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Abstract. The field of Inconsistency Measurement is concerned with the devel-
opment of principles and approaches to quantitatively assess the severity of in-
consistency in knowledge bases. In this survey, we give a broad overview on this
field by outlining its basic motivation and discussing some of these core prin-
ciples and approaches. We focus on the work that has been done for classical
propositional logic but also give some pointers to applications on other logical
formalisms.

1 Introduction

Inconsistency is a ubiquitous phenomenon whenever knowledge1 is compiled in some
formal language. The notion of inconsistency refers (usually) to multiple pieces of infor-
mation and represents a conflict between those, i. e., they cannot hold at the same time.
The two statements “It is sunny outside” and “It is not sunny outside” represent incon-
sistent information and in order to draw meaningful conclusions from a knowledge base
containing these statements, this conflict has to be resolved somehow. In applications
such as decision-support systems, a knowledge base is usually compiled by merging the
formalised knowledge of many different experts. It is unavoidable that different experts
contradict each other and that the merged knowledge base becomes inconsistent. The
field of Knowledge Representation and Reasoning (KR) [7] is the subfield of Artifi-
cial Intelligence (AI) that deals with the issues of logical formalisations of information
and the modelling of rational reasoning behaviour, in particular in light of inconsis-
tent or uncertain information. One paradigm to deal with inconsistent information is to
abandon classical inference and define new ways of reasoning. Some examples of such
formalisms are, e. g., paraconsistent logics [6], default logic [34], answer set program-
ming [15], and, more recently, computational models of argumentation [1]. Moreover,
the fields of belief revision [21] and belief merging [10, 28] deal with the particular case
of inconsistencies in dynamic settings.

The field of Inconsistency Measurement—see the seminal work [20] and the recent
book [19]—provides an analytical perspective on the issue of inconsistency. Its aim is
to quantitatively assess the severity of inconsistency in order to both guide automatic
reasoning mechanisms and to help human modellers in identifying issues and compare
different alternative formalisations. Consider the following two knowledge bases K1

1 We use the term knowledge to refer to subjective knowledge or beliefs, i. e., pieces of informa-
tion that may not necessary be true in the real world but are only assumed to be true for the
agent(s) under consideration.
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and K2 formalised in classical propositional logic (see Section 2 for the formal back-
ground) modelling some information about the weather:

K1 = {sunny,¬sunny, hot,¬hot}
K2 = {¬hot, sunny, sunny→ hot, humid}

Both K1 and K2 are classically inconsistent, i. e., there is no interpretation satisfying
any of them. But looking closer into the structure of the knowledge bases one can iden-
tify differences in the severity of the inconsistency. In K1 there are two “obvious” con-
tradictions, i. e., {sunny,¬sunny} and {hot,¬hot} are directly conflicting formulas. In
K2, the conflict is a bit more hidden. Here, three formulas are necessary to produce
a contradiction ({¬hot, sunny, sunny → hot}). Moreover, there is one formula in K2

(humid), which is not participating in any conflict and one could still infer meaningful
information from this by relying on e. g. paraconsistent reasoning techniques [6]. In
conclusion, one should regard K1 as more inconsistent than K2. So a decision-maker
should prefer using K2 instead of K1.

The analysis of the severity of inconsistency in the knowledge bases K1 and K2

above was informal. Formal accounts to the problem of assessing the severity of incon-
sistency are given by inconsistency measures and there have been a lot of proposals of
those in recent years. Up to today, the concept of severity of inconsistency has not been
axiomatised in a satisfactory manner and the series of different inconsistency measures
approach this challenge from different points of view and focus on different aspects on
what constitutes severity. Consider the next two knowledge bases (with abstract propo-
sitions a and b)

