIp is in Πp

m+1, ExactLIp is in

Dp
m+1 and ValueLIp is in FPΣp

m+1[logn].

Following the investigation of IMSI, we also investigated lower bounds for
ASP for the measures Ip as well as IMSIC . Interestingly, lower bounds for
IMSIC can be established (and are similar to those of IMSI). The measure
Ip induces much easier problems since it does not involve counting several
subsets of a given knowledge base. The hardness results for ASP are reported
in Table 2 as well as the propositions below.

IMSI IMSIC Ip
Upper

LASP∗
A

I CNP-c CNP-h Σp
2-c

Lower
LASP∗

A

I CNP-c CNP-h Πp
2-c

Exact
LASP∗

A

I C=NP-h C=NP-h Dp
2-c

Upper
LASP

A

I CΣp
2-c CΣp

2-h Σp
3-c

Lower
LASP

A

I CΣp
2-c CΣp

2-h Πp
3-c

Exact
LASP

A

I C=Σp
2-h C=Σp

2-h Dp
3-c

Table 2: Hardness results for LASP∗

A and LASP
A

Disjunction-free logic programs yield the following lower bounds:

Proposition 6.12. The problems Lower
LASP∗

I
MSIC

and Upper
LASP∗

I
MSIC

are CNP-

hard, Exact
LASP∗

I
MSIC

is C=NP-hard.

Proposition 6.13. The problem Lower
LASP∗

Ip is Σp
2-complete. The problem

Upper
LASP∗

Ip is Πp
2-complete. The problem Exact

LASP∗

Ip is Dp
2-complete.

As expected, the same problems for disjunctive logic programs require
moving up one level within the polynomial hierarchy.
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Proposition 6.14. The problems Lower
LASP

I
MSIC

and Upper
LASP

I
MSIC

are CΣp
2-

hard, ExactasplangI
MSIC

is C=Σp
2-hard.

We proceed similar as for LASP∗ and obtain:

Proposition 6.15. The problem Lower
LASP

Ip is Σp
3-complete, Upper

LASP

Ip is

Πp
3-complete and Exact

LASP

Ip is Dp
3-complete.

7. Inconsistency and Context

Let us recall the motivation for the notion of strong inconsistency. In
monotonic logics, we have: If H ⊆ K is inconsistent, then the same is true
for eachH′ withH ⊆ H′ ⊆ K. In a non-monotonic logic this is not necessarily
the case which led to the definition of strong inconsistency. However, if we
are aiming to repair an inconsistent knowledge base K, instead of insisting
on moving to maximal consistent subsets of K, this observation suggests a
novel approach, namely resolving conflicts via adding information. Especially
in frameworks like ASP where the absence of answer sets is oftentimes due
to a minimality requirement, this appears to be a quite promising method
to restore consistency. This also suggests that inconsistency measurement
should take potential supersets of a given knowledge base into account. As
we will see additional information does not only contribute to inconsistency
of a knowledge base K, but is also worth investigating when it comes to
finding repairs. This leads to more varied situations that we also want to
address in the context of measuring inconsistency.

In this section we will first establish some theoretical aspects, namely a
generalization of the hitting set duality (Brewka et al., 2019) to situations
where we also allow adding information to a knowledge base. We will then
point out some implications for the field of measuring inconsistency. Since
we want to focus on the latter aspect, all the proofs required for our novel
duality results are moved to Appendix B.

Let us first repeat the basic notions required for this result. It will become
apparent that all of them do have a counterpart in each setting we are going
to investigate. Recall Definition 3.1:

For H,K ⊆ WF with H ⊆ K, H is called strongly K-inconsistent if
H ⊆ H′ ⊆ K implies H′ is inconsistent. Let SI (K) denote the set of all
strongly K-inconsistent sets. If H is minimal with this property, we call H
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minimal strongly K-inconsistent. Let SImin(K) denote the set of all minimal
strongly K-inconsistent sets.

Moreover, we let Cmax (K) be the collection of ⊆-maximal consistent sub-
sets of a knowledge base K.

Definition 7.1. Let M be a set of sets. We call S a hitting set of M if
S ∩M 6= ∅ for each M ∈M. If S is minimal with this property, we call S a
minimal hitting set of M.

Now let us restate Theorem 3.6 by Brewka et al. (2019).

Theorem 7.2. Let K be a knowledge base. Then, S is a minimal hitting set
of SImin(K) if and only if K \ S ∈ Cmax (K).

A Hitting Set Duality for Addition-Based Repairs

Let us start with repairs based on additional information. In general, it is
not quite clear which additional information might be appropriate, especially
when considering an arbitrary abstract logic as in Definition 2.13. Moreover,
phrasing meaningful results appears hard when investigating an arbitrary su-
perset of a knowledge base K. We thus assume the set of potential additional
information is given.

More precisely, we consider knowledge bases K (as usual) and G (of po-
tential additional assumptions). The set G itself is not necessarily consistent.
For technical convenience we assume K and G to be disjoint. This assump-
tion also matches the intuitive meaning of G as a set of potential additional
information. The following definition formally introduces repairs that utilize
G.

Definition 7.3. Let K and G be disjoint knowledge bases. If for A ⊆ G,
K ∪ A is consistent, then we call A a repairing subset of G wrt. K. Let
Rep(K,G) and Repmin(K,G) denote the set of repairing subsets of G wrt.
K and the minimal ones, respectively.

Of course, no additional information is capable of repairing an incon-
sistent knowledge base of a monotonic logic. So our running example of a
propositional knowledge base is meaningless in this context, and we move
straight to our non-monotonic formalisms.
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Example 7.4. Recall our running example P .

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Assume we have

G : a. b.

d. b← d.

We see that P ∪ {b.} and P ∪ {d., b← d.} are already consistent and thus

Repmin(P,G) = {{b.}, {d., b← d.}}.

Minimality is clear.

Let us now extend our running example for abstract argumentation. Re-
call Example 2.17 where we defined the logic

LAAF
A =

(
WFAAF

A ,BSAAF
A , INCAAF

A ,ACCAAF
A

)
.

We pointed out that an AF is actually a tuple and not a set. We thus
represent AFs as a knowledge base in a way that a set A of arguments is fixed
and K contains the attacks. Hence augmenting F with another knowledge
base G means in our setup additional attacks rather than novel arguments.
Of course, it would be possible to interpret our running example framework
F as an AF over, e. g., A′ = {a, b, c, d} resulting in an AF containing the
argument “d” which does not participate in any attack. We will stick however
with an AF over A = {a, b, c}.

Example 7.5. So consider the AF represented by R = {(a, b), (b, c), (c, c)}.
Assume we are given additional attacks G = {(a, c), (b, a), (c, b)}. Observe
that R∪{(a, c)} and R∪{(b, a)} represent AFs that possess stable extensions.
We thus see

Repmin(R,G) = {{(a, c)}, {(b, a)}}

Again, the repairs are clearly minimal.

Our goal is to characterize the minimal repairs for a given knowledge base
K in terms of a hitting set duality similar in spirit to Theorem 7.2. In the
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ba c

Figure 4: The argumentation framework represented by R ∪G (attacks in G dotted and
gray) from Example 7.5

ba c ba c

Figure 5: The argumentation frameworks represented by R∪{(a, c)} and R∪{(b, a)} from
Example 7.5 including their respective stable extensions (gray)

latter theorem the central notion is strong inconsistency i. e., subsets H of a
knowledge base K such that each set H′ with H ⊆ H′ ⊆ K is inconsistent.
For addition-based repairs, our central notion is a natural counterpart to
this, which we want to develop by considering Example 7.4 again.

Assume for the moment the goal was already achieved, implying we had
certain sets whose minimal hitting sets are

Repmin(P,G) = {{b.}, {d., b← d.}}.

Even without being aware of a general technique, this is easy to obtain for
this particular example: We consider G1 = {b., d.} and G2 = {b., b ← d.}.
The reader may observe that the two minimal hitting sets of G1 and G2 are
{b.} and {d., b ← d.}. By removing the Gi from G, we find their meaning:
We obtain

P : a ∨ b. a← b.

c← not b. ¬c← not b.

G \G1 : a. b← d.

G \G2 : a. d.
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and we see that P is now strongly inconsistent in both cases. More precisely,
P is strongly (P ∪ G \ G1)-inconsistent as well as strongly (P ∪ G \ G2)-
inconsistent. The intuitive reason is that in both cases we removed all pos-
sibilities to repair P via G. Hence, in general we are looking for sets H ⊆ G
such that K is strongly (K ∪ G \ H)-inconsistent. If we set A = G \ H, this
means K has to be strongly (K ∪A)-inconsistent.

Definition 7.6. Let K and G be disjoint knowledge bases. If for A ⊆ G,
K is strongly (K ∪ A)-inconsistent, i. e., K ∈ SI (K ∪ A), then we call A
a non-repairing subset of G wrt. K. Let Nrep(K,G) and Nrepmax (K,G)
denote the set of non-repairing subsets of G wrt. K and the maximal ones,
respectively.

To see the non-repairing subsets of G at work, we consider the following
examples:

Example 7.7. Recall our running example P from above

P : a ∨ b. a← b.

c← not b. ¬c← not b.

with

G : a. b.

d. b← d.

Indeed, the maximal non-repairing subsets of G are A1 and A2 where

A1 : a. b← d.

A2 : a. d.

Example 7.8. Now recall the framework represented by R = {(a, b), (b, c), (c, c)}
with G = {(a, c), (b, a), (c, b)}. There is only one non-repairing subset of G ,
namely {(c, b)}. To see this recall from Figure 5 that adding “(a, c)” or
“(b, a)” results in a consistent AF. Hence

Nrepmax (R,G) = {{(c, b)}}.

We are almost ready to phrase a duality result similar in spirit to The-
orem 7.2. As before, we require one additional auxiliary notion, namely
co-Nrepmax (K,G) which is defined as expected:
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Definition 7.9. LetK and G be disjoint knowledge bases. The set co-Nrepmax (K,G)
consists of all A ⊆ G such that G \ A is in Nrepmax (K,G).

As desired, the following theorem gives a characterization of Repmin(K,G)
in terms of a hitting set duality. Analogously to the characterization of
Cmax (K) via minimal hitting sets of SImin(K) (see Theorem 7.2), we may now
characterize Repmin(K,G) via minimal hitting sets of co-Nrepmax (K,G). In
this sense, co-Nrepmax (K,G) plays an analogous role for addition-based re-
pairs as SImin(K) for removing-repairs: A removing-based repair of a knowl-
edge base K must rule out at least one formula of each set in SImin(K); an
adding-based repair of K (given additional formulas G) must add at least one
formula of each set in co-Nrepmax (K,G).

Theorem 7.10 (Superset Duality). Let K and G be disjoint knowledge bases.
Then S is a minimal hitting set of co-Nrepmax (K,G) if and only if S ∈
Repmin(K,G).

As the following theorem shows, we can also characterize Nrepmax (K,G)
in terms of minimal hitting sets of Repmin(K,G).

Theorem 7.11 (Superset Duality II). Let K and G be disjoint knowledge
bases. Then S is a minimal hitting set of Repmin(K,G) if and only if G \S ∈
Nrepmax (K,G).

Example 7.12. Consider again P and G:

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

Let us summarize:

Repmin(P,G) = {{b.}, {d., b← d.}},
Nrepmax (P,G) = {{a., b← d.}, {a., d.}},

co-Nrepmax (P,G) = {{b., d.}, {b., b← d.}}.

Indeed, Repmin(P,G) consists of the minimal hitting sets of co-Nrepmax (P,G)
(Theorem 7.10) and vice versa (Theorem 7.11).
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Example 7.13. Recall R = {(a, b), (b, c), (c, c)} with G = {(a, c), (b, a), (c, b)}.
Here, the relevant sets are:

Repmin(R,G) = {{(a, c)}, {(b, a)}},
Nrepmax (R,G) = {{(c, b)}},

co-Nrepmax (R,G) = {{(a, c), (b, a)}}.

The set Repmin(R,G) consists of the two minimal hitting sets of co-Nrepmax (R,G).
Moreover, co-Nrepmax (R,G) contains the unique minimal hitting set of
Repmin(R,G).

