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Abstract

We survey a selection of inconsistency measures from the literature and in-
vestigate their computational complexity wrt. decision problems related to
bounds on the inconsistency value and the functional problem of determin-
ing the actual value. Our findings show that those inconsistency measures
can be partitioned into four classes related to their complexity. The first
three classes contain measures whose complexities are located on the first
three levels of the polynomial hierarchy, respectively. The final class is under
standard complexity-theoretic assumptions located beyond the polynomial
hierarchy. We provide membership results for all the investigated problems
and completeness results for most of them. In addition, we undertake a
preliminary study on the computational complexity of the measures on frag-
ments of propositional logic.
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1. Introduction

The field of inconsistency measurement is about devising measures for
quantitatively assessing the severity of inconsistencies in knowledge bases.
Consider the following two knowledge bases K1 and K2 formalised in propo-
sitional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent, i. e., there is no classical
interpretation satisfying any of the two knowledge bases. In particular, in
K1 the formula a suggests that a has to hold while ¬a∧¬b suggests that ¬a
has to hold, while in K2 the contradiction is even more apparent by consid-
ering either the subset {a,¬a} or {b,¬b}. These inconsistencies render the
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knowledge bases useless for reasoning if one wants to use classical reasoning
techniques. In order to make the knowledge bases useful again, one can ei-
ther rely on non-monotonic/paraconsistent reasoning techniques (Makinson,
2005; Priest, 1979) or one revises the knowledge bases appropriately to make
them consistent (Hansson, 2001). Looking at the knowledge bases K1 and K2

one can observe that the severity of their inconsistency is different. In K1,
only two out of four formulas (a and ¬a ∧ ¬b) are “participating” in mak-
ing K1 inconsistent while for K2 all formulas contribute to its inconsistency.
Furthermore, for K1 only two propositions (a and b) are conflicting and us-
ing e. g. paraconsistent reasoning one could still infer meaningful statements
about c and d. For K2 no such statement can be made. This leads to the
assessment that K2 should be regarded more inconsistent than K1.

Inconsistency measures, firstly mentioned in (Grant, 1978), can be used
to analyse inconsistencies and to provide insights on how to repair them.
An inconsistency measure I is a function on knowledge bases, such that
the larger the value I(K) the more severe the inconsistency in K. A lot of
different approaches of inconsistency measures have been proposed, mostly
for classical propositional logic (Hunter and Konieczny, 2004, 2008, 2010; Ma
et al., 2010; Mu et al., 2011; Xiao and Ma, 2012; Grant and Hunter, 2011;
Ma et al., 2012; Grant and Hunter, 2013; McAreavey et al., 2014; Jabbour
et al., 2015, 2014b; Raddaoui, 2015; Besnard, 2016; Thimm, 2016b; Jabbour
and Sais, 2016; Jabbour, 2016; Ammoura et al., 2015, 2017), but also for
classical first-order logic (Grant and Hunter, 2008), description logics (Ma
et al., 2007; Zhou et al., 2009), default logics (Doder et al., 2010), answer set
programming (Ulbricht et al., 2016) probabilistic and other weighted logics
(Thimm, 2013; Potyka, 2014; De Bona and Finger, 2015), and relational
databases (Decker, 2011), see also (Thimm, 2017b, 2018) for some recent
surveys.

As the magnitude and diversity of these different measures show, the
problem of conceptualizing a quantitative notion of inconsistency is not a
trivial one. A common approach to categorize inconsistency measures is by
differentiating whether they operate on the formula level or on the language
level. The former category is also called the syntactic approach while the lat-
ter is called the semantic approach (Hunter and Konieczny, 2004). Measures
belonging to the syntactic approach usually make use of minimal inconsistent
subsets, i. e., subsets of the knowledge base that are inconsistent but removing
any formula renders them consistent. A simple approach for measuring in-
consistency is then to simply take the number of minimal inconsistent subsets
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of a knowledge base as the value of inconsistency, cf. (Hunter and Konieczny,
2008). More recent measures also take the relationships between minimal in-
consistent subsets into account (Jabbour and Sais, 2016). Other measures
belonging to the syntactic approach may exploit other notions such as max-
imal consistent subsets (Ammoura et al., 2015, 2017) but the commonality
of these approaches is that they focus on conflicts between formulas of the
knowledge base. On the other hand, measures belonging to the semantic
approach focus on conflicts between language components. More precisely,
these measures aim at identifying those atoms of the underlying language
that are conflicting and they usually employ non-classical and many-valued
logics as a tool for that (Thimm, 2017a).

In this paper, we address the computational complexity of inconsistency
measurement by investigating a selection of 17 inconsistency measures for
propositional logic from the literature mentioned above. Inconsistency mea-
surement is, by definition, a computationally intractable problem as it goes
beyond merely detecting inconsistency (which is itself a coNP-complete prob-
lem for propositional logic). However, no systematic investigation of the
complexity of inconsistency measures—and a comparison of measures wrt.
it—has been conducted so far. The only complexity analyses on inconsistency
measures we are aware of were presented in (Ma et al., 2010) and (Xiao and
Ma, 2012) and each focused on a particular inconsistency measure. In (Ma
et al., 2010) the complexity of a variant of the contension inconsistency mea-
sure Ic (Grant and Hunter, 2011) and in (Xiao and Ma, 2012) the complex-
ity of the measure Imv from (Xiao and Ma, 2012) themselves is investigated
(we will recall the formal definitions of these measures in Section 3 and the
corresponding results in Section 4, respectively). Recently, the algorithmic
challenges in computing inconsistency measures have gained some attention
(Ma et al., 2010; McAreavey et al., 2014; Jabbour et al., 2014a, 2016; Thimm,
2016b) and therefore calls for a theoretical investigation on the complexity
of the involved computational problems. This paper continues our previ-
ous work (Thimm and Wallner, 2016) and provides a detailed analysis on
the computational complexity of 17 measures wrt. three decision problems,
namely deciding whether a given value is an upper, resp. lower bound, or is
the exact value, as well as the functional problem of determining the inconsis-
tency value. We mainly focus on the decision problems of deciding whether
a given value is an upper, or resp. a lower bound, since, as we will see, the
complexity classification of these decision problems gives crucial insights into
the computational complexity of the inconsistency measure at hand. In ad-
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dition, we also consider the Horn and Krom fragments of propositional logic
and investigate whether measuring inconsistency becomes tractable in these
fragments.

The main contributions of this paper are as follows.

• We show that the complexity of the decision problems of the incon-
sistency measures Id, Iη, Ic, Ihs, IΣ

dalal, Imax
dalal, Ihit

dalal, Imcsc, and Iforget

is located on the first level of the polynomial hierarchy. These results
imply that one can compute the exact value with logarithmically many
calls to an NP-oracle. This in particular suggests the applicability of
maximum satisfiability solvers (Ansótegui et al., 2013; Morgado et al.,
2013) and similar systems for computing these measures.

• We establish completeness for a class in the second level of the poly-
nomial hierarchy for measures Ip, Imv, and Inc. Thus, these measures
can be computed with logarithmically many calls to a Σp

2 oracle. Sys-
tems capable of dealing with such high complexity are, e. g., answer-set
programming solvers (Brewka et al., 2011).

• We show membership of the measure ICC for the third level of the
polynomial hierarchy. Although a completeness proof is still missing,
this results suggests high intractability for ICC .

• We prove that the problems for measures IMI, IMIC , Imc, and Iis are
hard for complexity classes related to counting. Under complexity theo-
retic assumptions, our results imply that (i) problems under these mea-
sures are computationally more challenging than propositional model
counting, a problem itself seen as highly intractable and important (Gomes
et al., 2009), and (ii) that decision problems associated with these
measures presumably are not contained in a class of the polynomial
hierarchy. Algorithms for computing several of these problems can be
built upon systems for enumerating minimal unsatisfiable sets such as
(Marques-Silva, 2012; McAreavey et al., 2014; Liffiton et al., 2016).

• We show that when considering the Horn or Krom fragment of propo-
sitional logic, measuring inconsistency wrt. the measures Id, Ihs, and
Imax

dalal becomes tractable. On the other hand, measuring inconsistency
wrt. measures IΣ

dalal, Ihit
dalal, and Iforget remains intractable.
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Before we give the details of our technical contributions in Section 4, we
first provide some necessary preliminaries in Section 2 and introduce the
inconsistency measures used in our analysis in Section 3. We conclude with
a review of related work in Section 6 and a discussion in Section 7.

This paper extends the conference paper (Thimm and Wallner, 2016) by
including all proofs of technical results, fixing some minor errors, providing
many completeness results missing before, the analysis of four new measures
Imcsc, Iforget, ICC , and Iis, and the preliminary investigation of tractable
fragments. For details compare Table 1 in (Thimm and Wallner, 2016) with
Table 2 of this paper. Proofs of technical results that are not in the main
body of the paper can be found in Appendix A.

2. Preliminaries

In the following, we introduce some necessary preliminaries on proposi-
tional logic and computational complexity.

2.1. Propositional Logic

Let At be some fixed propositional signature, i. e., a (possibly infinite) set
of propositions, and let L(At) be the corresponding propositional language
constructed using the usual connectives ∧ (conjunction), ∨ (disjunction), →
(implication), and ¬ (negation). A literal is a proposition p or a negated
proposition ¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At).
Let K be the set of all knowledge bases.

A clause is a disjunction of literals. A formula is in conjunctive normal
form (CNF) if the formula is a conjunction of clauses. If X is a formula or
a set of formulas we write At(X) to denote the set of propositions appearing
in X. The complement of a formula is denoted by overlining, i. e., φ = ¬φ if
φ is not negated and ¬φ = φ.

Semantics to a propositional language is given by interpretations and an
interpretation ω on At is a function ω : At→ {true, false}. Let Ω(At) denote
the set of all interpretations for At. An interpretation ω satisfies (or is a
model of) an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The
satisfaction relation |= is extended to formulas in the usual way.

As an abbreviation we sometimes identify an interpretation ω with its
complete conjunction, i. e., if a1, . . . , an ∈ At are those propositions that
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are assigned true by ω and an+1, . . . , am ∈ At are those propositions that are
assigned false by ω we identify ω by a1 . . . anan+1 . . . am (or any permutation of
this). For example, the interpretation ω1 on {a, b, c} with ω(a) = ω(c) = true
and ω(b) = false is abbreviated by abc.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define furthermore the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for
every formula or set of formulas X. If Mod(X) = ∅ we also write X |=⊥ and
say that X is inconsistent.

We also make use of the notation φ[ω] for a formula φ and a (partial)
interpretation ω, which denotes the uniform replacement of each proposition
x ∈ dom ω by > if ω(x) = true and by ⊥ if ω(x) = false.1 If ω is partial, i. e.
defined on a subset of variables in φ, this results in a formula with reduced
vocabulary.

We recall some basic notions for inconsistency measurement that are used
for many different measures. A set M ⊆ K is called a minimal inconsistent
subset (MI) of K if M |=⊥ and there is no M ′ ⊂M with M ′ |=⊥. Let MI(K)
be the set of all MIs of K. Let MC(K) be the set of maximal consistent
subsets of K, i. e.

MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}

Furthermore, let SC(K) be the set of self-contradictory formulas of K, i. e.

SC(K) = {φ ∈ K | φ |=⊥}

2.2. Computational Complexity

We assume familiarity with the notions of decision problems, functional
problems, polynomial reductions, hardness, completeness, and the complexity
classes P, NP, and coNP, see also (Papadimitriou, 1994). In particular, recall
that NP is the class of decision problems where the positive instances—
i. e. those instances where the correct answer is true—can be accepted in
polynomial time by a non-deterministic Turing machine (or, equivalently,
a non-deterministic algorithm running in polynomial time). The canonical
NP-complete problem is the satisfiability problem SAT defined as

SAT Input: a formula φ in CNF
Output: true iff Mod(φ) 6= ∅

1dom f denotes the domain of a function f .
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The canonical coNP-complete problem is UNSAT defined as

UNSAT Input: a formula φ in CNF
Output: true iff Mod(φ) = ∅

A decision problem can be identified with a language L that contains exactly
the set of string representations of its positive instances.

For any two complexity classes C and D, the class CD is the class of
decision problems solvable in class C with access to an oracle for some problem
complete in D. For example, the class PNP contains all problems that can be
solved in polynomial time by a deterministic Turing machine that has access
to an NP oracle (the oracle gives instantaneous answers to any query for a
decision problem in NP and can therefore be queried at most polynomially
many times). We make use of the polynomial hierarchy that can be defined
as follows. Let Σp

0 = ∆p
0 = Πp

0 = P and define Σp
i , ∆p

i , and Πp
i for i > 0

recursively via

Σp
i+1 = NPΣpi

Πp
i+1 = coNPΣpi

∆p
i+1 = PΣpi

In particular, Σp
1 = NPΣp0 = NPP = NP, Πp

1 = coNP, and ∆p
1 = P.

A decision problem is in Dp
i iff it is the conjunction of a decision problem

in Σp
i and a decision problem in Πp

i . For one problem we also make use
of the class coDp

1, which is the complementary class of Dp
1. Furthermore,

PC[logn] contains all problems that can be solved in polynomial time with a
deterministic Turing machine that may make logarithmically many calls to
a C oracle (in contrast to PC which allows polynomial many calls, therefore
PC[logn] ⊆ PC). In general, PC[f(n)] contains all problems that can be solved in
polynomial time with a deterministic Turing machine that may make O(f(n))
many calls to a C oracle. The class PSPACE contains all problems that can
be solved in polynomial space.

The class FNP is the class of functional problems whose solutions can be
determined in polynomial time by a non-deterministic Turing machine. We
make use of the functional complexity class FPC[f(n)], i. e. the class containing
functional problems whose solutions can be computed in polynomial time
with a deterministic Turing machine that may make a O(f(n)) many calls
to a C oracle. The class FPSPACE is the class of function problems whose
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solutions can be computed in polynomial space. For functional complexity
classes we utilize metric reductions to show hardness. A functional problem A
reduces to a functional problem B if there exist polynomial-time computable
functions f and g s. t. for input x for A it holds that g(x, y) is a correct
solution for problem A iff y is a correct solution for input f(x) for problem
B.

Some of the inconsistency measures inherently count certain structures,
making counting complexity (Valiant, 1979b,a) a natural tool for our anal-
ysis. Intuitively, complexity classes, and complete problems, for counting
complexity comprise of problems that ask whether there are at least (ex-
actly) a given number of solutions to a problem, or, in analogy to function
problems, what is the exact number of solutions.

For the classes containing decision problems regarding counting, we will
make use of a class in the counting polynomial hierarchy defined by (Wagner,
1986). The classes in this hierarchy are defined in a similar fashion as the
classes in the polynomial hierarchy, but we will introduce only what is needed
for our purposes in this paper. Towards the definition, we define the counting
quantifier C. This quantifier is defined for a predicate H(x, y) with free
variables x and y as

CkyH(x, y)↔ |{y | H(x, y) is true }| ≥ k.

That is, the counting quantifier is true for the predicate and bound k iff
the number of values of y such that the predicate holds is at least k. The
polynomially bounded version of the counting quantifiers is defined as follows.
For a class of problems K a problem A is in CK iff there is a problem B ∈ K,
a polynomial-time computable function f , and a polynomial p s.t.

x ∈ A↔ C
f(x)
|y|≤p(|x|)(x, y) ∈ B.

In other words, instance x is in problem A iff there are at least f(x) many
y’s, which are polynomially bounded by x, s.t. a predicate for (x, y) holds,
with checking the predicate being in B.

The class CP is equal to the well-known class PP (see, e. g., (Papadim-
itriou, 1994)). A prototypical complete problem for CP is that of asking
whether at least k many interpretations are models of a Boolean formula. In
this paper we will use the class CNP, for which it holds that CP ⊆ CNP. From
a computational point of view, counting is quite involving. One formal result
that indicates this is that the whole polynomial hierarchy is contained in the
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class P PP (Toda, 1989), the class containing problems that can be solved via
a deterministic polynomial time algorithm with access to a PP oracle.

For some problems relating to inconsistency measures it will be useful to
consider also a variation of CNP, namely C=NP (Wagner, 1986), which differs
in the definition from CNP in that the quantifier is not defined on a lower
bound (at least k) but asks whether the number is exactly the bound (equal
to k).