K3 = {a,¬a, b} K4 = {a ∨ b,¬a ∨ b, a ∨ ¬b,¬a ∨ ¬b}

Again both K3 and K4 are inconsistent, but which one is more inconsistent than the
other? Our reasoning from above cannot be applied here in the same fashion. The
knowledge base K3 contains an apparent contradiction ({a,¬a}) but also a formula
not participating in the inconsistency ({b}). The knowledge base K4 contains a “hid-
den” conflict as four formulas are necessary to produce a contradiction, but all formulas
ofK4 are participating in this. In this case, it is not clear how to assess the inconsistency
of these knowledge bases and different measures may order these knowledge bases dif-
ferently. More generally speaking, it is not universally agreed upon which so-called
rationality postulates should be satisfied by a reasonable account of inconsistency mea-
surement, see [3, 5, 41] for a discussion. Besides concrete approaches to inconsistency
measurement the community has also proposed a series of those rationality postulates
in order to describe general desirable behaviour and the classification of inconsistency
measures by the postulates they satisfy is still one the most important ways to evaluate
the quality of a measure, even if the set of desirable postulates is not universally ac-
cepted. For example, one of the most popular rationality postulates is monotony which
states that for any K ⊆ K′, the knowledge base K cannot be regarded as more incon-
sistent as K′. The justification for this demand is that inconsistency cannot be resolved
when adding new information but only increased2. While this is usually regarded as a

2 At least in monotonic logics; for a discussion about inconsistency measurement in non-
monotonic logics see [43, 9] and Section 5.3.
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reasonable demand there are also situations where monotony may be seen as counterin-
tuitive, even in monotonic logics. Consider the next two knowledge bases

K5 = {a,¬a} K6 = {a,¬a, b1, . . . , b998}

We have K5 ⊆ K6 and following monotony, K6 should be regarded as least as incon-
sistent as K5. However, when judging the content of the knowledge bases “relatively”,
K5 may seem more inconsistent: K5 contains no useful information and all formulas of
K5 are in conflict with another formula. In K6, however, only 2 out of 1000 formulas
are participating in the contradiction. So it may also be a reasonable point of view to
judge K5 more inconsistent than K6.

In this survey paper, we give a brief overview on formal accounts to inconsistency
measurement. We focus on approaches building on classical propositional logic but also
briefly discuss approaches for other formalisms. A more technical survey of inconsis-
tency measures can be found in [41] and the book [19] captures the recent state-of-the-
art as a whole. An older survey can also be found in [22].

The remainder of this paper is organised as follows. In Section 2 we give some
necessary technical preliminaries. Section 3 introduces the concept of inconsistency
measures formally and discusses rationality postulates. In Section 4 we discuss some
of the most important concrete approaches to inconsistency measurement for classi-
cal propositional logic and in Section 5 we give an overview on approaches for other
formalisms. Section 6 concludes.

2 Preliminaries

Let At be some fixed set of propositions and let L(At) be the corresponding proposi-
tional language constructed using the usual connectives ∧ (conjunction), ∨ (disjunc-
tion),→ (implication), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K be the
set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of propositions
appearing in X .

Semantics for a propositional language is given by interpretations where an inter-
pretation ω on At is a function ω : At → {true, false}. Let Ω(At) denote the set of
all interpretations for At. An interpretation ω satisfies (or is a model of) a proposition
a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction relation |= is
extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ. A
formula or set of formulas X1 entails another formula or set of formulas X2, denoted
by X1 |= X2, if and only if ω |= X1 implies ω |= X2. If there is no ω with ω |= X we
also write X |=⊥ and say that X is inconsistent.
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3 Measuring Inconsistency

Let R∞≥0 be the set of non-negative real values including infinity. The most general form
of an inconsistency measure is as follows.

Definition 2. An inconsistency measure I is any function I : K→ R∞≥0.

The above definition is, of course, under-constrained for the purpose of providing a
quantitative means to measure inconsistency. The intuition we intend to be behind any
concrete approach to inconsistency measure I is that a larger value I(K) for a knowl-
edge base K indicates more severe inconsistency in K than lower values. Moreover, we
wish to reserve the minimal value (0) to indicate the complete absence of inconsistency.
This is captured by the following postulate [23]:

Consistency I(K) = 0 iff K is consistent.

Satisfaction of the consistency postulate is a basic demand for any reasonable inconsis-
tency measure and is satisfied by all known concrete approaches [39, 41]. Beyond the
consistency postulates a series of further postulates has been proposed in the literature
[41]. We only recall the basic ones initially proposed in [23]. In order to state these
postulates we need two further definitions.

Definition 3. A set M ⊆ K is a minimal inconsistent subset of K iff M |=⊥ and there
is no M ′ ( M with M ′ |=⊥. Let MI(K) be the set of all minimal inconsistent subsets
of K.

Definition 4. A formula α ∈ K is called free formula if α /∈
⋃

MI(K). Let Free(K) be
the set of all free formulas of K.

