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Abstract. Spohnian ranking functions are a qualitative abstraction of
probability functions, and they have been applied to knowledge represen-
tation and reasoning that involve uncertainty. However, how to represent
a ranking function which has a size that is exponential in the number of
variables still remains insufficiently explored. In this work we introduce
min-sum networks (MSNs) for a compact representation of ranking func-
tions for multiple variables. This representation allows for exact inference
with linear cost in the size of the number of nodes.
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1 Introduction

Spohnian ranking functions are a qualitative order-of-magnitude abstraction of
probability functions. These can be used to measure uncertainty using ranks [15]
represented by natural numbers or ∞, which can be understood as a degree of
surprise: 0 for not surprising, 1 for surprising, 2 for very surprising, and so on,
and ∞ for impossible.

These functions have been applied to problems of knowledge representation
and reasoning that involve uncertainty but where probabilities are unknown or
irrelevant, such as belief revision and non-monotonic inference [12, 7, 4]. One
of the fundamental issues when using ranking functions in practice is the rep-
resentation of a ranking function, which has a size that is exponential in the
number of variables. The same problem arises in probabilistic modeling, where
it is solved by using probabilistic graphical models (PGMs) as compact rep-
resentations of probability distributions [10]. Because ranks behave much like
probabilities if + is replaced with min and × with +, it is sometimes possible to
adapt PGMs to represent and reason about ranking functions. For example, the
ranking-based counterpart of a Bayesian network is called a ranking network or
OCF network [7, 2, 9, 15].

In this paper we introduce min-sum networks (MSNs) for compact repre-
sentation of ranking functions. They are an adaptation of sum-product networks
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(SPNs) [13]. An SPN is a rooted directed acyclic graph with a recursively de-
fined structure: a node is either a sum-node with weighted edges pointing to
its children; a product-node with non-weighted edges pointing to its children;
or a leaf node representing a univariate distribution. Compared to many PGM
models, SPNs support exact inference with linear cost in the size of the num-
ber of nodes. This advantage, combined with the ability to handle missing data
makes SPNs to a very attractive choice for modeling any data set. Indeed, sev-
eral SPN learning techniques have shown comparable or better performance than
other state-of-the-art models in tasks such as image classification and natural
language processing [5, 3].

The tractability of SPN’s inference carries over to MSNs. More precisely, the
rank of an event or proposition according to the ranking function represented by
an MSN can be computed with cost linear in the size of the number of nodes in
the MSN. One issue, however, is that the MSN needs to be constructed first. To
address this, we propose a method to learn an MSN based on a set of observations
in such a way that more probable events are less surprising (lower ranked) than
less probable events.

The overview of this paper is as follows. We present the necessary basics
concerning ranking theory in Section 2. In Section 3 we define min-sum net-
works, while Section 4 deals with the problem of learning min-sum networks.
We conclude in Section 5.

2 Ranking Functions

Ranking functions are a qualitative abstraction of probability functions where
events receive ranks [15]. A rank is a non-negative integer or ∞ and can be
understood as a degree of surprise: 0 for not surprising, 1 for surprising, 2 for
very surprising, and so on, and ∞ for impossible. Formally, a ranking a ranking
function (also known as an ordinal conditional function or kappa function) is
defined as follows.

Definition 1. A ranking function over a set Ω is a function κ : Ω → N∞0 such
that κ(w) = 0 for at least one w ∈ Ω. A ranking function κ is extended to a
function over propositions or events (i. e., subsets of Ω) by defining κ(X) =∞ if
X = ∅, and κ(X) = min({κ(w) | w ∈ X}), otherwise. The rank of A conditional
on B is denoted κ(A | B) and is defined by κ(A | B) = κ(A ∩B)− κ(B).

A ranking function κ induces beliefs using the principle that A is believed if
and only if the complement A = Ω \X is surprising (i.e. κ(A) > 0). Similarly,
A is believed conditional on B if and only if κ(A | B) > 0.

