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Abstract. We present an algorithm for determining inconsistency de-
grees wrt. the contension inconsistency measure [8] which utilizes three-
valued logic to determine the minimal number of atoms that are assigned
truth value B (paradoxical/both true and false). Our algorithm is based
on an answer set programming encoding for checking for upper bounds
and a binary search algorithm on top of that. We experimentally show
that the new algorithm significantly outperforms the state of the art.
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1 Introduction

Dealing with inconsistent information is an important aspect in rational accounts
to formal reasoning. In applications such as decision-support systems, a knowl-
edge base is usually compiled by merging the formalised knowledge of many
different experts. It is unavoidable that different experts contradict each other
and that the merged knowledge base becomes inconsistent. One way of dealing
with inconsistent information is to abandon classical inference and define new
ways of reasoning. Some examples of such formalisms are, e. g., paraconsistent
logics [2], default logic [14], answer set programming [3], and computational
models of argumentation [1]. Moreover, the field of belief revision [10] deals with
the particular case of inconsistencies in dynamic settings.

The field of Inconsistency Measurement—see the seminal work [7] and the
recent book [9]—provides an analytical perspective on the issue of inconsistency.
An inconsistency measure is a function that maps a knowledge base to a non-
negative real number, the interpretation of that number being that larger values
indicate a larger inconsistency within the knowledge base. The field of incon-
sistency measurement has proposed a series of different approaches to measure
inconsistency, focusing on aspects such as minimal inconsistent subsets [11,5], or
non-classical semantics [8,15], see [16] for an overview.

In this paper, we are considering algorithmic problems involving the con-
tension inconsistency measure from [8]. This measure uses Priest’s three-valued
logic [13] to determine the minimal number of atoms in the language that are
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“conflicting” in the knowledge base under consideration (we will provide formal
details in Section 2). In [17] it has been shown that the problem of deciding
whether a certain value is an upper bound for the inconsistency degree wrt. the
contension measure in NP-complete. Although this is an intractable problem, it
still belongs to the rather “easier” problems in inconsistency measurement, as
the corresponding decision problems wrt. many other measures are even higher
in the polynomial hierarchy [17]. In this paper, we are presenting an algorithm
for determining the inconsistency degree wrt. the contension measure of an ar-
bitrary knowledge base using answer set programming (ASP) [3]. The latter is
a declarative problem solving formalism that is suitable for addressing NP-hard
problems (and beyond). More specifically, the contributions of this work are the
following:

1. We present an ASP encoding of the problem whether a certain number is
an upper bound for the inconsistency degree and integrate it into a binary
search algorithm for determining the actual value (Section 3).

2. We report on some preliminary experiments that show that this algorithm
significantly outperforms the state of the art (Section 4).

In addition, Section 2 covers the necessary preliminaries and Section 5 concludes
the work by giving an overview of the contributions and possible future work.

2 Preliminaries

Let At be some fixed set of propositions and let L(At) be the corresponding
propositional language constructed using the usual connectives ∧ (conjunction),
∨ (disjunction), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K
be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X.

Semantics for a propositional language is given by interpretations where an
interpretation ω on At is a function ω : At → {true, false}. Let Ω(At) denote
the set of all interpretations for At. An interpretation ω satisfies (or is a model
of) a proposition a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The
satisfaction relation |= is extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
A formula or set of formulas X1 entails another formula or set of formulas X2,
denoted by X1 |= X2, if and only if ω |= X1 implies ω |= X2. If there is no ω
with ω |= X we also write X |=⊥ and say that X is inconsistent.

2.1 The Contension Inconsistency Measure

Let R∞≥0 be the set of non-negative real values including infinity. The most general
form of an inconsistency measure is as follows.
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Definition 2. An inconsistency measure I is a function I : K → R∞≥0 that
satisfies I(K) = 0 if and only if K is consistent, for all K ∈ K.

The intuition we intend to be behind any concrete approach to inconsistency
measure I is that a larger value I(K) for a knowledge base K indicates more
severe inconsistency in K than lower values. Moreover, we reserve the minimal
value (0) to indicate the complete absence of inconsistency.

