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Abstract. We investigate the application of inconsistency measures
to the problem of analysing business rule bases. Due to some intri-
cacies of the domain of business rule bases, a straightforward ap-
plication is not feasible. We therefore develop some new rationality
postulates for this setting as well as adapt and modify existing in-
consistency measures. We further adapt the notion of inconsistency
values (or culpability measures) for this setting and give a compre-
hensive feasibility study.

1 Introduction
Business rules have gained major attention in the context of busi-
ness process management and compliance management [16, 21, 10].
Here, business rules are used to encode policies and laws as a declar-
ative business logic, aimed to ensure that company activities comply
with such regulatory controls. For example, the company should only
conduct activities as constrained by the set of business rules. Other-
wise, the behavior might violate legal regulations, which could result
in sensitive fines, or criminal prosecution. Using business rules to
verify the compliance of company activities comes with increased
demands on the quality of the business rules themselves. However,
as company rule bases are usually maintained by multiple modelers,
and in an incremental manner, modeling errors can occur frequently
[16, 1, 17]. For instance, a recent case study with a large insurance
company revealed that 27% of analysed rules contained modeling er-
rors [1]. Hence, the maintenance of business rule bases is recognized
as an important challenge for companies [16, 4, 17, 14] .

A potential problem here is that of inconsistency, i. e., rules that
contradict each other. For example, consider the following business
rule base B1 (we will formalize syntax and semantics later)

B1 = {platinumCustomer ,mentalCondition,

platinumCustomer → creditWorthy ,

mentalCondition → ¬creditWorthy }

with the intuitive meaning that we have a (platinum) customer who
has a mental condition and two general rules stating that 1.) platinum
customers are credit worthy, and 2.) a customer with a mental con-
dition is not credit worthy. B1 is inconsistent in the classic logical
sense, as it entails the contradictory conclusions creditWorthy and
¬creditWorthy. Therefore, this rule base cannot be used to draw
meaningful conclusions or to correctly regulate process execution.

To counteract such problems, companies need to be supported
with means for the detection and analysis of inconsistencies in busi-
ness rules, such that experts can resolve inconsistencies. The field of

1 University of Koblenz-Landau, Germany, ccorea@uni-koblenz.de
2 University of Koblenz-Landau, Germany, thimm@uni-koblenz.de

inconsistency measurement [9, 20] is about analysing inconsistency
in logic-based knowledge representations and therefore represents a
good candidate for this use-case. In general, an inconsistency mea-
sure I is a function that assigns a non-negative real value to knowl-
edge base K, quantifying the inconsistency in K with the informal
meaning that a higher value reflects a higher degree of inconsistency.

Applying existing inconsistency measures to business rule bases
seems straightforward, however, we can identify a conceptional mis-
match. In the classical setting of inconsistency measurement—that
of propositional logic—, knowledge bases are constituted of propo-
sitional formulas, where these formulas do not have a distinguish-
able level of granularity. On the other hand, business rule bases
distinguish between facts and rules. That is, facts have a differ-
ent conceptual quality as their veracity is unconditionally assumed
[7].3 However, assuming facts as indisputable has strong implica-
tions for applying results from inconsistency measurement to this
use-case. For example, reconsider the above rule base B1. As men-
tioned, this rule base is inconsistent, but we can see that by remov-
ing the fact mentalCondition it becomes consistent. However, the
factsmentalCondition, and platinumCustomer are provided by
a given case input and have to be kept as-is, even in the scope of in-
consistency handling. For instance, one cannot change the mental
condition of a customer just to make the set of business rules con-
sistent. Consequently, methods are needed to analyze inconsistency
based on a distinction between facts and rules, such that companies
can be supported in re-modeling the business rules.

In this work, we develop means for this use-case as follows:

1. We first investigate inconsistency measures for business rule bases
in Section 3. To this aim, we propose new postulates that specify
expected behavior of inconsistency measures in the business rule
base use-case. We show that existing means do not satisfy these
requirements and consequently propose new adaptations.

2. Then, in Section 4, we investigate element-based inconsistency
measures, which are useful to pin-point problematic elements in
the context of inconsistency handling. Again, we show that exist-
ing means are not suitable for our use-case and propose adapta-
tions for a plausible application.

Preliminaries are presented in Section 2. Also, we provide an appli-
cation example for our proposed means in Section 5, and conclude in
Section 6. An extended version of this paper with proofs of technical
results can be found online4.

3 We acknowledge there could be contradictions between facts due to data
errors, however, in this work, we assume a consistent set of non-negotiable
facts is evaluated against a humanly modelled rule set.
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Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

Ip(K) = |
⋃

M∈MI(K)

M |

Ic(K) = min{|υ−1(b) ∩ A| | υ |=3 K}

Figure 1. Definitions of the considered inconsistency measures.