3 Min-Sum Networks

Here we provide the definition of MSN, which is a ranking-based variation on
SPNs [13]. We first need to introduce some notation and terminology. Random
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variables will be denoted by uppercase letters (e.g. Xi). We restrict our attention
to Boolean random variables. We use X to denote a collection {X1, . . . , Xn}
of random variables and denote by val(X) the set of realisations of X, i.e.,
val(X) = {T,F}n (T for true and F for false). Elements of val(X) are denoted by
lowercase boldface letters (e.g. x). A realisation of some subset of {X1, . . . , Xn}
will be called evidence. Given a random variable Xi we use xi and xi to denote
indicator variables. We say that xi (resp. xi) is consistent with evidence e iff e
does not assign false (resp. true) to Xi.

A min-sum network (MSN) over variables X = {X1, . . . , Xn} is an acyclic
directed graph N whose leaves are the variables x1, . . . , xn, x1, . . . , xn. Given a
node i in N we denote by Ni the subgraph rooted at node i and we denote by
Ch(i) the set of children of node i. The internal nodes of N are either min-nodes
or sum-nodes. Each edge from a min-node i to another node j has an associated
weight wij which is a non-negative integer or∞, satisfying min({wij}) = 0. The
rank of evidence e according to N is defined recursively: N(x) =

∑
j∈Ch(i)Nj(x)

if the root of N is a sum-node; and N(x) = min({wij + Nj(x)|j ∈ Ch(i)}), if
the root of N is a min-node. Further, we define a leaf LXi

to consist of one min
node, two weights wxi and wx̄i and two indicators xi, x̄i.

3.1 Validity, Consistency and Completeness

Similar to the SPNs, we introduce the three key properties, which allows us to
link MSNs with the ranking theory and ensure the error-free inference: validity,
completeness, and consistency. The link is that the values of N(x) for all x ∈
val(X) define a ranking function by

ΦN (e) = min({N(x) | x ∈ val(X), e is consistent with x}).

We define all three properties in the following.

Definition 2. An MSN N over variables X is valid, iff N(e) = ΦN (e) for all
evidence e of X.

By contrast, the definitions of completeness and consistency are the same as
those of SPNs:

Definition 3. An MSN N is complete, iff all children of the same min-node
have the same scope.

Definition 4. An MSN N is consistent, iff there is no sum-node and variable
X such that x appears in one child of this node and x in another child.

We combine the three properties and show in the following theorem that:

Theorem 1. An MSN is valid if it is complete and consistent.

Since there are only two mutually exclusive configurations {xi = 1,x̄i = 0} and
{xi = 0,x̄i = 1}, we define the delta functions

δxi
:=

{
1, xi = 1

∞, xi = 0
and δx̄i

:=

{
1, x̄i = 1

∞, x̄i = 0
.
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Table 1. Rankings in the Wet Grass example.

R T T T T T T T T F F F F F F F F

N T T T T F F F F T T T T F F F F

H T T F F T T F F T T F F T T F F

S T F T F T F T F T F T F T F T F

Rank 4 1 ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 8 2 3 ∞ 6 0

So, we can express the value of the leaf Li for any arbitrary variable Xi as

Li = min (δxi · wxi , δx̄i · wx̄i)

= δxi · wxi · 1{δx̄i
·wx̄i

>δxi
·wxi
} + δx̄i · wx̄i · 1{δx̄i

·wx̄i
>δx̄i

·wx̄i
}.

(1)

Consequently, the leaf Li can take the two values for the two configurations wxi

or wx̄i
. Using the same idea

min ({wij +Nj(x)|j ∈ Ch(i)})

=
∑

j∈Ch(i)

(wij +Nj(x)) · 1{∑k∈Ch(i)\{j}(wik+Nk(x))>wij+Nj(x)}. (2)

With (1) and (2) we write N(x) as a series which will be referred to as an ex-
pansion of the MSN. Therefore, an MSN is valid if its expansion has the same
value as ΦN (e) for all evidence e: each configuration has exactly one partial sum
(condition 1), each partial sum is convergent for exactly one configuration (con-
dition 2). From condition 2 we conclude that N(x) = wx <∞ and consequently
ΦN (e) =

∑
x∈eN(x) =

∑
x∈e wx =

∑
k∈n(e) wk, where n(e) is the number of

the configurations complying with condition 2. From condition 1, we conclude
n(e) << |val(X)| = 2n, therefore ΦN (e) =

∑
k∈n(e):wk<∞ wk = N(e) < ∞ and

MSN is valid.
Now we prove by induction from the leaves to the root that, if the MSN is

complete and consistent, then its expansion is its network series. The rest of
the proof follows analogously to that one in [13], emphasising the necessity of
completeness for min-node and consistency for sum-node.