We now turn to functional problems that ask for the number of solutions.
The most well-known counting complexity class for this purpose is #P, the
class containing problems asking for the number of accepting paths in a
non-deterministic polynomial-time Turing machine. The prototypical #P-
complete problem is #SAT, the problem of finding the number of models of
a given formula, defined as

#SAT Input: a formula φ in CNF
Output: |Mod(φ)|

where the interpretations and models are restricted to the vocabulary of the
formula. In this paper we use the class #·coNP from the counting complexity
class hierarchy defined in (Hemaspaandra and Vollmer, 1995). Towards the
definition of this class we first define counting problems which are in turn
defined via witness functions w, which assign to a string from an input alpha-
bet Σ a finite set of strings from an alphabet Γ. An instance for a counting
problem consists of a given input string x from alphabet Σ and the task is to
return |w(x)|, i. e. the cardinality of witnesses defined by witness function w
associated with the counting problem. If C is a complexity class of decision
problems, then #·C is the class of all counting problems for whose witness
function w it holds that

• for every input string x, every y ∈ w(x) is polynomially bounded by x;
and

• the decision problem of deciding y ∈ w(x) for given strings x and y is
in C.

For example, for #SAT the witness function is Mod(φ) for input strings φ
corresponding to formulas. It holds that #·P = #P and #·P ⊆ #·coNP.
An important type of reductions used for classes like #·coNP are subtractive
reductions (Durand et al., 2005). Let #A and #B be counting problems. We
identify A and B with their witness functions, i. e., we denote their witness
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sets by A(x) and B(y) for input strings x and y. The counting problem #A
reduces to #B via a strong subtractive reduction if there exist polynomial-
time computable functions f and g s. t. for each input string x we have
B(f(x)) ⊆ B(g(x)) and |A(x)| = |B(g(x))| − |B(f(x))|. Intuitively, we
may overcount the solutions and carefully subtract what we overcounted.
A strong subtractive reduction is called parsimonious if B(f(x)) = ∅ for
all input strings x, i. e. |A(x)| = |B(g(x))|. Subtractive reductions are the
transitive closure of strong subtractive reductions.

An illustrative example for subtractive reductions, which we took from (Du-
rand et al., 2005), is that of showing #P hardness for the problem of counting
the number of models of a formula in disjunctive normal form (DNF), i.e.,
a Boolean formula consisting of a disjunction of conjunctions of literals. For
a given Boolean formula in CNF, say φ, we reduce this formula to φ′ ≡ ¬φ
in DNF, which is simply the negated formula φ where we propagated the
negations to literals. It is immediate that ω is a model of φ iff ω does not
satisfy φ′. This implies that |Mod(φ)| = |Mod(>)| − |Mod(φ′)|, or, in other
words, that the number of models of φ is equal to the number of any inter-
pretation (on the vocabulary of φ, which we here for representation’s sake
write simply as >) minus the models of φ′ (the non-models of φ). This is
a subtractive reduction from #SAT to the problem of counting the models
of a Boolean formula in DNF. This reduction is illustrative in two further
senses. First, one instance created by the subtractive reduction (>) is, in
fact, not hard at all to solve. This holds for several subtractive reductions
used to show hardness (and for all formal results relying on subtractive re-
ductions in this paper). That is, many subtractive reductions create two
instances, one easy (e.g. in P) and one hard to solve. Second, it should be
noted that, under complexity theoretic assumptions, the problem of counting
the number of models of a Boolean formula in DNF cannot be #P hard under
parsimonious reductions. To see this, assume that a parsimonious reduction
f exists. Then, by definition, it holds that, for a given formula φ in CNF,
we have f(φ) = φ′, and Mod(φ) = Mod(φ′). It follows that φ and φ′ are
equi-satisfiable (φ is satisfiable iff φ′ is satisfiable). This implies that, for the
decision problem SAT, to decide satisfiability of φ, we can reduce it to φ′ and
check satisfiability of φ′. However, satisfiability of Boolean formulas in DNF
is polynomial time decidable (implying that P and NP coincide).

Another important property of subtractive reductions is that the count-
ing complexity classes we utilize in this paper are all closed under subtractive
reductions. Particularly for counting complexity classes the issue of closed-
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ness of reductions is not a trivial one (Toda and Watanabe, 1992); however
the classes we use in this paper are closed for the reductions we apply. For
the decision problems regarding counting, closedness was proven in (Wagner,
1986, Theorem 4, item 6)).

The class #·coNP, which is the main counting class we utilize in this
paper, contains several natural counting problems complete for this class
(partially hard under subtractive reductions), including problems in the field
of knowledge representation and reasoning, e. g. counting the number of ex-
planations in the context of abduction (Hermann and Pichler, 2010).

3. Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including∞. Inconsistency
measures are functions I : K → R∞≥0 that aim at assessing the severity of
inconsistency in a knowledge base K, cf. (Grant and Hunter, 2011). The
basic idea is that the larger the inconsistency in K the larger the value I(K).
However, inconsistency is a concept that is not easily quantified and there
have been quite a number of proposals for inconsistency measures so far, in
particular for classical propositional logic, see below. Formally, we define
inconsistency measures as follows, cf. e. g. (Hunter and Konieczny, 2008).

Definition 2. An inconsistency measure I is a function I : K→ R∞≥0 satis-
fying I(K) = 0 if and only if K is consistent, for all K ∈ K.

Here, we select a set of 17 inconsistency measures from the literature in or-
der to conduct our analysis on computational complexity, taken from (Hunter
and Konieczny, 2010; Grant and Hunter, 2011; Knight, 2002; Thimm, 2016b;
Grant and Hunter, 2013; Xiao and Ma, 2012; Doder et al., 2010; Ammoura
et al., 2017; Besnard, 2016; Jabbour et al., 2014a; Jabbour, 2016). All se-
lected measures are indeed different as each satisfies a different set of ra-
tionality postulates from the literature (Thimm, 2017b). Moreover, our se-
lection is representative in the sense that all major classes of inconsistency
measures is present. In particular, we selected measures based on minimal
inconsistent sets, e. g. (Hunter and Konieczny, 2008), measures based on max-
imal consistent sets (Grant and Hunter, 2011; Doder et al., 2010), measures
based on paraconsistent logics (Grant and Hunter, 2011), measures based on
probability theory (Knight, 2002), measures based on distances (Grant and
Hunter, 2013), and several others. Some measures such as ILPm (Hunter and

11



Konieczny, 2010) are quite similar to some selected measure and are omit-
ted. Measures for other formalisms than propositional logic such as (Zhou
et al., 2009; Thimm, 2013; Mu et al., 2014; Condotta et al., 2016; Amgoud
and Ben-Naim, 2017) and very recent developments such as (Jabbour et al.,
2017; Thimm, 2017a; De Bona and Hunter, 2017; De Bona et al., 2018) are
also not covered. We briefly introduce the selected measures in this section
for the sake of completeness, but we refer for a detailed explanation to the
corresponding original papers.

The measure Id(K) is usually referred to as a baseline for inconsistency
measures as it only distinguishes between consistent and inconsistent knowl-
edge bases.

Definition 3 (Hunter and Konieczny (2008)). The drastic inconsistency
measure Id : K→ R∞≥0 is defined as

Id(K) =

{
1 if K |=⊥
0 otherwise

for K ∈ K.

In other words, Id(K) = 1 if and only if K is inconsistent (and 0 other-
wise).

Example 1. Consider again K1 and K2 from Section 1:

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

As both K1 and K2 are inconsistent we obtain Id(K1) = Id(K2) = 1.

Minimal inconsistent subsets play a crucial role in inconsistency mea-
surement as they can be seen as the atomic conflicts within an inconsistent
knowledge base. Accordingly, many inconsistency measure derive numerical
values from the set MI(K). The most straightforward approach to do so, is
by taking the cardinality of this set as a measure of inconsistency.

Definition 4 (Hunter and Konieczny (2008)). The MI-inconsistency measure
IMI : K→ R∞≥0 is defined as

IMI(K) = |MI(K)|

for K ∈ K.
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The measure IMI can be regarded as too coarse as it treats minimal in-
consistent subsets of different sizes in the same way. However, it has been
noted—see e. g. (Hunter and Konieczny, 2008)—that the larger a minimal
inconsistent subset, the less severe the inherent inconsistency should be re-
garded. The motivation for this perspective can given by the lottery paradox
(Kyburg, 1961): Consider a lottery of n tickets and let ai be the proposi-
tion that ticket i, i = 1, . . . , n will win. It is known that exactly one ticket
will win (a1 ∨ . . . ∨ an) but each ticket owner assumes that his ticket will
not win (¬ai, i = 1, . . . , n). For n = 1000 it is reasonable for each ticket
owner to believe that he will not win but for e. g., n = 2 it is not. Therefore
larger minimal inconsistent subsets can be regarded less inconsistent than
smaller ones. The following inconsistency measure takes this into account by
weighing each minimal inconsistent subset with its reciprocal cardinality.

Definition 5 (Hunter and Konieczny (2008)). The MIc-inconsistency mea-
sure IMIC : K→ R∞≥0 is defined as

IMIC(K) =
∑

M∈MI(K)

1

|M |

for K ∈ K.

Example 2. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Here we have

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Therefore we obtain IMI(K1) = 1 and IMI(K2) = 2 and

IMIC(K1) =
1

|{a,¬a ∧ ¬b}|
=

1

2

IMIC(K2) =
1

|{a,¬a}|
+

1

|{b,¬b}|
= 1
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Another general approach for measuring inconsistency is by utilising many-
valued logics (Thimm, 2017a). Here, we focus on the two measures Iη and
Ic, which utilise probabilistic logic and paraconsistent logic, respectively.
A probability function P on L(At) is a function P : Ω(At) → [0, 1] with∑

ω∈Ω(At) P (ω) = 1. We extend P to assign a probability to any formula

φ ∈ L(At) by defining

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions.

Definition 6 (Knight (2002)). The η-inconsistency measure Iη : K → R∞≥0

is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

In other words, Iη aims at maximising the probability that can be consis-
tently assigned to each formula. The inconsistency value is then one minus
this probability.

Example 3. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Consider the probability function P1 ∈ P({a, b, c, d}) defined via

P1(abcd) = P1(abcd) = 0.5

P1(ω) = 0 for ω ∈ Ω({a, b, c, d}) \ {abcd, abcd}

Then we obtain

P1(a) = P1(¬a ∧ ¬b) = 0.5

P1(b ∨ c) = P1(d) = 1

and thus P1(φ) ≥ 0.5 for all φ ∈ K1. Furthermore, there can be no other
P ′ that assigns larger probability to all φ ∈ K1. Hence, we have Iη(K1) =
1− 0.5 = 0.5. The function P1 can also be used to determine Iη(K2) = 0.5.
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1: Truth tables for propositional three-valued logic.

A three-valued interpretation υ (Priest, 1979) on At is a function υ : At→
{T, F,B} where the values T and F correspond to the classical true and
false, respectively. The additional truth value B stands for both and is meant
to represent a conflicting truth value for a proposition. The function υ is
extended to arbitrary formulas as shown in Table 1. Then, an interpretation
υ satisfies a formula α, denoted by υ |=3 α if either υ(α) = T or υ(α) = B.
Then inconsistency can be measured by seeking an interpretation υ that
assigns B to a minimum number of propositions.

Definition 7 (Grant and Hunter (2011)). The contension inconsistency mea-
sure Ic : K→ R∞≥0 is defined as

Ic(K) = min{|υ−1(B)| | υ |=3 K}

for K ∈ K.

Example 4. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}
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Consider υ1 : {a, b, c, d} → {T, F,B} defined via

υ1(a) = B υ1(b) = F υ1(c) = υ1(d) = T

Then υ1 |=3 φ for all φ ∈ K1 and there is no other υ′ that assigns B to fewer
propositions, yielding Ic(K1) = 1. For υ2 : {a, b} → {T, F,B} defined via

υ2(a) = υ2(b) = B

we have υ2 |=3 φ for all φ ∈ K2 and there is no other υ′ that assigns B to
fewer propositions, yielding Ic(K2) = 2.

The following measure takes both maximal consistent sets and self-contradictory
formulas into account.2

Definition 8 (Grant and Hunter (2011)). The MC-inconsistency measure
Imc : K→ R∞≥0 is defined as

Imc(K) = |MC(K)|+ |SC(K)| − 1

for K ∈ K.

Example 5. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Here we have

MC(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
MC(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}

and SC(K1) = SC(K2) = ∅. Therefore we obtain

Imc(K1) = 1

Imc(K2) = 3

2Note that it is necessary to consider both, the set of maximal consistent subsets and
the set of self-contradictory formulas, as knowledge base with a single maximal consistent
subset is not necessarily consistent itself.
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Another simple approach for measuring inconsistency is to take the num-
ber of formulas that are participating in some conflict.

Definition 9 (Grant and Hunter (2011)). The problematic inconsistency
measure Ip : K→ R∞≥0 is defined as

Ip(K) = |
⋃

M∈MI(K)

M |

for K ∈ K.

Example 6. We continue Example 1 and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then Ip(K1) = 2 and Ip(K2) = 4.

In general, consistency of a knowledge base is defined by the existence
of at least one interpretation that satisfies all formulas. Another approach
to measuring inconsistency is to relax this requirement and seek a minimum
number of interpretations such that every formula is satisfied by one of them.
More formally, a subset H ⊆ Ω(At) is called a hitting set of K if for every
φ ∈ K there is ω ∈ H with ω |= φ.3

Definition 10 (Thimm (2016b)). The hitting-set inconsistency measure Ihs :
K→ R∞≥0 is defined as

Ihs(K) = min{|H| | H is a hitting set of K} − 1

for K ∈ K with min ∅ =∞.

Example 7. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

The set H1 = {abcd, abcd} is a hitting set of both K1 and K2 and there is no
smaller set that is a hitting set. Therefore we obtain Ihs(K1) = Ihs(K2) = 1.

3Note that, formally, H is a hitting set of {Mod(φ1), . . . ,Mod(φn)} for K = {φ1, . . . , φn}
but we say that H is a hitting set of K for reasons of brevity.
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In (Grant and Hunter, 2013) three families of inconsistency measures are
presented that use distances between the models of the formulas in order
to measure inconsistency. An interpretation distance d is a function d :
Ω(At)× Ω(At)→ [0,∞) that satisfies (let ω, ω′, ω′′ ∈ Ω(At))

1. d(ω, ω′) = 0 if and only if ω = ω′ (reflexivity),

2. d(ω, ω′) = d(ω′, ω) (symmetry), and

3. d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) (triangle inequality).

One prominent example of such a distance is the Dalal distance dd defined
via

dd(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}|

for all ω, ω′ ∈ Ω(At). If X ⊆ Ω(At) is a set of interpretations we define
dd(X,ω) = minω′∈X dd(ω′, ω) (if X = ∅ we define dd(X,ω) = ∞). For
definitions 11, 12, and 13 below and our treatment of these measures in this
paper we assume dd fixed but the measures could be defined using arbitrary
distances (Grant and Hunter, 2013).4

Definition 11 (Grant and Hunter (2013)). The Σ-distance inconsistency
measure IΣ

dalal : K→ R∞≥0 is defined as

IΣ
dalal(K) = min

{∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}

for K ∈ K.

Definition 12 (Grant and Hunter (2013)). The max-distance inconsistency
measure Imax

dalal : K→ R∞≥0 is defined as

Imax
dalal(K) = min

{
max
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}
for K ∈ K.

4Note that our complexity assessments regarding membership results on these mea-
sures remain to be true for other distance measures as long as they can be computed in
polynomial time.
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Definition 13 (Grant and Hunter (2013)). The hit-distance inconsistency
measure Ihit

dalal : K→ R∞≥0 is defined as

Ihit
dalal(K) = min {|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

for K ∈ K.

In other words, IΣ
dalal seeks an interpretation such that the sum of its

distances to the models of each individual formula is minimum. The measure
Imax

dalal seeks an interpretation such that the maximum of its distances to the
models of each individual formula is minimum. Finally, the measure Ihit

dalal

seeks an interpretation that satisfies a maximum number of formulas.

Example 8. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Observe that for the interpretation ω1 = abcd ∈ Ω({a, b, c, d}) we have

dd(Mod(a), ω1) = 0

dd(Mod(b ∨ c), ω1) = 0

dd(Mod(¬a ∧ ¬b), ω1) = 1

dd(Mod(d), ω1) = 0

and therefore
∑

α∈K1
dd(Mod(α), ω1) = 1. There is no other interpretation

ω′ with a smaller total distance, so we have IΣ
dalal(K1) = 1. Furthermore, we

have maxα∈K1 dd(Mod(α), ω1) = 1 and there is also no other interpretation
ω′ with a smaller maximum distance. Hence, we have Imax

dalal(K1) = 1 and
similarly Ihit

dalal(K1) = 1. For K2 we obtain

IΣ
dalal(K2) = 2

Imax
dalal(K2) = 1

with a similar argumentation as above. For Ihit
dalal(K2) observe that every in-

terpretation ω must always falsify exactly one formula in {a,¬a} and exactly
one formula in {b,¬b}. Therefore we obtain Ihit

dalal(K2) = 2.