A Hitting Set Duality for Arbitrary Repairs

Of course, Theorem 7.10 is only meaningful if K is not strongly (K ∪ G)-
inconsistent, i. e., whenever G /∈ Nrepmax (K,G). For example, this is nat-
urally violated whenever the underlying logic is monotonic, but also when
G is inappropriate when it comes to providing repair options for K. This is
an advantage of Theorem 7.2: Usually, a knowledge base contains consistent
subsets and thus the theorem yields non-trivial results. Clearly, the finest
solution would be combining the benefits of both Theorem 7.2 and Theo-
rem 7.10. As it turns out, this can be achieved in a smooth and natural
way.

So assume we are given knowledge bases K and G with K ∩ G = ∅ as
before. Our goal is to find a consistent knowledge base H which is as close as
possible to K. In Theorem 7.2 the result was a maximal consistent subset of
K, i. e., a knowledge base H of the form H = K\D where D is minimal such
that H is consistent. In Theorem 7.10 the result was a minimal consistent
superset of K, i. e., a knowledge base H of the form H = K ∪ A where A is
minimal such that H is consistent. Combining both approaches yields the
following notion:

Definition 7.14. Let K and G be disjoint knowledge bases. We call (D,A)
a bidirectional repair for K with respect to G if

• D ⊆ K and A ⊆ G,

• K \ D ∪A is consistent.

By bi-Rep(K,G) we denote the set of all bidirectional repairs for K with
respect to G. Let bi-Repmin(K,G) be the set of all minimal ones, i. e., if
(D,A) ∈ bi-Repmin(K,G), then (D′,A′) ∈ bi-Rep(K,G) and A′ ⊆ A and
D′ ⊆ D implies (D′,A′) = (D,A).
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Example 7.15. Recall our programs P and G.

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

We see that bi-Repmin(P,G) consists of the tuples

({a← b.}, ∅), ({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).

Here, one of the sets in (D,A) is always empty for (D,A) ∈ bi-Repmin(P,G).
We want to illustrate that this is not necessarily the case in general.

Example 7.16. Consider P ′ given via

P ′ : ← not b. ← not c.

and G as before. Note that “← not c.” will cause inconsistency no matter
which rules from G are added. We thus find

bi-Repmin(P ′, G) = {(P, ∅), ({← not c.}, {b.}), ({← not c.}, {d., b← d.})}.

Indeed, for all tuples (D,A) ∈ bi-Repmin(P ′, G) we have← not c. ∈ D which
formalizes that this constraint needs to be removed.

Let us now continue with our running AF example.

Example 7.17. For R = {(a, b), (b, c), (c, c)} and G = {(a, c), (b, a), (c, b)}
we recall from previous examples the following options to turn the represented
AF F into one which possesses a stable extension (see Figure 6): Remove
(c, c) (F1), remove (a, b) (F2), or add (a, c) (F3) or (b, a) (F4): Hence

bi-Repmin(R,G) = {({(c, c)}, ∅), ({(a, b)}, ∅), (∅, {(a, c)}), (∅, {(b, a)})}.

We want to emphasize that repair options generalize the notion of con-
sistent subsets of a knowledge base.

Proposition 7.18. Let K and G be disjoint knowledge bases. A tuple of the
form (D, ∅) is in bi-Repmin(K,G) if and only if H = K \ D ∈ Cmax (K).

The same is true for addition-based repairs, which demonstrates the sym-
metry of these notions.
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cbaF1 : cbaF2 :

baF3 : c baF4 : c

Figure 6: The consistent argumentation frameworks F1, . . . ,F4 from Example 7.17

Proposition 7.19. Let K and G be disjoint knowledge bases. A tuple of the
form (∅,A) is in bi-Repmin(K,G) if and only if A ∈ Repmin(K,G).

Now let us develop the “inconsistency” notion inducing the desired hitting
set characterization of Repmin(K,G). For addition-based repairs, our first
intermediate step (before moving to their complements) was consideration of
Nrepmax (K,G), i. e., maximal sets A ⊆ G such that K is strongly (K ∪ A)-
inconsistent. A strongly K-inconsistent subset H as used to characterize
Cmax (K) is itself complementary to a set D ⊆ K which is maximal such that
K \ D is strongly K-inconsistent. Combining both notions now yields:

Definition 7.20. Let K and G be disjoint knowledge bases. We call (D,A)
a bidirectional non-repair for K with respect to G if

• D ⊆ K and A ⊆ G,

• K \ D is strongly (K ∪A)-inconsistent, i. e., K \ D ∈ SI (K ∪A).

Denote by bi-Nrep(K,G) the set of all bidirectional non-repair for K with
respect to G and by bi-Nrepmax (K,G) the maximal ones.

We want to emphasize that a bidirectional non-repair is not just about
K \D ∪A being inconsistent - it requires that all sets H with K \D ⊆ H ⊆
K ∪A are inconsistent (see Example 7.23 below).

To see the notion of bidirectional non-repairs at work, let us reconsider
the three examples from above.
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Example 7.21. Recall our programs P and G.

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

We already noted that the non-repairing subsets of G are A1 = {a., b← d.}
and A2 = {a., d.}. Moreover, removal of “a ∨ b.” is never beneficial, no
matter which subset of P or G is under consideration. Hence

bi-Nrepmax (P,G) = {({a ∨ b.}, {a., b← d.}), ({a ∨ b.}, {a., d.})}.

Example 7.22. Consider again P ′

P ′ : ← not b. ← not c.

and G as above. Since “← not c.” will cause inconsistency no matter which
rules from G are added we see P ′ \ {← not b.} ∈ SI (P ′ ∪ G), i. e., ({←
not b.}, G) ∈ bi-Nrepmax (P ′, G). Moreover, even if “← not c.” is removed,
{b.} ⊆ G or {d., b ← d.} ⊆ G is also required in order to repair P ′. Thus,
bi-Nrepmax (P ′, G) consists of the following tuples:

({← not b.}, G), ({← not c.}, {a., b← d.}), ({← not c.}, {a., d.}).

Example 7.23. Recall the AF represented by R = {(a, b), (b, c), (c, c)} and
the additional attacks G = {(a, c), (b, a), (c, b)}. Observe that removing
“(b, c)” or adding “(c, b)” is in no situation beneficial. Hence,

bi-Nrepmax (R,G) = {({(b, c)}, {(c, b)})}.

To verify this, recall that in Example 7.17 we saw that any other modifi-
cation to F yields one possessing a stable extension (also recall Figure 6).
We want to mention that ({(b, c)}, {(b, a), (c, b)}) is not a bidirectional non-
repair. Suppose the induced AF is called F ′:

ba c

Then F ′ is inconsistent since it does not possess any stable extension. How-
ever, R \ {(b, c)} is not strongly R ∪ {(b, a), (c, b)}-inconsistent since moving
from R \ {(b, c)} to R ∪ {b, a} yields a consistent AF:
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ba c

We make the following observations to emphasize how bi-Nrepmax (K,G)
generalizes minimal (strong) inconsistency (via moving to the complement
of D). First let us consider a monotonic logic. Recall that in this case,
SImin(K) = Imin(K). We do not expect G to play any role here. Indeed, we
find:

Proposition 7.24. Let K and G be disjoint knowledge bases of a monotonic
logic. If (D,A) ∈ bi-Nrepmax (K,G), then A = G. Moreover, (D,G) ∈
bi-Nrepmax (K,G) if and only if H = K \ D ∈ SImin(K).

In the previous proposition G was irrelevant as the underlying logic was
assumed to be monotonic. Clearly, a similar result holds whenever there is
no set G at all.

Proposition 7.25. Let K be a knowledge base and G = ∅. A tuple of the
form (D, ∅) is in bi-Nrepmax (K,G) if and only if H = K \ D ∈ SImin(K).

A more advanced version of this result without restricting G is the follow-
ing. It shows that there is a general connection between bi-Nrepmax (K,G)
and SImin(K), but it is not as straightforward as the connection between
bi-Repmin(K,G) and Cmax (K) (see Proposition 7.18). The difference is that
we are now looking for maximal instead of minimal tuples with a certain
property. Assume we are given a set H ∈ SImin(K). We can be sure that
(D, ∅) ∈ bi-Nrep(K,G) with D = K\H, but there are in general several sets
A ⊆ G such that (D,A) is maximal in bi-Nrep(K,G). On the other hand,
given (D,A) ∈ bi-Nrepmax (K,G) we can guarantee K \D ∈ SI (K); but not
minimality:

Proposition 7.26. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ bi-Nrepmax (K,G), then H = K\D ∈ SI (K). In particular,
there is a set D′ with D ⊆ D′ such that K \ D′ ∈ SImin(K).

• If H = K \ D ∈ SImin(K), then there is a (not necessarily uniquely
defined) A ⊆ G such that (D,A) ∈ bi-Nrepmax (K,G).
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Thus, the second item is quite nice, but the first one suggests some cau-
tion: Given a tuple (D,A) ∈ bi-Nrepmax (K,G), we cannot just “project
away” the second component when looking for sets in SImin(K).

Example 7.27. Example 7.21 shows that bi-Nrepmax (P,G) contains two
distinct tuples (D,A) with D = {a ∨ b.}. We already have H = P \ D ∈
SImin(P ), so we can choose D′ = D for the first item in Proposition 7.26.
Since there are two tuples of this form in Example 7.21, it illustrates in
particular that A in the second item in Proposition 7.26 is not uniquely
defined in general.

Now let us compare bi-Nrepmax (K,G) to the non-repairing subsets of G
from Definition 7.6. Considering cases where the underlying logic is mono-
tonic or G is empty will clearly not yield insightful results when investigating
Nrep(K,G). However, we find a counterpart to Proposition 7.26.

Proposition 7.28. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ bi-Nrepmax (K,G) then A ∈ Nrep(K,G). In particular,
there is a set A′ with A ⊆ A′ such that A′ ∈ Nrepmax (K).

• If A ∈ Nrepmax (K,G), then there is a (not necessarily uniquely de-
fined) D ⊆ K such that (D,A) ∈ bi-Nrepmax (K,G).

We now return to the main goal of this section, namely our duality char-
acterization for bi-Repmin(K,G). It should not be surprising that a notion of
co-bi-Nrepmax (K,G) is required. The following is natural and well-behaving,
extending the previous one component-wise.

Definition 7.29. LetK and G be disjoint knowledge bases. The set co-bi-Nrepmax (K,G)
consists of all (A,D) such that (G \ A,K \ D) is in bi-Nrepmax (K,G).

Let us summarize the important sets from the previous examples.

Example 7.30. Recall our programs P and G.

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

We found that bi-Repmin(P,G) consists of the following tuples:

({a← b.}, ∅), ({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).
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Moreover,

bi-Nrepmax (P,G) = {({a ∨ b.}, {a., b← d.}), ({a ∨ b.}, {a., d.})}.

Hence if we set H = P \ {a ∨ b.} we obtain

co-bi-Nrepmax (P,G) = {(H, {b., d.}), (H, {b., b← d.})}.

The following theorem states that the desired duality result is indeed
obtained. Before stating it, we need to extend the notion of a hitting set to
tuples of sets. This is done in the natural way: Given tuplesM = {(Xi, Yi) |
i = 1, . . . , n}, we say (X, Y ) is a hitting set ofM if X ∩Xi 6= ∅ or Y ∩Yi 6= ∅
for each i = 1, . . . , n. This is natural as it corresponds to extending the
intersection to tuples of sets component-wise and letting (∅, ∅) be the empty
tuple.

Theorem 7.31 (Subset-Superset Duality). Let K and G be disjoint knowl-
edge bases. Then S is a minimal hitting set of co-bi-Nrepmax (K,G) iff
S ∈ bi-Repmin(K,G).

For this, proving the following dual statement almost suffices (see Ap-
pendix Appendix B)

Theorem 7.32 (Subset-Superset Duality II). Let K and G be disjoint knowl-
edge bases. Then S is a minimal hitting set of bi-Repmin(K,G) iff S ∈
co-bi-Nrepmax (K,G).

To see the duality at work, we recall our examples.

Example 7.33. Consider again P ′

P ′ : ← not b. ← not c.

with G as usual. We found

bi-Repmin(P ′, G) = {(P, ∅), ({← not c.}, {b.}), ({← not c.}, {d., b← d.})}

and co-bi-Nrepmax (P ′, G) consists of

({← not c.}, ∅), ({← not b.}, {b., d.}), ({← not b.}, {b., b← d.}).
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Take ({← not c.}, {b.}) ∈ bi-Repmin(P ′, G). Indeed,

({← not c.}, {b.}) ∩ ({← not c.}, ∅) = ({← not c.}, ∅)
({← not c.}, {b.}) ∩ ({← not b.}, {b., d.}) = (∅, {b.})

({← not c.}, {b.}) ∩ ({← not b.}, {b., b← d.}) = (∅, {b.})

where all intersections are non-empty. It is thus a hitting set of co-bi-Nrepmax (P ′, G).
Minimality can bee seen straightforwardly.

