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Abstract. We apply a selection of 19 inconsistency measures from the literature
on artificially generated knowledge bases and study the distribution of their val-
ues and their pairwise correlation. This study augments previous analytical evalu-
ations on the expressivity and the pairwise incompatibility of these measures and
our findings show that 1.) many measures assign only few distinct values to many
different knowledge bases, and 2.) many measures, although founded on different
theoretical concepts, correlate significantly.

1 Introduction

An inconsistency measure I is a function that assigns to a knowledge base K (usually
assumed to be formalised in propositional logic) a non-negative real value I(K) such
that I(K) = 0 iff K is consistent and larger values of I(K) indicate “larger” incon-
sistency in K [5, 3, 12]. Thus, each inconsistency measure I formalises a notion of a
degree of inconsistency and a lot of different concrete approaches have been proposed
so far, see [11, 13, 12] for some surveys. The quest for the “right” way to measure in-
consistency is still ongoing and many (usually controversial) rationality postulates to
describe the desirable behaviour of an inconsistency measure have been proposed so
far [2, 12].

Our study aims at providing a new perspective on the analysis of existing approaches
to inconsistency measurement by experimentally analysing the behaviour of inconsis-
tency measures. More precisely, our study provides a quantitative analysis of two as-
pects of inconsistency measures:

A1 the distribution of inconsistency values on actual knowledge bases, and
A2 the correlation of different inconsistency measures.

Regarding the first item, [11] investigated the theoretical expressivity of inconsistency
measures, i. e., the number of different inconsistency values a measure attains when
some dimension of the knowledge base is bounded (such as the number of formulas
or the size of the signature). One result in [11] is that e. g. the measure IΣdalal (see Sec-
tion 3) has maximal expressivity and the number of different inconsistency values is
not bounded if only one of these two dimensions is bounded. However, [11] does not
investigate the distribution of inconsistency values. It may be the case that, although a
measure can attain many different values, most inconsistent knowledge bases are clus-
tered on very few inconsistency values. Regarding the second item, previous works
have shown—see [12] for an overview—that all inconsistency measures developed so
far are “essentially” different. More precisely, for each pair of measures one can find a
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property that is satisfied by one measure but not by the other. Moreover, for each pair
of inconsistency measures one can find knowledge bases that are ordered different wrt.
their inconsistency. However, until now it has not been investigated how “significant”
the difference between measures actually is. It may be the case that two measures order
all but just a very few knowledge bases differently (or the other way around). In order to
analyse these two aspects we applied 19 different inconsistency measures from the lit-
erature on artificially generated knowledge bases and performed a statistical analysis on
the results. After a brief review of necessary preliminaries in Section 2 and the consid-
ered inconsistency measures in Section 3, we provide some details on our experiments
and our findings in Section 4 and conclude in Section 5.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of proposi-
tions, and let L(At) be the corresponding propositional language constructed using the
usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K be the
set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of propositions
appearing in X . Semantics to a propositional language is given by interpretations and
an interpretation ω on At is a function ω : At → {true, false}. Let Ω(At) denote the
set of all interpretations for At. An interpretation ω satisfies (or is a model of) an atom
a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction relation |= is
extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ. Define
furthermore the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula
or set of formulas X . By abusing notation, a formula or set of formulas X1 entails
another formula or set of formulasX2, denoted byX1 |= X2, if Mod(X1) ⊆ Mod(X2).
Two formulas or sets of formulas X1, X2 are equivalent, denoted by X1 ≡ X2, if
Mod(X1) = Mod(X2). If Mod(X) = ∅ we also write X |=⊥ and say that X is
inconsistent.

3 Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including ∞. Inconsistency measures
are functions I : K → R∞≥0 that aim at assessing the severity of the inconsistency in
a knowledge base K. The basic idea is that the larger the inconsistency in K the larger
the value I(K). We refer to [11, 13, 12] for surveys.

The formal definitions of the considered inconsistency measures can be found in
Figure 1 while the necessary notation for understanding these measures follows below.
Please see the above-mentioned surveys and the original papers referenced therein for
explanations and examples.