Recall, that Ip measures inconsistency by taking the number of formulas
that participate in some conflict. Another inconsistency measure can be
defined by not considering the formulas itself but the number of propositions
within these formulas.
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Definition 14 (Xiao and Ma (2012)). The mv inconsistency measure Imv :
K→ R∞≥0 is defined as

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

for K ∈ K.

In other words, Imv counts all propositions that appear in formulas par-
ticipating in some conflict and takes the ratio wrt. the number of all propo-
sitions.

Example 9. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then we have

Imv(K1) =
|{a, b}|
|{a, b, c, d}|

= 1/2

Imv(K2) =
|{a, b}|
|{a, b}|

= 1

With Imc we already saw one measure that uses consistent sets as a way to
measure inconsistency. Another approach with similar ideas is the following
measure.

Definition 15 (Doder et al. (2010)). The nc-inconsistency measure Inc :
K→ R∞≥0 is defined as

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

for K ∈ K.

Informally speaking, Inc seeks the maximal number n such that all sub-
sets of cardinality n are consistent. The larger this value, the lower the
inconsistency, so the inconsistency value is the cardinality of K minus n.
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Example 10. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Note that for both K1 and K2 we can find subsets of size 2 that are inconsis-
tent: {a,¬a ∧ ¬b} for K1 and {a,¬a} for K2. Furthermore, all one-element
subsets of K1 and K2 are consistent, respectively. Therefore, we obtain

Inc(K1) = 3

Inc(K2) = 3

An even more elaborate approach to take consistent subsets into account
is the following. A set of maximal consistent subsets C ⊆ MC(K) is called an
MC-cover if ⋃

C∈C

C = K

An MC-cover C is normal if no proper subset of C is an MC-cover. A normal
MC-cover is maximal if

λ(C) = |
⋂
C∈C

C|

is maximal for all normal MC-covers.

Definition 16 (Ammoura et al. (2017)). The MCSC inconsistency measure
Imcsc : K→ R∞≥0 is defined as

Imcsc(K) = |K| − λ(C)

for all K ∈ K and any maximal MC-cover C.

The idea behind the above measure is that a large intersection of many
maximal consistent subsets indicates that many formulas are compatible with
many parts of the knowledge base. Thus, the inconsistency value should be
low.

Example 11. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
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and recall

MC(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
MC(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}

Note that both sets in MC(K1) are required to cover K1 so there is only one
normal MC cover C1 = MC(K1) and λ(C1) = 2, yielding Imcsc(K1) = 4−2 = 2.
For K2 observe that C = {{a, b}, {¬a,¬b}} is a normal MC cover (but note
that there are others) with λ(C2) = 0 yielding Imcsc(K2) = 4− 0 = 4.

The measure of (Besnard, 2016) uses the approach of variable forgetting
(Lang and Marquis, 2010) in order to measure inconsistency. For a formula
φ let φ[a1, i1 → ψ1; . . . , ak, ik → ψk] denote the formula φ where the ijth
occurrence of the proposition aj is replaced by the formula ψj, for all j =
1, . . . , k. For example,

(a ∧ b ∨ (¬a ∧ b))[a, 2→ >; b, 1→⊥] = (a∧ ⊥ ∨(¬> ∧ b))

Furthermore, for a set S = {φ1, . . . , φn} let
∧
S = φ1 ∧ . . . ∧ φn.

Definition 17 (Besnard (2016)5). The forgetting-based inconsistency mea-
sure Iforget : K→ R∞≥0 is defined as

Iforget(K) = min{k | (
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥, φj ∈ {⊥,>}}

for all K ∈ K.

So Iforget seeks the minimal number of variable occurrences that need to
be forgotten in order to render the knowledge base consistent.

Example 12. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Observe that substituting the first occurrence of a in K1 with > yields a con-
sistent knowledge base {>, b∨ c,¬a∧¬b, d}. Therefore we have Iforget(K1) =
1. For K2 we need to forget two occurrences of propositions, e. g.,

∧
K2[a, 1→

>b, 1→ >] = > ∧ ¬a ∧ > ∧ ¬b is consistent, yielding Iforget(K2) = 2.

5Note that we give a slightly different but equivalent formalization.
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The approach of (Jabbour et al., 2014a) aims at looking deeper into the
structure of the set of minimal inconsistent subsets. The main rationale here
is the assumption that having two disjoint minimal inconsistent subsets is
a more severe inconsistency than having two minimal inconsistent subsets
with a non-empty intersection, ceteris paribus. Formally, a set {K1, . . . , Kn}
of pairwise disjoint subsets of K is called a conditional independent MUS
partition of K, iff each Ki is inconsistent and MI(K1 ∪ . . .∪Kn) is the union
of all MI(Ki).

Definition 18 (Jabbour et al. (2014a)). The CC inconsistency measure
ICC : K→ R∞≥0 is defined as

ICC(K) = max{n | {K1, . . . , Kn} is a conditional independent MUS partition of K}

for all K ∈ K.

Another approach with a similar motivation as ICC is the following. A
set S of sets is independent if for all M,M ′ ∈ S, if M 6= M ′ then M∩M ′ = ∅.

Definition 19 (Jabbour (2016)). The independent set-based inconsistency
measure Iis : K→ R∞≥0 is defined as

Iis(K) = log |{M ⊆ MI(K) |M is independent}|

for all K ∈ K.

In other words, Iis counts the number of independent sets that can be
formed from MI(K) and takes its logarithm to appropriately normalise the
measure.

Example 13. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}
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Note that MI(K1) itself is the only non-empty conditional independent MUS
partition of K1. Similarly, MI(K2) is the maximal conditional independent
MUS partition of K2 and we obtain

ICC(K1) = 1

ICC(K2) = 2

Furthermore, note that MI(K1) has two independent sets ∅ and {{a,¬a ∧
¬b}}. Finally, MI(K2) has four independent sets ∅, {{a,¬a}}, {{b,¬b}}, and
{{a,¬a}, {b,¬b}} yielding

Iis(K1) = log 2

Iis(K2) = log 4

This concludes the introduction of the measures we will consider in our
discussion. Note that all mentioned functions are indeed inconsistency mea-
sures according to Definition 2. We recommend looking into the original
papers mentioned above for more details on the individual measures, into
(Thimm, 2016a, 2017b) for some further surveys, and into Tweety@Web6

(Thimm, 2017c) for an online interface for computing the measures. For the
reader’s convenience, we summarise the formal definitions of these inconsis-
tency measures in Figure 1.

4. Analysis of Computational Complexity

In this paper, we consider the following three decision problems for our
investigation of the computational complexity of inconsistency measurement.
Let I be some inconsistency measure.

ExactI Input: K ∈ K, x ∈ R∞≥0

Output: true iff I(K) = x

UpperI Input: K ∈ K, x ∈ R∞≥0

Output: true iff I(K) ≤ x

LowerI Input: K ∈ K, x ∈ R∞≥0 \ {0}
Output: true iff I(K) ≥ x

6http://tweetyproject.org/w/incmes
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Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}
Imcsc(K) = |K| − λ(C)

Iforget(K) = min{k | (
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥, φj ∈ {⊥,>}}

ICC(K) = max{n | {K1, . . . ,Kn} is a CI MUS partition of K}
Iis(K) = log |{M ⊆ MI(K) |M is independent}|

Figure 1: Definitions of the considered inconsistency measures
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In other words, ExactI is the problem of deciding whether a given value x
is the inconsistency value of a given knowledge base. The problems UpperI
and LowerI are about deciding whether a given value x is an upper/lower
bound of the inconsistency value of a given knowledge base, respectively. In
this section we focus on the above problems for general propositional logic.
We have a look at the special cases of the Horn and Krom fragment in
Section 5.

Note that for any inconsistency measure I according to Definition 2 the
decision problems ExactI and UpperI are NP-hard. This follows from the
fact that for the subclass of knowledge bases consisting of a single formula in
CNF, deciding whether I(K) = 0 is equivalent to SAT. Similarly, the problem
LowerI is coNP-hard as deciding whether I(K) ≥ x for any x > 0 entails
that K is inconsistent, which itself is equivalent to UNSAT.

Furthermore, we consider the following natural function problem for our
investigation:

ValueI Input: K ∈ K
Output: The value of I(K)

Table 2 gives an overview on the technical results shown in the remain-
der of this paper. As can be seen, most measures fall into the first level of the
polynomial hierarchy (Id, Iη, Ic, Ihs, IΣ

dalal, Imax
dalal, Ihit

dalal, Imcsc, Iforget), where the
decision problems UpperI and LowerI can be shown to be NP-complete
and coNP-complete, respectively, and thus not computationally harder than
SAT and UNSAT problems, respectively. The remaining measures are either
on the second level of the polynomial hierarchy (Ip, Imv, Inc), on the third
level (ICC), or involve counting (sub)problems whose complexity goes beyond
the third level of the polynomial hierarchy (IMI, IMIC , Imc, Iis).

It is interesting to see that, judging from the results shown in Table 2,
there is a certain kind of “uniformity” of the considered inconsistency mea-
sures wrt. their complexity. In fact, all of the considered measures that fall on
the first level of the polynomial hierarchy have exactly the same complexity
wrt. Upper and Lower, the same holds for the measures of the second level
of the polynomial hierarchy, and all but one (IMIC) for the measures that are
outside the polynomial hierarchy. There is only one measure that falls into
the third level of the polynomial hierarchy, leaving comparisons with similar
complex measures difficult. While this “uniform” complexity is easier to ex-
plain for the measures on the first level of the polynomial hierarchy (as said
before, UpperI is NP hard directly from definition), the uniformity is still
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observable on the second level of the polynomial hierarchy, and for those that
involve counting classes. A potential explanation for this is that all measures
whose complexity lies on the second level of the polynomial hierarchy exhibit
“similar” (yet different) subproblems that have relations to inconsistent sub-
sets; analogously, for those measures involving counting complexity classes,
counting refers often to structures related to inconsistent subsets. However,
Imc, for instance, falls outside this schema, when compared to IMI (the for-
mer involving counting of maximal consistent subsets compared to counting
minimal inconsistent subsets of the latter). Another observation is that there
is a “shift” when going from Upper (Lower) from a measure on the first
level of the polynomial hierarchy, which are NP = Σp

1-complete (coNP = Πp
1-

complete) to the corresponding problem for a measure on the second level
of the polynomial hierarchy, which is Πp

2-complete (Σp
2-complete). That is,

there is a shift from Σp
1 to Πp

2 for Upper, which, we think, is mainly due
to the fact that problems on the second level rely on subproblems connect-
ing to inconsistent subsets. For instance, for LowerIp , the structures that
contribute to the inconsistency value are coNP-hard to check, and, on top,
a non-deterministic procedure seems to be required to find them. However,
we think that the kind of uniformity exhibited by the considered inconsis-
tency measures is not inherent to the field of inconsistency measurement as
a whole. For instance, UpperICC is in Σp

3 (not “shifting” again from Πp
2 for

a problem on the second level).
Before we continue with the details of the technical results, we make some

general observations first. In particular, in order to provide insights into the
computational complexity of the problem ValueI it is useful to investigate
the number of values an inconsistency measure can attain for knowledge
bases of a given size, cf. (Thimm, 2016a) for a more detailed discussion of
this topic.

Definition 20. Let φ be a formula. The length len(φ) of φ is recursively
defined as

len(φ) =


1 if φ ∈ At
1 + len(φ′) if φ = ¬φ′
1 + len(φ1) + len(φ2) if φ = φ1 ∧ φ2

1 + len(φ1) + len(φ2) if φ = φ1 ∨ φ2

Define the length len(K) of a knowledge base K via len(K) =
∑

φ∈K len(φ).
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ExactI UpperI LowerI ValueI

Id Dp1 ∩ coDp1 NP-c coNP-c FNP

IMI C=NP-h CNP-c CNP-c #·coNP-c

IMIC C=NP-h CNP-h CNP-h FP#·coNP

Iη Dp1-c NP-c coNP-c FPNP[n]

Ic Dp1-c NP-c coNP-c FPNP[logn]-c

Imc C=NP-h CNP-c CNP-c #·coNP-c†

Ip Dp2-c Πp
2-c Σp

2-c FPΣp2[logn]

Ihs Dp1-c NP-c coNP-c FPNP[logn]

IΣ
dalal Dp1-c NP-c coNP-c FPNP[logn]-c

Imax
dalal Dp1-c NP-c coNP-c FPNP[logn]

Ihit
dalal Dp1-c NP-c coNP-c FPNP[logn]-c

Imv Dp2-c Πp
2-c Σp

2-c FPΣp2[logn]

Inc Dp2 Πp
2-c Σp

2-c FPΣp2[logn]

Imcsc Dp1-c NP-c coNP-c FPNP[logn]

Iforget Dp1-c NP-c coNP-c FPNP[logn]-c

ICC Dp3 Πp
3 Σp

3 FPΣp3[logn]

Iis C=NP-h CNP-c CNP-c #·coNP-c‡

Table 2: Computational complexity of the considered inconsistency measures (all state-
ments are membership statements, an additionally attached “-c” (“-h”) also indicates
completeness (hardness) for the class); we note that all hardness results for #·coNP are
under subtractive reductions; †we show complexity of the (minor) variation that omits
subtracting one from the result; ‡we consider here the problem variant that does not ap-
ply a logarithm on the result; the row regarding Imv has been shown in (Xiao and Ma,
2012).

Definition 21. For an inconsistency measure I and n ∈ N define CI(n) =
{I(K) | len(K) ≤ n}, i. e., CI(n) is the set of different inconsistency values
that can be attained by I on knowledge bases of maximal length n.

For most measures, the number of attainable values is polynomial in the
size of the knowledge base, see also the results in (Thimm, 2016a). Moreover,
each attainable value itself can also be represented concisely.

Lemma 1. For I ∈ {Id, Ic, Ip, Ihs, IΣ
dalal, Imax

dalal, Ihitdalal, Imv, Inc, Imcsc, Iforget,
ICC} there is k ∈ N such that |CI(n)| ∈ O(nk). Moreover, each x ∈ CI(n)
can be represented in space O(log n).
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The above lemma basically states that the number of different values
most of the investigated inconsistency measures can attain on knowledge
bases up to a certain size, is polynomially bounded by this size and the
values are “small”. Note that the statement is not true in general for the
remaining measures IMI, IMIC , Iη, Imc, and Iis as a knowledge base may have
an exponential number of minimal (in-)consistent subsets.

Lemma 2. For I ∈ {IMI, Iη, Imc} there is k ∈ N such that |CI(n)| ∈ O(2n
k
).

Moreover, each x ∈ CI(n) can be represented in space O(nk).

Lemma 3. For I ∈ {IMIC , Iis}, |CI(n)| ∈ O(22n). Moreover, each x ∈ CI(n)
can be represented in space O(nk).

Lemmas 1–3 are in particular useful in combination with (exact) complex-
ity bounds for problems UpperI and LowerI . If, e. g., UpperI is in com-
plexity class C for a measure I for which it holds that e. g. |CI(n)| ∈ O(nk),
we can find the exact value of I(K) for a knowledge base K with binary
search on the possible values requiring thus to solve just a logarithmic num-
ber of consecutive problems in C. These considerations are summarised in
the following result.

Lemma 4. Let I be some inconsistency measure and i > 0 an integer.
If UpperI is in Σp

i or in Πp
i , the range CI(n) is representable in space

O(log f(n)) and |CI(n)| ∈ O(f(n)) for some function f : N → N, then
ValueI is in FPΣpi [log f(n)].

The decision problems ExactI , UpperI , and LowerI are also related
to each other. UpperI and LowerI are complementary to each other and
ExactI is the combination of both. However, we need another condition on
inconsistency measures to see this.

Definition 22. An inconsistency measure I is called well-serializable if the
following two problems can be solved in polynomial time:

1. Given n ∈ N and x ∈ CI(n), determine y ∈ CI(n) such that y > x and
there is no y′ ∈ CI(n) with y > y′ > x.

2. Given n ∈ N with n > 0 and x ∈ CI(n), determine y ∈ CI(n) such that
y < x and there is no y′ ∈ CI(n) with y < y′ < x.

In other words, a measure is called well-serializable if the immediate suc-
cessor and predecessor of a value of I can be efficiently determined. Note
that almost all considered measures satisfy this property.
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Lemma 5. The measures Id, IMI, Iη, Ic, Imc, Ip, Ihs, IΣ
dalal, Imax

dalal, Ihitdalal, Imv,
Inc, Imcsc, Iforget, ICC , Iis are well-serializable.