Example 7.34. For the AF represented by R = {(a, b), (b, c), (c, c)} and
additional attacks G = {(a, c), (b, a), (c, b)} we found:

bi-Repmin(R,G) = {({(c, c)}, ∅), ({(a, b)}, ∅), (∅, {(a, c)}), (∅, {(b, a)})},
bi-Nrepmax (R,G) = {({(b, c)}, {(c, b)})},

co-bi-Nrepmax (R,G) = {({(a, b), (c, c)}, {(a, c), (b, a)})}.

Now consider ({(c, c)}, ∅) ∈ bi-Repmin(R,G). Then

({(c, c)}, ∅) ∩ ({(a, b), (c, c)}, {(a, c), (b, a)}) = ({(c, c)}, ∅),

so it is a hitting set of (the singleton) co-bi-Nrepmax (R,G). As above,
minimality is clear.

Properties of Hitting Sets And Former Dualities

We now demonstrate how to infer Theorem 7.2 as well as Theorem 7.10
from the more general Theorem 7.31. To see this, we need to investigate
the structure of (the minimal hitting sets of) co-bi-Nrepmax (K,G). Let us
start with Theorem 7.2. Here, the key observation is that—when trying
to restore consistency of K—one is not reliant on G as long as K possesses
consistent subsets. We need to formally find what this means regarding the
minimal hitting sets of SImin(K) resp. co-bi-Nrepmax (K,G). We may then
translate the duality characterization from Theorem 7.31 into the special case
Theorem 7.2. The first and most important step is the following observation.

Proposition 7.35. Let K and G be disjoint knowledge bases. Let Cmax (K) 6=
∅, i. e., K possesses consistent subsets and let SImin(K) 6= ∅, i. e., K is incon-
sistent. A set SD is a minimal hitting set of SImin(K) if and only if (SD, ∅)
is a minimal hitting set of co-bi-Nrepmax (K,G).
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We want to emphasize that Proposition 7.35 in particular implies the
following: If (the conditions of Proposition 7.35 are met and) (D,A) ∈
co-bi-Nrepmax (K,G), then D 6= ∅. Otherwise, (SD, ∅) could not be a (mini-
mal) hitting set of co-bi-Nrepmax (K,G):

Proposition 7.36. Let K and G be disjoint knowledge bases. Let Cmax (K) 6=
∅, i. e., K possesses consistent subsets and let SImin(K) 6= ∅, i. e., K is incon-
sistent. Then there is no tuple (D,A) ∈ co-bi-Nrepmax (K,G) with D = ∅.

Having established those properties of (minimal) hitting sets, it is possi-
ble to infer Theorem 7.2 from Theorem 7.31 as a corollary.

Proof of Theorem 7.2. In case ∅ ∈ SI (K), i. e., any subset of K is inconsistent,
then the claim holds trivially. So assume K possesses consistent subsets.

Let S be a minimal hitting set of SImin(K). Consider an arbitrary knowl-
edge base G with K ∩ G = ∅. Due to Proposition 7.35, S is a hitting set of
SImin(K) if and only if (S, ∅) is a minimal hitting set of co-bi-Nrepmax (K,G).
By Theorem 7.31 this is equivalent to (S, ∅) ∈ bi-Repmin(K,G). Due to
Proposition 7.18, this is the case if and only if K \ S ∈ Cmax (K).

Let us now see how to analogously derive Theorem 7.10. Note that the
previous derivation was based on Proposition 7.35, so towards Theorem 7.10
we require a counterpart to it:

Proposition 7.37. Let K and G be disjoint knowledge bases. Let Repmin(K,G) 6=
∅, i. e., K possesses addition-based repairs and let SImin(K) 6= ∅, i. e., K is
inconsistent.

A set SA is a minimal hitting set of co-Nrepmax (K,G) if and only if
(∅,SA) is a minimal hitting set of co-bi-Nrepmax (K,G).

We may infer an analogous result about the tuples in co-bi-Nrepmax (K,G):

Proposition 7.38. Let K and G be disjoint knowledge bases. Let Repmin(K,G) 6=
∅, i. e., G possesses repairing subsets wrt. K and let SImin(K) 6= ∅, i. e., K is
inconsistent.. Then there is no (D,A) ∈ co-bi-Nrepmax (K,G) with A = ∅.

Now Theorem 7.10 is a corollary of Theorem 7.31.

Proof of Theorem 7.10. The case Repmin(K,G) = ∅ is clear. So let Repmin(K,G) 6=
∅. Let S be a minimal hitting set of co-Nrepmax (K,G). Due to Propo-
sition 7.37, S is a hitting set of co-Nrepmax (K) if and only if (S, ∅) is a
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minimal hitting set of co-bi-Nrepmax (K,G). By Theorem 7.31 this is equiv-
alent to (S, ∅) ∈ bi-Repmin(K,G). Due to Proposition 7.19, this is the case
if and only if S ∈ Repmin(K).

We thus see that both Theorem 7.2 as well as Theorem 7.10 can be
inferred from Theorem 7.31 by establishing appropriate connections between
the hitting sets of the different inconsistency notions.

Measuring Inconsistent Subsets

Let us now turn to measuring inconsistency. Assume we are given a
knowledge base K as well as a disjoint knowledge base G. In the present
section, we do not interpret G as a set of potential additional assumptions.
We will instead assume K ∪ G is our whole knowledge base and thus, K is
not an isolated one, but seen as a subset of K ∪ G. This should be taken
into account when assessing the conflicts within K as the following examples
illustrate.

Example 7.39. Consider the logic program P = {← not a, not c.}. Since
there is no way to infer a or c, the program P is inconsistent and, e.g., the
measure IMSI assigns 1 to it. However, interpreted as part of the program
P ∪G with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

the program P simply constrains the answer sets rather than causing incon-
sistency. Hence, although IMSI(P ) = 1 seems reasonable on its own, it does
not appear to make sense when considering P ∪G.

Example 7.40. Let P = {← not a., ← not b.}. Consider the program
P ∪G given as follows:

P ∪G : a ∨ b. ← not a. ← not b.

Inconsistency of P ∪ G stems from the two constraints “← not a.” and “←
not b.”. As answer sets are required to be minimal models, it is not possible
to satisfy both constraints simultaneously. The subset P = {← not a., ←
not b.} obviously consists of two conflicts and this intuition is confirmed
by the observation that IMSI(P ) = 2. However, given the disjunctive rule
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“a ∨ b.”, this is peculiar since there is actually only one conflict which cannot
be resolved (either a or b is missing). This is confirmed by the observation
IMSI(P ∪G) = 1.

A simple solution simulates the concept of strong inconsistency. Recall
that a subset of a knowledge base is strongly inconsistent if it contains con-
flicts that cannot be resolved (within K). We can proceed similarly here and
take all supersets of K within K ∪ G into account, looking for the smallest
possible inconsistency degree. As this approach depends on a given measure
I, we obtain the following notion.

Definition 7.41. Let I : 2WF → R∞≥0 be an inconsistency measure and K∪G
a knowledge base. We call

CoG, I(K) := min
G′⊆G
I(K ∪ G ′) (9)

the value of I(K) with respect to the context K ∪ G.

This approach is quite well-behaving for the two examples we considered
before.

Example 7.42. For the logic program P = {← not a, not c.} with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

we immediately see CoG, IMSI
(P ) = 0 caused by consistency of P ∪G.

Example 7.43. Consider again P = {← not a., ← not b.} where P ∪G is

P ∪G : a ∨ b. ← not a. ← not b.

Clearly, there is only one strongly inconsistent subset of P ∪ G, namely P .
We thus see CoG, IMSI

(P ) = 1.

Let us collect some properties of CoG, I(K), depending on the given mea-
sure I. We see that some desirable properties of I transfer to CoG, I(K).

Proposition 7.44. Let K,K′ and G be a knowledge bases.

(a) If I satisfies consistency, then CoG, I(K) = 0 if and only if K /∈ SI (K∪
G),
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(b) if I satisfies independence and α ∈ Ntr(K ∪ G), then CoG, I(K) =
CoG, I(K \ {α}),

(c) if I satisfies strong equivalence and K ≡s K′, then CoG, I(K) = CoG, I(K′).

Proof. Let K,K′ and G be knowledge bases.

(a): Assume the measure I satisfies the consistency postulate. If CoG, I(K) =
0 then there is K ∪ G ′ ⊆ K ∪ G such that I(K ∪ G ′) = 0. Since I satisfies
consistency, K ∪ G ′ is consistent and therefore K is not strongly (K ∪ G)-
inconsistent. On the other hand, if K /∈ SI (K∪G) then there is G ′ ⊆ G such
that K ∪ G ′ is consistent and I(K ∪ G ′) = 0. Then CoG, I(K) = 0 as well.

(b): Let I satisfy independence. For α ∈ Ntr(K ∪ G) we have α ∈ Ntr(H)
for any subset H of K ∪ G. Now the claim follows immediately.

(c): Let I satisfy strong equivalence and let K ≡s K′. It follows that I(K) =
I(K′) and, as K ≡s K′ implies K ∪ G ′ ≡s K′ ∪ G ′ for all G ′ ⊆ G, I(K ∪ G ′) =
I(K′ ∪ G ′) and by this the claim.

While the expression (9) simply takes the minimum over all possible su-
persets, it would be rather appealing to utilize a general framework for mea-
suring the information which is added to a knowledge base. The idea of
measuring information is not novel (Shannon, 1948; Lozinskii, 1994). An
information measure (Grant and Hunter, 2011) is defined as a mapping J
assigning non-negative real numbers to propositional knowledge bases and
satisfying

• if K = ∅, then J (K) = 0,

• if K ⊆ K′ and K′ is consistent, then J (K) ≤ J (K′),

• if K is consistent and at least one formula α ∈ K is not a tautology,
then J (K) > 0.

Equipped with an appropriate technique to measure information in non-
monotonic logics, one could utilize J (A) (where A ⊆ G) to measure the
information added to K and then consider I(K∪A) to measure inconsistency
of the remaining conflicts within K. This approach induces inconsistency
measures based on, e.g., the expression

min
A⊆G

J (A) + I(K ∪A). (10)
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Although we leave a thorough investigation of this issue for future work, we
want to mention that (9) is a special case of this approach, utilizing the trivial
function J ≡ 0.4 In the subsequent Section 8.1 on measuring inconsistency in
ASP we will consider a measure I± which can be interpreted as an expression
of this form, where J counts the number of facts we add to a given program.

In order to calculate (9), we require a given inconsistency measure I. We
also want to consider a novel approach here. Recall the measures introduced
in Section 3. They are based on (the number of) strongly inconsistent sub-
sets of a knowledge base K. The notion of strong inconsistency facilitated
the previously considered generalization of inconsistency measures from the
literature. The results of the previous sections suggest that bidirectional non-
repairs are worth investigating when given a knowledge base K as a subset
of K ∪ G. This motivates considering the following measures of the type

IG : 2WF → R∞≥0 with K 7→ IG(K).

Definition 7.45. Given disjoint knowledge bases K and G, define

• INR,G via

INR,G(K) = |co-bi-Nrepmax (K,G)| = |bi-Nrepmax (K,G)|,

• INRc,G via

INRc,G(K) =
∑

(D,A) ∈
co-bi-Nrepmax (K,G)

1

|D ∪ A|
.

We observe the similarities to the measures IMSI and IMSIC . Those given in
Definition 7.45 are similar in their spirit, replacing SImin(K) with co-bi-Nrepmax (K,G).
We want to emphasize that the resulting measures are rather pessimistic
when it comes to assessing K as subset of K ∪ G. To illustrate this, let us
consider INR,G applied to the previous examples.

4More precisely, J ≡ 0 is no information measure since the third condition is violated
(Grant and Hunter, 2011)
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Example 7.46. Recall the logic program P = {← not a, not c.} with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

Even though P ∪G itself is consistent, there is a non-repairing subset G′ of
G, namely

G′ : b← not a. d← not c.

We note that

P ∪G′ : b← not a. d← not c. ← not a, not c.

is inconsistent. We thus see bi-Nrepmax (P,G) = {(∅, G′)}, yielding INR,G(P ) =
1. Moreover, co-bi-Nrepmax (P,G) = {(P,G \G′)} = {(P, {a← not b., c←
not d.})}. Hence, we have INRc,G(P ) = 1/3.