With regard to an inconsistency measure I, ExactI denotes the problem
of deciding whether a given value a ∈ R∞≥0 is the inconsistency value I(K) of
a knowledge base K [17]. UpperI and LowerI denote the problems whether
a given value a ∈ R∞≥0 is an upper or a lower bound of I(K), respectively. For
any function I according to Definition 2 that satisfies I(K) = 0 if and only
if K is consistent, the decision problems UpperI and ExactI are NP-hard.
LowerI is coNP-hard [17]. Moreover, ValueI is the natural function problem
which returns the value of I(K) for a given knowledge base K.

In [8], Grant and Hunter introduce an inconsistency measure based on se-
mantics of Priest’s three-valued logic [13]. In addition to true (T ) and false (F ),
this logic includes a third value which indicates paradoxical, or both true and
false (B). Table 1 shows the truth tables for this logic.

Table 1. Truth tables for Priest’s propositional three-valued logic [13].

x y x ∧ y x ∨ y

T T T T
T B B T
T F F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

x ¬x
T F
B B
F T

Let i be a three-valued interpretation, i. e., a function that assigns one of
the three truth values to each atom in a knowledge base K, denoted as i :
At(K) 7→ {T, F,B}. The domain of a certain interpretation i can be divided into
two groups corresponding to their truth value [8]. More specifically, there is the
group of atoms which are assigned a classical truth value (T or F ), and there is
the group of atoms which are assigned B. The former is defined as follows:

Binarybase(i) = {α | i(α) = T or i(α) = F}

Because the other group comprises those atoms which take part in conflicts, it
is denoted

Conflictbase(i) = {α | i(α) = B}.
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Further, a model is defined as an interpretation where each formula φ in K is
assigned either T or B. Thus, the set of models is defined as follows:

Models(K) = {i | ∀φ ∈ K, i(φ) = T or i(φ) = B}

Example 1. Consider knowledge base K1 = {a ∧ b,¬a ∨ b,¬b ∧ ¬c}. A model of
K1 is the interpretation which assigns T to a, F to c, and B to b, denoted i1.
Consequently, Binarybase and Conflictbase wrt. i1 are the following:

Binarybase(i1) = {a, c} Conflictbase(i1) = {b}

There exist also other models, for example the interpretation that assigns B to
all x ∈ {a, b, c} is a model of every knowledge base.

The previous definitions allows us to formulate the contension inconsistency
measure Ic wrt. a knowledge base K as

Ic(K) = min{|Conflictbase(i)| | i ∈ Models(K)}.

Consequently, Ic describes the minimum number of atoms in K that are assigned
truth value B. Considering the exemplary knowledge base K1 presented in Ex-
ample 1, we can easily see that it is inconsistent. More specifically, the first and
third formula, a∧ b and ¬b∧¬c, respectively, contradict each other in the sense
of classical propositional logic. Since at least b (i. e., one atom) must be assigned
the truth value B to make the knowledge base consistent in three-valued logic,
the minimal size of Conflictbase is 1. Thus, Ic(K1) = 1.

It has been shown [17] that UpperIc is NP-complete, LowerIc is coNP-

complete, ExactIc is DP-complete, and ValueIc is FPNP[log]-complete. To the
best of our knowledge, the currently only existing algorithm for computing Ic(K)
is the one given in TweetyProject1. This algorithm follows a naive approach by
searching for a solution in a brute force fashion. The given knowledge base is
first converted to CNF and then checked for consistency. If the knowledge base
is consistent, 0 is returned correspondingly. If it is not, for each proposition x,
each clause containing x is removed and the resulting knowledge base is checked
for consistency again. This is equivalent to setting x to B in three-valued logic.
If one of the new knowledge bases is consistent, 1 is returned correspondingly. If,
again, none of the knowledge bases turned out to be consistent, two propositions
are set to B, i. e., all possible pairs of propositions are iteratively removed, then
all triples, and so forth.

2.2 Answer Set Programming

Answer Set Programming (ASP) [3] is a declarative programming paradigm
based on logic programming which is targeted at difficult search problems. ASP
incorporates features of Reiter’s default logic [14] and logic programming.