The only measure absent from the above result is IMIC , for which we do not
believe that determining the successor/predecessor of an inconsistency value
can be done efficiently. As Iis, the measure IMIC exhibits double-exponential
many inconsistency values, see Lemma 3. However, Iis is defined to be the
logarithm of an integer-valued measure, so successors and predecessors can
be efficiently computed by inverting the logarithm, adding or subtracting one
and taking the logarithm again (see proof of Lemma 5 in Appendix A). For
IMIC , no such simple inversion exists. Furthermore, applying a binary search
on all attainable values to obtain successors and predecessors—as we did for
Iη in the proof of Lemma 5—still needs exponential time.

However, in case of well-serializable inconsistency measures we can relate
the complexity of ExactI , UpperI , and LowerI as follows.

Lemma 6. Let I be some well-serializable inconsistency measure and i > 0
an integer. Let C ∈ {Σp

i ,Π
p
i }.

• UpperI is C-complete iff LowerI is co-C-complete;

• if UpperI or LowerI is in C, then ExactI is in Dp
i .

Lemma 4 and Lemma 6 taken together imply that showing the complexity
of either UpperI or LowerI gives crucial insights into the computation of
the measure I.

In the following, we give details on the technical contributions summa-
rized in Table 2. We structure our presentation by first discussing the prob-
lems on the first level of the polynomial hierarchy (Section 4.1), then those on
the second level (Section 4.2), then those on the third level (Section 4.3), and
finally those beyond the third level of the polynomial hierarchy (Section 4.4).

4.1. Problems on the first level of the polynomial hierarchy

In this section we discuss the measures Id, Iη, Ic, Ihs, Ihit
dalal, IΣ

dalal, Imax
dalal,

Iforget, and Imcsc and show that the corresponding decision and function
problems reside on the first level of the polynomial hierarchy. For all these
measures, we start by showing that UpperI is NP-complete and then utilize
Lemmas 4 and 6 to gain insights on the remaining problems. If we can
strengthen the bounds provided by Lemmas 4 and 6 we report on those
results afterwards.
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Before we proceed, we give an overview on the problems and reductions
used in the proofs. We already noted that the problems ExactI and Up-
perI are NP-hard for inconsistency measures according to Definition 2 by
reducing SAT to them. So to show NP-completeness for problems UpperI ,
we only have to show membership in NP, which can usually be achieved by
sketching a simple non-deterministic algorithm that runs in polynomial time.
For problems ExactI we will usually show completeness in the class Dp

1. In
order to do so we use the canonical Dp

1-complete problem SAT-UNSAT defined
as

SAT-UNSAT Input: a pair (φ, ψ) of formulas in CNF
Output: true iff Mod(φ) 6= ∅ and Mod(ψ) = ∅

Note that we assume that φ and ψ do not share any atoms (otherwise we
can rename the atoms in one of them without changing satisfiability).

As a matter of fact, we will use the same polynomial reduction (and some
minor variant) for transforming an instance of SAT-UNSAT to an instance
of ExactI , independently of the actual inconsistency measure I. More
precisely, define the function RSAT-UNSAT mapping pairs of formulas in CNF
to a knowledge base via

RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}

for all formulas φ and ψ in CNF and a some fresh proposition not appearing in
either φ or ψ. In the following results showing Dp

1-completeness for ExactI ,
we will use this reduction by showing statements such as “(φ, ψ) is a positive
instance for SAT-UNSAT iff RSAT-UNSAT(φ, ψ) has a particular inconsistency
value x wrt. I”. Note that RSAT-UNSAT is indeed a polynomial transformation.
We can make some general observations on the reduction RSAT-UNSAT that will
help understand the proofs:

1. If (φ, ψ) is a positive instance of SAT-UNSAT i. e., φ is satisfiable while
ψ is not, then RSAT-UNSAT(φ, ψ) is inconsistent. However, the incon-
sistency is somewhat “minor” as by considering a model of φ and ex-
tending this model by setting a to false, only the second formula a is
violated.

2. If (φ, ψ) is a negative instance of SAT-UNSAT, we can differentiate the
following cases
(a) If φ is unsatisfiable then RSAT-UNSAT(φ, ψ) is inconsistent, but—in

difference to the case above—the inconsistency is “more severe”
as φ is likely to be more complex than the simple formula a.
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(b) If φ is satisfiable and ψ is satisfiable then RSAT-UNSAT(φ, ψ) is con-
sistent.

In the proofs the informal terms “minor” and “more severe” will be made
more concrete by considering actual inconsistency measures. However, note
that inconsistency measures who are able to differentiate these two cases can
solve SAT-UNSAT.

We will also use a minor variant R′SAT-UNSAT of the above reduction defined
as follows. For a formula φ, let φcopy be an exact copy of φ with different
atoms, e. g. if φ = a∨¬b then φcopy = acopy∨¬bcopy (note that φ is satisfiable
if and only if φcopy is satisfiable). Let a be a fresh atom not appearing in
either φ, φcopy, and ψ. Define R′SAT-UNSAT(φ, ψ) via

R′SAT-UNSAT(φ, ψ) = {φ, φcopy, a,¬a ∨ ψ}

Observe that R′SAT-UNSAT(φ, ψ) as well can be constructed in polynomial
time. Similar observations as those for RSAT-UNSAT(φ, ψ) can be made for
R′SAT-UNSAT(φ, ψ).

For problems ValueI we will usually show completeness in the class
FPNP[logn]. In order to do so we use the canonical FPNP[logn]-complete problem
MaxSATSize defined as

MaxSATSize Input: a set C = {c1, . . . , cn} of clauses
Output: max |{C ′ ⊆ C | C ′ 6|=⊥}|

In other words, MaxSATSize seeks the maximum number of clauses in C =
{c1, . . . , cn} that can be jointly satisfied. In contrast to the case of SAT-
UNSAT we will use different transformations for MaxSATSize for each FPNP[logn]-
completeness proof.

The first measure we investigate is the baseline inconsistency measure, Id,
which is equal to 0 if the given knowledge base is consistent and 1 otherwise,
making the problem UpperId obviously NP-complete.

Proposition 1. UpperId is NP-complete.

Applying Lemmas 4 and 6 we obtain the following.

Corollary 1. LowerId is coNP-complete, ExactId is in Dp
1, and ValueId

is in FPNP[logn].
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Regarding ExactId , this problem is in fact also in the complementary
class of Dp

1, namely in coDp
1. The canonical complete problem for this class,

SAT-OR-UNSAT is very similar to SAT-UNSAT, but a pair of formulas is a
yes instance iff the first one is satisfiable or the second one is unsatisfiable.

SAT-OR-UNSAT Input: a pair (φ, ψ) of formulas in CNF
Output: true iff Mod(φ) 6= ∅ or Mod(ψ) = ∅

A reduction from ExactId to SAT-OR-UNSAT is then straightforward to
achieve: for an instance that asks whether the inconsistency value is 0, a
pair (φ,>) is constructed, with φ the conjunction of all elements in the given
knowledge base, and, otherwise, if we ask whether the value is equal to 1,
(⊥, φ). This shows membership in coDp

1 (and therefore ExactId∈ Dp
1∩coDp

1).

Corollary 2. ExactId is in coDp
1.

Incidentally, Id is an inconsistency measure that (directly) witnesses that
NP-completeness of UpperI and coNP-completeness for LowerI does not
imply Dp

1 hardness for ExactI , for some measure I. In fact, under complex-
ity theoretic assumptions, this seems unlikely for Id: suppose the contrary,
then one could construct a knowledge base K with integer k ∈ {0, 1} from
a pair of Boolean formulas (φ, ψ) s.t. Id(K) = k iff φ is satisfiable and ψ is
unsatisfiable. However, if k = 0, then this is a problem in NP, and if k = 1,
then this is a problem in coNP. That is, all instances of SAT-UNSAT could be
solved either by an NP or a coNP oracle, yet one is sufficient. Furthermore, by
presumption of existence of a polynomial time reduction from SAT-UNSAT
to ExactId , one can, in polynomial time, check whether a given instance
of SAT-UNSAT is part of a subproblem that is in NP or in coNP (and all
instances of SAT-UNSAT are in either one): simply construct the reduction
and check whether k = 0 or k = 1. Thus, presuming such a reduction leads
to a fragmentation of the instances of SAT-UNSAT into two categories.

As one can compute the value for Id by one call to a SAT-solver we can
strengthen the results pertaining ValueId as follows. In more details, one
can directly transform a knowledge base to a conjunction of its members.
Then the result of the functional problem of SAT, on this input, yields either
a model or “no”, in case the knowledge base is unsatisfiable. In both cases a
direct translation back to ValueId is immediate: 1 if there is a model and 0
otherwise.

Proposition 2. ValueId is in FNP.
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For the remaining measures, we mostly rely on the reductions and ideas
discussed above. We show illustrative proofs for two measures, Ihs and Ic,
here, and for the others we refer the interested reader to Appendix A.

We begin with Ihs. Recall that this measure is based on hitting sets, i. e.,
Ihs(K) = x iff the minimum number of interpretations needed to satisfy all
formulas in K is x.

Proposition 3. UpperIhs is NP-complete, LowerIhs is coNP-complete,
ExactIhs is Dp

1-complete, and ValueIhs is in FPNP[logn].

Proof. For NP-membership of UpperIhs , consider the following non-deterministic
algorithm for a given K, and value x:

1. Non-deterministically select H ⊆ Ω(At) with |H| = x.

2. For each φ ∈ K, if there is no ω ∈ H with ω |= φ return false.

3. Otherwise return true.

Note that a minimal hitting set H is at most linear in K (selecting one
model for each formula) and that any hitting set H can be extended by
adding any interpretations and is still a hitting set. Furthermore, testing
ω |= φ is polynomial in the length of φ. The above guess-and-check algorithm
therefore verifies that K has a hitting set of size x which is an upper bound
for a minimal hitting set. NP-completeness follows from the fact that SAT
can be reduced to UpperIhs with x = 0.

Except for Dp
1-hardness of ExactIhs , all other results follow from Lem-

mas 4 and 6.
We show Dp

1-hardness of ExactIhs by reducing the problem SAT-UNSAT
to ExactIhs via the reduction RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}. In par-
ticular, we show that (φ, ψ) is a positive instance of SAT-UNSAT if and only if
(RSAT-UNSAT(φ, ψ), 1) is a positive instance of ExactIhs , i. e., if Ihs(RSAT-UNSAT(φ, ψ)) =
1.

1. Let (φ, ψ) be a positive instance of SAT-UNSAT. ThenRSAT-UNSAT(φ, ψ)
is inconsistent, so Ihs(RSAT-UNSAT(φ, ψ)) > 0. As φ is satisfiable there
is an interpretation ω with ω |= φ. As a is a fresh atom we can also
safely assume ω |= a. Let ω′ be any interpretation with ω′ |= ¬a. Then
ω′ |= ¬a ∨ ψ as well and {ω, ω′} is a hitting set of RSAT-UNSAT(φ, ψ),
showing Ihs(RSAT-UNSAT(φ, ψ)) ≤ 1 and as Ihs only attains natural num-
bers we have Ihs(RSAT-UNSAT(φ, ψ)) = 1.
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2. We show Ihs(RSAT-UNSAT(φ, ψ)) = 1 implies (φ, ψ) is a positive instance
of SAT-UNSAT by contraposition. So assume (φ, ψ) is not a positive
instance of SAT-UNSAT. Then consider the following case differentia-
tion:
(a) φ is unsatisfiable: Ihs(K) =∞ whenever K contains an unsatisfi-

able formula (Thimm, 2016b), so Ihs(RSAT-UNSAT(φ, ψ)) =∞.
(b) φ and ψ are both satisfiable: in this case RSAT-UNSAT(φ, ψ) is con-

sistent and we have Ihs(RSAT-UNSAT(φ, ψ)) = 0.

Thus we polynomially reduced SAT-UNSAT to ExactIhs , showing that the
latter is Dp

1-complete.

Next, we illustrate usage of the second main reduction we defined earlier,
R′SAT-UNSAT(φ, ψ), on the measure Ic. This measure is based on three-valued
interpretations and is defined for a knowledge baseK as the minimum number
of atoms assigned to B (“both” or inconsistent) for three-valued interpreta-
tions that satisfy K. In the following proof we also show completeness of
ValueIc for complexity class FPNP[logn].

Proposition 4. UpperIc is NP-complete, LowerIc is coNP-complete, ExactIc
is Dp

1-complete, and ValueIc is FPNP[logn]-complete.

Proof. For NP-membership of UpperIc , consider the following non-deterministic
algorithm for a given knowledge base K and value x:

1. Non-deterministically select υ : At→ {T, F,B} with |υ−1(B)| = x.

2. For each φ ∈ K, if υ 6|=3 φ then return false.

3. Otherwise return true.

Note that the size of any 3-valued model is linear in the size of the input
and that testing υ |=3 φ is polynomial in the length of φ. The above guess-
and-check algorithm therefore verifies that K has a 3-valued model with x
propositions set to B which is an upper bound for a minimal model. NP-
completeness follows from the fact that SAT can be reduced to UpperIc with
x = 0.

Except Dp
1-hardness of ExactIc and FPNP[logn]-hardness of ValueIc , all

other results follow from Lemmas 4 and 6.
We show Dp

1-hardness of ExactIc by reducing the problem SAT-UNSAT
to ExactIc via the reduction R′SAT-UNSAT(φ, ψ) = {φ, φcopy, a,¬a ∨ ψ}. We
show that (φ, ψ) is a positive instance of SAT-UNSAT if and only if (R′SAT-UNSAT(φ, ψ), 1)
is a positive instance of ExactIc , i. e., if Ic(R′SAT-UNSAT(φ, ψ)) = 1.
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1. Let (φ, ψ) be a positive instance of SAT-UNSAT. Then there is a three-
valued interpretation υ1 over the atoms in φ and φcopy with υ1 |=3

φ ∧ φcopy and υ−1
1 (B) = ∅ as both φ and φcopy are satisfiable. As ψ

is unsatisfiable, there is no υ2 with υ2 |=3 ψ and υ−1
2 (B) = ∅. This

already shows that Ic(R′SAT-UNSAT(φ, ψ)) ≥ 1. But υ3 with υ3(a) = B
and υ3(p) ∈ {T, F} arbitrarily for all atoms p appearing in ψ yields
υ3 |=3 a ∧ (¬a ∨ ψ) and |υ−1

3 (B)| = 1. Let υ be the combination of υ1

and υ3 (note that the latter two have disjoint domains). Then υ |=3

R′SAT-UNSAT(φ, ψ) and |υ−1(B)| = 1, showing Ic(R′SAT-UNSAT(φ, ψ)) = 1.

2. We show by contraposition that Ic(R′SAT-UNSAT(φ, ψ)) = 1 implies (φ, ψ)
is a positive instance of SAT-UNSAT. So assume (φ, ψ) is not a positive
instance of SAT-UNSAT. Then consider the following case distinction:

(a) φ is unsatisfiable: then for any υ with υ |=3 R′SAT-UNSAT(φ, ψ)
we have υ(p) = B for at least one proposition p appearing in φ.
As φcopy is unsatisfiable as well, we have υ(p′) = B for another
proposition p′. It follows Ic(R′SAT-UNSAT(φ, ψ)) > 1.

(b) φ and ψ are both satisfiable: Then there is υ with υ |=3 R′SAT-UNSAT(φ, ψ)
and υ−1(B) = ∅, showing Ic(R′SAT-UNSAT(φ, ψ)) = 0 (with υ(a) =
T and such that its two-valued restriction satisfies φ, φcopy, and ψ
classically).

Thus we polynomially reduced SAT-UNSATto ExactIc , showing that the
latter is Dp

1-complete.
Regarding FPNP[logn]-hardness of ValueIc , let φs = {c1, . . . , cn} be an

instance over the signature At = {a1, . . . , am} for MaxSATSize. We now
provide a reduction of MaxSATSize to ValueIc . Let φ1, . . . , φn with φj =
{cj1, . . . , cjn} (for j = 1, . . . , n) be copies of φ with pairwise different signa-
tures Atj = {aj1, . . . , ajm}. Let α1, . . . , αn be fresh propositions. Consider the
following knowledge base Kφ.

Kφ = {α1 ∧ . . . ∧ αn} ∪
n⋃
i=1

{αi → c1
i , . . . , αi → cni }

Note that Kφ can be constructed in polynomial time. We now claim that
the maximum number of jointly satisfiable clauses of φ is K if and only if
Ic(Kφ) = n−K.