So these measures punish knowledge bases K and G for each maximal
bidirectional non-repair. This can be seen as a counterpart to CoG, I(K)
which rewards K for any possibility G possesses to resolve a conflict. In this
sense, one also could interpret INR,G and INRc,G as measures for the quality
of the repair options provided by G. To see the two approaches at work, let
us consider the following example:

Example 7.47. Let P and G be the following programs:

P : a. ← not b. G : ¬a. b.

We see that CoG, IMSI
(P ) = 0 since P has the consistent superset P ∪ {b}.

However, there is also one bidirectional non-repair, namely ({a.}, {¬a.}),
thus we find INR,G(P ) = 1.

We also want to mention a quite special feature of the measure INRc,G.
Recall the motivation for defining IMSIC in contrast to IMSI, namely taking
the size of a set H ∈ Imin(K) into account. The measure INRc,G attains
larger values the bigger the sets in bi-Nrepmax (K,G) are. This is similar
in spirit to IMSI, but not quite the same since punishing the size of a tuple
(D,A) ∈ bi-Nrepmax (K,G) means punishing the fact that there is a large
number of formulas which are not capable of providing a repair.
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Example 7.48. Recall P = {← not a., ← not b.} and G = {a ∨ b.}, i. e.,

P ∪G : a ∨ b. ← not a. ← not b.

As P∪G is inconsistent, we see bi-Nrepmax (P,G) = {(∅, G)}, i. e., INR,G(P ) =
1.

Let us now compare the measures from Definition 7.45 to those from
Section 3. We note that INR,G(K)) attains larger values in general. This is a
corollary of Proposition 7.26.

Corollary 7.49. Let K and G be disjoint knowledge bases. Then, IMSI(K) ≤
INR,G(K).

Proof. We have INR,G(K) = |bi-Nrepmax (K,G)|. As we know from Proposi-
tion 7.26, if H = K \ D ∈ SImin(K), then there is an A ⊆ G with (D,A) ∈
bi-Nrepmax (K,G). In particular, |SImin(K)| ≤ |bi-Nrepmax (K,G)|, i. e.,
IMSI(K) ≤ INR,G(K).

We observe that IMSIC(K) ≤ INRc,G(K) does not hold in general as one
can already see from Example 7.46. Here we had INRc,G(P ) = 1/3 where
IMSIC(P ) = 1. We want to emphasize that a comparison between IMSIC(K)
and INRc,G(K) does not appear to be very meaningful. This is because both
measures depend positively on the number of undesired sets, but negatively
on their size.

However we note that the expected outcome is obtained whenever G is
empty. This is a corollary of Proposition 7.25.

Corollary 7.50. Let K be a knowledge base. Then, INR,∅(K) = IMSI(K) and
INRc,∅(K) = IMSIC(K).

Proof. Due to Proposition 7.25, (D, ∅) ∈ bi-Nrepmax (K, ∅) iff K \ D ∈
SImin(K). Equivalently, (H, ∅) ∈ co-bi-Nrepmax (K, ∅) iff H ∈ SImin(K).
This proves both equations.

We make an analogous observation whenever the underlying logic is mono-
tonic.

Corollary 7.51. Let K and G be disjoint knowledge bases. Let the underlying
logic be monotonic. Then, INR,G(K) = IMSI(K) and INRc,G(K) = IMSIC(K).
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Proof. Due to Proposition 7.24, (D,G) ∈ bi-Nrepmax (K,G) iff K \ D ∈
Imin(K). Equivalently, (H, ∅) ∈ co-bi-Nrepmax (K,G) iff H ∈ SImin(K). This
proves both equations.

Let us now collect some properties of the two measures we just introduced.
As before, they are adapted rationality postulates from Section 4. Note the
differences and similarities to Proposition 7.44.

Proposition 7.52. Given two disjoint knowledge bases K and G, the mea-
sures INR,G(·) and INRc,G(·) satisfy

(a) IG(K) = 0 if and only if K is consistent,

(b) if α ∈ Ntr(K ∪ G), then IG(K) = IG(K \ {α}) = IG\{α}(K),

(c) if G ≡α G ′, then IG(K) = IG′(K).

Proof. (a): Observe that K \ D can never be strongly (K ∪A)-inconsistent,
whenever K itself is consistent. So bi-Nrepmax (K,G) = ∅, i. e., INR,G(K) =
INRc,G(K) = 0. If K is inconsistent, then bi-Nrepmax (K,G) contains at least
one tuple since bi-Nrep(K,G) contains at least (∅, ∅). So INR,G(K), INRc,G(K) >
0.

(b): Clear, similar to the proof of Proposition 5.1.

(c): Clear, similar to the proof of Proposition 5.1.

This finishes our discussion on the measures based on bidirectional non-
repairs. In contrast to the measure (9) defined in Definition 7.41, the mea-
sures from Definition 7.45 are based on bidirectional non-repairs and thus do
not require a given measure I. One drawback of the latter is that inconsis-
tencies which stem from defaults (“a ← not a.”) are not distinguished from
hard-coded ones (“a.” vs. “¬a.”). This can be achieved by measures defined
via (10), when making appropriate choices for I and J .

8. Related Work

Inconsistency measurement in non-classical frameworks has been addressed
in some limited fashion before (Thimm, 2013; Potyka, 2014; De Bona and
Finger, 2015; Condotta et al., 2016; Ulbricht et al., 2016; Hunter, 2017; Am-
goud and Ben-Naim, 2017). The latter two papers study disagreement in
argumentation graphs, a notion slightly different from inconsistency. It will
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nevertheless be interesting to see whether postulates for disagreement are
applicable to inconsistency as well. However, the closest work to this one
is the work of Ulbricht et al. (2016) where the special case of LASP∗ is con-
sidered rather than a general, non-monotonic logic. It is quite obvious that
considering one particular framework only —while being not as general as
the present paper— allows to phrase more meaningful postulates as they can
be tailored for the given framework. We want to discuss this work in some
detail here.

Moreover, Hunter and Konieczny (2010) consider the following problem:
Given an inconsistent knowledge base K, how much of the “blame” should
be assigned to a given formula α ∈ K? For this setting, minimal inconsistent
subsets of a knowledge base are a rather useful tool. We want to indicate
how our notion of strong inconsistency might help to lift some results, but
also limitations we face.

8.1. Measuring Inconsistency in ASP

Many of the postulates of Ulbricht et al. (2016) are concerned about
situations where some kind of monotonicity should hold. However, all of them
do have in common that conflicts are preserved as in strong monotonicity
from above. In fact, they turn out to be special cases. Before we state them,
we need the notion of a splitting set of a program P .

Definition 8.1. Let P be a logic program, i. e., a set of rules of the form

l0 ∨ ... ∨ lk ← lk+1, . . . , lm, not lm+1, . . . , not ln.

A set U of literals is called a splitting set for P , if {l0, . . . , lk}∩U 6= ∅ implies
{l0, . . . , ln} ⊆ U for any rule r ∈ P . For a splitting set U , let botU(P ) be the
set of all rules r ∈ P with {l0, . . . , ln} ⊆ U .

Now we consider the following postulates by Ulbricht et al. (2016).

CLP-monotonicity If P does not contain default negation “not”, then
I(P ) ≤ I(P ∪ P ′) for any program P ′.

Split-monotonicity If U is a splitting set for P , then I(botU(P )) ≤ I(P ).

Con-monotonicity If P ⊆ WFASP∗ and r ∈ P is a constraint, then I(P ) ≤
I(P ∪ {r}).
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All of them describe situations where the additional rules preserve conflicts
of the program on the left hand side. Thus, we see:

Proposition 8.2. If a measure I satisfies strong monotonicity, it satisfies
CLP-monotonicity, Split-monotonicity and Con-monotonicity as well.

This, however, does not mean that the former postulates are pointless.
We consider the measure I± by Ulbricht et al. (2016).

Definition 8.3. Define I± : P → R∞≥0 via

I±(P ) = min{|A|+ |D| | A,D ⊆ WFASP∗ such that (P ∪ A) \D is consistent}

for all P ∈ P .

Despite satisfying CLP-monotonicity, Split-monotonicity and Con-monotonicity,
this measure does not satisfy strong monotonicity.

Example 8.4. Consider the following programs P and P ′:

P : ← not a. ← not b. ← not c.

P ′ : a← x. b← x. c← x.

It is easy to see that SImin(P ) consists of the three unsatisfied constraints.
Moreover, as x cannot be entailed, P ′ preserves conflicts of P . Yet, I±(P ) =
3, while I±(P ∪ P ′) = 1.

This example shall illustrate that the notion of preserving conflicts might
be too strong in some cases. The fact that I± satisfies the three weak versions
of monotonicity mentioned above confirms the intuition that I± behaves
quite “monotonic” as long as the additional information does not resolve
conflicts. This is not surprising as I± counts the number of modifications
that are required on the level of formulas to restore consistency. Moving from
P to P∪P ′ weakens the severity of the inconsistency, since a single additional
rule suffices to satisfy all constraints. However, these are considerations on
the level of the language of the given programs and thus hard to capture
within the general notion of a logic.
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8.2. Culpability Measures

While inconsistency measures aim at assessing the inconsistency of a
whole knowledge base, several works have addressed the issue of leverag-
ing such approaches to assign degrees of “blame” for the individual formulas
of a knowledge base. More concretely, a culpability measure (Daniel, 2009)
is a measure I that takes a knowledge base K and a formula α ∈ K and
returns a non-negative number I(K, α) representing a degree of responsibil-
ity of α on the overall inconsistency of K.5 As with inconsistency measures,
culpability measures can be defined using minimal inconsistent subsets of
a propositional knowledge base, leading to a smooth generalization within
our setting. Due to non-monotonicity, however, a formula α might resolve
conflicts of a knowledge base K. It thus becomes apparent that assessing the
blame of one particular formula possess new challenges in a non-monotonic
framework. We will briefly discuss this issue here.

Definition 8.5. For a knowledge base K, a culpability measure is a mapping
I(K, ·) : K → R with α 7→ I(K, α).

We consider two approaches by Hunter and Konieczny (2008). The first
one is similar in spirit of IMSIC . Straightforwardly making use of minimal
strongly K-inconsistent subsets yields:

Definition 8.6. Define MSIVC (K, α) via

MSIVC (K, α) =
∑

H ∈ SImin(K),
α ∈ H

1

|H|
. (11)

The second utilizes a given inconsistency measure I by applying the Shap-
ley value. The latter was proposed as a solution concept for cooperative game
theory. Here, players form coalitions with a certain payoff assigned to each
coalition. The question is how to assess each player in terms of her “value”
for the present coalition (Shapley, 1953). Hunter and Konieczny realized

5In some works these functions have been called inconsistency values (Hunter and
Konieczny, 2008); we stick to the term culpability measure as the term inconsistency value
is also used to refer to the inconsistency degree of a knowledge base wrt. some inconsistency
measure
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that the Shapley value provides a smooth tool to asses the “blame” of a for-
mula α ∈ K for the inconsistency degree of K. Instead of the payoff function
assigning coalitions to their payoff simply consider an inconsistency measure:

Definition 8.7. Let I be an inconsistency measure. The corresponding
Shapley culpability measure is given as

SI(K, α) =
∑
C⊆K

(|C| − 1)!(|K| − |C|)!
|K|!

(I(C)− I(C \ {α}))

Hunter and Konieczny obtain MSIVC (K, α) = SIMSI(K, α) for proposi-
tional knowledge bases (that is, IMSI coincides with the Shapley culpability
measure using the established measure IMI). Since they do not make explicit
use of properties of propositional logic (see Proposition 8 by Hunter and
Konieczny (2010)) we find:

Proposition 8.8. If K is a monotonic knowledge base, then MSIVC (K, α) =
SIMSI(K, α).

It is quite easy to see that this equation does not hold in non-monotonic
logics. The following example shall illustrate why this is actually good news
for the Shapley inconsistency value SIMSI(K, α). As one realizes considering
(11), MSIVC (K, α) is only capable of “blaming” formulas for occurring in a
strongly inconsistent subset. No notion of “reward” for restoring consistency
in some cases is taken into consideration.

Example 8.9. Consider the program P given as follows.

P : a. b. ← not a, not c1. ← not a, not c2.

As P is consistent, MSIVC (P, r) = 0 for all r ∈ P despite “a.” should be
rewarded for restoring consistency while the rules “← not a, not ci.” should
be punished for being dependent on “a.”.