2 Preliminaries
To formalise business rule bases, we rely on a simple (monotonic)
logic programming language, cf. [6]. For that, we consider a finite
setA of atoms. Let L be the corresponding set of literals, i. e., atoms
and negations of atoms. We abbreviate ¬a = a and a = ¬a for an
atom a. A (business) rule base B is then a set of rules of the form

r : l1, . . . , lm → l0. (1)

with l0, . . . , lm ∈ L. Let B be the set of all such rule bases. We
abbreviate head(r) = l0 and body(r) = {l1, . . . , lm}. If body(r) =
∅ we call r a fact and simply write l0 instead of→ l0. For a rule base
B let F(B) ⊆ B denote the facts in B and R(B) ⊆ B denote the
rules in B.

Example 1. We recall B1 from Section 1. Then we have

F(B1) = {mentalCondition, platinumCustomer}
R(B1) = {platinumCustomer → creditWorthy,

mentalCondition→ ¬creditWorthy}.

A set M of literals is closed wrt. B if for every rule of the form
1, if l1, . . . , lm ∈ M then l0 ∈ M . The minimal model M of a
rule base B, denoted by min(P ) is the smallest (wrt. set inclusion)
closed set of literals. A set M of literals is called consistent if it does
not contain both a and ¬a for an atom a. A program P is called
consistent if its minimal model is consistent.

An inconsistency measure [9, 20] is a function I : B → R∞≥0,
where the semantics of the value are defined such that a higher value
reflects a higher degree, or severity, of inconsistency. As the con-
cept of a ”severity“ of inconsistency is not easily characterisable,
numerous inconsistency measures have been proposed, see [19] for
an overview. A baseline is the drastic inconsistency measure Id [12],
which only differentiates between inconsistent and consistent knowl-
edge bases.

In general, all other measures can be divided into formula-centric
measures, and atom-centric measures [11].5 In this work, we there-
fore consider measures representative of these two groups, namely
the MI-inconsistency measure [12], the problematic inconsistency
measure [8] and the contension measure [8], as shown in Figure 1
and explained below.

Formula-centric measures take into account the (number of) for-
mulas responsible for the overall inconsistency. A central approach
to measure inconsistency here is derived from minimal inconsistent

5 We acknowledge there are hybrid forms and some outliers (cf. the discus-
sion in [2]), but limit our discussion to these two main perspectives due to
space limitations.

subsets. Let B be a rule base, the minimal inconsistent subsets MI of
B are defined via

MI(B) = {M ⊆ B |M |=⊥,∀M ′ ⊂M :M ′ 6|=⊥}.

Example 2. We recall B1. Then we have

MI(B1) = {M1}
M1 = {platinumCustomer,

platinumCustomer → contractuallyCapable,

mentalCondition,

mentalCondition→ ¬contractuallyCapable}

The MI-inconsistency measure IMI counts the number of minimal
inconsistent subsets. A similar version is the problematic inconsis-
tency measure Ip [8], which counts the number of distinct formulas
appearing in any inconsistent subset.

Atom-centric measures take into account the propositional vari-
ables involved in the overall inconsistency. The contension measure
Ic quantifies inconsistency by utilizing three-valued interpretations.
Here, a three-valued interpretation is a function v : A → {b, t, f},
which assigns every atom to either b, f or t, where t and f correspond
to the classic logical TRUE and FALSE, and b denotes that there exist
conflicting truth values. Assuming the truth order ≺T with f ≺T
b ≺T t, the function v is extended to arbitrary formulas as follows:
v(α∧β) = min≺T (v(α), v(β)), v(α∧β) = max≺T (v(α), v(β)),
v(¬α) = t if v(α) = f , v(¬α) = f if v(α) = t, and v(¬α) = b if
v(α) = b. We say an interpretation v satisfies a formula α, denoted
by v |=3 α, if v(α) = t or v(α) = b. Then the contension measure
quantifies inconsistency by seeking an interpretation that assigns b to
a minimal number of propositions.

Example 3. Considering again B1, we see that

Id(B1) = 1 IMI(B1) = 1 Ip(B1) = 4 Ic(B1) = 1.

For all considered measures, we see that the measures inherently
do not distinguish between facts and rules. Considering our use-case
where facts have a different assumption of veracity than rules, this
might impede a plausible application. We consequently investigate
inconsistency measurement with a distinction between indisputable
facts and rules.

3 Measures of Inconsistency with indisputable
facts

Consider the following exemplary rule bases B2, B3, B4, defined via

B2 = {a,¬a}
B3 = {a, a→ b, a→ ¬b}
B4 = {a, a→ b, a→ ¬b, c,¬c}.