In other words, a minimal inconsistent subset characterises a minimal conflict in a
knowledge base and a free formula is a formula that is not directly participating in
any derivation of a contradiction. Let I be any function I : K→ R∞≥0, K,K′ ∈ K, and
α, β ∈ L(At). The remaining rationality postulates from [23] are:

Normalisation 0 ≤ I(K) ≤ 1.
Monotony If K ⊆ K′ then I(K) ≤ I(K′).
Free-formula independence If α ∈ Free(K) then
I(K) = I(K \ {α}).

Dominance If α 6|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β}).

The postulate normalisation states that the inconsistency value is always in the unit in-
terval, thus allowing inconsistency values to be comparable even if knowledge bases are
of different sizes. Monotony requires that adding formulas to the knowledge base can-
not decrease the inconsistency value. Free-formula independence states that removing
free formulas from the knowledge base should not change the inconsistency value. The
motivation here is that free formulas do not participate in inconsistencies and should
not contribute to having a certain inconsistency value. Dominance says that substituting
a consistent formula α by a weaker formula β should not increase the inconsistency
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value. Here, as β carries less information than α there should be less opportunities for
inconsistencies to occur.

The five postulates from above are independent (no single postulates entails another
one) and compatible (as e. g. the drastic measure Id, see below, satisfies all of them).
However, they do not characterise a single concrete approach but leave ample room
for various different approaches. Moreover, for all rationality postulates (except consis-
tency) there is at least one inconsistency measure in the literature that does not satisfy it
[41] and there is no general agreement on whether these postulates are indeed desirable
at all [3, 5, 41]. We already gave an example why monotony may not be desirable in the
introduction. Here is another example for free-formula independence taken from [3].

Example 1. Consider the knowledge base K7 defined via

K7 = {a ∧ c, b ∧ ¬c,¬a ∨ ¬b}

Notice thatK7 has a single minimal inconsistent subset {a∧ c, b∧¬c} and ¬a∨¬b is a
free formula. If I satisfies free-formula independence we have I(K7) = I(K7 \ {¬a∨
¬b}). However, ¬a ∨ ¬b adds another “conflict” about the the truth of propositions a
and b.

We will continue the discussion on rationality postulates later in Section 6. But first we
will have a look at some concrete approaches.

4 Approaches

There is a wide variety of inconsistency measures in the literature, the work [41] alone
lists 22 measures in 2018 and more have been proposed since then3. In this paper we
consider only a few to illustrate the main concepts.

The measure Id is usually referred to as a baseline for inconsistency measures as it
only distinguishes between consistent and inconsistent knowledge bases.

Definition 5 ([24]). The drastic inconsistency measure Id : K→ R∞≥0 is defined as

Id(K) =
{
1 if K |=⊥
0 otherwise

for K ∈ K.

While not being particularly useful for the purpose of actually differentiating between
inconsistent knowledge bases, the measure Id already satisfies the basic five postulates
from above [24].

In [22] several dimensions for measuring inconsistency have been discussed. A par-
ticular observation from this discussion is that inconsistency measures can be roughly
divided into two categories: syntactic and semantic approaches. While this distinction

3 Implementations of most of these measures can also be found in the Tweety Libraries for Ar-
tificial Intelligence [40] and an online interface is available at http://tweetyproject.
org/w/incmes
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is not clearly defined4 it has been used in following works to classify many inconsis-
tency measures. Using this categorisation, syntactic approaches refer to inconsistency
measures that make use of syntactic objects such as minimal inconsistent sets (or max-
imal consistent sets). On the other other hand, semantic approaches refer to measures
employing non-classical semantics for that purpose. However, there are further mea-
sures which fall into neither (or both) categories. In the following, we will look at some
measures from each of these categories.

4.1 Measures based on minimal inconsistent sets

A minimal inconsistent subset M of a knowledge base K represents the “essence” of
a single conflict in K. Naturally, a simple approach to measure inconsistency is to take
the number of minimal inconsistent subsets as a measure.

Definition 6 ([24]). The MI-inconsistency measure IMI : K → R∞≥0 is defined as
IMI(K) = |MI(K)| for K ∈ K.