Now consider the Shapley culpability measure. We have SIMSI(P, b.) = 0
because “b.” is neutral in P . Moreover, SIMSI(P,← not a, not c1.) = 1

2
=

SIMSI(P,← not a, not c2.) as they are punished for introducing inconsistency
in some cases and SIMSI(P, a.) = −1 holds because “a.” resolves conflicts
within P .

The Shapley culpability measure possesses some desirable properties which
where already found by Hunter and Konieczny (2008). The proofs work in
the same way.
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Proposition 8.10. If I is an inconsistency measure satisfying consistency
and independence, then SI(K, ·) satisfies

Distribution
∑

α∈K S
I(K, α) = I(K),

Symmetry if I(K′ ∪ {α}) = I(K′ ∪ {β}) for all K′ ⊆ K with α, β /∈ K′,
then SI(K, α) = SI(K, β) and

Neutral independence if α ∈ Ntr(K), then SI(K, α) = 0.

We believe that consideration of culpability measures for non-monotonic
logics is an interesting and quite promising research direction. Besides the
culpability measures mentioned in this section, Mu (2015; 2018) also in-
troduced further such measures, in particular one that can be interpreted
through Pearl and Halpern’s (2005) model of causality. However, the notion
of strong inconsistency might not be appropriate in all cases as it depends
on the structure of the whole knowledge base. Even though SIMSI(K, α) is
capable of capturing a notion of “reward” for restoring inconsistency, the
underlying measure IMSI is actually tailored for consideration of a whole
knowledge base K. Investigation of culpability measures for non-monotonic
logics is thus left for future work.

9. Summary and Conclusion

In this paper, we gave a comprehensive account on the challenges of han-
dling and measuring inconsistency in general, i. e., not necessarily monotonic,
logics using the concept of strong inconsistency. In particular, using a very
general notion of a logic, we generalized three popular approaches to incon-
sistency measurement from the literature. Furthermore, we generalized many
of the existing rationality postulates for inconsistency measurement as well
and presented some new ones, particularly focusing on measure relating to
monotonicity properties. We investigated the compliance of the discussed
measures wrt. the postulates and also generalized the notion of IG measures
(De Bona et al., 2018). It has to be noted here that our analysis is general
insofar as it does not depend on the actual logic. All results are valid wrt.
to any logic that can be cast into the form of Definition 2.13.

We continued with an analysis of the computational complexity of var-
ious problem related to inconsistency measurement. We obtained various
membership results which are parameterized by the complexity of the sat-
isfiability problem of the used logic and, as an example, provided hardness
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results if the used logic is answer set programming. As another contribution,
we had a closer look at the influence of context in measuring (and repairing)
inconsistencies. In contrast to monotonic logics, inconsistency may be re-
paired in non-monotonic logics by adding information. For that we assumed
the existence of a set G containing information that may be added to the
knowledge base if it helps in restoring consistency. We phrased novel hitting
set dualities for this setting, characterising the relationship between adjusted
notions of maximal consistent and minimal inconsistent sets. We then also
investigated the problem of measuring inconsistency in this setting. Finally,
we also looked briefly at applying the notion of strong inconsistency to define
culpability measures.

In our analysis we focused on three specific inconsistency measures: IMSI,
IMSIC , and Ip. However, we can find further measures making use of minimal
inconsistent subsets in the literature (Jabbour et al., 2016; Jabbour and
Sais, 2016). These measures take a closer look at the relationships between
minimal inconsistent subsets—i. e., whether there are disjoint sets or many
sets having large overlaps—and take this into account to provide a finer
assessment of the inconsistency. In the same vein as we did for IMSI, IMSIC ,
and Ip, we can generalize these measures as well, simply by substituting the
set of minimal inconsistent sets by the set of minimal strong inconsistent sets
in their formal definitions. Investigating these measures could be a fruitful
endeavour for future work.

Again, it has to be noted that the developed approaches and our analysis
is general wrt. to the underlying formalism and encompasses many differ-
ent logical instantiations such as classical logic, answer set programming,
abstract argumentation, and many others. In some of these logics, the chal-
lenges of handling and measuring inconsistency have been addressed only to
a limited extent before or not at all. For example, in abstract argumentation
the only works considering a similar challenge are those by Hunter (2017)
and Amgoud and Ben-Naim (2017). They propose measures to assess the
“disagreement” in abstract argumentation frameworks, which is more about
assessing the amount of conflicts between arguments than our notion of in-
consistency (which is defined for that logic as the absence of extensions). Our
measures can be readily applied to formalisms such as abstract argumenta-
tion and may provide new insights on their semantics.
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Appendix A. Technical Proofs of Section 6

Lemma 6.4. Given an open QBF Φ = ∀Y φ(X, Y ), there is a disjunction-
free logic program P (Φ) ⊆ WFASP∗ of polynomial size with

|SImin(P (Φ))| = |X|+ |Mod(Φ)|.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We abuse notation and
write φ(X, Y ) = 1 (φ(X, Y ) = 0) if φ evaluates to true (false) under a given
assignment to the X and Y variables, so we have

|Mod(Φ)| = |{X | ∀Y φ(X, Y ) = 1)}|
= |{X | ∀Y ¬φ(X, Y ) = 0}|.

We can assume φ to be a formula in 3-DNF and thus, ¬φ is in 3-CNF, i. e., the
conjunction of C1, . . . , Cr with Ck = lk,1∨ . . .∨ lk,3. Let x′1, . . . , x

′
n, y

′
1, . . . , y

′
m

be fresh atoms. Intuitively, they shall correspond to the negated atoms
¬x1, . . . ,¬xn,¬y1, . . . ,¬ym. Let σ be the appropriate mapping, i. e.,

σ(a) =

{
7a if a ∈ X ∪ Y,
a′ if a ∈ {¬x1, . . . ,¬xn} ∪ {¬y1, . . . ,¬ym}.

We construct a program P = P (Φ) whose minimal strongly inconsistent
subsets correspond to {X | ∀Y ¬φ(X, Y ) = 0}. We include a fresh atom w
not occurring in X ∪ Y which is going to witness whether ¬φ is satisfied.
Hence, P contains a constraint

← not w.

Moreover, ¬φ is satisfied if all conjuncts are true, where a conjunct Ck =
lk,1 ∨ . . . ∨ lk,3 is true if one of the literals occurring in Ck is true. Thus, we
introduce atoms w1, . . . , wr and rules

w1 ← σ(l1,1). ... w1 ← σ(l1,3).

... ... ...

wr ← σ(lr,1). ... wr ← σ(lr,3).

w ← w1, . . . wr, wx1 . . . , wxn .

The meaning of the atoms wxi is as follows:
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We want subsets of the program P to correspond to assignments to the
X-variables. Thus, we introduce rules “xi.” and “x′i.” for i = 1, . . . , n. A
subprogram H ⊆ P may contain both “xi.” and “x′i.” for an i. We want
to ensure that H can only be consistent if “xi.” or “xi.

′” is not contained
in H. That is the reason we need the atoms of the form wxi in the rule
“w ← w1, . . . wr, wx1 . . . , wxn .”. We include the following rules.

x1., . . . , xn. x′1., . . . , x
′
n.

wx1 ← not x1. wx1 ← not x′1.

... ...

wxn ← not xn. wxn ← not x′n.

Now, if H does not contain both “xi.” and “xi.
′”, then the corresponding

rule can be added to H to ensure wxi is entailed. This way we check that a
subset H ⊆ P (which is either strongly inconsistent or not) corresponds to a
proper assignment to the X-variables.

Moreover, we want to make sure that a strongly inconsistent subset corre-
sponds to an assignment to all X-variables (and not to a partial assignment).
In other words, if H ⊆ P does not model an assignment to all X-variables,
then H is not supposed to be strongly inconsistent. We thus ensure existence
of a consistent superset H ′ with H ⊆ H ′ ⊆ P as follows: We allow entailment
of w if “xi.” or “x′i.” is missing for any i. This shall, however, only work for
proper assignments, i. e., wxi is required for any i. We hence introduce a rule
“w ← not xi, not x′i, wx1 , ..., wxn” for i = 1, ..., n. Now, if a subset H of P
does not contain “xi.” or “x′i.” (and not both) for any i = 1, . . . , n, we see
that adding the corresponding rule to H ensures w is entailed, rendering H
consistent. We include:

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

Since our goal is counting |{X | ∀Y ¬φ(X, Y ) = 0}|, we do not want rules
corresponding to the choice of Y -variables to occur in a minimal strongly P -
inconsistent subset H. The following translates assignments to Y -variables
without any restrictions:

y1 ← not y′1. y′1 ← not y1.

... ...

ym ← not y′m. y′m ← not ym.
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To summarize, P is given as follows.

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j. y′j ← not yj. j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

← not w.

Note that the construction is polynomial. We show

|SImin(P )| = |X|+ |{X | ∀Y ¬φ(X, Y ) = 0}|.

We make a few observations in order to obtain this result.

(a) Any inconsistent subset of P contains the constraint “← not w.” and
the inconsistency stems from it.

(b) Let H ∈ SImin(P ). Then, H only contains “← not w.” and rules of the
form “xi.” or “x′i.”.

For this, let W ⊆ P be the following program

W :

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j. y′j ← not yj. j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .
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It is easy to see that rules in W can never introduce inconsistency,
because they facilitate entailment of w. Hence, a set H ∈ SImin(P )
consists of rules in P \W .

(c) Let H ∈ SImin(P ). If H does not contain both “xi.” and “x′i.” for an
i ∈ {1, ..., n}, then it contains either “xi.” or “x′i.” for all i ∈ {1, ..., n}.
For this, assume neither “xi.” nor “x′i.” is in H. Augment H with the
following rules:

• “w ← not xi, not x′i, wx1 , ..., wxn .”,

• “wxj ← not xj.” and “wxj ← not x′j.” for j = 1, ..., n.

We obtain a consistent program since w is entailed now (cf. (a)). Hence,
H /∈ SI (P ).

Now, we explicitly give the two kinds of minimal strongly P -inconsistent
subsets. The first one corresponds to inconsistent assignments, the second
one to assignments where ∀Y ¬φ(X, Y ) = 0 holds.

(d) Let i ∈ {1, ..., n} and let Hi := {xi., x′i., ← not w.}. Then, Hi ∈
SImin(P ).

Since satisfying the constraint “← not w.” requires the atom wxi , any
program H with Hi ⊆ H ⊆ P is clearly inconsistent. Hence, Hi ∈
SI (P ). For minimality, assume “xi.” is removed from Hi. Augment
the obtained subprogram with the following rules:

• “w ← not xj, not x′j, wx1 , ..., wxn .” for any j 6= i (w. l. o. g. assume
that n ≥ 2),

• “wxj ← not xj.” and “wxj ← not x′j.” for j = 1, ..., n.

Since “xi.” is not contained in the subprogram anymore, w can be
entailed now. Thus, we found a consistent superprogram. Hence,
Hi \ {xi.} /∈ SI (P ). For the same reason, Hi \ {x′i.} /∈ SI (P ). The
observation that Hi \ {← not w.} /∈ SI (P ) is trivial. Thus, Hi is
minimal in SI (P ).

For our last step, let

HI =
⋃

i∈{1,...,n}

Hi. (A.1)
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As we can conclude now, H ∈ SImin(P ) \ HI contains either “xi.” or “x′i.”
for all indices i ∈ {1, ..., n}. More general, let HΩ ⊆ 2P be the set of all
subprograms of P containing either “xi.” or “x′i.” for all i ∈ {1, ..., n}. Hence
for H ∈ HΩ, it makes sense to define a corresponding assignment ω(H) :
X → {0, 1} with

ω(H)(xi) :=

{
1 if xi. ∈ H,
0 if x′i. ∈ H.

We are now ready to prove our last step.

(e) Let H ∈ HΩ. Then, H ∈ SImin(P )\HI if and only if ∀Y (¬φ(X, Y ) = 0)
holds for the assignment ω(H) to the X-variables.

“⇒”: Let H ∈ SImin(P ) \HI . Assume ∀Y (¬φ(X, Y ) = 0) is false for
the assignment ω(H), i. e., ∃Y ¬φ(X, Y ) holds. Consider the program
H ∪W where W is as in (b). Any answer set of W corresponds to one
particular assignment to the Y -variables. By construction of P and
since ∃Y ¬φ(X, Y ) holds, H ∪W has a stable model M with w ∈ M .
Hence, H ∪W is consistent and we conclude H /∈ SImin(P ).