1 http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/

ContensionInconsistencyMeasure.html

http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/ContensionInconsistencyMeasure.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/ContensionInconsistencyMeasure.html
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An extended logic program incorporates both negation-as-failure (not) and
classical negation (¬). Such a program comprises rules of the form

H ← A1, . . . , An, notB1, . . . , notBm. (1)

where H, as well as Ai, i ∈ {1, . . . , n} and Bj , j ∈ {1, . . . ,m} are literals. In
(1), {H} is called the head of the rule, and {A1, . . . , An, B1, . . . , Bm} is called
the body of the rule. We refer to a set of literals X as closed under a positive
program P , i. e., a program that contains no instance of not, if and only if for
any rule r ∈ P , the head of r is contained in X whenever the body of r is a
subset of X. The smallest of such sets wrt. a positive program P is denoted as
Cn(P ), and it is always uniquely defined. For an arbitrary program P , a set X
is called an answer set of P if X = Cn(PX) where PX = {H ← A1, . . . , An |
H ← A1, . . . , An, notB1, . . . , notBm. ∈ P, {B1, . . . , Bm} ∩X = ∅}.

A rule with an empty body is referred to as a fact, a rule with an empty head
is a constraint. It should be noted that the head of a rule does not necessarily
consist of a single literal – some dialects of ASP allow for constructions such as
a choice rule, a rule where the head comprises a set of literals of which basically
any subset can be set to true. There is also the notion of cardinality constraints
with lower and upper bounds. Such rules are of the form

l{A1, . . . , An, notB1, . . . , notBm}u (2)

The intuition behind this is that a cardinality constraint is only satisfied by an
answer set if at least l and at most u of the literals A1, . . . , An, B1, . . . , Bm are
included in the answer set. Cardinality constraints can be used as body elements
as well as heads of rules [6].

3 Measuring Contension Inconsistency Using ASP

In order to utilise ASP for measuring Ic, i. e., to compute ValueIc , wrt. a knowl-
edge base K, we will encode the problem UpperIc in ASP and then send calls
to an ASP solver in an iterative manner. By using binary search on the search
space of possible inconsistency values, only logarithmic many calls are required.
More precisely, wrt. the contension inconsistency measure, the maximum incon-
sistency value corresponds to the number of atoms n. Thus, the starting point
of the binary search is n/2.

As a first step in encoding UpperIc , we create three new propositional atoms
exT

, exB
, exF

for each atom x. Thus, the new atoms form a representation of the
evaluation of the atom in three-valued logic. For the “guess” part of the ASP, at
most u atoms exi

B
, i ∈ {1, . . . , n} are set to true. This can be modeled as a rule

consisting of a cardinality constraint (as introduced in (2)): 0{ex1
B
, . . . , exn

B
}u.

where u is the upper bound we want to show.
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For the “check” part of the ASP, we first need to model that for an atom x
only one of its corresponding atoms exT

, exB
, exF

can be evaluated to true:

exT
← not exB

, not exF
.,

exB
← not exT

, not exF
.,

exF
← not exB

, not exT
.

The formulas in K are comprised of the set of atoms At as well as the oper-
ators ∧, ∨, and ¬. Hence, each operator must be encoded in ASP as well. More
specifically, we construct rules that model the evaluation of the formulas x ∧ y,
x ∨ y, and ¬x as follows (with new symbols e...):

x ∧ y 7→ ex∧yT ← exT
, eyT ., ex∧yF ← exF

.,

ex∧yF ← eyF ., ex∧yB ← not ex∧yF , not ex∧yT .

x ∨ y 7→ ex∨yF ← exF
, eyF ., ex∨yT ← exT

.,

ex∨yT ← eyT ., ex∨yB ← not ex∨yF , not ex∨yT .

¬x 7→ e¬xB
← exB

., e¬xT
← exF

.,

e¬xF
← exT

.

More complex formulas can be reduced to these rules. Finally, we need to ensure
that all formulas are evaluated either T orB. To achieve this, we add the integrity
constraint ← eφF

. for each formula φ.

Example 2. We continue Example 1. The ASP corresponding to K1 would con-
tain the following rules:

1. Cardinality constraint: 0{eaB , ebB , ecB}2. Here, we use 2 as the upper bound.
2. Ensure that each atom only gets one evaluation:

eaT ← not eaB , not eaF ., eaB ← not eaT , not eaF ., eaF ← not eaB , not eaT .,

ebT ← not ebB , not ebF ., ebB ← not ebT , not ebF ., ebF ← not ebB , not ebT .,

ecT ← not ecB , not ecF ., ecB ← not ecT , not ecF ., ecF ← not ecB , not ecT .

3. Encodings for all formulas:
(a) a ∧ b:

ea∧bT ← eaT , ebT ., ea∧bF ← eaF ., ea∧bF ← ebF .,

ea∧bB ← not ea∧bF , not ea∧bT .