The above measure complies with the postulates of consistency, monotony, and free-
formula independence but fails to satisfy dominance and normalisation (although a
normalised variant that suffers from other shortcomings can easily be defined). Table 2
below gives an overview on the compliance of the measures formally considered in this
paper with the basic postulates from above, see [41] for proofs or references to proofs.
The idea behind the MI-inconsistency measure can be refined in several ways, taking
e. g. the sizes of the individual minimal inconsistent sets and how they overlap into
account [25, 26, 13]. One example being the following measure.

Definition 7 ([24]). The MIc-inconsistency measure IMIC : K→ R∞≥0 is defined as

IMIC(K) =
∑

M∈MI(K)

1

|M |

for K ∈ K.

The MIc-inconsistency measure takes also the sizes of the individual minimal inconsis-
tent subsets into account. The intuition here is that larger minimal inconsistent subsets
represent less inconsistency (as the conflict is more “hidden”) and small minimal in-
consistent subsets represent more inconsistency (as it is more “apparent”).

Example 2. Consider again knowledge bases K1 and K2 from before defined via

K1 = {sunny,¬sunny, hot,¬hot}
K2 = {¬hot, sunny, sunny→ hot, humid}

Here we have

IMI(K1) = 2 IMI(K2) = 1

IMIC(K1) = 1 IMIC(K2) = 1/3

4 And in this author’s opinion also a bit mislabelled.
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Observe that, while IMI and IMIC disagree on the exact values of the inconsistency in
K1 and K2 they do agree on their order (K1 is more inconsistent than K2). This is not
generally true, consider

K8 = {a,¬a}
K9 = {a1,¬a1 ∨ b1,¬b1 ∨ c1,¬ ∨ d1,¬d1 ∨ ¬a1,

a2,¬a2 ∨ b2,¬b2 ∨ c2,¬ ∨ d2,¬d2 ∨ ¬a2}

IMI(K8) = 1 IMI(K9) = 2

IMIC(K8) = 1/2 IMIC(K9) = 2/5

where K8 is less inconsistent than K9 according to IMI and the other way around for
IMIC .

4.2 Measures based on non-classical semantics

Measures based on minimal inconsistent subsets provide a formula-centric view on the
matter of inconsistency [22]. If a formula (as a whole) is part of a conflict, it is taken
into account for measuring inconsistency. Another possibility is to focus on propositions
rather than formulas. Consider again the knowledge baseK7 = {a∧c, b∧¬c,¬a∨¬b}
from Example 1 which possesses one minimal inconsistent subset {a∧c, b∧¬c}. How-
ever, it is clear that there is also a conflict involving the propositions a and b, which is
not “detected” by measures based on minimal inconsistent subsets. Thus, another angle
for measuring inconsistency consists in counting how many propositions participate in
the inconsistency. A possible means for doing this is by relying on non-classical se-
mantics. The contension measure [17] makes use of Priest’s logic of paradox, which
has a paraconsistent semantics that we briefly recall now. A three-valued interpretation
υ on At is a function υ : At → {T, F,B} where the values T and F correspond to the
classical true and false, respectively. The additional truth value B stands for both and is
meant to represent a conflicting truth value for a proposition. The function υ is extended
to arbitrary formulas as shown in Table 1. An interpretation υ satisfies a formula α, de-
noted by υ |=3 α if either υ(α) = T or υ(α) = B. Define υ |=3 K for a knowledge
base K accordingly. Now inconsistency can be measured by seeking an interpretation υ
that assigns B to a minimal number of propositions.

Definition 8 ([17]). The contension inconsistency measure Ic : K → R∞≥0 is defined
as

Ic(K) = min{|υ−1(B) ∩ At| | υ |=3 K}

for K ∈ K.

Note that Ic is well-defined as for every knowledge K there is always at least one
interpretation υ satisfying it, e. g., the interpretation that assigns B to all propositions.

A further approach—that is in contrast to Ic still formula-centric—is to make use
of probability logic to define an inconsistency measure [27]. A probability function P
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1. Truth tables for propositional three-valued logic.

on L(At) is a function P : Ω(At) → [0, 1] with
∑
ω∈Ω(At) P (ω) = 1. We extend P to

assign a probability to any formula φ ∈ L(At) by defining

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions.

Definition 9 ([27]). The η-inconsistency measure Iη : K→ R∞≥0 is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

The measure Iη looks for a probability function P that maximises the minimum proba-
bility of all formulas inK. The larger this probability the less inconsistentK is assessed
(if there is a probability function assigning 1 to all formulas then K is obviously con-
sistent).