“⇐”: Minimality of H in SI (P ) follows from the observations we made
above. Assume H ′ is consistent with H ⊆ H ′. Due to (d), H ′ \H ⊆ W
with W as above, because adding additional rules of the form “xi.”
or “x′i.” to H renders the subprogram inconsistent. However, rules in
W do not introduce inconsistency. Hence H ′ with H ⊆ H ′ ⊆ H ∪W
being consistent implies that H ∪W is consistent as well. As above,
we conclude ∃Y φ(X, Y ) is true.

In (d) and (e), we found two possible cases for sets H ∈ SImin(P ). Due to
(b) and (c), no other case occurs. Thus,

|SImin(P )| = |X|+ |{X | ∀Y ¬φ(X, Y ) = 0}|

is proved.

Theorem 6.7. The problem Value
LASP∗

IMSI
is #·coNP-complete under sub-

tractive reductions.

Proof. As membership is due to Theorem 6.3, we prove hardness. Consider
an open QBF Φ = ∀Y φ(X, Y ). We use the same construction (and the same
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notation for φ, X and Y ) as in Lemma 6.4, i. e., consider P = P (Φ) given as
follows:

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j. y′j ← not yj. j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

← not w.

Recall that P yields |SImin(P (Φ))| = |X|+ |Mod(Φ)|. So for our subtractive
reduction we require a program P ′ with |SImin(P ′)| = |X| and SImin(P ′) ⊆
SImin(P ). For this, consider P ′ = P ′(Φ) as follows:

P ′ :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

← not w.

It is easy to see that SImin(P ′) = HI with HI as in (A.1). In particular,

SImin(P ′) ⊆ SImin(P )

and |SImin(P ′)| = |X|. Since

|{X | ∀Y φ(X, Y )}| = |SImin(P )| − |X|
= |SImin(P )| − |SImin(P ′)|

follows, we found a subtractive reduction.
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Theorem 6.10. Let m ≥ 1. If the decision problem SatL is in

(a) Σp
m, then LowerLIp is in Σp

m+1,

(b) Πp
m, then LowerLIp is in Σp

m+2,

(c) Πp
m and L is monotonic, then LowerLIp is in Σp

m+1.

Proof. Note that Ip(K) ≤ |K|. Given an integer k ≤ |K|, guess a set H ⊆ K
with |H| ≥ k and for any α ∈ H guess a set Hα. Perform (linearly many)
satisfiability checks to verify that Hα is minimal strongly K-inconsistent.
Due to Brewka et al. (2017), the latter check is in

(a) Dp
m if SatL is in Σp

m,

(b) Dp
m+1 if SatL is in Πp

m,

(c) Dp
m if SatL is in Πp

m and L is monotonic.

Due to the nondeterministic guess of H and the sets Hα, this algorithm is in

(a) Σp
m+1 if SatL is in Σp

m,

(b) Σp
m+2 if SatL is in Πp

m,

(c) Σp
m+1 if SatL is in Πp

m and L is monotonic.

Corollary 6.11. Let m ≥ 81. If the decision problem SatL is in

(a) Σp
m, then UpperLIp is in Πp

m+1, ExactLIp is in Dp
m+1 and ValueLIp is

in FPΣp
m+1[logn],

(b) Πp
m, then UpperLIp is in Πp

m+2, ExactLIp is in Dp
m+2 and ValueLIp is

in FPΣp
m+2[logn],

(c) Πp
m and L is monotonic, then UpperLIp is in Πp

m+1, ExactLIp is in

Dp
m+1 and ValueLIp is in FPΣp

m+1[logn].

Proof. Follows from Lemmas 4 and 6 by Thimm and Wallner (2019).

Proposition 6.12. The problems Lower
LASP∗

I
MSIC

and Upper
LASP∗

I
MSIC

are CNP-

hard, Exact
LASP∗

I
MSIC

is C=NP-hard.
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Proof. Given an open QBF Φ = ∀Y φ(X, Y ), consider the program P = P (Φ)
as in Lemma 6.4. It contains |X| minimal strongly P -inconsistent subsets of
the form {xi., x′i, not w.} (case (d) in the proof of Lemma 6.4) as well as
|Mod(Φ)| many of size |X|+ 1 (case (e) in the proof of Lemma 6.4). Hence,

IMSIC(P (Φ)) =
∑

H∈SImin (P )

1

|H|
=
|X|
3

+
Mod(Φ)

|X|+ 1

and hence, for any integer k, |Mod(Φ)| ≥ k resp. |Mod(Φ)| = k holds iff

IMSIC(P (Φ)) ≥ |X|
3

+ k
|X|+1

resp. IMSIC(P (Φ)) = |X|
3

+ k
|X|+1

holds.

Proposition 6.13. The problem Lower
LASP∗

Ip is Σp
2-complete. The problem

Upper
LASP∗

Ip is Πp
2-complete. The problem Exact

LASP∗

Ip is Dp
2-complete.

Proof. Membership follows from Theorem 6.10. For hardness, assume we are
given an open QBF Φ = ∀Y φ(X, Y ). Deciding whether |Mod(Φ)| ≥ 1 holds
is Σp

2-complete in general. To prove Lemma 6.4, we already gave a program
P = P (Φ) with

|SImin(P )| = |X|+ |Mod(Φ)|.

We make use of the same notations and auxiliary atoms. Consider P = P (Φ)
again.

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j. y′j ← not yj. j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

← not w.

Our considerations above show that the rules occurring in the minimal strongly
P -inconsistent subsets of P are “xi.” and “x′i.” for i = 1, ..., n as well as
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“← not w.”. We thus see that Ip(P ) = 2n + 1 holds no matter how many
models Φ has. Recall: H ∈ SImin(P ) is either of the form

H = {xi., x′i., ← not w.}

(corresponding to an improper assignment) or it contains rules of the form
“xi.” resp. “x′i.” corresponding to an assignment that is a model of Φ.

We now introduce some more rules in order to be able to tell which case
occurs. The goal is to find out whether at least one H ∈ SImin(P ) corresponds
to an assignment. For that, we keep track of assignments as follows. Similar
to the rules

wxi ← not xi. wxi ← not x′i.

witnessing that a proper assignment is given, we introduce

vxi ← xi. vxi ← x′i.

witnessing that at least one of the rules “xi.” and “x′i.” is chosen. Now, we
can make sure that a setH corresponding to an assignment to theX-variables
is never strongly P -inconsistent by additionally adding

w ← wx1 , . . . , wxn , vx1 , . . . , vxn , not a.

Moreover adding
a.

to the program makes sure that this rule is not always applicable. So consider
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Q = Q(Φ) given as follows.

Q :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi.

wxi ← not x′i. i = 1, ..., n

yj ← not y′j.

y′j ← not yj. j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

vxi ← xi.

vxi ← x′i. i = 1, ..., n

w ← wx1 , . . . , wxn , vx1 , . . . , vxn , not a.

a.

← not w.

We do not repeat all the considerations from Lemma 6.4 since the programs
P and Q are rather similar. We note however that

Hi = {xi., x′i., ← not w.} ∈ SImin(Q) i = 1, ..., n

holds. Thus, Ip(Q) ≥ 2n + 1. As pointed out in Lemma 6.4, a program
H ⊆ P that contains either “xi.” or “x′i.” for each i as well as “← not w.”
is in SImin(P ) if and only if the choice of the X-rules corresponds to an
assignment ω to the X-variables with ω ∈ Mod(Φ). Due to the rules we
added to Q, this is not the case anymore for H ⊆ Q because the rules

wxi ← not xi. wxi ← not x′i.

and

vxi ← xi. vxi ← x′i.
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can be added to H in order to obtain each wxi and vxi and then

w ← wx1 , . . . , wxn , vx1 , . . . , vxn , not a.

entails w. Hence, H contains a consistent superset within Q. Thus, H /∈
SImin(Q). However, if such an H ⊆ Q corresponds to an assignment ω ∈
Mod(Φ), this is the only way to entail w. This follows from what we estab-
lished in Lemma 6.4. Hence, adding “a.” renders H strongly Q-inconsistent.

Thus, we see: Mod(Φ) ≥ 1 holds if and only if there is an H ∈ SImin(Q)
that is not if the form

Hi = {xi., x′i., ← not w.}.

This is the case if and only if “a.” occurs in an H ∈ SImin(Q). By definition
of Ip this is the case if and only if Ip(Q) ≥ 2n+ 2.

It immediately follows that Upper
LASP∗

Ip is Πp
2-complete.

Membership of Exact
LASP∗

Ip in Dp
2 is due to Corollary 6.11. For hardness,

assume we are given the generic Dp
2-complete problem where we are given

two formulas
Φj = ∃X∀Y φj(X, Y )

and have to decide whether Φ1 is true while Φ2 is false. We assume w. l. o. g.
that they do not share any atoms. So let X(Φj) = {x1(Φj), . . . , xn(j)(Φj)}
and Y (Φj) = {y1(Φj), . . . , ym(j)(Φj)} be the variables occurring in Φj. Roughly
speaking, we apply the construction used in Prosition 6.13 two times, yield-
ing the following programs Q1 and Q2. For Qj, we assume that xi = xi(Φj),
wxi = wxi(Φj) and so on and only the atom w occurs in both programs. Both
programs are nearly the same: Q1 is simply Q from Proposition 6.13 and we
let

Q2 = Q1 \ {w ← wx1 , . . . , wxn , vx1 , . . . , vxn , not a., a.}
∪ {w ← wx1 , . . . , wxn , vx1 , . . . , vxn , not b, not c., b., c.}

Thus, the only difference is the appearance of b and c in Q2 rather than just
a. Now consider the program

Q = Q1 ∪Q2.

Now we see that Ip(Q) ≥ |X(Φ1)| + |X(Φ2)| + 1, where the one stems from
the constraint. Note that Φ1 is true iff a occurs in an H ∈ SImin(Q) and
Φ2 is true iff b and c do. Hence, Φ1 is true while Φ2 is false iff Ip(Q) =
|X(Φ1)|+ |X(Φ2)|+ 2.
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Lemma 6.8. Given an open QBF Φ = ∀Y ∃Z φ(X, Y, Z), there is a disjunc-
tive logic program P (Φ) ⊆ WFASP of polynomial size with

|SImin(P (Φ))| = |X|+ |Mod(Φ)|.

Proof. This proof is similar to the one given in Lemma 6.4. Roughly speak-
ing, the main difference is that we use the construction from Theorem 3.1
by Eiter and Gottlob (1995), in order to translate the two quantifiers in the
formula.

So let X = {x1, . . . , xn}, Y = {y1, . . . , ym} and Z = {z1, . . . , zt}. Con-
sider

Mod(Φ) = {X | ∀Y ∃Z φ(X, Y, Z)}.

We will construct a program P = P (Φ), where subsets correspond to assign-
ments to the X-variables as in the proof of Lemma 6.4. The subsets that are
not strongly P -inconsistent will correspond to assignments where

∃Y ∀Z ¬φ(X, Y, Z)

holds, and thus, strongly P -inconsistent subsets correspond to assignments
in Mod(Φ).

We can assume φ to be a formula in 3-CNF and thus, ¬φ is in 3-
DNF, i. e., the disjunction of C1, . . . , Cr with Ck = lk,1 ∧ . . . ∧ lk,3. Let
x′1, . . . , x

′
n, y

′
1, . . . , y

′
m, z

′
1, . . . , z

′
t be fresh atoms and let σ be the mapping

σ(a) =

{
a if a ∈ X ∪ Y ∪ Z,
a′ if a ∈ {¬x1, . . . ,¬xn} ∪ {¬y1, . . . ,¬ym} ∪ {¬z1, . . . ,¬zt}.

The construction of Eiter and Gottlob (1995) works as follows: Given a
formula

Ψ = ∃Y ∀Z ψ(Y, Z)

in 3-DNF (with the notations as here), the following program P is consistent
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if and only if Ψ is valid.

P :

yj ∨ y′j. j = 1, ...,m

zl ∨ z′l. l = 1, ..., t

zl ← w∗. z′l ← w∗. l = 1, ..., t

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← z1, . . . , zt, z
′
1, . . . , z

′
t.

← not w.

After consideration of the proof of Lemma 6.4, the following construction
should be clear in principle. We give the program and make the few necessary
observations afterwards.

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ∨ y′j. j = 1, ...,m

zl ∨ z′l. l = 1, ..., t

zl ← w∗. z′l ← w∗. l = 1, ..., t

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← z1, . . . zt, z
′
1, . . . z

′
t, wx1 , ..., wxn

← not w.