A set M ⊆ K is called minimal inconsistent subset (MI) of K if M |=⊥ and there
is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MIs of K. Let furthermore
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Id(K) =

{
1 ifK |=⊥
0 otherwise

IMI(K) = |MI(K)|

I
MIC

(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1
(B)| | υ |=3 K}

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H ⊆ Ω(At), ∀φ ∈ K∃ω ∈ H : ω |= φ} − 1

IΣdalal(K) = min{
∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal (K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

IDf (K) = 1−Π|K|i=1(1− Ri(K)/i)

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}
Imcsc(K) = |K| − λ(C)
ICSP(K) = max{W(P) | P ∈ PMI(K)}

Iforget(K) = min{k | (
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥,

φj ∈ {⊥,>}}
ICC(K) = max{n | {K1, . . . , Kn} is a CI partition ofK}
Iis(K) = log |{M ⊆ MI(K) |M is pairwise disjoint}|

Fig. 1. Definitions of the considered measures

MC(K) be the set of maximal consistent subsets of K, i. e., MC(K) = {K′ ⊆ K |
K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}, and let SC(K) be the set of self-contradictory formulas
of K, i. e., SC(K) = {φ ∈ K | φ |=⊥}.

A probability function P is of the form P : Ω(At)→ [0, 1] with
∑
ω∈Ω(At) P (ω) =

1. Let P(At) be the set of all those probability functions and for a given probabil-
ity function P ∈ P(At) define the probability of an arbitrary formula φ via P (φ) =∑
ω|=φ P (ω).
A three-valued interpretation υ on At is a function υ : At → {T, F,B} where the

values T and F correspond to the classical true and false, respectively. The additional
truth value B stands for both and is meant to represent a conflicting truth value for a
proposition. Taking into account the truth order ≺ defined via T ≺ B ≺ F , an inter-
pretation υ is extended to arbitrary formulas via υ(φ1 ∧ φ2) = min≺(υ(φ1), υ(φ2)),
υ(φ1 ∨ φ2) = max≺(υ(φ1), υ(φ2)), and υ(¬T ) = F , υ(¬F ) = T , υ(¬B) = B.
An interpretation υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T or
υ(α) = B.
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The Dalal distance dd is a distance function for interpretations in Ω(At) and is
defined as d(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}| for all ω, ω′ ∈ Ω(At). If X ⊆ Ω(At)
is a set of interpretations we define dd(X,ω) = minω′∈X dd(ω

′, ω) (ifX = ∅we define
dd(X,ω) = ∞). We consider the inconsistency measures IΣdalal, Imax

dalal , and Ihit
dalal from

[4] but only for the Dalal distance. Note that in [4] these measures were considered for
arbitrary distances and that we use a slightly different but equivalent definition of these
measures.

For every knowledge base K, i = 1, . . . , |K| define MI(i)(K) = {M ∈ MI(K) |
|M | = i} and CN(i)(K) = {C ⊆ K | |C| = i ∧ C 6|=⊥}. Furthermore define Ri(K) =
0 if |MI(i)(K)| + |CN(i)(K)| = 0 and otherwise Ri(K) = |MI(i)(K)|/(|MI(i)(K)| +
|CN(i)(K)|). Note that the definition of IDf in Table 1 is only one instance of the family
studied in [9], other variants can be obtained by different ways of aggregating the values
Ri(K).

A set of maximal consistent subsets C ⊆ MC(K) is called an MC-cover [1] if⋃
C∈C C = K. An MC-cover C is normal if no proper subset of C is an MC-cover.

A normal MC-cover is maximal if λ(C) = |
⋂
C∈C C| is maximal for all normal MC-

covers.
For a formula φ let φ[a1, i1 → ψ1; . . . , ak, ik → ψk] denote the formula φ where

the ij th occurrence of the proposition aj is replaced by the formula ψj , for all j =
1, . . . , k.

A set {K1, . . . ,Kn} of pairwise disjoint subsets of K is called a conditional inde-
pendent MUS (CI) partition ofK [6], iff eachKi is inconsistent and MI(K1∪ . . .∪Kn)
is the disjoint union of all MI(Ki).

An ordered set P = {P1, . . . , Pn} with Pi ⊆ MI(K) for i = 1, . . . , n is called
an ordered CSP-partition [7] of MI(K) if 1.) MI(K) is the disjoint union of all Pi
for i = 1, . . . , n, 2.) each Pi is a conditional independent MUS partition of K for
i = 1, . . . , n, and 3.) |Pi| ≥ |Pi+1| for i = 1, . . . , n− 1. For such P define furthermore
W(P) =

∑n
i=1 |Pi|/i.