In a business rule management use-case, we are interested only in in-
consistencies comprising at least one business rule, as this indicates
a human modelling error in the set of business rules. Analysing only
such modeling errors is an important basis for re-modelling. In turn,
we will not consider inconsistencies such as in B2 (this can be han-
dled by existing results from inconsistency measurement), but want
to develop new ”rule-based“ inconsistency measures, in the follow-
ing denoted as IRB , which can specifically assess actual modeling
errors, i. e., inconsistencies including at least one rule. To this aim,
we propose the property of rule-consistency that should be satisfied
by rule-based inconsistency measures.
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Rule Consistency (RC) IRB(B) = 0 if and only if for all consis-
tent sets F ′ ⊆ F(B) ,R(B) ∪ F ′ is consistent.

The above rationality postulate is a weakening of the classical pos-
tulate consistency [18], which requires I(B) = 0 if and only if B is
consistent. Following RC, measures should assess the degree of in-
consistency for B2 as 0. Vice versa, in case there is at least one incon-
sistency which touches at least one rule, the returned inconsistency
value should not be 0.

In any case however, we want to ensure that only conflicts includ-
ing at least one rule are valued towards the quantification of incon-
sistency. Atoms appearing only as facts should not alter the degree of
inconsistency for rule-based measures, if they do not contradict any
rules. We subsequently define the property of fact elision.

Fact Elision (FE) If ∀r ∈ B : head(r) 6= α then IRB(B) =
IRB(B ∪ {α}).

This postulate is closely related to the postulate safe-formula in-
dependence (SI) [18], which states that formulas which do not share
the signature with the existing propositions of a knowledge base, i. e.,
safe formulas, should not alter the degree of inconsistency. The pro-
posed postulate is a weakening of SI, and states that a formula only
needs to be safe w.r.t. the business rules. That is, even if an added
formula is not safe w.r.t. facts in the knowledge base, this should not
alter the score. Consequently, for any IRB , IRB(B3 ∪ c) should be
equal to IRB(B4 ∪ c).

Last, we consider a further aspect of rule-based inconsistency
measures. Consider again the rule base B3 and the rule base B5, de-
fined as

B3 = {a, a→ b, a→ ¬b} B5 = {a, a→ b,¬b}.

In a traditional setting of inconsistency measurement, one could ar-
gue that both rule bases are equally inconsistent. However, we see
that the inconsistency in B5 can only be resolved in one way in our
setting—namely by modifying or deleting the rule a → b—as the
given facts a and ¬b are indisputable. On the contrary, the inconsis-
tency in B3 is caused by contradicting rules, thus, this inconsistency
is more complex to handle and requires attention by domain experts.
To identify such cases, we introduce a third, optional property of
rule emphasis. For that, a formula a ∈ B is called a free formula, if
a /∈M,∀M ∈ MI(B). We denote the free formulas ofB as Free(B).

Rule Emphasis (RE) If B → H /∈ B and B → H /∈ Free(B ∪
{B → H}) then I(B ∪ {B → H}) > I(B ∪ {H}).

This postulate states that adding a rule to a rule base, where this
rule is not a free formula, should increase the inconsistency more
than adding only the head of that rule, i. e. as a fact. This postulate
ensures that measures valuate the conflicts involving contradictory
rules as more significant than a conflict resulting from a rule and a
non-negotiable fact (as the former type of inconsistency might be
more complex to resolve than the latter). Note that RE is similar in
spirit to the classical postulate penalty, which requires inconsistency
to strictly increase whenever a non-free formula is added, cf. [18].

Example 4. For the rule bases B2, B3, B4, and B5 from before,
we expect a rule-based inconsistency assessment IRB satisfying the
postulates RC, FE, and RE to give

0 = IRB(B2) < IRB(B3) = IRB(B4) and

IRB(B5) < IRB(B3)

However, for the considered inconsistency measures we get

Id(B2) = 1 Id(B3) = 1 Id(B4) = 1 Id(B5) = 1

IMI(B2) = 1 IMI(B3) = 1 IMI(B4) = 2 IMI(B5) = 1

Ip(B2) = 2 Ip(B3) = 3 Ip(B4) = 5 Ip(B5) = 3

Ic(B2) = 1 Ic(B3) = 1 Ic(B4) = 2 Ic(B5) = 1

We see that none of the considered measures is capable of capturing
the desired outcome. Specifically, we see that for the above measures
(in the following abbreviated as I by a slight misuse of notation):

• I(B2) > 0 for all measures, thus violating RC.
• I(B3) 6= I(B4) for all measures except Id, thus broadly violating

FE.
• I(B5) ≮ I(B3) for all measures, thus violating RE.

Regarding I(B2) > 0, this is intuitive, as all considered measures
satisfy the postulate of consistency (CO)[12], which demands that
the returned value should only be zero iff the rule base is consistent.
As a result, we have the following:

Proposition 5. CO is incompatible with RC.