Consider a program H ⊆ P with ← not w. ∈ H. Now if H is consistent,
then so is P because the other rules facilitate entailment of w and can thus
never be responsible for inconsistency.

Now the following observations can be made similar as in the proof of
Lemma 6.4:

(a) Any inconsistent subset of P contains the constraint “← not w.” and
the inconsistency stems from it.
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(b) Let H ∈ SImin(P ). Then, H only contains “← not w.” and rules of the
form “xi.” or “x′i.”.

(c) Let H ∈ SImin(P ). If H does not contain both “xi.” and “x′i.” for an
i ∈ {1, ..., n}, then it contains either “xi.” or “x′i.” for all i ∈ {1, ..., n}.

(d) Let i ∈ {1, ..., n} and let Hi := {xi., x′i., ← not w.}. Then, Hi ∈
SImin(P ).

Again, let

HI =
⋃

i∈{1,...,n}

Hi.

As before, H ∈ SImin(P ) \ HI contains either “xi.” or “x′i.” for all i ∈
{1, ..., n}. Let HΩ ⊆ 2P be the set of all subprograms containing either
“xi.” or “x′i.” for all i ∈ {1, ..., n}. We define a corresponding assignment
ω(H) : X → {0, 1} as before:

ω(H)(xi) :=

{
1 if xi. ∈ H,
0 if x′i. ∈ H.

And the last step is as above.

(e) LetH ∈ HΩ ⊆ 2P . ThenH ∈ SImin(P )\HI if and only if ∃Y ∀Z ¬φ(X, Y, Z)
does not hold for the assignment ω(H) to the X-variables.

Hence, any H ∈ SImin(P ) \HI corresponds to an assignment where

∃Y ∀Z ¬φ(X, Y, Z)

is not the case, i. e.,

|SImin(P )| = |X|+ |{X | ∀Y ∃Z φ(X, Y, Z)}|

holds.

Now, the following Propositions can be inferred from Lemma 6.8 as in the
case for disjunction-free logic programs:

Proposition 6.9. The problems Lower
LASP

IMSI
and Upper

LASP

IMSI
are CΣp

2-

complete. The problem Exact
LASP

IMSI
is C=Σp

2-hard. The problem Value
LASP

IMSI

is #·Πp
2-complete under subtractive reductions.

96



Proposition 6.14. The problems Lower
LASP∗

I
MSIC

and Upper
LASP∗

I
MSIC

are CΣp
2-

hard, Exact
LASP∗

I
MSIC

is C=Σp
2-hard.

Proposition 6.15. The problem Lower
LASP

Ip is Σp
3-complete, Upper

LASP

Ip is

Πp
3-complete and Exact

LASP

Ip is Dp
3-complete.

Appendix B. Technical Proofs of Section 7

Theorem 7.10. Let K and G be disjoint knowledge bases. Then S is a
minimal hitting set of co-Nrepmax (K,G) if and only if S ∈ Repmin(K,G).

Proof. This is a corollary of the following theorem and Lemma Appendix
B.1 below.

Theorem 7.11. Let K and G be disjoint knowledge bases. Then S is a
minimal hitting set of Repmin(K,G) if and only if G \ S ∈ Nrepmax (K,G).

Proof. “⇒”: Let S be a minimal hitting set of Repmin(K,G). For the sake
of contradiction assume that G \ S /∈ Nrepmax (K,G).

First assume G \ S /∈ Nrep(K,G). Then, there is a set S ′ with S ⊆ S ′
such that (K∪G) \ S ′ is consistent. Due to finiteness of G, we might assume
S ′ is maximal among all subsets of G that render (K∪G) \S ′ consistent. Set
A = G \ S ′. Then, K ∪ A is consistent. In particular, A ∈ Repmin(K,G).
Due to

A ∩ S ⊆ A ∩ S ′ = (G \ S ′) ∩ S ′ = ∅

we infer A ∩ S = ∅. Thus, S is no hitting set of Repmin(K,G), which is a
contradiction.

Now assume G \ S ∈ Nrep(K,G), but it is not maximal. We thus find
a set S ′ ( S such that G \ S ′ ∈ Nrep(K,G). Again due to finiteness we
might assume maximality, i. e., G \ S ′ ∈ Nrepmax (K,G). We claim that S ′
is a hitting set of Repmin(K,G) as well, which contradicts minimality of S.
This can be seen as follows: Assume A ⊆ G and K ∪ A is consistent and A
minimal, i. e., A ∈ Repmin(K,G). In case A∩S ′ = ∅ holds, then A ⊆ G \S ′.
In particular, K ∪A is consistent with

K ⊆ K ∪A ⊆ K ∪ G \ S ′,

i. e., K /∈ SI (K ∪ G \ S ′), which is again a contradiction.
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“⇐”: Let G \S ∈ Nrepmax (K,G). For the sake of contradiction assume that
S is not a minimal hitting set of Repmin(K,G).

First assume S is no hitting set of Repmin(K,G). Hence, there is an
A ∈ Repmin(K,G) with A∩S = ∅. We infer a contradiction as above. Since
A ∩ S = ∅ implies A ⊆ G \ S, and thus K ∪ A ⊆ K ∪ G \ S, we can find a
consistent subset of K ∪ G \ S which means G \ S /∈ Nrep(K,G).

Now assume S is a hitting set of Repmin(K,G), but not minimal. So
let S ′ ( S be another hitting set of Repmin(K,G). We claim that this
implies G \S ′ ∈ Nrep(K,G) contradicting the assumed maximality of G \S.
This can be seen as follows: Assume there is a set A with A ⊆ (G \ S ′)
and K ∪ A is consistent. Due to finiteness assume minimality of A, i. e.,
A ∈ Repmin(K,G). Now A ⊆ (G \ S ′) implies A ∩ S ′ = ∅ and in particular,
S ′ is no hitting set of Repmin(K,G), which is a contradiction.

Proof of Theorem 7.10. Consider the following lemma (where minHS(X ) is
the set of all minimal hitting sets of a set X of sets):

Lemma Appendix B.1. (Berge, 1989) Let X = {X1, . . . , Xn} be a set of
sets with Xi 6⊆ Xj for i 6= j. Then minHS(minHS(X )) = X .

Let us make sure that Lemma Appendix B.1 still applicable, even though
we consider hitting sets of tuples of sets. There is a simple reason why this
is no issue: Since we assume K ∩ G = ∅, consideration of tuples is simply
for ease of presentation. More precisely, if A ⊆ G and D ⊆ K, then A and
D are disjoint as well and thus, there is a canonical bijection between the
tuples of the form (D,A) and sets of the form A ∪ D. So if S = (SA,SD)
with SA ⊆ G and SD ⊆ K, then S ∩ (D,A) 6= ∅ iff SA∩A 6= ∅ or SD∩D 6= ∅.
Due to A ∩ D = ∅ as well as SA ∩ SD = ∅ this is the case if and only if
(A∪D)∩ (SA ∪SA) 6= ∅. However, in the latter term no tuple is mentioned.
So we may apply Lemma Appendix B.1 as before.

Now due to Theorem 7.11, S is a minimal hitting set of Repmin(K,G) if
and only if S ∈ co-Nrepmax (K,G). Hence,

minHS(Repmin(K,G)) = co-Nrepmax (K,G)

and thus

minHS(minHS(Repmin(K,G))) = minHS(co-Nrepmax (K,G)).
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Now we apply Lemma Appendix B.1 to Repmin(K,G) and obtain:

Repmin(K,G) = minHS(co-Nrepmax (K,G)).

This proves Theorem 7.10.

Proposition 7.18. Let K and G be disjoint knowledge bases. A tuple of the
form (D, ∅) is in bi-Repmin(K,G) if and only if H = K \ D ∈ Cmax (K).

Proof. “⇒”: If (D, ∅) ∈ bi-Repmin(K,G), then D is minimal such that K\D
is consistent. So, there is no superset of H = K \ D which is consistent.
Hence H ∈ Cmax (K).

“⇐”: Let H = K \ D ∈ Cmax (K). Of course, (D, ∅) ∈ bi-Rep(K,G) since
K \ D is consistent. Further, there is no set D′ ( D such that K \ D′ is
consistent. Hence (D, ∅) is necessarily minimal in bi-Rep(K,G), i. e., (D, ∅) ∈
bi-Repmin(K,G).

Proposition 7.19. Let K and G be disjoint knowledge bases. A tuple of the
form (∅,A) is in bi-Repmin(K,G) if and only if A ∈ Repmin(K,G).

Proof. “⇒”: If (∅,A) ∈ bi-Repmin(K,G), then A is minimal such that K∪A
is consistent. Hence A ∈ Repmin(K,G).

“⇐”: Let A ∈ Repmin(K,G). Of course, (∅,A) ∈ bi-Rep(K,G) since
K ∪ A is consistent. Further, there is no set A′ ( A such that K ∪ A′
is consistent. Hence (∅,A) is necessarily minimal in bi-Rep(K,G), i. e.,
(∅,A) ∈ bi-Repmin(K,G).

Proposition 7.24. Let K and G be disjoint knowledge bases of a monotonic
logic. If (D,A) ∈ bi-Nrepmax (K,G), then A = G. Moreover, (D,G) ∈
bi-Nrepmax (K,G) if and only if H = K \ D ∈ SImin(K).

Proof. The first statement is clear. So let us prove the equivalence.

“⇐”: Let H = K \ D ∈ Imin(K). Due to monotonicity of K, Imin(K) =
SImin(K), so H is strongly K-inconsistent. Moreover, adding formulas from
G cannot render H consistent. Hence H is even strongly (K∪G)-inconsistent,
i. e., (G,D) ∈ bi-Nrepmax (K,G).

“⇒”: Let (G,D) ∈ bi-Nrepmax (K,G). Then K \ D is strongly (K ∪ G)-
inconsistent. Due to monotonicity, this is equivalent to inconsistency of K\D.
Since D is maximal st. K \ D is inconsistent, H = K \ D is minimal, i. e.,
H ∈ Imin(K) = SImin(K).
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Proposition 7.25. Let K be a knowledge base and G = ∅. A tuple of the
form (D, ∅) is in bi-Nrepmax (K,G) if and only if H = K \ D ∈ SImin(K).

Proof. Let (D, ∅) ∈ bi-Nrepmax (K,G). By definition, D is maximal such
that K \ D is strongly K-inconsistent. Equivalently, H = K \ D is minimal
strongly K-inconsistent.

Proposition 7.26. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ bi-Nrepmax (K,G), then H = K\D ∈ SI (K). In particular,
there is a set D′ with D ⊆ D′ such that K \ D′ ∈ SImin(K).

• If H = K \ D ∈ SImin(K), then there is a (not necessarily uniquely
defined) A ⊆ G such that (D,A) ∈ bi-Nrepmax (K,G).

Proof.

• Let (D,A) ∈ bi-Nrepmax (K,G). Then K \ D is strongly (K ∪ A)-
inconsistent, hence it is also strongly K-inconsistent, so H = K \ D ∈
SI (K).

• Let H = K \ D ∈ SImin(K). In particular, H ∈ SI (K). Chose a
maximal set A ⊆ G such that H ∈ SI (K∪A). By assumption, such A
exists since H ∈ SI (K ∪ ∅) (and G is finite). By definition, (D,A) ∈
bi-Nrepmax (K,G).

Proposition 7.28. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ bi-Nrepmax (K,G) then A ∈ Nrep(K,G). In particular,
there is a set A′ with A ⊆ A′ such that A′ ∈ Nrepmax (K).

• If A ∈ Nrepmax (K,G), then there is a (not necessarily uniquely de-
fined) D ⊆ K such that (D,A) ∈ bi-Nrepmax (K,G).

Proof.

• Let (D,A) ∈ bi-Nrepmax (K,G). Then K \ D is strongly (K ∪ A)-
inconsistent, hence K is also strongly (K ∪ A)-inconsistent, so A ∈
Nrep(K,G).

• Let A ∈ Nrepmax (K,G). In particular, K ∈ SI (K ∪ A) and A is
maximal with this property. Chose a maximal set D ⊆ K such that
K \ D ∈ SI (K ∪ A). By assumption, such D exists since K \ ∅ ∈
SI (K ∪A), and (D,A) ∈ bi-Nrepmax (K,G).
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Before proving Theorem 7.32 we establish the following technical prop-
erty:

Lemma Appendix B.2. Let K and G be disjoint knowledge bases. Let
A ⊆ G and D ⊆ K. Any set H with K \ D ⊆ H ⊆ K ∪ A can be written as
H = (K \ D′) ∪ A′ with D′ ⊆ D and A′ ⊆ A.