Example 3. Consider again knowledge bases K1 and K2 from before defined via

K1 = {sunny,¬sunny, hot,¬hot}
K2 = {¬hot, sunny, sunny→ hot, humid}

Here we have

Ic(K1) = 2 Ic(K2) = 1

Iη(K1) = 0.5 Iη(K2) = 1/3

where, in particular, Ic also agrees with IMI (see Example 2). Consider now

K10 = {a,¬a} K11 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}
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where

Ic(K1) = 1 Ic(K2) = 3

Iη(K1) = 0.5 Iη(K2) = 0.5

IMI(K1) = 1 Ic(K2) = 1

So Ic looks inside formulas to determine the severity of inconsistency.

While Ic makes use of paraconsistent logic and Iη of probability logic other logics can
be used for that purpose as well. In [38] a general framework is established that allows
to plugin any many-valued logic (such as fuzzy logic) to define inconsistency measures.

4.3 Further measures

There are further ways to define inconsistency measures that do not fall strictly in one
of the two paradigms above. We have a look at some now.

A simple approach to obtain a more proposition-centric measure (as Ic) while still
relying on minimal inconsistent sets is the following measure.

Definition 10 ([44]). The mv inconsistency measure Imv : K→ R∞≥0 is defined as

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

for K ∈ K.

In other words, Imv(K) is the ratio of the number of propositions that appear in at least
one minimal inconsistent set and the number of all propositions.

Another approach that makes no use of either minimal inconsistent sets or non-
classical semantics is the following one. A subset H ⊆ Ω(At) is called a hitting set of
K if for every φ ∈ K there is ω ∈ H with ω |= φ.

Definition 11 ([37]). The hitting-set inconsistency measure Ihs : K→ R∞≥0 is defined
as

Ihs(K) = min{|H| | H is a hitting set of K} − 1

for K ∈ K with min ∅ =∞.

So Ihs seeks a minimal number of (classical) interpretations such that for each formula
there is at least one model in this set.

Example 4. Consider again knowledge bases K1 and K2 from before defined via

K1 = {sunny,¬sunny, hot,¬hot}
K2 = {¬hot, sunny, sunny→ hot, humid}

Here we have

Imv(K1) = 1 Imv(K2) = 2/3

Ihs(K1) = 1 Ihs(K2) = 1
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I CO NO MO IN DO
Id 3 3 3 3 3

IMI 3 7 3 3 7

IMIC 3 7 3 3 7

Ic 3 7 3 3 3

Iη 3 3 3 3 3

Imv 3 3 7 7 7

Ihs 3 7 3 3 3

Table 2. Compliance of inconsistency measures with rationality postulates consistency (CO),
normalisation (NO), monotony (MO), free-formula independence (IN), and dominance (DO)

Moreover, Grant and Hunter [18] define new families of inconsistency measures
based on distances of classical interpretations to being models of a knowledge base.
Besnard [4] counts how many propositions have to be forgotten—i. e. removed from
the underlying signature of the knowledge base—to turn an inconsistent knowledge
base into a consistent one.

5 Beyond Propositional Logic

While most work in the field of inconsistency measurement is concerned with using
propositional logic as the knowledge representation formalism, there are some few
works, which consider measuring inconsistency in other logics. We will have a brief
overview on some of these works now, see [19] for some others.

5.1 First-order and description logic

In [16], first-order logic is considered as the base logic. Allowing for objects and quan-
tification brings new challenges to measuring inconsistency as one should distinguish
in a more fine-grained manner how much certain formulas contribute to inconsistency.
For example, a formula ∀X : bird(X) → flies(X)—which models that all birds
fly—is probably the culprit of some inconsistency in any knowledge base. However,
depending on how many objects actually satisfy/violate the implication, the severity of
the inconsistency of the overall knowledge base may differ (compare having a knowl-
edge base with 10 flying birds and 1 non-flying bird to a knowledge base with 1000
flying birds and 1 non-flying bird). [16] address this challenge by proposing some new
inconsistency measures for first-order logic.

There are also several works—see e. g. [45, 29]—that deal with measuring incon-
sistency in ontologies formalised in certain description logics.