Following from Proposition 5, virtually all existing inconsistency
measures cannot be used as rule-based inconsistency measures, as
they uniformly satisfy CO (cf. [18]) and thus broadly violate the pro-
posed rationality postulates as motivated from the business use-case.
This impedes using existing results in a company context and calls
for an adaptation of measures to fit this use-case. In the following,
we therefore propose rule-based versions of the original measures.

3.1 A baseline for rule-based measures
As a baseline measure, the rule-based drastic measure is geared to
distinguish between inconsistent and rule-consistent rule bases. To
recall, a rule base is not rule-consistent if it contains at least one
minimal inconsistent subset, that itself contains at least one rule. To
verify this condition, we consider only those minimal inconsistent
subsets that do not contain two complementary facts a,¬a. Formally,
define MI\F (B) = {M ∈ MI(B) | ¬∃a ∈ A : a,¬a ∈ M}. If
a,¬a ∈ M we also call M a pure fact set (note that indeed a,¬a ∈
M implies M = {a,¬a}).
Example 6. We recall B2. Then we have

MI(B2) = {{a,¬a}} MI\F (B2) = ∅

We are now ready to define a baseline for rule-based measures.

Definition 7. The rule-based drastic inconsistency measure IRBd :
B→ R∞≥0 is defined as

IRBd (B) =

{
1 iff MI\F (B) 6= ∅
0 otherwise

for B ∈ B.

In other words, the rule-based drastic measure is 1 if and only if a
rule base contains at least one inconsistent subset which is not simply
a pair of two complementary facts a,¬a (and 0 otherwise).

Example 8. We recall the business rule bases B2 and B5, and con-
sider a consistent rule base B6

B2 = {a,¬a}
B5 = {a, a→ b,¬b}
B6 = {a, a→ b, a→ c, d}.

Then, IRBd (B5) = 1, and IRBd (B2) = IRBd (B6) = 0.
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3.2 Rule-Based inconsistency measures based on
formulas

We continue using the introduced notion of MI\F .

Definition 9. The rule-based MI-inconsistency measure IRBMI : B→
R∞≥0 is defined as

IRBMI (B) = |MI\F (B)|

for B ∈ B.

Considering only minimal inconsistent subsets without pure fact
sets ensures satisfying the requirements of RC and FE, as pure fact
MI are omitted.

Example 10. We recall the business rule bases B2,B3 and B5

B2 = {a,¬a} B3 = {a, a→ b, a→ ¬b} B5 = {a, a→ b,¬b}.

Then

MI(B2) = {{a,¬a}}

MI\F (B2) = ∅
MI(B3) = {{a, a→ b, a→ ¬b}}

MI\F (B3) = {{a, a→ b, a→ ¬b}}
MI(B5) = {{a, a→ b,¬b}}

MI\F (B5) = {{a, a→ b,¬b}}

and thus IRBMI (B2) = 0 and IRBMI (B3) = IRBMI (B5) = 1.

Next, in the original problematic inconsistency measure, the idea
is to count the number of formulas contributing in any MI. Thus, in
our use-case, an intuitive adaptation is to consider only all problem-
atic rules.

Definition 11. The rule-based problematic inconsistency measure
IRBp : B→ R∞≥0 is defined as

IRBp (B) = |
⋃

M∈MI\F (B)

M \ F(M)|

for B ∈ B.

Example 12. We continue Example 10 and recall

MI1B3 = {a, a→ b, a→ ¬b}

MI1B5 = {a, a→ b,¬b}

Then we have

MI1B3 \ F(M1) = {a→ b, a→ ¬b}

MI1B5 \ F(M1) = {a→ b}

and thus IRBp (B3) = 2 and IRBp (B5) = 1.

3.3 Rule-based inconsistency measures based on
multi-valued semantics

Again, for an adaptation of the contension measure, it is necessary
to eliminate conflicts resulting from fact contradictions. Therefore,
given a rule base B we propose to only consider MI\F (B).

Definition 13. The rule-based contension inconsistency measure
IRBc : B→ R∞≥0 is defined as

IRBc (B) = min{|v−1(b) ∩ A| | v |=3
⋃

M∈MI\F (B)

M}

for B ∈ B, with IRBc (∅) = 0.

Example 14. We recall the business rule bases B2,B3,B4 and B5

B2 = {a,¬a} B3 = {a, a→ b, a→ ¬b}
B4 = {a, a→ b, a→ ¬b, c,¬c} B5 = {a, a→ b,¬b}.

Then ⋃
M∈MI\F (B2)

M = ∅

⋃
M∈MI\F (B3)

M = {a, a→ b, a→ ¬b}

⋃
M∈MI\F (B4)

M = {a, a→ b, a→ ¬b}

⋃
M∈MI\F (B5)

M = {a, a→ b,¬b}.