Without loss of generality assume that {c1, . . . , cK} is jointly satisfiable.
Define a three-valued interpretation υ as follows. Let υ(α1) = . . . = υ(αK) =
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T and υ(αK+1) = . . . = υ(αn) = B. Let ω be any (two-valued) model of
{c1, . . . , cK}. For all i = 1, . . . ,m define υ(a1

i ) = . . . = υ(ani ) = ω(ai). Then
υ |=3 Kφ:

1. υ |=3 α1 ∧ . . . ∧ αn as υ(αi) ∈ {B, T} for all i = 1, . . . , n

2. for i ∈ {1, . . . , K}, υ |=3 {αi → c1
i , . . . , αi → cni }. By definition,

υ(αi) = T , so in order to have υ |=3 {αi → c1
i , . . . , αi → cni } it must

hold that υ |=3 {c1
i , . . . , c

n
i }. As ω |= ci and each cji is a copy of ci we

have that υ |=3 cji for each j = 1, . . . , n.

3. for i ∈ {K+1, . . . , n} note that υ(αi) = B so, υ |=3 {αi → c1
i , . . . , αi →

cni }.

We also have |υ−1(B)| = n−K which gives Ic(Kφ) ≤ n−K.
Assume there is υ̂ with υ̂ |=3 Kφ and |υ̂−1(B)| < n−K. In order to have

υ̂ |=3 α1 ∧ . . . ∧ αn it must hold that υ̂(αi) ∈ {T,B} for i = 1, . . . , n. As
|υ̂−1(B)| < n−K assume w.l.o.g. υ̂(α1) = υ̂(αK+1) = T . It follows

υ̂ |=3 {c1
1, . . . , c

n
1 , . . . , c

1
K+1, . . . , c

n
K+1}

As each set {cj1, . . . , c
j
K+1} for j = 1, . . . , n is not classically satisfiable (recall

that K was the maximal number of jointly satisfiable clauses) there is a
ajkj ∈ Atj with υ̂(ajkj) = B for all j = 1, . . . , n. It follows |υ̂−1(B)| ≥ n

contradicting |υ̂−1(B)| < n − K. It follows Ic(Kφ) = n − K and therefore
the claim.

The proofs of the remaining measures we study in this section (Iη, Ihit
dalal,

IΣ
dalal, Imax

dalal, Iforget, and Imcsc) share certain similarities to the proofs of
Propositions 3 and 4, however each requires their own proof, which we show
in the Appendix A.

Proposition 5. It holds that

• UpperI is NP-complete if I ∈ {Iη, Ihitdalal, IΣ
dalal, Imax

dalal, Iforget, Imcsc};

• LowerI is coNP-complete if I ∈ {Iη, Ihitdalal, IΣ
dalal, Imax

dalal, Iforget, Imcsc};

• ExactI is Dp
1-complete if I ∈ {Iη, Ihitdalal, IΣ

dalal, Imax
dalal, Iforget, Imcsc};

• ValueI is FPNP[logn]-complete if I ∈ {Ihitdalal, IΣ
dalal, Iforget}; and

• ValueI is in FPNP[logn] if I ∈ {Iη, Imax
dalal, Imcsc}.
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We conclude our investigation of problems on the first level of the polyno-
mial hierarchy by pointing out an interesting relationship. As for ValueIhs ,
we are currently unable to provide a FPNP[logn]-completeness proof. However,
the problem ValueIhs has a close relationship with the problem Chromatic-
Number defined via

ChromaticNumber Input: an undirected graph G = (V,E)
Output: The chromatic number γ(G) of G

Recall that the chromatic number γ(G) of a graph G is the minimum number
of colours needed to colour all vertices of G so that no two adjacent vertices
have the same colour. We have the following relationship between the two
problems.

Proposition 6. ChromaticNumber can be polynomially reduced to ValueIhs.

However, it seems not to be known whether ChromaticNumber is FPNP[logn]-
complete (which would also show FPNP[logn]-completeness for ValueIhs).

4.2. Problems on the second level of the polynomial hierarchy

We now turn to inconsistency measures, which involve problems on the
second level of the polynomial hierarchy. We first recall a result regarding
Imv from (Xiao and Ma, 2012) which is given without proof.

Proposition 7. ExactImv is Dp
2-complete, UpperImv is Πp

2-complete, LowerImv
is Σp

2-complete, and ValueImv is in FPΣp2[logn].

We now continue with two novel results regarding the inconsistency mea-
sures Inc and Ip. For both we provide direct proofs of Σp

2-completeness for the
problem LowerI and utilize again Lemmas 4 and 6 to gain insights on the
remaining problems. Intuitively, the increase in terms of complexity of mea-
sures in this section, compared to measures discussed in previous Section 4.1,
is due to the fact that to verify a lower bound we non-deterministically guess
a witness that guarantees the bound, but checking the witness itself is a
coNP-hard problem.

We give an overview on the problems used in the proofs. In order to show
hardness results we will make use of several problems involving Quantified
Boolean Formulas (QBFs). In general, a quantified Boolean formula φ (in
prenex normal form) is an expression of the form

φ = Q1X1 . . . QnXnψ

38



where Q1, . . . , Qn ∈ {∀,∃}, X1, . . . , Xn are pairwise disjoint sets of proposi-
tions and ψ is a propositional formula over the signature X1∪ . . .∪Xn. Truth
of quantified Boolean formulas is inductively defined as follows:

• φ = ∀X1Q2X2 . . . QnXnψ is true if for all ω ∈ Ω(X1), Q2X2 . . . QnXnψ[ω]
is true.

• φ = ∃X1Q2X2 . . . QnXnψ is true if there is ω ∈ Ω(X1) such that
Q2X2 . . . QnXnψ[ω] is true.

• φ = ψ is true if ψ ≡ >

A QBF φ as above is alternating if universal and existential quantifiers alter-
nate. The following problems ∃QBFi and ∀QBFi are the canonical Σp

i - and
Πp
i -complete problems (i ∈ N), respectively.

∃QBFi Input: an alternating QBF φ = ∃X1∀X2 . . . QiXiψ
Output: true iff φ is true

∀QBFi Input: an alternating QBF φ = ∀X1∃X2 . . . QiXiψ
Output: true iff φ is true

The problem families ∃QBFi and ∀QBFi generalise the problems SAT and
UNSAT to higher levels of the polynomial hierarchy. In particular, note that
∃QBF1 is equivalent to SAT as it asks whether a QBF φ = ∃Xψ is true, i. e.,
whether ψ is satisfiable. Similarly, ∀QBF1 is equivalent to UNSAT as it asks
whether a QBF φ = ∀Xψ is true, i. e., whether ¬ψ is unsatisfiable.

In order to show Dp
2-completeness, we can also generalise the problem

SAT-UNSAT in a similar way to higher levels of the polynomial hierarchy.
Here, the problem ∀∃QBFi defined as follows is the canonical Dp

i -complete
problem.

∀∃QBFi Input: a pair (φ, φ′) of QBFs with
φ = ∃X1∀X2 . . . QiXiψ and φ′ = ∀X ′1∃X ′2 . . . Q′iX ′iψ′

Output: true iff φ and φ′ are true

Note as well that ∀∃QBF1 is equivalent to SAT-UNSAT.
Our results are as follows.

Proposition 8. LowerInc is Σp
2-complete, UpperInc is Πp

2-complete, ExactInc
is in Dp

2, and ValueInc is in FPΣp2[logn].
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Proof. We first consider LowerInc . Observe that, if K |= ⊥, we have

Inc(K) =|K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}
=|K| −min{m | ∃K′ ⊆ K : |K′| = m ∧ K′ |=⊥}+ 1

For the membership result, first check whether K |= ⊥ (via one NP oracle
call). Then, we non-deterministically guess a set K′ ⊆ K with |K′| = k and
ask an NP-oracle whether K′ is inconsistent. If K′ is inconsistent then k is
an upper bound for

min{m | ∃K′ ⊆ K : |K′| = m ∧ K′ |=⊥}

and thus |K| − k + 1 is a lower bound for Inc(K).
Regarding hardness, we provide a reduction from ∃QBF2. Let φ = ∃X∀Y ψ

be an instance of ∃QBF2. Let X = {x1, . . . , xn}. Construct an instance of
LowerInc as follows.

χi = pi ∧ (d→ xi) χi = pi ∧ (d→ ¬xi)

χ = (
∧

1≤i≤n

pi)→ (d ∧ ¬ψ)

The atoms d and pi are fresh atoms not occurring in ψ. Then let the knowl-
edge base K =

⋃
1≤i≤n{χi, χi} ∪ {χ}. Note that K |= ⊥. Further set bound

x = |K| − (n + 1) + 1 = 2 · n + 1 − n = n + 1. Knowledge base K can be
constructed in polynomial time. We claim that φ is true iff Inc(K) ≥ n+ 1.
We start with the following observation: it holds that any K′ ⊆ K is satisfi-
able if (i) χ /∈ K′, or (ii) |K′| < n + 1. If χ /∈ K′ then there is a model of K′
assigning d to false. If |K′| < n+ 1 then K′ is satisfiable, since either χ /∈ K′
or for one i with 1 ≤ i ≤ n neither χi ∈ K′ nor χi ∈ K′ (pi can be assigned
to false). It holds that (note that |K| = 2 · n+ 1)

Inc(K) ≥ n+ 1 = 2 · n+ 1− (n+ 1) + 1 = |K| − (n+ 1) + 1

iff ∃K′ ⊆ K s. t. K′ |= ⊥ and |K′| = n+ 1

iff ∃K′ ⊆ K s. t.

K′ |= ⊥, χ ∈ K′, and |K′ ∩ {χi, χi}| = 1 ∀i 1 ≤ i ≤ n

(∗) iff ∃ω defined on X s. t. ¬ψ[ω] |= ⊥
iff ∃ω defined on X s. t. > |= ψ[ω]

iff φ is true.
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For (∗), intuitively, a “simulation” of a truth value assignment of an inter-
pretation is achieved by “choosing” either χi or χi.

All other results follow from Lemmas 4 and 6.

The proof of the following proposition regarding Ip is similar as the one
above and can be found in Appendix A.

Proposition 9. UpperIp is Πp
2-complete, LowerIp is Σp

2-complete, ExactIp
is Dp

2-complete., and ValueIp is in FPΣp2[logn].

4.3. Problems on the third level of the polynomial hierarchy

We now look into the computational complexity of problems involving
the measure ICC . Recall that computing ICC(K) for a knowledge base K
amounts to considering sets {K1, . . . , Kn} such that all Ki are pairwise dis-
joint inconsistent subsets of K and MI(K1∪. . .∪Kn) is the union of all MI(Ki),
i = 1, . . . , n. Such a set is called conditional independent MUS partition of
K and ICC(K) is defined to be the cardinality of a maximal one.

Let us first consider the following decision problem DecMusPart about
conditional independent MUS partitions:

DecMusPart Input: K ∈ K, {K1, . . . , Kn}
Output: true iff {K1, . . . , Kn} is a conditional

independent MUS partition of K

We show now that DecMusPart is Πp
2-complete.

Proposition 10. DecMusPart is Πp
2-complete.

Proof. For membership, we show that the complementary problem coDec-
MusPart defined as

coDecMusPart Input: K ∈ K, {K1, . . . , Kn}
Output: true iff {K1, . . . , Kn} is not a conditional

independent MUS partition of K

is in Σp
2 = NPNP. Then it automatically follows that DecMusPart is in Πp

2.
To show that coDecMusPart is in NPNP consider the following algorithm

1. Non-deterministically guess an interpretation ω, a setM = {α1, . . . , αm} ⊆
K, and interpretations ω1, . . . , ωm

2. If K1, . . . , Kn are not pairwise disjoint return True
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3. If K1 ∪ . . . ∪Kn * K return True

4. If ω |= Ki for some i ∈ {1, . . . , n} return True

5. If there are no i, j ∈ {1, . . . , n}, i 6= j, with M∩Ki 6= ∅ and M∩Kj 6= ∅
return False

6. Use NP-oracle to decide M |=⊥; if M 6|=⊥ return False

7. for i = 1, . . . ,m, if ωi 6|= M \ {αi} return False

8. Return True

Step 2 and step 3 check whether K1, . . . , Kn are pairwise disjoint subsets of
K. If this is not the case they cannot be a conditional independent MUS
partition. Step 4 checks whether any Ki is consistent, which also shows that
{K1, . . . , Kn} cannot be a conditional independent MUS partition. Steps 5–7
check whether there is a minimal inconsistent subset M that intersects two
different Ki, Kj. In particular, in step 5 we check whether the guessed M
intersects with two different Ki, Kj. In step 6 we check inconsistency of M
and in step 7 minimality (all subsets with one fewer element are consistent).
Note that the algorithm has polynomial runtime.

In order to show Πp
2-hardness, we consider a reduction from ∀QBF2 (see

previous section). Let φ = ∀X∃Y ψ be an instance of ∀QBF2. Let X =
{x1, . . . , xm} and c a fresh propositional variable. Then define

K1 = {x1,¬x1}
...

Km = {xm,¬xm}
Km+1 = {ψ ∧ c,¬c}

We claim that φ = ∀X∃Y ψ evaluates to true if and only if {K1, . . . , Km+1} is
a conditional independent MUS partition of K1 ∪ . . . ∪Km+1. First, observe
that each set K1, . . . , Km+1 is a minimal inconsistent set. So, {K1, . . . , Km+1}
can only be a conditional independent MUS partition if there is no M ∈
MI(K1 ∪ . . .∪Km+1) with M 6= K1,. . . ,M 6= Km+1. Assume there is such an
M . Then ψ ∧ c ∈ M as every minimal inconsistent subset of K1 ∪ . . . ∪Km

is one of the K1, . . . , Km itself. So

M = {(¬)xi1 , . . . , (¬)xik , ψ ∧ c}

for some i1, . . . , ik ⊆ {1, . . . ,m} with ij 6= ij′ for j 6= j′. As c cannot be re-
sponsible for the inconsistency in M , it follows that there is a configuration of

42



X (prescribed by (¬)xi1 , . . . , (¬)xik) such that ψ is false (for all configurations
of Y ). So if {K1, . . . , Km+1} is not a conditional independent MUS partition
then φ = ∀X∃Y ψ evaluates to false. On the other hand, if {K1, . . . , Km+1}
is a conditional independent MUS partition then φ = ∀X∃Y ψ evaluates to
true.

Having established the exact complexity class of DecMusPart on the
second level of the polynomial hierarchy, we can easily establish that LowerICC
resides not higher than on the third level of the polynomial hierarchy.

Proposition 11. LowerICC is in Σp
3.

The Πp
2-completeness of DecMusPart is a strong evidence that LowerICC

cannot reside on the second level of the polynomial hierarchy itself. However,
we did not find any Σp

3-hardness proof for LowerICC , yet. Nonetheless, us-
ing the membership result above we can also provide upper bounds for the
other computational problems, utilising similar reasoning as in Lemmas 4
and 6.

Corollary 3. UpperICC is in Πp
3, ExactICC is in Dp

3, and ValueICC is in

FPΣp3[logn].

4.4. Problems beyond the third level of the polynomial hierarchy

In this section we study the complexity of the remaining measures IMI,
IMIC , Imc, and Iis. The main results in this section are that these mea-
sures contain (sub)problems whose counting complexity is higher than for
propositional model counting. In particular, for IMI, Imc, and, Iis, we show
completeness for CNP for the decision problems with lower and upper bounds
and hardness for C=NP checking the exact bound. Further, we show #·coNP
completeness, under subtractive reductions (see Section 2 for the definition)
for these measures for the problem of computing the exact value.

Since #·coNP is a complexity class containing counting problems, we
consider the problems of counting the number of (a) minimal inconsistent
subsets, (b) maximal consistent subsets and self-contradictory formulas, and
(c) independent sets from the set of minimal inconsistent subsets. Problem
(a) is equal to the problem ValueIMI

. Problem (b) differs from ValueImc
by being off by one (ValueImc is equal to the number of maximal consis-
tent subsets plus the number of self-contradictory formulas minus one). The
value sought in problem ValueIis is based on a logarithm of the number of
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independent sets; we omit in our investigation of ValueIis this logarithm.
The reason for omitting the logarithm is that we can then directly apply
counting complexity classes (which rely on a non-negative integer as out-
put). We think this is not an obstacle in complexity classification: one can
directly obtain the result with negligible computational cost. The problems
are formalized in our usual notation as follows.

#MCAndContradictory Input: K ∈ K
Output: |MC(K)|+ |{φ ∈ K | φ |= ⊥}|

#is Input: K ∈ K
Output: |{M ⊆ MI(K) |M is independent}|

For the measure IMIC , we show hardness for all three decision prob-
lems (for CNP and C=NP), and show membership for ValueI

MIC
for class

FP#·coNP. That is, the value of this measure can be computed via a de-
terministic polynomial time algorithm that can access a functional #·coNP
oracle.