4 Experiments

In the following, we give some details on our experiments, the evaluation methodology,
and our findings.

4.1 Knowledge base generation

Due to the lack of a dataset of real-world knowledge bases with a significantly rich pro-
file of inconsistencies, we used artificially generated knowledge bases. In order to avoid
biasing our study on random instances of a specific probabilistic model for knowledge
base generation, we developed an algorithm that enumerates all syntactically differ-
ent knowledge bases with increasing size and considered the first 188900 bases gen-
erated this way. For example, the first five knowledge bases generated this way are
∅, {x1}, {¬x1}, {¬¬x1}, {x1, x2} and, e. g., number 72793 is {x1, x2,¬x2,¬(¬x2 ∧
¬¬x2)}. From the 188900 generated knowledge bases, 127814 are consistent and 61086
are inconsistent. For the remainder of this paper, let K̂ denote the set of all 188900
knowledge bases and let K̂⊥ ⊆ K̂ be only the inconsistent ones.
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The implementation1 for this algorithm is available in the Tweety project2 [10].
The generated knowledge bases and their inconsistency values wrt. each of considered
inconsistency measures are available online3.

4.2 Evaluation measures

In order to evaluate A1, we apply the entropy on the distribution of inconsistency values
of each measure. For K ⊆ K let I(K) = {I(K) | K ∈ K} denote the image of K wrt.
I.

Definition 2. Let K be a set of knowledge bases and I be an inconsistency measure.
The entropy HK(I) of I wrt. K is defined via

HK(I) = −
∑

x∈I(K)

|I−1(x)|
|K|

ln
|I−1(x)|
|K|

where lnx denotes the natural logarithm with 0 ln 0 = 0.

For example, if a measure I∗ assigns to a set K∗ of 10 knowledge bases 5 times the
value X , 3 times the value Y , and 2 times the value Z, we have

HK∗(I∗) = −
5

10
ln

5

10
− 3

10
ln

3

10
− 2

10
ln

2

10
≈ 1.03

The interpretation behind the entropy here is that a larger valueHK(I) indicates a more
uniform distribution of the inconsistency values on elements of K, a value HK(I) = 0
indicates that all elements are assigned the same inconsistency value. Thus, the larger
HK(I) the “more use” the measure makes of its available inconsistency values.

In order to evaluate A2, we use a specific notion of a correlation coefficient. For
two measures I1 and I2 and two knowledge basesK1 andK2 we say that I1 and I2 are
order-compatible wrt. K1 and K2, denoted by I1 ∼K1,K2

I2 iff

I1(K1) > I1(K2) ∧ I2(K1) > I2(K2)

or I1(K1) < I1(K2) ∧ I2(K1) < I2(K2)

or I1(K1) = I1(K2) ∧ I2(K1) = I2(K2)

Let ‖A‖ be the indicator function, which is defined as ‖A‖ = 1 iff A is true and
‖A‖ = 0 otherwise.

Definition 3. Let K be a set of knowledge bases and I1, I2 be two inconsistency mea-
sures. The correlation coefficient CK(I1, I2) of I1 and I2 wrt. K is defined via

CK(I1, I2) =
∑
K,K′∈K,K6=K′ ‖I1 ∼K,K′ I2‖

|K|(|K| − 1)

In other words, CK(I1, I2) gives the ratio of how much I1 and I2 agree on the incon-
sistency order of any pair of knowledge bases from K.4 Observe that CK(I1, I2) =
CK(I2, I1).

1 http://mthimm.de/r/?r=tweety-ckb
2 http://tweetyproject.org
3 http://mthimm.de/misc/exim_mt.zip
4 Note that CK is equivalent to the Kendall’s tau coefficient [8] but scaled onto [0, 1].
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Id ICC Ihit
dalal Ic Imc Iforget IMI Iis Imax

dalal ICSP
H
K̂⊥ (I) 0 0.08 0.09 0.12 0.13 0.18 0.24 0.28 0.29 0.29

Ihs Iη IΣdalal I
MIC

Imv Imcsc Ip Inc IDf
H
K̂⊥ (I) 0.29 0.33 0.36 0.37 0.45 0.48 0.51 0.52 0.78

Table 1. Entropy values of the investigated measures wrt. K̂⊥ (rounded to two decimals and
sorted by increasing entropy).