Then consider v1 : {a, b} → {b, t, f}, defined via

v1(a) = t v1(b) = b

Then we have v1 |=3 α for all formulas α in the considered unions of
MI\F . Also, there is no interpretation that assigns b to fewer propo-
sitions, and thus IRBc (B3) = IRBc (B4) = IRBc (B5) = 1 and
IRBc (B2) = 0.

3.4 Analysis
We now investigate the compliance of the adapted measures with the
proposed rationality postulates. We would like to remind the reader
that the proofs of the technical results can be found in an extended
version referenced above.

Example 15. Recall that for the rule bases B2, B3, B4, B5 we expect
a rule-based inconsistency assessment IRB satisfying the postulates
RC, FE, and RE to give

0 = IRB(B2) < IRB(B3) = IRB(B4) and

IRB(B5) < IRB(B3)

For our adapted measures we get

IRBd (B2) = 0 IRBd (B3) = 1 IRBd (B4) = 1 IRBd (B5) = 1

IRBMI (B2) = 0 IRBMI (B3) = 1 IRBMI (B4) = 1 IRBMI (B5) = 1

IRBp (B2) = 0 IRBp (B3) = 2 IRBp (B4) = 2 IRBp (B5) = 1

IRBc (B2) = 0 IRBc (B3) = 1 IRBc (B4) = 1 IRBc (B5) = 1

We see that our alterations have improved all measures wrt. the ra-
tionality postulates, in particular wrt. RC.

Table 1 and Table 2 summarize our results regarding the compli-
ance with the rationality postulates motivated by our use case.

Proposition 16. IRBd , IRBMI , IRBc satisfy RC and FE, and do not
satisfy RE.

Proposition 17. IRBp satisfies RC, FE and RE.
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I RC FE RE
Id 7 7 7

IMI 7 7 7

Ip 7 7 7

Ic 7 7 7

Table 1. Compliance with ratio-
nality postulates of the original in-
consistency measures

IRB RC FE RE
IRBd 3 3 7

IRBMI 3 3 7

IRBp 3 3 3

IRBc 3 3 7

Table 2. Compliance with ratio-
nality postulates of the proposed
rule-based inconsistency measures

4 Inconsistency Values with Indisputable Facts
So far we considered inconsistency measures that assess the entire
rule base. In the context of inconsistency handling, this is, however,
often not sufficient. Companies need to pin-point those formulas in
their rule bases that contribute towards the overall inconsistency, e. g.
as a basis for inconsistency resolution. As a manual analysis of for-
mulas can quickly become unfeasible, the field of inconsistency mea-
surement also studies so-called inconsistency values. These are es-
sentially functions which assign a numerical value to individual for-
mulas of a rule base, with the intuition that a higher value indicates
a higher blame which a resp. formula carries in the context of the
overall inconsistency6.

As with inconsistency measures, there have been numerous pro-
posals for specific inconsistency values, see e. g. [13] for a nice
overview. In this work, we consider the Shapley inconsistency value
as proposed in [11], as it is a generalized measure which can be
parametrized with arbitrary inconsistency measures. The Shapley in-
consistency value uses notions from game theory to determine the
blame—also referred to as payoff—that each formula carries w.r.t.
the assessment of an arbitrary inconsistency measure. We can con-
sequently directly plug in our proposed rule-based measures. For the
following discussion, we assume all rule-based inconsistency mea-
sures used to derive inconsistency values satisfy RC. Also, we as-
sume the used inconsistency measures satisfy the two basic prop-
erties of monotony and free-formula independence [12], which are
usual desirable properties satisfied by most measures [18].

Monotony (MO) If B ⊆ B′ then I(B) ≤ I(B′)
Free-formula independence (IN) If α ∈ Free(B) then
I(B) = I(B \ {α})

MO demands that the addition of information cannot decrease the
degree of inconsistency. IN states that free formulas should not affect
the degree of inconsistency.

We are now ready to plug rule-based inconsistency measures into
the original Shapley inconsistency value.

Definition 18. Let IRB be a rule-based inconsistency measure, B
be a rule base and α ∈ B. Then, the Shapley inconsistency value of
α w.r.t. IRB , denoted SI

RB

α is defined via

SI
RB

α (B) =
∑
B⊆B

(b− 1)!(n− b)!
n!

(IRB(B)− IRB(B \ α))

where b is the cardinality of B, and n is the cardinality of B.

In the following, we consider all elements α of a rule base
as a vector (α1, α2, ...αn), and denote SI

RB

(B) as the vector
of corresponding Shapley inconsistency values, i. e., SI

RB

(B) =

6 Note that measures that determine inconsistency values are also referred to
as culpability measures.

(SI
RB

α1
(B), SI

RB

α2
(B), ..., SI

RB

αn
(B)). In turn, the Shapley inconsis-

tency value based on the proposed rule-based inconsistency measures
satisfies some desirable properties. This result is adapted from [11],
the proofs are analogous.