5.2 Probabilistic logic

In probabilistic logic, classical propositional formulas are augmented by probabilities
yielding statements such as (sunny ∧ humid)[0.7] meaning “it will be sunny and hu-
mid with probability 0.7”. Semantics are given to such a logic by means of probability
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distributions over sets of propositions. Inconsistencies in modelling with such a logic
can appear, in particular, when “the numbers do not add up”. In addition to the previous
formula consider (humid)[0.5] which states that “it will be humid with probability 0.5”.
Both formulas together are inconsistent as it cannot be the case the the probability of
being humid is at least 0.7 (which is implied by the first formula) and 0.5 at the same
time. Measures for probabilistic logic, see the recent survey [12], focus on measuring
distances of the probabilities of the formulas to a consistent state or propose weaker
notions of satisfying probability distributions and measure distances between those and
classical probability distributions.

5.3 Non-monotonic logics

In non-monotonic logics, inconsistency in a knowledge base may be resolved by adding
formulas. Consider e. g. the following rules in answer set programming [8]: {b ←
,¬b ← not a}. Informally, these rules state that b is the case and that if a is not the
case, ¬b is the case. The negation “not” is a negation-as-failure and the whole program
is inconsistent as both b and ¬b can be derived. However, adding the rule a ← stating
that a is the case, makes the program consistent again as the second rule is not applica-
ble any more. An implication of this observation is that consistent programs may have
inconsistent subsets, which make the application of classical measures based on mini-
mal inconsistent sets useless. In [9] a stronger notion for minimal inconsistent sets for
non-monotonic logics is proposed that is used for inconsistency measurement in [43],
and, in particular, for answer set programming in [42].

6 Summary and Discussion

In this paper we gave a brief overview on the field of inconsistency measurement. We
motivated the field, discussed several rationality postulates for concrete measures, and
surveyed some of its basic approaches. We also gave a short overview on approaches
that use formalisms other than propositional logic as the base knowledge representation
formalism.

Inconsistency measures can be used to compare different formalisations of knowl-
edge, to help debug flawed knowledge bases, and guide automatic repair methods. For
example, inconsistency measures have been used to estimate reliability of agents in
multi-agent systems [11], to allow for inconsistency-tolerant reasoning in probabilistic
logic [33], or to monitor and maintain quality in database settings [14].

Inconsistency measurement is a problem that is not easily defined in a formal man-
ner. Many approaches have been proposed, in particular in recent years, each taking a
different perspective on this issue. We discussed rationality postulates as a means to
prescribe general desirable behaviour of an inconsistency measure and there have also
been a lot of proposals in the recent past, [41] lists an additional 13 compared to the five
postulates we discussed here. Many of them are mutually exclusive, describe orthogo-
nal requirements, and are not generally accepted in the community. Besides rationality
postulates, other dimensions for comparing inconsistency measures are their expressiv-
ity and their computational complexity. Expressivity [36, 41] refers to the capability of
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an inconsistency to differentiate between many inconsistent knowledge base. For exam-
ple, the drastic inconsistency measure—which assigns 1 to every inconsistent knowl-
edge base—has minimal expressivity as it can only differentiate between consistency
and inconsistency. On the other hand, the contension measure Ic can differentiate up to
n+1 different states of inconsistency, where n is the number of propositions appearing
in the signature. As for computational complexity, it is clear that all problems related
to inconsistency measurement are coNP-hard, as the identification of unsatisfiability is
always part of the definition. In fact, the decision problem of deciding whether a certain
value is a lower bound for the actual inconsistency value of a given inconsistency mea-
sure, is coNP-complete for many measures such as Ic [35, 41]. However, the problem
is harder for other measures, e. g., the same problem for Imv is already Σp

2 -complete
[44].

This paper points to a series of open research questions that may be interesting to
pursue. For example, the discussion on the “right” set of postulates is not over. What
is needed is a characterising definition of an inconsistency measure using few postu-
lates, as the entropy is characterised by few simple properties as an information mea-
sure. However, we are currently far away from a complete understanding of what an
inconsistency measure constitutes. Moreover, the algorithmic study of inconsistency
measurement has (almost) not been investigated at all. Although straightforward pro-
totype implementations of most measures are available5, those implementations do not
necessarily optimise runtime performance. Only a few papers [30–32, 37, 2] have ad-
dressed this challenge previously, mainly by developing approximation algorithms. Be-
sides more work on approximation algorithms, another venue for future work is also
to develop algorithms that work effectively on certain language fragments—such as
certain description logics—and thus may work well in practical applications.
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