3.2 Min-Sum Network Example: Wet Grass

The Wet Grass [1] example is a well-known example of probabilistic graphi-
cal models. It consists of a collection of four boolean random variables X =
{R,N,H, S}, where R stands for “it has been raining”; S for “Holmes’ sprinkler
was on”; N for “Holmes’ neighbor’s grass is wet”; and H for “Holmes’ grass is
wet”. In this paper, we turn Wet Grass into a ranking example. Table 1 lists the
ranks of all possible configurations of the four random variables. For instance, it
is not surprising if it has not been raining, the sprinkler was off, and both lawns
are not wet, i.e., κ(x) = 0 for x = {R = F,N = F,H = F, S = F}. However, it
is impossible if it has not been raining, the sprinkler was off, but both lawns are
wet, i.e., κ(x) =∞ for x = {R = F,N = T,H = T, S = F}.
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min

+ +

min min min min min min min

n n̄ h h̄ s s̄ r r̄ n n̄ + + r r̄

min min min min

h h̄ s s̄ h h̄ s s̄

w01 w02

0 ∞ 0 ∞ 3 0 0 ∞ 2 0 w11 w12 ∞ 0

0 ∞ 0 ∞ ∞ 0 6 0

Fig. 1. An example of a valid MSN. The weights of the min-nodes are w01 = 1, w02 = 0,
w11 = 3, w12 = 0.

The ranking function of the random variables in Table 1 can be modeled
with a manually designed valid MSN, shown in Figure 1. To query the rank of
input evidence, a bottom-up pass needs to be operated. Denote Lwi

X the leaf
of random variable X from the sum-node with weight wi. For example, with
x = {R = F,N = T,H = F, S = T}, the rank of x according to the MSN is

N(x) = min({(Lw01

N + Lw01

H + Lw01

S + Lw01

R ) + w01,

Lw02

N + min {(Lw11

H + Lw11

S ) + w11, (L
w12

H + Lw12

S ) + w12}+ Lw02

R + w02})
= min({(∞+ 0 +∞+ 3) + 1, 2 + min {(∞+ 0) + 3, (0 + 6) + 0}+ 0})
= min ({∞, 2 + 6 + 0}) = 8,

which means one gets very surprising if it has not been raining and the sprinkler
was on, while Mr. Holmes’ lawn is dry and his neighbor’s is wet. Given the
same evidence, the corresponding rank from Table 1 always matches the rank
calculated by the valid MSN from Figure 1, i.e. N(x) = κ(x). Thus, the MSN
in Figure 1 models exactly the ranks in Table 1.

4 Learning MSNs

A common way to estimate the parameters θ of a statistical model is to com-
pute the Maximum Likelihood Estimation (MLE) in such a way that under
the assumed statistical model the observational data is most probable. De-
note D , {x1,x2, . . . ,xm} as the observational data, MLE is then defined as

θ̂ , arg maxθ log p(D|θ) [11]. In analogy, we can learn the parameters θ of an
MSN by minimizing the rank on the observational data, that is,

θ̂ , arg min
θ

N(D|θ). (3)
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Fig. 2. Left: The ranking function for one variable. The vertical black line denotes the
optimal parameter for X3 in the MSN on the right side. Right: The MSN optimized
using samples from the synthetic distribution. The parameters are marked blue.

We assume the training examples D are independent and identically dis-
tributed. Then we can rewrite the rank as N(D|θ) =

∑
i∈mN(xi|θ). Intuitively,

minimizing N(D|θ) yields θ that makes the observed data most probable under
the assumed MSN. The parameters θ of an MSN consist of weights w at min-
nodes and the univariate distributional parameter p in the leaf nodes. We define
the ranking function on the leaves as the following form

(2 ∗ (sigmoid(p)− 0.5) ∗ (X − 0.5) + 0.5) ∗ C, (4)

where C = 100. At inference time, we round up the output to get natural
numbers. Figure 2 (left) shows a plot of this ranking function.