Proposition 19. Let IRB be a rule-based inconsistency measure, B
be a rule base and α ∈ B. Then, SI

RB

(B) satisfies:

• Distribution.
∑
α∈B S

IRB

α (B) = IRB(B)
• Minimality. If IRB satisfies IN and α is a free formula of B , then
SI

RB

α (B) = 0

Example 20. Consider the rule base B7 = {a, a → b, a →
¬b,¬a}. Then, for the Shapley inconsistency values w.r.t. IRBd and

IRBMI , we have that SI
RB
d
a (B) = S

IRB
MI
a (B7) = 1

12
+ 1

4
= 1

3
.

Also, we have that SI
RB
d
¬a (B7) = S

IRB
MI
¬a (B7) = 0. Thus, we have

SI
RB
d (B7) = ( 1

3
, 1
3
, 1
3
, 0) and SI

RB
MI (B7) = ( 1

3
, 1
3
, 1
3
, 0).

What is nice about Example 20 is that it shows that the gist of RC
of the rule-based inconsistency measures transfers to the element-
based assessment: Only those formulas that are part of at least one
MI which itself contains at least one rule are assigned blame. Still, we
see the following problem in using the above Shapley inconsistency
value for measuring culpability in our setting. In Example 20, we
see that the blame is equally distributed over {a, a → b, a → ¬b}
in both assessments. However, facts are viewed as indisputable. This
has strong implications for element-based culpability, the simplest
one being that facts should not be deleted. In turn, they should also
not be assigned with any blame value, as they have to be kept as-is.
To capture this requirement, we therefore propose a new property of
fact-minimality.

• Fact-Minimality SI
RB

f (B) = 0 for any fact f in B.

This is an extension of the minimality property, which is necessary
for the intended use-case of viewing facts as indisputable, i. e., facts
should not be associated with any blame (value) towards the over-
all inconsistency. As evidenced by Example 20, the Shapley incon-
sistency value does not satisfy fact-minimality. Therefore, it is not
plausible to apply the Shapley inconsistency value in our use case.
We therefore propose an adjusted Shapley inconsistency value. The
intuition of our approach is as follows.

The original Shapley inconsistency value essentially assigns re-
sponsibilities to a number of formulas (or players) in a coalition. Cur-
rently, there is no distinction between facts and rules. Following our
use case, the idea is to shift the blame from facts to all rules which are
part of the inconsistency for that coalition. We now introduce some
notation on this matter for later clarification.

Definition 21. Let IRB be a rule-based inconsistency measure, B be
a rule base and α ∈ B. Then, the individual Shapley inconsistency
coalition value of α w.r.t. IRB (in a coalition B ⊆ B), is defined via

CoalPayoff I
RB

α,B (B) =
(b− 1)!(n− b)!

n!
(IRB(B)− IRB(B \ α))

where b is the cardinality of B, and n is the cardinality of B.

In our use case, blame should only be assigned to rules. Accord-
ingly, the share of the blame that falls upon facts from any coalition
should be shifted away from the facts and equally distributed among
the blamable rules, i. e., the rules which contribute towards the incon-
sistency for that coalition. We denote the blame that is shifted from
facts to the individual blamable rules, as an additional payoff.
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Definition 22. Let IRB be a rule-based inconsistency measure and
B be a rule base, denote the additional blame for a rule r ∈ R(B) in
any coalition B ⊆ B as

AddPayoff I
RB

r,B (B)

=

 0 if r ∈ Free(B)∑
f∈F(B) CoalPayoff IRB

f,B (B)

|r′∈R(B) s.t. r′ /∈Free(B)| otherwise

Example 23. Consider again B3 = {a, a→ b, a→ ¬b} and B5 =
{a, a → b,¬b}. According to the original Shapley value, the blame
is evenly distributed for both rule bases. In B3, given the premise
of indisputable facts, a is not to blame for the overall inconsistency.
Rather, the blame value of a should be evenly distributed among a→
b and a → ¬b, as both these formulas evenly contribute towards the
inconsistency. Next, in B5, both a and ¬b are not to blame in our
use case. Here, the blame values of a and ¬b should be transferred
to a → b. This is directly in line with the intuition of RE, as for
B5, the only way to resolve the inconsistency would be to remove
a → b (thus all blame is relocated to that rule), but for B3, one can
delete either of the two rules (thus the blame is distributed among
both rules). In result, for each coalition, the blame is shifted from
facts to the blameable rules via the additional payoff.

We are now ready to define the adjusted Shapley inconsistency
value.