(b) ¬a ∨ b:

e¬a∨bF ← e¬aF , ebF ., e¬a∨bT ← e¬aT ., e¬a∨bT ← ebT .,

e¬a∨bB ← not e¬a∨bF , not e¬a∨bT .

(c) ¬b ∧ ¬c:

e¬b∧¬cT ← e¬bT , e¬cT ., e¬b∧¬cF ← e¬bF ., e¬b∧¬cF ← e¬cF .,

e¬b∧¬cB ← not e¬b∧¬cF , not e¬b∧¬cT .
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Fig. 1. Comparison of the (naive) state of the art implementation of the contension
inconsistency measure and the (ASP) implementation of the algorithm proposed in
this work. The red horizontal line visualises the timeout of 60 seconds.

(d) Negations:
e¬aB ← eaB ., e¬aT ← eaF ., e¬aF ← eaT .,

e¬bB ← ebB ., e¬bT ← ebF ., e¬bF ← ebT .,

e¬cB ← ecB ., e¬cT ← ecF ., e¬cF ← ecT .

4. Integrity constraints: ← ea∧bF ., ← e¬a∨bF ., ← e¬b∧¬cF .

4 Preliminary Experiments

The algorithm presented in the previous section is implemented in Java by use
of the TweetyProject2 library. The library already provides an implementation
of the contension inconsistency measure that constitutes the state of the art.

In order to evaluate the proposed ASP algorithm, we compare its implemen-
tation with the naive one. We created a total of 800 random knowledge bases of
different sizes and complexities. The knowledge bases are comprised of around
15-20 formulas which contain 0-10 connectors. To achieve this, we utilised a sam-
pler (namely, the SyntacticRandomSampler3) provided by the TweetyProject.
The generated knowledge bases are built on signatures that contain either 5, 10,
or 15 propositional atoms. Then we applied both algorithms on each of these
knowledge bases and measured the execution time. A timeout was set to 60 sec-
onds. Fig. 1 displays the measured execution time regarding each knowledge base,
sorted from low to high wrt. both algorithms. Clearly, the ASP algorithm per-
forms more efficiently. While applying the naive algorithm produced a timeout
in 53 cases, the ASP implementation required only a maximum of 7.97 seconds
to return the inconsistency value.

2 http://tweetyproject.org/index.html
3 http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/

SyntacticRandomSampler.html

http://tweetyproject.org/index.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/SyntacticRandomSampler.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/SyntacticRandomSampler.html
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5 Conclusion

In this paper, we introduced an algorithm for calculating the contension inconsis-
tency measure by means of reductions to answer set programming. By providing
rules for encoding three-valued evaluations of propositional formulas in ASP
rules, an inconsistency value can be retrieved using only logarithmic many calls
to an answer set solver. In Section 4 we compared an implementation of a state
of the art algorithm for calculating contension inconsistency with the proposed
method. The evaluation shows that the ASP algorithm clearly outperforms the
state of the art. This quite positive result leads to the conclusion that reductions
to ASP are a reasonable method to approach problems in the field of inconsis-
tency measurement. Consequently, it would be useful to explore the calculation
of other inconsistency measures using reductions to ASP as well.
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2. Béziau, J.Y., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. Col-
lege Publications, London (2007)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

4. Cholvy, L., Hunter, A.: Information fusion in logic: A brief overview. In: Proceed-
ings ECSQARU’97/FAPR’97). vol. 1244, pp. 86–95 (1997)

5. De Bona, G., Grant, J., Hunter, A., Konieczny, S.: Towards a unified framework
for syntactic inconsistency measures. In: Proceedings AAAI’18 (2018)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synthesis lectures on artificial intelligence and machine learning 6(3), 1–238
(2012)

7. Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal
Logic 19(3), 435–444 (1978)

8. Grant, J., Hunter, A.: Measuring consistency gain and information loss in step-
wise inconsistency resolution. In: Proceedings ECSQARU’11. pp. 362–373. Springer
(2011)

9. Grant, J., Martinez, M. (eds.): Measuring Inconsistency in Information. College
Publications (2018)

10. Hansson, S.: A Textbook of Belief Dynamics. Kluwer Academic Publishers (2001)
11. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent

sets. In: Proceedings KR’08. pp. 358–366 (2008)
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