Proof. Let K \ D ⊆ H ⊆ K ∪A. First observe that H can be written as

H = (H ∩K)∪̇(H ∩A)

since H ⊆ K ∪ A with K ∩ A ⊆ K ∩ G = ∅. Clearly, H ∩A ⊆ A so we may
set A′ = H ∩A. Now set D′ = K \ (H ∩K). We have

K \ D ⊆ H ∩K

and thus

D = K \ (K \ D) ⊇ K \ (H ∩K).= D

Moreover,

K \ D′ = K \ (K \ (H ∩ K)) = H ∩K,

and hence we obtain

(K \ D′)∪̇(A′) = (H ∩K)∪̇(H ∩A)

with A′ ⊆ A and D′ ⊆ D.

Proposition 7.32. Let K and G be disjoint knowledge bases. Then S is a
minimal hitting set of bi-Repmin(K,G) iff S ∈ co-bi-Nrepmax (K,G).

Proof. “⇒”: Let S = (SA,SD) be a minimal hitting set of bi-Repmin(K,G).
For the sake of contradiction assume that (K\SA,G\SD) /∈ bi-Nrepmax (K,G).

First assume (G \ SA,K \ SD) /∈ bi-Nrep(K,G). Then, by definition,

K \ (K \ SD) /∈ SI (K ∪ G \ SA),

and thus,
SD /∈ SI (K ∪ G \ SA).
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So there is a consistent set H with SD ⊆ H ⊆ K ∪ (G \ SA). Due to
Lemma Appendix B.2, we find D ⊆ K \ SD and A ⊆ G \ SA with H =
K \ D ∪ A. Due to finiteness of both knowledge bases we might assume
(D,A) ∈ bi-Repmin(K,G). Now SA∩A = ∅ as well as SD∩D = ∅ implies that
S = (SA,SD) is no hitting set of bi-Repmin(K,G), which is a contradiction.

Now assume (G\SA,K\SD) ∈ Nrep(K,G), but the tuple is not maximal.
We thus find a tuple S ′ = (SA′ ,SD′) ⊆ (SA,SD) = S such that (G \ SA′ ,K \
SD′) ∈ Nrepmax (K,G). We claim that S ′ is a hitting set of bi-Repmin(K,G)
as well. This can bee seen as follows: Assume this is not the case, i. e., there
is (D,A) ∈ bi-Repmin(K,G) with SA′ ∩ A = ∅ as well as SD′ ∩ D = ∅. By
assumption, K\D∪A is consistent. Due to SA′∩A = ∅ as well as SD′∩D = ∅,
we obtain SD′ ⊆ K \ D and A ⊆ G \ SA′ , so

SD′ ⊆ (K \ D) ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA′)) \ D ⊆ (K ∪ (G \ SA′)).

In particular,
SD′ ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA′)).

Due to consistency of (K∪A)\D we infer that SD′ /∈ SI (K∪(G\SA′)). So by
definition, (G \ SA′ ,K \ SD′) /∈ Nrep(K,G) which is a contradiction. Hence,
S ′ must be a hitting set of bi-Repmin(K,G) which contradicts minimality of
S.

“⇐”: Let (K\SA,G\SD) ∈ bi-Nrepmax (K,G). For the sake of contradiction
assume that S = (SA,SD) is no minimal hitting set of bi-Repmin(K,G).

First assume that S is no hitting set of bi-Repmin(K,G). As above we
find a tuple (D,A) ∈ bi-Repmin(K,G) with SA∩A = ∅ as well as SD∩D = ∅.
Similarly we obtain

SD ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA)).

where (K ∪ A) \ D is consistent. Thus, (K \ SA,G \ SD) /∈ bi-Nrep(K,G),
which is a contradiction.

Now assume that S is a hitting set of bi-Repmin(K,G), but not mini-
mal. Let S ′ with S ′ = (SA′ ,SD′) ⊆ (SA,SD) = S be a minimal hitting
set of bi-Repmin(K,G). We claim that (K \ SA′ ,G \ SD′) ∈ bi-Nrep(K,G)
contradicting maximality of (K \ SA,G \ SD). For this, assume

SD′ /∈ SI (K ∪ G \ SA′).

Let H with SD′ ⊆ H ⊆ (K ∪ G) \ SA′ be consistent. As above we apply
Lemma Appendix B.2 to find D ⊆ K \ SD′ and A ⊆ G \ SA′ with H = K \
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D ∪A. Again due to finiteness we might assume (D,A) ∈ bi-Repmin(K,G).
Hence, S ′ is no hitting set of bi-Repmin(K,G), which is again a contradiction.

Now we are almost ready to prove Theorem 7.31. Before we do so, let
us make sure that Lemma Appendix B.1 is still applicable, even though we
consider hitting sets of tuples of sets. There is a simple reason why this is
no issue: Since we assume K ∩ G = ∅, consideration of tuples is simply for
ease of presentation. More precisely, if A ⊆ G and D ⊆ K, then A and D are
disjoint as well and thus, there is a canonical bijection between the tuples
of the form (D,A) and sets of the form A ∪ D. So if S = (SA,SD) with
SA ⊆ G and SD ⊆ K, then S ∩ (D,A) 6= ∅ iff SA ∩ A 6= ∅ or SD ∩ D 6= ∅.
Due to A ∩ D = ∅ as well as SA ∩ SD = ∅ this is the case if and only if
(A∪D)∩ (SA ∪SA) 6= ∅. However, in the latter term no tuple is mentioned.
So we may apply Lemma Appendix B.1 as before.

Proof of Theorem 7.31. By Theorem 7.32, S is a minimal hitting set of
bi-Repmin(K,G) if and only if S ∈ co-bi-Nrepmax (K,G). Hence we see as
above,

minHS(minHS(bi-Repmin(K,G))) = minHS(co-bi-Nrepmax (K,G)),

which yields

bi-Repmin(K,G) = minHS(co-bi-Nrepmax (K,G))

after applying Lemma Appendix B.1 as usual.

Proposition 7.35. Let K and G be disjoint knowledge bases. Let Cmax (K) 6=
∅, i. e., K possesses consistent subsets and let SImin(K) 6= ∅, i. e., K is incon-
sistent.. A set SD is a minimal hitting set of SImin(K) if and only if (SD, ∅)
is a minimal hitting set of co-bi-Nrepmax (K,G).

Proof. “⇒”: Let S be a minimal hitting set of SImin(K). Assume the
tuple (D,A) is in co-bi-Nrepmax (K,G). Then there is a tuple (D,A) ∈
bi-Nrepmax (K,G) with A = G \ A and D = K \ D. Due to Proposi-
tion 7.26, K \ D ∈ SI (K), i. e., D ∈ SI (K). Due to finiteness, there is

a set D′ ∈ SImin(K) with D′ ⊆ D. Since SD is a minimal hitting set of

SImin(K), we conclude ∅ 6= SD ∩ D
′ ⊆ SD ∩ D. Since (D,A) was an arbi-

trary tuple in co-bi-Nrepmax (K,G) we see that (SD, ∅) is a hitting set of
co-bi-Nrepmax (K,G).
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We have left to prove minimality of (SD, ∅). Again due to Proposi-
tion 7.26, for any K \ D ∈ SImin(K), there is a tuple of the form (D,A) ∈
bi-Nrepmax (K,G) and hence a tuple of the form (K\D,G\A) ∈ co-bi-Nrepmax (K,G).
So if (SD, ∅) is a hitting set of co-bi-Nrepmax (K,G), then SD is a hitting set
of SImin(K). Since SD is minimal (as a hitting set of SImin(K)), we conclude
that (SD, ∅) is minimal (as a hitting set of co-bi-Nrepmax (K,G)).

“⇐”: IfH = K\D ∈ SImin(K), then there is a tuple (D,A) ∈ bi-Nrepmax (K,G)
due to Proposition 7.26. In particular, there is a tuple (K \ D,G \ A) ∈
co-bi-Nrepmax (K,G). So if (SD, ∅) is a hitting set of co-bi-Nrepmax (K,G),
then SDSD ∩ K \ D 6= ∅. Hence SD is a hitting set of SImin(K).

Minimality is a consequence of “⇒”: Assume (SD, ∅) is a minimal hitting
set of co-bi-Nrepmax (K,G). If there is a hitting set S ′D ( SD of SImin(K),
then (S ′D, ∅) is also a hitting set of co-bi-Nrepmax (K,G), contradicting min-
imality of (SD, ∅).

Proposition 7.36. Let K and G be disjoint knowledge bases. Let Cmax (K) 6=
∅, i. e., K possesses consistent subsets and let SImin(K) 6= ∅, i. e., K is incon-
sistent.. Then there is no tuple (D,A) ∈ co-bi-Nrepmax (K,G) with D = ∅.

Proof. Although this is a corollary of Proposition 7.35, we want to give a
straightforward proof which directly illustrates why we require K to possess
consistent subsets:

For any tuple (D,A) ∈ bi-Nrepmax (K,G) we have D ( K. Other-
wise, K \ K = ∅ would be strongly (K ∪ A)-inconsistent. However, as
K possesses consistent subsets, this is a contradiction. Hence, whenever
(D,A) ∈ co-bi-Nrepmax (K,G), we can conclude D 6= ∅.

Proposition 7.37. Let K and G be disjoint knowledge bases. Let Repmin(K,G) 6=
∅, i. e., K possesses addition-based repairs and let SImin(K) 6= ∅, i. e., K is
inconsistent.. A set SA is a minimal hitting set of co-Nrepmax (K,G) if and
only if (∅,SA) is a minimal hitting set of co-bi-Nrepmax (K,G).

Proof. “⇒”: Let SA be a minimal hitting set of co-Nrepmax (K,G). Assume
the tuple (D,A) is in co-bi-Nrepmax (K,G). Then there is a tuple (D,A) ∈
bi-Nrepmax (K,G) with A = G \A and D = K\D. Due to Proposition 7.28,
K ∪ A ∈ Nrep(K,G). So there is a set A′ with A ⊆ A′ ∈ Nrepmax (K,G).
Since SA is a minimal hitting set of co-Nrepmax (K,G), we conclude

∅ 6= SA ∩ (G \ A′) ⊆ SA ∩ (G \ A) = SA ∩ (A).
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Since (D,A) was an arbitrary tuple in co-bi-Nrepmax (K,G) we see that
(∅,SA) is a hitting set of co-bi-Nrepmax (K,G).

As before, we have left to prove minimality of (∅,SA). Again due to
Proposition 7.28, for any A ∈ Nrepmax (K,G), there is a tuple (D,A) ∈
bi-Nrepmax (K,G). So if (∅,SA) is a hitting set of co-bi-Nrepmax (K,G),
then SA is a hitting set of co-Nrepmax (K,G). Since SA is minimal (as a
hitting set of co-Nrepmax (K,G)), we conclude that (∅,SA) is minimal (as a
hitting set of co-bi-Nrepmax (K,G)) as well.

“⇐”: IfA ∈ Nrepmax (K,G), then there is a tuple (D,A) ∈ bi-Nrepmax (K,G)
due to Proposition 7.28. So, if (∅,SA) is a hitting set of co-bi-Nrepmax (K,G),
then SA is a hitting set of co-Nrepmax (K,G) as well.

Minimality is a consequence of “⇒” as in the proof of Proposition 7.35.
Assume (∅,SA) is a minimal hitting set of co-bi-Nrepmax (K,G). If there is a
set S ′A ( SA that is a hitting set of Nrepmax (K,G), then (∅,S ′A) is a hitting
set of co-bi-Nrepmax (K,G) as well, contradicting minimality of (∅,SA).

Proposition 7.38. Let K and G be disjoint knowledge bases. Let Repmin(K,G) 6=
∅, i. e., G possesses repairing subsets wrt. K and let SImin(K) 6= ∅, i. e., K is
inconsistent.. Then there is no (D,A) ∈ co-bi-Nrepmax (K,G) with A = ∅.

Proof. For any tuple (D,A) ∈ bi-Nrepmax (K,G) it holds that A ( G. Oth-
erwise, K would be strongly (K ∪ G)-inconsistent. However, this contradicts
Repmin(K,G) 6= ∅. So, whenever (D,A) ∈ co-bi-Nrepmax (K,G) holds, we
conclude A 6= ∅.
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