Briefly put, these complexity results indicate that problems under IMI,
IMIC , Imc, and Iis exhibit considerably high complexity, in particular, if com-
pared to all the other measures studied in this paper. An intuitive expla-
nation is that all these measures are based on counting structures that are
themselves hard (e. g. Dp

1-complete) to check whether a structure is to be
counted or not, and, in addition, that the number of attainable values may
be exponential in the size of the knowledge base (see also (Thimm, 2016a)).

The main problems we use in this section to reduce from are those related
to counting models of an open quantified Boolean formula. More concretely,
we use problems with a given QBF of the form χ = ∀Y φ(X, Y ) with X and
Y sets of Boolean variables. That is, we have a universally quantified part
(Y variables) and an open part (X variables). A model of χ is an assignment
to X s.t. ∀Y φ′(Y ) evaluates to true, with φ′(Y ) being the formula where all
occurrences of variables in X have been replaced by the assignment to X
(i. e. if x is true replaced by > and if x is false replaced by ⊥). We denote,
like in the unquantified case, the set of all models of χ by Mod(χ).

The three main problems we make use of are then defined, for a given
χ = ∀Y φ(X, Y ), as (i) the counting problem of computing |Mod(χ)|, (ii)
determining whether |Mod(χ)| ≥ k holds for a given integer k, and (iii)
determining whether |Mod(χ)| = k for a given integer k. Problem (i) is

44



#·coNP-complete, problem (ii) is CNP-complete, and problem (iii) is C=NP-
complete.

# Π1SAT Input: a QBF χ = ∀Y φ(X, Y )
Output: |Mod(χ)|

#≥Π1SAT Input: a QBF χ = ∀Y φ(X, Y ), and an integer k ≥ 0
Output: true iff |Mod(χ)| ≥ k

#=Π1SAT Input: a QBF χ = ∀Y φ(X, Y ), and an integer k ≥ 0
Output: true iff |Mod(χ)| = k

In the following subsections, we introduce reductions s.t. the models of an
open QBF χ are in a certain relation to the constructed instance for an
inconsistency measure, which we then use for showing (several) results.

For membership results, we make use of relations between (counting)
complexity classes that have been established. It holds that #·coNP =
#·∆p

2 (Hemaspaandra and Vollmer, 1995, Theorem 1.5), which eases proofs
of membership, in particular since Dp ⊆ ∆p

2, and, in turn, #·coNP contains
counting problems where the complexity of verifying whether to count or not
can be in Dp. A similar useful result for us is that CNP = CB(NP) (Wag-
ner, 1986, Theorem 4), with B(NP) the Boolean closure of NP, which, most
importantly for our work here, implies that Dp ⊆ B(NP) and CNP = CDp.

For problems ExactI , for I ∈ {IMI, Imc, Iis, IMIC}, we show hardness
for C=NP. The reason for (only) showing hardness for these cases is that
similar results, as for #·coNP and CNP from the preceding paragraph, have
not been established, to our knowledge, for C=NP. That is, it is not clear
whether C=NP = C=B(NP), for instance. Nevertheless, it holds that ExactI
is in a class that is defined via the conjunction of two problems in CNP
(one asking whether the value is an upper, the other whether the value is a
lower bound) for the measures IMI, Imc, and Iis, where we have established
membership for CNP for the corresponding problems asking for upper, resp.
lower, bounds. Such classes, to our knowledge, have not been thoroughly
investigated, however.

To prove our results, we make use of auxiliary lemmas for the measures
that (directly) connect them to models of quantified Boolean formulas. We
illustrate the proof for one measure in detail (IMI) and show the proofs for
the remaining measures in the appendix.
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4.4.1. The measure IMI

Recall that IMI(K) = |MI(K)|, i. e., IMI(K) is the number of minimal
inconsistent subsets of K. Although, conceptually, this measure is one of
the simpler ones, computationally it is quite demanding as we will see be-
low. We start with defining a translation from a quantified Boolean formula
to a knowledge base such that the models of the formula and the minimal
inconsistent subsets correspond.

R#MI(∀Y φ(X, Y )) = {ψ} ∪
⋃

1≤i≤|X|

{φi, φi}

φi = pi ∧ (
∧
j 6=i

pj → xi)

φi = pi ∧ (
∧
j 6=i

pj → ¬xi)

ψ =
∧

1≤i≤|X|

pi → ¬φ(X, Y )

Formally, we show the correspondence we require for subsequent complexity
proofs in the following lemma.

Lemma 7. Let χ = ∀Y φ(X, Y ) be an open QBF with X and Y sets of
variables. For K = R#MI(∀Y φ(X, Y )) it holds that |Mod(χ)| = |MI(K)|−|X|.

Proof. Let P1 =
⋃

1≤i≤n{φi} and P1 =
⋃

1≤i≤n{φi}. Further, let P2 = {ψ} ∪
P1 ∪ P1. We now claim that the number of truth assignments over X that
satisfy χ is |MI(P2)| − |MI(P1 ∪ P1)|. Note that, due to monotonicity of MI,
it holds that, if K1 ⊆ K2 then MI(K1) ⊆ MI(K2).

Let M ∈ MI(P2). It holds that for 1 ≤ i ≤ n that φi ∈ M or φi ∈ M .
Suppose the contrary, i. e. there exists an i s. t. neither φi nor φi is in M .
Then a truth assignment assigning all pj with j 6= i to true and pi to false
satisfies all formulas in M . This is a contradiction to M ∈ MI(P2).

Now assume that M ∈ MI(P2) s. t. ∃i with both φi ∈ M and φi ∈ M .
Then ψ /∈ M , since by observations above we have for each 1 ≤ j ≤ n with
j 6= i that φj ∈ M or φj ∈ M and both for formulas for i. These formulas
together are inconsistent, and thus adding a further formula (such as ψ)
would not be minimal anymore. This means if M ∈ MI(P2) s. t. ∃i with both
φi ∈ M and φi ∈ M , then M ∈ MI(P1 ∪ P1). Further, if M ∈ MI(P2) and @i
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with both φi ∈M and φi ∈M , then ψ ∈M (if one of φi or φi is missing and
also ψ is not present, then the set of formulas is satisfiable).

Let K∗ ⊆ 2K be the set of subsets of K s. t. each K′ ∈ K∗ contains for
each i with 1 ≤ i ≤ n exactly one of φi or φi but not both, and in addition
K′ contains ψ. We define a bijection f from K′ ∈ K∗ to an interpretation
over X by

f(K′)(xi) =

{
true if φi ∈ K′

false if φi ∈ K′.

For f(M) = ωM and by the observations above it holds that

M ∈ (MI(P2) \MI(P1 ∪ P1))

iff M ∈ MI(P2), ψ ∈M, and

|M ∩ {φi, φi}| = 1 ∀i with 1 ≤ i ≤ n

iff > |= φ(X, Y )[ωM ]

iff wM satisfies ∀Y φ(X, Y ).

Thus, there is a bijection between MI(P2 \ (P1∪P1)) and the set of satisfying
assignments defined on X of χ(X). Finally, |MI(P1 ∪ P1)| = |X| (for each
1 ≤ i ≤ |X| there is one member in this set with both φi and φi part of the
member).

Equipped with the preceding lemma, we can straightforwardly use the
reduction to show completeness results for LowerIMI

and UpperIMI
.

Proposition 12. LowerIMI
and UpperIMI

are CNP-complete, ExactIMI
is

C=NP-hard.

For the functional problem ValueIMI
, we show completeness for the

counting class #·coNP. By utilizing Lemma 7, we can show hardness un-
der subtractive reductions.

Proposition 13. ValueIMI
is #·coNP-complete under subtractive reduc-

tions.

4.4.2. The measure IMIC

Determining IMIC(K) involves summing up the reciprocals of the cardinal-
ities of all minimal inconsistent subset ofK. We show that all three associated
decision problems are CNP (C=NP) hard, and that the actual value can be
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computed in FP#·coNP, i. e., via a deterministic polynomial time algorithm
that can access a functional #·coNP oracle. The last result implies the same
membership for the decision problems.

Proposition 14. LowerI
MIC

and UpperI
MIC

are both CNP-hard problems,
and ExactI

MIC
is a C=NP hard problem.

For problem ValueI
MIC

, we show that an instance of this problem can
be solved via an algorithm that can access a #·coNP oracle, which can be
used to compute for each possible size of an MI the number of such minimal
inconsistent subsets of a knowledge base.

Proposition 15. ValueI
MIC

is in FP#·coNP.

4.4.3. The measure Imc
We move on to the complexity of Imc which is defined as the sum of the

number of maximal consistent subsets and the number of inconsistent formu-
las of a knowledge base (minus one). So this measure has two components,
which we analyse both separately and combined.

Similarly as for IMI, we begin with defining a translation of an open
quantified Boolean formula to a knowledge base, so that the models of that
formula are in a correspondence to the maximal consistent subsets of the
constructed knowledge base.

R#MC(∀Y φ(X, Y )) ={ψ} ∪
⋃

1≤i≤|X|

{φi, φi}

φi = p→ xi

φi = p→ ¬xi
ψ = p ∧ ¬φ(X, Y )

In the next formal result we show that the interpretations that are not
models of χ correspond, with an offset of one, to maximal consistent subsets
of K.

Lemma 8. Let χ = ∀Y φ(X, Y ) be an open QBF with X and Y sets of vari-
ables. For K = R#MC(∀Y φ(X, Y )) it holds that |Mod(χ)| = 2|X|−|MC(K)|+
1.
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Based on Lemma 8, we show the following completeness and hardness
results for the decision problems relating to Imc.

Proposition 16. LowerImc and UpperImc are CNP-complete, ExactImc
is C=NP-hard.

For ValueImc , recall that this measure is equal to the sum of the number
of maximal consistent subsets and the number of inconsistent formulas of
a knowledge base minus one. We analyze the (counting) complexity of the
(sub)problems that ask, for a given knowledge base, (i) the number of maxi-
mal consistent subsets, (ii) the number of inconsistent formulas, and (iii) the
sum of both values. We begin with (i), and introduce an auxiliary problem
which counts the number of subset-maximal models of a propositional for-
mula wrt. the propositions assigned to true. For that, we define the ordering
<t over interpretations by ω <t ω

′ iff {p | ω(p) = true} ⊂ {p | ω′(p) = true}.

#MaxModels Input: formula φ in CNF
Output: |{ω |= φ | @ω′ s. t. ω <t ω

′}|

Durand et al. (2005) have shown (Theorem 5.1) that the problem #CIRCUMSCRIPTION—
which is basically the dual of the problem #MaxModels as it counts the
subset-minimal models—is #·coNP-complete (via subtractive reductions).
We provide a corollary showing that also counting the number of subset-
maximal models is #·coNP-complete.

Corollary 4. #MaxModels is #·coNP-complete via subtractive reductions.

We are now prepared to show that counting the number of maximal con-
sistent subsets has the same complexity as counting the number of minimal
inconsistent subsets.

Proposition 17. The problem of counting all maximal consistent subsets of
a given knowledge base is #·coNP-complete under subtractive reductions.

The other component of Imc, the number of self-conflicting formulas, is
arguably easier to compute, the functional problem is FPNP[logn]-complete.

Proposition 18. The problem of counting unsatisfiable formulas in a given
knowledge base is FPNP[logn]-complete.
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Finally, in this section, we show that counting both maximal consistent
subsets and self-contradictory formulas, with the shorthand #MCAndContradictory,
is a #·coNP-complete problem as well. In particular hardness holds if no
self-contradictory formulas occur in the knowledge base. This problem cor-
responds to ValueImc , except for being off by a constant one.

Proposition 19. #MCAndContradictory is #·coNP-complete under subtrac-
tive reductions. Hardness holds even for knowledge bases without self-contradictory
formulas.

4.4.4. The measure Iis
The final measure we consider in this paper is Iis where Iis(K) is defined

to be the logarithm of the number of independent sets of MI(K). We start
this subsection with defining a translation of a knowledge base to another,
so that the minimal inconsistent subsets of the first are in a correspondence
to the independent sets of the second.

R#IS(K) = {¬p} ∪
⋃
α∈K

(α ∨ p)

Lemma 9. Let K be a knowledge base and R#IS(K) = K′. It holds that
|MI(K)| = |IS(K′)|+ 1.

Similarly as in previous sections, we show completeness (hardness) for
the decision problems now that we are equipped with the preceding lemma.

Proposition 20. LowerIis and UpperIis are CNP-complete and ExactIis
is C=NP hard.

Next, we show complexity of the functional problem ValueIis . We omit
the logarithm in our investigation. We dubbed the corresponding problem by
#is. The logarithm is omitted to make classification of the problem amenable
to counting complexity classes (which are defined in non-negative integers as
output). We see this not as an obfuscation: the logarithm can be obtained
from the number of independent sets with negligible computational cost.

Proposition 21. #is is #·coNP-complete via subtractive reductions.
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5. Some Notes on Tractable Cases

Due to the intractability of general propositional logic, many fragments
of it have been investigated in order to make it usable for actual applications.
As a matter of fact, there exist quite expressive fragments of propositional
logic such as the Horn fragment and the Krom fragment where the satisfia-
bility problem can be solved in polynomial time. In the following, we inves-
tigate whether our problems related to inconsistency measurement become
tractable (or at least easier) when moving to such fragments of propositional
logic. For this initial study we only consider measures, which are located
on the first level of the polynomial hierarchy in the general case (see Sec-
tion 4.1)—namely Id, Iη, Ic, Ihs, Ihit

dalal, IΣ
dalal, Imax

dalal, Iforget, and Imcsc. We do
make some general comments on the other measures in Section 5.3 as well,
but leave a deeper analysis of those for future work.

Let LX(At) ⊆ L(At) be some subset of propositional logic and define the
following problems

ExactXI Input: K ⊆ LX(At), x ∈ R∞≥0

Output: true iff I(K) = x

UpperXI Input: K ⊆ LX(At), x ∈ R∞≥0

Output: true iff I(K) ≤ x

LowerXI Input: K ⊆ LX(At), x ∈ R∞≥0 \ {0}
Output: true iff I(K) ≥ x

ValueXI Input: K ⊆ LX(At)
Output: The value of I(K)

The above four problems represent special cases of our general problems.
Before we continue with our investigation on the computational complex-

ity of the above problems, we make some general observations for knowledge
bases in conjunctive normal form.

Definition 23. A clause c ∈ L(At) is a disjunction of literals, i. e.

c = l1 ∨ . . . ∨ lk

and each li is of the form (¬)a for some a ∈ At. A knowledge base K ⊆ L(At)
is in conjunctive normal form (CNF) if for all α ∈ K, α is a clause. Let
LCNF (At) ⊆ L(At) be the set of clauses on At.
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ExactHI UpperHI LowerHI ValueHI
Id P P P FP

Iη (Dp1) (NP) (coNP) (FPNP[n])

Ic (Dp1) (NP) (coNP) (FPNP[logn])

Ihs P P P FP

IΣ
dalal (Dp1) NP-c coNP-c (FPNP[logn])

Imax
dalal P P P FP

Ihit
dalal (Dp1) NP-c coNP-c (FPNP[logn])

Imcsc (Dp1) (NP) (coNP) (FPNP[logn])

Iforget (Dp1) NP-c coNP-c (FPNP[logn])

Table 3: Computational complexity in the Horn/Krom fragment of the considered incon-
sistency measures (all statements are membership statements, an additionally attached
“-c” also indicates completeness for the class); cells in grey indicate cases with the same
complexity as in the general case; for cells where the class is given in parentheses we have
no stronger results than those provided in Section 4.1

Restricting the syntactical form of knowledge bases to CNF already makes
several inconsistency measures coincide with each other and simplifies their
definition.

Proposition 22. For all K ⊆ LCNF (At), Id(K) = Imax
dalal(K) = Ihs(K).

Proposition 23. For all K ⊆ LCNF (At), IΣ
dalal(K) = Ihitdalal(K) = Iforget(K).

We will now investigate the computational complexity of the problems
above wrt. our inconsistency measures for the Horn fragment (Section 5.1)
and the Krom fragment (Section 5.2). Table 3 summarises the results of these
two sections, which are identical for both fragments. For the measures Iη, Ic,
and Imcsc we could not establish stronger results than the ones shown for the
general case. The membership statements for the rows of these measures in
Table 3 follow directly from the general results before. Showing completeness
for these classes or showing tractability is an open problem.

5.1. The Horn fragment

The first fragment of propositional logic that we will consider is the Horn
fragment (Horn, 1951).
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Definition 24. A Horn clause is a clause l1∨. . .∨ln where at most one literal
from l1, . . . , ln is unnegated. For a propositional signature At let LH(At) ⊆
L(At) be the set of Horn clauses on At.

Obviously, LH(At) ⊆ LCNF (At). The Horn fragment is computationally
attractive as deciding whether a set of Horn clauses K ⊆ LH(At) is satisfiable
is in P (Papadimitriou, 1994). This problem is also called HornSAT.