To find the θ that minimize the objective function N(D|θ), gradient descent
is commonly used if the target function is differentiable. We implemented MSNs
in python and Tensorflow so that differentiation and gradients can be computed
automatically by Tensorflow. We now demonstrate a concrete example using this
learning method. First we construct a synthetic distribution with three Bernoulli
variables X1, X2 and X3 of which X1 and X2 are dependent on each other and
X3 is independent of any. The joint probabilistic distribution can be factorized as
P (X1, X2, X3) = P (X1)∗P (X2|X1)∗P (X3|X1, X2) = P (X1)∗P (X2|X1)∗P (X3)
using the chain rule and independence information. 300 samples are generated
from this distribution for learning the parameters of the MSN. The sample counts
for each configuration of the three variables are shown in table 2. We take an
MSN with randomly initialized parameters and use gradient-based method to
optimize the objective function 3 on the 300 samples. The optimization yields
the network in figure 2 (right) with its parameters marked blue.

The ranks of all the possible configurations computed by this network are
listed in table 2. The ranks of all the observed configurations are sorted as
N(0, 1, 0) < N(1, 0, 0) < N(0, 1, 1) = N(0, 0, 0) < N(1, 0, 1) < N(0, 0, 1), which
correspond exactly to reversely sorted empirical probability of all the observed
configurations P (0, 1, 0) > P (1, 0, 0) > P (0, 1, 1) > P (0, 0, 0) > P (1, 0, 1) >
P (0, 0, 1). Besides, we expect the ranks for the unseen configurations to be as
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Table 2. The sample counts and the ranks computed by the MSN of every possible
configuration of a synthetic distribution.

X1, X2, X3 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

rank 100 200 0 100 20 120 100 200

count 28 8 111 38 92 23 0 0

high as possible because they are very unlikely to happen. Here, we have two
unseen configurations X1 = 1, X2 = 1, X3 = 0 and X1 = 1, X2 = 1, X3 = 1
whose ranks are respectively 100 and 200. That means, X1 = 1, X2 = 1, X3 = 1
is least likely to happen which is correct. But X1 = 1, X2 = 1, X3 = 0 is more
likely to happen than, for example, X1 = 1, X2 = 0, X3 = 1, which is the only
rank that does not match the empirical probability. Besides, optimization may
get stuck at a local optimum which possibly again leads to ranking computations
that are not consistent with empirical probabilities. We leave this challenge for
future research. By definition, the min-nodes encode mixtures of their children,
and the sum-nodes assume independence between their children [14]. Take the
MSN in figure 2 (right) as an example, X3 is independent of X1 and X2, that
means we can get the marginal ranking function of X3 by simply removing
the other independent branch. This yields an univariate ranking function with
p = 8.3. The marginal sample counts for X1 = 0 and X1 = 1 are respectively
231 (111+92+28) and 69 (38+23+8), which means the rank of X1 = 1 should
be zero and the rank of X1 = 0 should be larger than zero. Recall figure 2 (left),
the vertical black line denotes the optimal parameter p = 8.3 for X3 and this
parameter yields N(X1 = 1) = 100 and N(X1 = 1) = 0, which matches the
empirical probability well.

5 Conclusion and Future Work

Based on the notion of SPNs, we have introduced MSNs for compact repre-
sentation and tractable inference with ranking functions. Ranking functions are
used in models of belief revision and non-monotonic inference [12, 7, 4], and we
believe that these applications may benefit from using min-sum networks for rep-
resenting ranking functions. One obstacle, however, is that min-sum networks
must first be constructed, and for this purpose, we proposed a method to learn
a min-sum network based on a set of observations. There is a number of di-
rections for future work. One is to improve our learning method. In particular,
Giang and Shenoy [6] have studied desirable properties for transformations from
probability functions to ranking functions. An interesting question is whether
a min-sum network can be learned from an (empirical) probability distribution
in such a way that these desirable properties are satisfied. Another interesting
question is whether min-sum networks can be constructed or learned on the
basis of qualitative information. For instance, the non-monotonic inference sys-
tem called System Z involves determining the unique “most normal” ranking
function that satisfies a given knowledge base containing default rules [12]. If
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this ranking function can be constructed directly as a min-sum network then
this network could be used to answer certain types of queries with a cost that
is linear with respect to the size of the network. Finally, our approach is based
on adapting SPNs for representing ranking functions. It may also be possible to
adapt SPNs in a similar way to represent other representations of uncertainty,
such as possibility measures, belief functions and plausibility measures [8].
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