Definition 24. Let IRB be a rule-based inconsistency measure, B
be a rule base and α ∈ B. Then, the adjusted Shapley inconsistency
value of α w.r.t. IRB , denoted S∗I

RB

α is defined via

S ∗I
RB

α (B)

=

0 if α ∈ F(B)∑
B⊆B

(CoalPayoff I
RB

α,B (B) + AddPayoff I
RB

α,B (B)) otherwise

The adjusted Shapley value assigns the value of 0 to all facts, and
computes the blame value of all rules taking into consideration the
additional payoff.

Example 25. Consider the rule bases B3 = {a, a → b, a → ¬b}
and B5 = {a, a → b,¬b}. Then for the adjusted Shapley inconsis-

tency values w.r.t. IRBd , we have that SI
RB
d
a (B3) = 0, S

IRB
d
a→b (B3) =

1
3
(+ 1

3
/2) = 1

2
, and S

IRB
d
a→¬b(B3) = 1

3
(+ 1

3
/2) = 1

2
. Also, we

have that SI
RB
d
a (B5) = 0, S

IRB
d
¬b (B5) = 0, and S

IRB
d
a→¬b(B3) =

1
3
(+ 2

3
) = 1 . Thus, we have that SI

RB
d (B3) = (0, 1

2
, 1
2
) and

SI
RB
d (B5) = (0, 1, 0), which is directly in line with RE.

Proposition 26. The adjusted Shapley value satisfies Distribution,
Minimality and Fact-Minimality.

Proposition 26 shows that our approach follows the same gist as
the original Shapley inconsistency value, but shifts the blame from
facts to blamable rules as necessary in our use-case. Next to Distri-
bution and (fact-)Minimality, we can identify a further property for
this quantitative assessment S ∗I

RB

α (B).

Proposition 27. Let IRB be a rule-based inconsistency measure, B
be a rule base and r ∈ R(B).

• Rule-Involvement. If IRB satisfies RC and r ∈ B is a non-free
rule then S ∗I

RB

r (B) > 0.

This ensures that rules which are part of any inconsistency have
an inconsistency value greater 0.

Next to properties for individual formula assessments, we can also
identify properties of the distribution of blame in the vector S∗I

RB

.

Definition 28. Let a rule base B, define Ŝ ∗I
RB

(B) =

maxα∈BS ∗I
RB

α (B).

Proposition 29. Let IRB be a rule-based inconsistency measure,
and B be a rule base. Then, following [11], we have:

• Rule Consistency’. Ŝ ∗I
RB

(B) = 0 iff B is rule consistent.
• Free formula independence’. If IRB satisfies IN and α is a free

formula of B ∪ {α}, then Ŝ ∗I
RB

(B ∪ {α}) = Ŝ ∗I
RB

(B).
• Upper Bound. Ŝ ∗I

RB

(B) ≤ IRB(B).

The first property states that the highest adjusted Shapley inconsis-
tency value can only be 0 in case of a (rule) consistent rule base. The
second property states that adding free formulas should not increase
any individual values. The last property describes an upper bound.

From the above discussion, we have shown that the proposed ad-
justed Shapley inconsistency value can be used to assess the distri-
bution of blame for individual rules, relative to the overall inconsis-
tency. Also, the blame (value) will be higher for rules with a higher
blame. This information can be useful for companies, e. g. for pri-
oritizing which rules to attend to first. To this aim, the elements of
a rule base can be ranked by their adjusted Shapley inconsistency
value, similar to the approach in [4].

Definition 30 ([4]). Let IRB be a rule-based inconsistency measure
and B be a rule base, define the adjusted Shapley culpability ranking
over all rules α ∈ B, denoted C(B) via 〈α1, ..., αn〉, s.t. S ∗I

RB

α1

(B) ≥ ... ≥ S ∗I
RB

αn
(B).

Observe that the culpability ranking ranks elements of a rule base
by their adjusted Shapley inconsistency values. As dictated by Fact-
Minimality, all facts have a value of 0 and rank last (or may be om-
mitted entirely during inspection). Rather, the ranking represents the
blame of all rules in prioritized order and thus provides valuable in-
sights towards inconsistency resolution. In a setting where facts are
non-negotiable, it is necessary to adjust the Shapley inconsistency
value, as otherwise blame would also be assigned to facts, which
could render an undesirable recommendation of deleting a fact.

To show the usefulness of such a culpability ranking and recap the
need for the measure adjustments made in this paper, we close with
an application example.

5 Application Example
Consider the rule base B′1, defined via

B′1 = {customer,mentalCondition, platinumCustomer,
customer → contractuallyCapable,

mentalCondition→ ¬contractuallyCapable,
mentalCondition→ ¬platinumCustomer}

with the intuitive meaning that we have a (platinum) customer who
also has a mental condition, and three rules stating that 1) all cus-
tomers are generally contractually capable, 2) a person with a mental
condition is not contractually capable, and 3) a person with a mental
condition is not a platinum customer. We see that B′1 is inconsistent.
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In this section, we assume a company needs to analyze B′1 with
the aim of resolving the inconsistency. Furthermore, we assume the
facts were provided by a new case input and are thus non-negotiable.