First, a direct corollary of the fact that HornSAT is in P is the following.

Proposition 24. ExactHId, UpperHId, LowerHId, and ValueHId can be com-
puted in polynomial time.

Due to Proposition 22 the above result implies the next observation.

Corollary 5. ExactHI , UpperHI , LowerHI , and ValueHI can be computed
in polynomial time for I ∈ {Imax

dalal, Ihs}.

Interestingly, although Imax
dalal becomes tractable in LH(At), this is not the

case for IΣ
dalal(K) (and its equivalent measures Ihit

dalal and Iforget).

Proposition 25. For I ∈ {IΣ
dalal, Ihitdalal, Iforget}, UpperHI is NP-complete,

LowerHI is coNP-complete, ExactHI is in Dp
1, and ValueHI is in FPNP[logn].

5.2. The Krom fragment

The second fragment of propositional logic that we will consider is the
Krom fragment.

Definition 25. A Krom clause is a clause l1 ∨ l2. For a propositional signa-
ture At let LK(At) ⊆ L(At) be the set of Krom clauses on At.

As it is the case with the Horn fragment, the Krom fragment is computa-
tionally attractive as deciding whether a set of Krom clauses K ⊆ LK(At) is
satisfiable is in P (Papadimitriou, 1994). This problem is also called Krom-
SAT. A central tool for showing this fact and other statements in this section
is the translation of a Krom knowledge base into a directed graph as follows,
cf. (Papadimitriou, 1994).

Definition 26. Let K ⊆ LK(At). The induced graph GK of K is a directed
graph GK = (V,E) defined via

V = {a,¬a | a ∈ At}
E = {(l, l′) | l ∨ l′ ∈ K}
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One can show that K ⊆ LK(At) is inconsistent if and only if there is an
atom a ∈ At such that there are directed paths in GK from a to ¬a and from
¬a to a, i. e., there is a cycle involving a and ¬a, see e. g. (Papadimitriou,
1994).

As in the previous section, a direct corollary of the fact that KromSAT is
in P is the following.

Proposition 26. ExactKId, UpperKId, LowerKId, and ValueKId can be com-
puted in polynomial time.

Due to Proposition 22 the above result implies the next observation.

Corollary 6. ExactKI , UpperKI , LowerKI , and ValueKI can be computed
in polynomial time for I ∈ {Imax

dalal, Ihs}.

Analogously to the Horn case, Imax
dalal becomes tractable in LK(At), and,

also analogously to the Horn case, this is not the case for IΣ
dalal(K) (and its

equivalent measures Ihit
dalal and Iforget).

Proposition 27. For I ∈ {IΣ
dalal, Ihitdalal, Iforget}, UpperKI is NP-complete,

LowerKI is coNP-complete, ExactKI is in Dp
1, and ValueKI is in FPNP[logn].

5.3. Higher-level measures

For measures located beyond the first level of the polynomial hierarchy
it is less likely to obtain tractability when moving to fragments such as the
Horn or Krom fragment, as those typically possess some additional complex-
ity. For example, many measures beyond the first level of the polynomial
hierarchy make use of minimal inconsistent sets, which may still be expo-
nential in number in knowledge bases in CNF and its fragments. However,
some problems of these measures may become easier and drop a level in the
polynomial hierarchy. In this section, we look at some of these measures in
an exemplary fashion and provide some membership results. We leave an
in-depth analysis and, in particular, completeness results for future work.

In (Davydov et al., 1998) it has been shown that checking whether a set
M ⊆ LH(At) is a minimal inconsistent set is solvable in polynomial time.
This problem is also tractable in LK(At).

Lemma 10. Deciding whether a set M ⊆ LK(At) is a minimal inconsistent
set is in P.
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These two observations do not imply tractability of the problems related
to Ip and Imv, but they lead to a decrease of complexity of one level in the
polynomial hierarchy.

Proposition 28. For X ∈ {H,K}, LowerXIp is in NP, UpperXIp is in coNP,

ExactXIp is in Dp
1, and ValueXIp is in FPNP[logn].

Proposition 29. For X ∈ {H,K}, LowerXImv is in NP, UpperXImv is in

coNP, ExactXImv is in Dp
1, and ValueXImv is in FPNP[logn].

As NP oracle calls that ask for satisfiability can be solved in polynomial
time in the Horn and Krom fragment, the complexity of problems related to
Inc also drop one level.

Proposition 30. For X ∈ {H,K}, LowerXInc is in NP, UpperXInc is in
coNP, ExactXInc is in Dp

1, and ValueXInc is in FPNP[logn].

Also the complexity of ICC drops from the third level to the second level
of the polynomial hierarchy.

Proposition 31. For X ∈ {H,K}, LowerXICC is in Σp
2, UpperXICC is in

Πp
2, ExactXICC is in Dp

2, and ValueXICC is in FPΣp2[logn].

A further corollary from the fact that checking whether a set is mini-
mally unsatisfiable is polynomially solvable in the Horn and Krom fragment,
is that counting MIs in this fragment is a problem in #P. Hardness can
be proven, as well, by a reduction from the problem of counting all simple
paths in a given directed graph (i. e. paths without repeated vertices). The
latter problem was proven to be #P-complete (Valiant, 1979b), however us-
ing another kind of reduction, namely Turing reductions. In this case, this
means that a problem A can be Turing-reduced to problem B if there is a
polynomial-time algorithm that solves A and can query B as a subproblem
(in contrast, e. g., subtractive reductions do not allow a computation “after-
wards”, i. e., after querying B, which induces different formal results for some
complexity classes). It is currently open whether this problem is hard also
for parsimonious or subtractive reductions. The hardness results for counting
MIs, in fact, have been proven already for a related concept in description
logics (Peñaloza and Sertkaya, 2017, Corollary 42).

Proposition 32. For X ∈ {H,K}, ValueXIMI
is #P-complete under Turing

reductions.
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Similarly, the measure Imc exhibits milder complexity. First, there are
no self-contradictory elements in a Horn or Krom knowledge base (a single
clause is always satisfiable). Finally, since checking whether a set of Horn
(Krom) clauses is satisfiable is decidable in polynomial time, also checking
maximality is decidable in polynomial time: it suffices to consider whether
each superset with exactly one additional element from the given knowledge
base is inconsistent. Thus, the following result also follows straightforwardly.

Proposition 33. For X ∈ {H,K}, ValueXImc is in #P.

This closes our outlook on the behaviour of the considered measures in
fragments of propositional logic.

6. Related Works

Our analysis of the computational complexity of inconsistency measures
in the setting of propositional logic continues and updates our previous work
(Thimm and Wallner, 2016). Another work that explicitly discusses compu-
tational complexity of inconsistency measures is (Xiao and Ma, 2012) whose
results we already mentioned in Section 4.2. In this section, we will now
discuss further works that are related to our current work. More precisely,
we will review works discussing general computational issues in inconsistency
measurement in Section 6.1 and analyses of related computational complexity
questions in Section 6.2.

6.1. Computational issues in inconsistency measurement

Other works on inconsistency measurement that address computational
issues are as follows. These works either develop and evaluate algorithmic
solutions for certain inconsistency measures or discuss computational com-
plexity of inconsistency measurement in other formalisms than propositional
logic.

In (Konieczny and Roussel, 2013) the authors present a software platform
for reasoning, among other, with the Shapley inconsistency value (Hunter
and Konieczny, 2010). While there are not given many details, the plat-
form is written in Java and makes uses of external tools such as SAT solvers.
McAreavey et al. (2014) present algorithmic approaches to count minimal in-
consistent sets in arbitrary knowledge bases (not necessarily in CNF) with the
motivation of inconsistency measures such as IMI. They empirically evaluate
their approach and show its feasibility. Ammoura et al. (2017) develop two
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formalisations of the computation of Imcsc: first, as an integer linear program
and, second, as a partial MaxSAT problem. These formalisations are shown
to be able to faithfully compute the value of Imcsc. Similarly, (Jabbour et al.,
2016) present a formalisation of the computation of ICC in terms of a similar
SAT optimisation problem. An experimental evaluation shows that its imple-
mentation can compute inconsistency values in reasonable time. The work
(Thimm, 2016b) develops a general scheme for approximation algorithms for
inconsistency measurement. Moreover, it develops more sophisticated ap-
proximation algorithms for the measures Ihs and Ic. Through an empirical
evaluation these algorithms are compared and it is shown that they scale
linearly with the size of the knowledge base while providing sufficient accu-
racy. In (Thimm, 2017a) a new family of inconsistency measures based on
fuzzy logic is developed and it is shown that the corresponding computational
problems lie on the first level of the polynomial hierarchy.

In (Brewka et al., 2017; Ulbricht et al., 2018b), a generalisation of the
concept of inconsistency suitable for non-monotonic logics is developed and
applied to the framework of inconsistency measurement. More formally, a
set of formulas is strongly inconsistent if all its supersets within a knowledge
base are inconsistent as well. In (Brewka et al., 2017; Ulbricht et al., 2018b)
several question pertaining to computational complexity are investigated as
well. The works (Ulbricht et al., 2016, 2018a) develop inconsistency measures
for logic programs under the answer set semantics and also investigate com-
putational complexity questions. Due to the higher complexity of answer set
programming itself their results showed that inconsistency measurement in
that context is usually one level higher in the polynomial hierarchy as similar
questions in our classic setting.

6.2. Related complexity analyses

Related notions and concepts to inconsistency measurement have been
analyzed wrt. their complexity. We begin with related work regarding min-
imal inconsistent subsets of a set of formulas (MIs). In (Davydov et al.,
1998) the complexity of deciding whether a given formula in CNF is an MI
is analyzed, i. e., checking whether the set of clauses is inconsistent and all
proper subsets of the clauses are satisfiable. While in general this problem
is Dp

1-complete (Papadimitriou and Wolfe, 1988), it is shown in (Davydov
et al., 1998) that when the number of clauses is bounded by the number of
variables n plus an integer k certain milder results hold. In particular, when
k = 0, then the formula is never an MI. If k = 1, then the problem of deciding
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whether the formula is an MI is in P. In (Marques-Silva and Previti, 2014)
(based on results from (Liberatore, 2005)) complexity of checking whether a
clause (a formula) is in an MI is shown. In our work, we partially rely on
some of the results (e. g. Dp

1-completeness of checking whether a set is an MI).
In contrast to the mentioned works, we study different computational tasks
relating to MIs that arise from the considered inconsistency measures, and
without bounds on variables or clauses.

Several complexity results related to our work are given in (Peñaloza and
Sertkaya, 2017). There, they study a related concept in description logics,
namely that of so-called minimal axiom sets (MinAs), which are minimal sub-
sets (of a given set of axioms) that entail a given formula. If the entailed for-
mula is unsatisfiable, then the set is a minimally inconsistent subset. Particu-
larly related are then the results of counting MinAs in case of Horn and Krom
formulas (they show the result for formulas called core in their paper, which
are a fragment of Krom formulas), which they prove to be #P-complete, a
result which we make use to directly show the related result of counting MIs
on Horn and Krom formulas (see Proposition 32). Another related result of
theirs is that counting MinAs in a more general setting is #NP-complete,
which relates to our result of counting MIs of general knowledge bases, which
is #·coNP-complete (recall that #NP = #·coNP). In contrast, we provide
our proof directly for our setting, use a different reduction, and show further
counting results for this inconsistency measure, particularly for UpperIMI

,
LowerIMI

, and ExactIMI
. In more detail, they use weakly parsimonious

reductions (informally speaking, these are polynomial reductions from whose
result one can read in polynomial time the number of solutions). However,
we note that our reduction can be straightforwardly rewritten to be a weakly
parsimonious reduction. Nevertheless, we formally link the complexities of
the problem of counting MIs of general propositional logic knowledge bases
and the problem studied by Peñaloza and Sertkaya (2017). Another result,
related to our counting context, concerns the enumeration complexity of MIs
of a Horn formula. Enumeration complexity studies complexity when the
task is to enumerate (all) solutions. It holds that MI enumeration is possible
with so-called polynomial delay for Horn formulas. This means that there
are algorithms which can compute each of the solutions with a polynomial
running time that is only dependent on the input size (however, in general,
this does not imply that there are at most polynomially many solutions).
Furthermore, efficient algorithms for the enumeration of MIs is also the topic
of (Marques-Silva et al., 2016; Arif et al., 2015).
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Another line of related research studies complexity of, and algorithmic
approaches to, SAT and #SAT (on different forms of input). In fact, there is
an abundance of research on this topic (see, e. g., the Handbook on Satisfia-
bility (Biere et al., 2009)), however no inconsistency measure in the general
case, other than Id, studied in this paper directly corresponds to a SAT
or #SAT problem. We overview some results from this field (particularly
ones that are “closer” to our analysis). It is well known that SAT is NP-
complete, even in restricted cases (such as for CNF knowledge bases with at
most three variables per clause), and, likewise, it is well known that #SAT
is #P-complete, again, even under restricted cases such as for Krom formu-
las with only positive literals (Valiant, 1979b). There are also so-called di-
chotomy results, studying when problems are tractable and when intractable,
and finding exact barriers (Creignou and Hermann, 1996). Results regarding
fragments of propositional logic that exhibit milder complexity for one of the
two problems is also prevalent in the literature, e. g., in (Pretolani, 1996) it
is analyzed how to extend tractable classes of SAT. In (Andrei et al., 2009)
the complexity of both problems are studied when clauses are (not) related
(literals appearing positive and negative in different clauses). Also the opti-
mization problem, MaxSAT, has been studied in detail. We make use of the
well-known result that MaxSAT is NP-complete, even in the restricted case
of Horn formulas (Jaumard and Simeone, 1987).

We move on to problems related to maximal consistent subsets. In the
field of databases, a related concept to maximal consistent subsets, as studied
in this paper, is that of database repairs, and complexity issues relating to
such repairs (Arenas et al., 1999, 2003; Chomicki and Marcinkowski, 2005;
Flesca et al., 2010; Staworko and Chomicki, 2010; Maslowski and Wijsen,
2013; Wijsen, 2014; Chomicki and Wijsen, 2016; Livshits and Kimelfeld,
2017; Parisi and Grant, 2017). Repairs in the database context can take
many forms. A common approach to repairs of (inconsistent) databases
is to consider those database instances with minimal distance to the given
database that satisfy certain integrity constraints (Arenas et al., 1999). For
instance, a repair can be seen as parts to add and remove from a database
to restore consistency. If only removals are permitted, repairs may take the
form of maximal consistent subsets of the database that respect the con-
straints (Chomicki and Marcinkowski, 2005). Similar to forms of databases,
constraints can be heterogeneous with varying complexity (see, e.g., (Arenas
et al., 2003; Chomicki and Marcinkowski, 2005; Flesca et al., 2010; Staworko
and Chomicki, 2010; Maslowski and Wijsen, 2013; Wijsen, 2014; Parisi and
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Grant, 2017)) to check whether a constraint is satisfied. Maximal consis-
tent subsets, as studied in this article, are, naturally, a related formalism.
Maximality (minimal distance) of repairs relates to maximality of subsets
of knowledge bases, and checking integrity constraints relates to consistency
checking of the subset. Depending on the concrete conditions of what is a
repair, complexity varies considerably. For instance, checking an integrity
constraint may be coNP-hard, which can lead to complexity of reasoning
based on repairs (e. g., considering the intersection of all repairs) being on the
second level of the polynomial hierarchy. On the other hand, constraints may
also refer to (computationally) simpler problems, such as checking whether
no two tuples have the same value for a primary key (which is then de-
cidable in polynomial time). In such a case, also maximality may be de-
cidable in polynomial time. Counting complexity was analyzed for repairs
in (Maslowski and Wijsen, 2013; Wijsen, 2014; Livshits and Kimelfeld, 2017),
with results that counting can be, e. g., #P-hard. Further related works to
complexity of maximal consistent subsets are given in (Cayrol et al., 1998;
Marques-Silva and Previti, 2014), where reasoning based on maximal con-
sistent subsets is analyzed with and without preferences over such maximal
consistent subsets. However, we are not aware of a corresponding result to
our #·coNP-completeness result of measure Imc (Proposition 19).

Another related field is that of (propositional) abduction. In proposi-
tional abduction, the aim is to find explanations for certain observations,
given certain background knowledge. For instance, one problem in this field
asks for a minimal (e. g. for subset-inclusion) set of hypotheses that explain
(formally: entail) an observation and that is consistent with a given formula.
Complexity of this problem, and variants, has been studied in (Eiter and
Gottlob, 1995). Related to our results is a complexity analysis of counting
the number of such explanations in (Hermann and Pichler, 2010). Their re-
sults imply similar counting complexity for some variants to inconsistency
measures that have #·coNP complexity.