Id IMI IMIC
Iη Ic Imc Ip Ihs IΣdalal I

max
dalal I

hit
dalal IDf Imv Inc Imcsc ICSP Iforget ICC Iis

Id 1 0.69 0.44 0.5 0.86 0.87 0.35 0.52 0.47 0.52 0.9 0.22 0.48 0.33 0.37 0.68 0.76 0.92 0.67
IMI 1 0.54 0.37 0.72 0.74 0.65 0.38 0.41 0.38 0.76 0.28 0.41 0.47 0.52 0.99 0.7 0.75 0.99
I
MIC

1 0.72 0.47 0.51 0.53 0.7 0.73 0.7 0.52 0.49 0.41 0.43 0.84 0.55 0.51 0.5 0.55
Iη 1 0.47 0.48 0.36 0.98 0.93 0.98 0.49 0.53 0.39 0.33 0.84 0.37 0.48 0.5 0.37
Ic 1 0.85 0.4 0.49 0.53 0.49 0.88 0.25 0.45 0.38 0.42 0.72 0.88 0.87 0.72
Imc 1 0.45 0.48 0.48 0.48 0.95 0.26 0.45 0.39 0.39 0.75 0.8 0.94 0.75
Ip 1 0.36 0.39 0.36 0.43 0.25 0.32 0.43 0.5 0.64 0.42 0.41 0.64
Ihs 1 0.95 0.99 0.51 0.52 0.4 0.32 0.85 0.38 0.5 0.52 0.38
IΣdalal 1 0.95 0.51 0.53 0.4 0.34 0.89 0.42 0.54 0.5 0.42
Imax

dalal 1 0.5 0.52 0.4 0.32 0.85 0.38 0.5 0.52 0.38
Ihit

dalal 1 0.26 0.46 0.4 0.41 0.77 0.85 0.98 0.77
IDf 1 0.53 0.19 0.56 0.29 0.29 0.26 0.29
Imv 1 0.25 0.39 0.41 0.43 0.46 0.41
Inc 1 0.39 0.47 0.4 0.39 0.47
Imcsc 1 0.53 0.44 0.4 0.53
ICSP 1 0.71 0.76 0.99
Iforget 1 0.82 0.71
ICC 1 0.76
Iis 1

Table 2. Correlation coefficients CK̂⊥(·, ·) of the investigated measures wrt. K̂⊥ (rounded to
two decimals).

4.3 Results

Tables 1 and 2 show the results of analysing the considered measures on K̂⊥ wrt. the
two evaluation measures from before5.

Regarding A1, it can be seen that Id has minimal entropy (by definition). However,
also measures Ihit

dalal and ICC and to some extent most of the other measures are quite
indifferent in assigning their values. For example, out of 61086 inconsistent knowledge
bases, ICC assigns to 58523 of them the same value 1. On the other hand, measure IDf
has maximal entropy among the considered measures.

Regarding A2, we can observe some surprising correlations between measures, even
those which are based on different concepts. For example, we have CK̂⊥(Imax

dalal , Ihs) ≈
0.99 indicating a high correlation between Imax

dalal and Ihs although Imax
dalal is defined using

distances and Ihs is defined using hitting sets. Equally high correlations can be observed
between the three measures IMI, ICSP, and Iis. Further high correlations (e. g. above 0.8)
can be observed between many other measures. On the other hand, the measure IDf has
(on average) the smallest correlation to all other measures, backing up the observation
from before.

5 We only considered the inconsistent knowledge bases from K̂ as all measures assign degree 0
to the consistent ones anyway.
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5 Conclusion

Our experimental analysis showed that many existing measures have low entropy on
the distribution of inconsistency values and correlate significantly in their ranking of
inconsistent knowledge bases. A web application for trying out all the discussed incon-
sistency measures can be found on the website of TWEETYPROJECT6, cf. [10]. Most
of these measures have been implemented using naive algorithms and research on the
algorithmic issues of inconsistency measure is still desirable future work, see also [13].

Acknowledgements: The research reported here was partially supported by the Deutsche
Forschungsgemeinschaft (grant DE 1983/9-1).
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