To begin, B′1 yields

MI(B′1) = {M1,M2}
M1 = {customer, customer → contractuallyCapable,

mentalCondition,

mentalCondition→ ¬contractuallyCapable}
M2 = {platinumCustomer,mentalCondition,

mentalCondition→ ¬platinumCustomer}

Then we have

Id(B′1) = 1 IMI(B′1) = 2 Ip(B′1) = 6 Ic(B′1) = 1

IRBd (B′1) = 1 IRBMI (B′1) = 2 IRBp (B′1) = 3 IRBc (B′1) = 1

As can be expected, the rule-based versions of the drastic-, the MI-,
and the contension-measure do not differ from their original coun-
terpart, as we do not have any fact contradictions. However, Ip is
highly confusing to modelers in our scenario, as it suggests there
are 6 problematic pieces of information. Correctly—w.r.t. the use-
case—our adapted IRBp counts 3 problematic pieces of information.
Note that the original measures would be even more confusing in our
use-case in the presence of fact contradictions (cf. e. g. the example
in Section 3), and would provide only very limited insights towards
re-modelling and improving business rules. This becomes even more
apparent for inconsistency values:

Assume the company now wants to pin-point elements of the rule
base which are responsible for the overall inconsistency as a basis for
inconsistency resolution.

Part 1 (Inconsistency handling with existing means). We recall
B′1. Then we have that

S
IRB
d
customer(B

′
1) =

1

12
,

S
IRB
d
mentalCondition(B

′
1) =

3

12
+

1

6
,

S
IRB
d
platinumCustomer(B

′
1) =

1

6
,

etc.

(Analogously for IRBMI ). Thus, we have SI
RB
d (B′1) =

( 1
12
, 0.416, 1

6
, 1
12
, 1
12
, 1
6
) and SI

RB
MI (B′1) = ( 1

4
, 0.583, 1

3
, 1
4
, 1
4
, 1
3
).

For both assessments, a recommendation based on the orig-
inal Shapley value would strongly suggest to delete the fact
mentalCondition first. Here, this is not an acceptable recommen-
dation, as one cannot delete the fact that the customer has a mental
condition in our setting. Rather, the rules should be deleted or
modified. However, even if one would skip the first recommendation
based on the original Shapley values, the ranking also does not
further distinguish between the remaining facts and rules of the
individual MI. We see that the recommendation based on the original
Shapley inconsistency value is not plausible and provides very
limited value for companies. We will therefore now consider an
assessment via our proposed means.

Part 2 (Inconsistency handling with the proposed means). Con-
sider again B′1. Then we have that

S ∗I
RB
d
mentalCondition (B′1) = 0,

etc. for all facts. Also, we have that

S ∗I
RB
d
customer→contractuallyCapable (B

′
1) = 0.22

S ∗I
RB
d
mentalCondition→¬contractuallyCapable (B

′
1) = 0.22

S ∗I
RB
d
mentalCondition→¬platinumCustomer (B

′
1) = 0.55

(Analogously for IRBMI ). Thus, we have SI
RB
d (B′1) =

(0, 0, 0, 0.22, 0.22, 0.55) and SI
RB
MI (B′1) =

(0, 0, 0, 0.55, 0.55, 0.88). A recommendation based on a cul-
pability ranking using these adjusted Shapley values proposes to
attend to mentalCondition → ¬platinumCustomer first. This
makes sense in our example, as this is the only rule in the resp. MI,
thus the only option is to delete (or alter) this rule in M2. Then, the
recommendation suggests to attend to the remaining two rules with
an equal value. This also follows our use-case, as an expert has two
possible options in M1.

6 Conclusion
From our discussion, we see that although the field of inconsistency
measurement would be a good candidate for supporting companies, a
straightforward application is not plausible due to the assumption of
non-negotiable facts in the company setting. To this aim, the adapted
means presented in this paper are a first step towards allowing for
a plausible application of inconsistency measurement in the scope
of business rule bases. Future work should also investigate incon-
sistency measurement for knowledge bases partitioned into general
non-negotiable and negotiable parts (regardless of the granularity of
the respective information), for example through a general study of
inconsistency measurement in defeasible logics [15]. Based on re-
cent studies [1, 17, 16, 4, 5], approaches for inconsistency handling
are needed from a business perspective and could thus also be an in-
teresting application domain for future work. We would like to point
out one specific result from the case-study in [17], namely that com-
panies are not only facing the problem of inconsistent rules, but also
the problem of identical (redundant) rules (which could for exam-
ple result from collaborative modeling or a lack of oversight). As
most research in inconsistency measurement is based on sets, apply-
ing these results to multi-sets of (business) rules should be further
examined, cf. also a recent discussion in [3].
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