Finally, another related field is that of belief revision (Alchourrón et al.,
1985), as mentioned in the introduction, in that one can cope with inconsis-
tency by revision. Complexity has been studied, as well, in (Eiter and Got-
tlob, 1992; Liberatore and Schaerf, 2001; Liberatore, 1997; Pfandler et al.,
2015). Complexity is, naturally, also high for revision: many problems reside
on the second level of the polynomial hierarchy. Related to our measures
is revision by the Dalal operator (Dalal, 1988), which is based on a similar
distance notion that is also used in IΣ

dalal, Ihit
dalal, and Imax

dalal.
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7. Discussion and Summary

The contributions of this paper provide new insights into the challenge
of measuring inconsistency and allow for a broader comparison of existing
measures in terms of their complexity. One of the key insights in this paper
is the partitioning of inconsistency measures in four categories of complexity,
i. e., measures on the first three levels of the polynomial hierarchy and those
beyond the third level. This also shows that inconsistency measurement is
sometimes not computationally harder than solving the classical satisfiability
problem SAT (for the measures residing on the first level of the polynomial
hierarchy, see Section 4.1). However, our results also show that inconsistency
measurement can be computationally demanding, as shown in Sections 4.2,
4.3, and 4.4.

It is also interesting to note that the computational complexity of in-
consistency measures does not necessarily correlate with their “conceptual”
complexity. For example, the measure IMI was one of the first inconsistency
measures presented and follows a simple idea to measure inconsistency, i. e.,
simply taking the number of minimal inconsistent subsets. Both the results
for the corresponding decisions problems and the #·coNP-completeness re-
sult of the function problem show that IMI belongs to the computationally
most complex inconsistency measures. Compare this to e. g. the measure
IΣ

dalal which features a quite complex definition, involving distances between
propositional interpretations, but belongs to the easiest class of measures.
Similar observations can be made when comparing the complexity and ex-
pressivity of an inconsistency measure. In (Thimm, 2016a) expressivity has
been introduced as a quantitative measure to assess how many levels of in-
consistent knowledge bases an inconsistency measure can distinguish. Our
Lemmas 1–3 provided some simplifying observations on this aspect. There,
one can see that, although there is a general tendency of more expressive
measures (such as IMIC and Iis) having higher computational complexity,
there is no universal correlation. For example, the measure Iη may exhibit
an exponential number of inconsistency values, see Lemma 2, but the prob-
lems related to it are on the first level of the polynomial hierarchy. On the
other hand, the measure ICC has rather low expressivity, see Lemma 1, but
exhibits large computational complexity.

The results of this paper can be used for future work in two directions.
First, our general methodology of analysing computational complexity can
help researchers to conduct similar analyses on novel inconsistency measures.
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The general relations established e. g. in Lemmas 4 and 6 show that it is
sufficient to focus on the decision problems UpperI or LowerI . Provid-
ing a completeness result for one of these problems is sufficient to obtain a
rather good classification of the computational complexity of an inconsistency
measure. Furthermore, the problems and reductions we used to show com-
pleteness of problems ExactI and ValueI—in particular those discussed
in Section 4.1—may be used directly to obtain corresponding completeness
proofs of novel measures or may inspire new reductions. Part of future work
is the analysis of recently proposed measures such as (Jabbour et al., 2017;
De Bona and Hunter, 2017; De Bona et al., 2018) wrt. our methodology.
Second, the next logical step for making use of our analysis is to develop
new algorithms for the considered measures, also taking our initial study on
tractable cases into account, cf. Section 5. Current implementations such as
Tweety@Web7 (Thimm, 2017c) mostly rely on naive brute-force approaches
to determine inconsistency values. The insights and reductions gained in our
analysis can help in devising new algorithms that rely on e. g. reductions to
QBF and QBF solvers (Lonsing et al., 2016).
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Appendix A. Proofs of Technical Results

Lemma 1. For I ∈ {Id, Ic, Ip, Ihs, IΣ
dalal, Imax

dalal, Ihitdalal, Imv, Inc, Imcsc, Iforget,
ICC} there is k ∈ N such that |CI(n)| ∈ O(nk). Moreover, each x ∈ CI(n)
can be represented in space O(log n).

Proof.

• For Id we trivially have |CId(n)| ∈ O(1) as Id only has two different
values. These two values can also be represented in constant space.

• For Ic observe that a knowledge base K with len(K) ≤ n cannot men-
tion more than n different propositions. Therefore Ic(K) ≤ n for every
K with len(K) ≤ n and |CIc(n)| ∈ O(n). Using binary representations,
each of these numbers only needs space O(log n).

• For Ip note that Ip(K) ≤ |K| ≤ len(K) ≤ n and therefore |CIp(n)| ∈
O(n). Using binary representations, each of these numbers only needs
space O(log n).

• For Ihs, observe that in the worst-case when every formula of K is pair-
wise inconsistent with each other, there is an H with |H| = |K| that is
a minimal hitting set of K. So either Ihs(K) ≤ |K| ≤ n or Ihs(K) =∞
(if there is a contradictory formula) and therefore |CIhs(n)| ∈ O(n).
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Using constant space for the special number ∞ and using binary rep-
resentations for the others, each of these numbers only needs space
O(log n).

• For IΣ
dalal observe that both the number of formulas and the num-

ber of propositions in K with len(K) ≤ n are bounded by n. Then
dd(Mod(α), ω) ≤ n for every α ∈ K and ω ∈ Ω(At) and therefore

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

≤
∑
α∈K

n ≤ n2

and hence |CIΣ
dalal

(n)| ∈ O(n2). It also follows |CImax
dalal

(n)| ∈ O(n) and

|CIhit
dalal

(n)| ∈ O(n).

• For Imv observe that |
⋃
M∈MI(K) At(M)| ≤ n for K with len(K) ≤ n

as K cannot mention more than n propositions. It follows |CImv(n)| ∈
O(n). Using binary representations, each of these numbers only needs
space O(log n).

• For Inc observe Inc(K) ∈ {0, . . . , |K|} and therefore |CInc(n)| ∈ O(n).
Using binary representations, each of these numbers only needs space
O(log n).

• For Imcsc, it holds that the intersection of any set of subsets ranges from
0 to |K| and therefore |CImcsc(n)| ∈ O(n). Using binary representations,
each of these numbers only needs space O(log n).

• For Iforget observe that a knowledge base K with len(K) ≤ n cannot
mention more than n different propositions. Therefore Iforget(K) ≤ n
for every K with len(K) ≤ n and |CIforget

(n)| ∈ O(n). Using binary
representations, each of these numbers only needs space O(log n).

• For ICC , note that a set S = {K1, . . . , Km} can only be a conditional in-
dependent MUS partition if the Ki are pair-wise disjoint, i = 1, . . . ,m,
and therefore |S| ≤ |K| and we have |CICC (n)| ∈ O(n). Using binary
representations, each of these numbers only needs space O(log n).
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Lemma 2. For I ∈ {IMI, Iη, Imc} there is k ∈ N such that |CI(n)| ∈ O(2n
k
).

Moreover, each x ∈ CI(n) can be represented in space O(nk).

Proof.

• For IMI, note that the number of minimal inconsistent subsets is bounded
from above by the number of all subsets, which is 2|K|. So we have
|CIMI

(n)| ∈ O(2n).8 Using binary representations, each of these num-
bers needs space O(n).

• In (Thimm, 2016a) it has been shown that

|CIη(n)| ≤ Φ

((
n

bn/2c

))
where Φ(x) is the number of fractions in the Farey series if order x.9

More formally10

Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|

While there is no closed form for Φ(x) its asymptotic behaviour is
polynomial, more concretely, Φ(x) ∼ 3x2/π2 + O(n log n) (Mertens,
1874; Graham et al., 1994) and therefore |CIη(n)| ∈ O(2n

2
).

Using binary representations, each y ∈ Φ(x) can be represented by
two numbers in space O(log x) (one for the nominator and one for the
denominator). Therefore, each number in CIη(n) can be represented in
O(n2).

• For Imc, note that the number of maximal consistent subsets is bounded
from above by the number of all subsets, which is 2|K|. So we have
|CImc(n)| ∈ O(2n). Using binary representations, each of these numbers
needs space O(n).

8Note that a smaller upper bound for the maximal number of minimal inconsistent
subsets is

(
n

bn/2c
)
, which is, however, still exponential in n, cf. (Thimm, 2016a)

9Actually, a stronger result has been shown in (Thimm, 2016a), namely that the right-
hand side of the above equation is an upper bound for the number of attainable inconsis-
tency values on knowledge bases with at most n formulas

10See also http://oeis.org/A005728
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Lemma 3. For I ∈ {IMIC , Iis}, |CI(n)| ∈ O(22n). Moreover, each x ∈ CI(n)
can be represented in space O(nk).

Proof. For IMIC it has been shown in (Thimm, 2016a) that

|CIη(n)| ≤ Ψ(n)

where Ψ(n) is the number of monotone Boolean functions of n variables.11

Clearly, Ψ(n) ≤ 22n as the latter number is the number of all Boolean function
of n variables and therefore |CI

MIC
(n)| ∈ O(22n).

Let |K| = n. For representing the number for this inconsistency measure,
notice that

ΣM∈MI(K)
1

|M |
= ΣM∈MI(K),|M |=1

1

|M |
+ · · ·+ ΣM∈MI(K),|M |=n

1

|M |
where each sum is bounded by 2n

i
for 1 ≤ i ≤ n. Computing the sum can be

done, naively, by

ΣM∈MI(K),|M |=1

1 · (n!
1

)

|M | · (n!
1

)
+ · · ·+ ΣM∈MI(K),|M |=n

1 · (n!
n

)

|M | · (n!
1

)

which equals

ΣM∈MI(K),|M |=1

1 · (n!
1

)

n!
+ · · ·+ ΣM∈MI(K),|M |=n

1 · (n!
n

)

n!

and each term is bounded from above by 2n·nn
n!
≤ n2·n

nn
. The latter term’s

rational number can be represented by two integers with polynomial space
(wrt. n).

For Iis, observe that in the extreme case, every subset of a set of sets
may be an independent set. As the number of minimal inconsistent subsets
is bounded by 2n, the number of independent sets is therefore bounded by
22n and we have |CIis(n)| ∈ O(22n).

For representing the number of this inconsistency measure, analogous
reasoning leads to the result: each individual independent set can contain
a formula of K at most once, thus has at most |K| many sets (also, the
independent set is bounded polynomially in size). The sum of independent
sets of sizes 1, . . . , |K| yields the overall result; again each sum is bounded
by the maximum number of MIs (2|K|).

11See also http://oeis.org/A220880
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Lemma 4. Let I be some inconsistency measure and i > 0 an integer.
If UpperI is in Σp

i or in Πp
i , the range CI(n) is representable in space

O(log f(n)) and |CI(n)| ∈ O(f(n)) for some function f : N → N, then
ValueI is in FPΣpi [log f(n)].

Proof. This follows directly from the fact that binary search has logarithmic
runtime.

Lemma 5. The measures Id, IMI, Iη, Ic, Imc, Ip, Ihs, IΣ
dalal, Imax

dalal, Ihitdalal, Imv,
Inc, Imcsc, Iforget, ICC , Iis are well-serializable.

Proof. The measures Id, IMI, Ic, Imc, Ip, Ihs, IΣ
dalal, Imax

dalal, Ihit
dalal, Imv, Inc, Imcsc,

Iforget, ICC are integer-valued, so immediate successors and predecessor can
be determined by adding or subtracting one, respectively.

Regarding Iη, it has been noted in (Thimm, 2016a) that the set of attain-
able values of Iη on knowledge bases K which mention at most n propositions
is the set

S = {k/l | l = 1, . . . , 2n, k = 0, . . . , l}

Observe that successors and predecessors within S can be computed in poly-
nomial time (the set has exponential size in n, so binary search needs poly-
nomial time in n). Now recall that every knowledge base K with len(K) ≤ n
mentions at most n propositions, which shows that Iη is well-serializable.

Finally, we consider Iis. Let n ∈ N and x ∈ CIis(n). Then y = log(ex +
1) is the immediate successor of x in CIis(n). Analogously, the immediate
predecessor of x is z = log(ex − 1). Both expressions can be evaluated in
polynomial time.

Lemma 6. Let I be some well-serializable inconsistency measure and i > 0
an integer. Let C ∈ {Σp

i ,Π
p
i }.

• UpperI is C-complete iff LowerI is co-C-complete;

• if UpperI or LowerI is in C, then ExactI is in Dp
i .

Proof. Let K and x be an instance of UpperI . This is a yes instance iff K
together with y—where y is the immediate successor of x in CI(n)—is a no
instance of LowerI . If UpperI is Σp

i -complete (Πp
i -complete) then LowerI

is Πp
i -complete (Σp

i -complete). For the second item note that I(K) = x holds
iff I(K) ≥ x and I(K) ≤ x.
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Proposition 1. UpperId is NP-complete.

Proof. Note that Id(K) = 0 if and only if K is consistent. Therefore, Up-
perId with x = 1 is trivial and with x = 0 is equivalent to SAT and therefore
NP-complete.

Proposition 5. This proposition lists several results for many measures;
we go through each individually. For each measure we restate the formal
statements first and proceed to the proofs.

UpperIη is NP-complete, LowerIη is coNP-complete, ExactIη is Dp
1-

complete, and ValueIη is in FPNP[n].

Proof. Note that the problem to compute Iη(K) can be represented as a lin-
ear program over an exponential number of variables (the possible worlds)
and a linear number of equalities and inequalities (Knight, 2002). Any solu-
tion to this problem is nonnegative and due to the small-model-property of
linear programs (Chvátal, 1983), there is a solution where only a polynomial
number of variables receive a non-zero value. We can therefore guess a set
of polynomial many variables, set the objective function to the given upper
bound x, and solve the corresponding program using a polynomial-time al-
gorithm (as linear programming is in P). If it is feasible, x is indeed an upper
bound. Completeness for NP follows from the fact that we can reduce SAT
to UpperIη with x = 0.

Except Dp
1-hardness of ExactIη , all other results follow from Lemmas 4

and 6.
We show Dp

1-hardness of ExactIη by reducing the problem SAT-UNSAT
to ExactIη via the reduction RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}. Note
that if (φ, ψ) is a positive instance of SAT-UNSAT then (and only then)
Iη(RSAT-UNSAT(φ, ψ)) = 1/2 (the two formulas a and ¬a ∨ ψ are mutu-
ally exclusive as ψ is unsatisfiable, so any probability function P satisfies
P (a) + P (¬a ∨ ψ) = 1; if φ is satisfiable, having P (φ) ≥ 0.5 is consis-
tently possible). If φ is unsatisfiable, we have Iη(RSAT-UNSAT(φ, ψ)) = 1 as
P (φ) = 0 for every probability function P . If both φ and ψ are satisfiable,
RSAT-UNSAT(φ, ψ) is consistent and we have Iη(RSAT-UNSAT(φ, ψ)) = 0.

UpperIhitdalal
is NP-complete, LowerIhitdalal

is coNP-complete, ExactIhitdalal
is

Dp
1-complete, and ValueIhitdalal

is FPNP[logn]-complete.
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Proof. Hardness for UpperIhit
dalal

follows since we can reduce SAT to Up-
perIhit

dalal
if we set bound x = 0.

Further, UpperIhit
dalal

is in NP, since we can non-deterministically guess

a ω ∈ Ω(At) for a given K, and verify that the dd-distance is 0 for at least
|K| − bxc many elements in K, wrt. ω, for a given real x. This implies that
UpperIhit

dalal
is NP-complete.

Except Dp
1-hardness of ExactIhit

dalal
and FPNP[logn]-hardness of ValueIhit

dalal
,

all other results follow from Lemmas 4 and 6.
We show Dp

1-hardness of ExactIhit
dalal

by reducing the problem SAT-UNSAT

to ExactIhit
dalal

via the reduction R′SAT-UNSAT(φ, ψ) = {φ, φcopy, a,¬a ∨ ψ}.
In particular, note that if (φ, ψ) is a positive instance of SAT-UNSAT then
Ihit

dalal(R
′
SAT-UNSAT(φ, ψ)) = 1. If φ is unsatisfiable and ψ is satisfiable, Ihit

dalal(R
′
SAT-UNSAT(φ, ψ)) =

2. If φ is unsatisfiable and ψ is unsatisfiable, Ihit
dalal(R

′
SAT-UNSAT(φ, ψ)) = 3.

Finally, if both φ and ψ are satisfiable then Ihit
dalal(R

′
SAT-UNSAT(φ, ψ)) = 0.

Regarding FPNP[logn]-hardness of ValueIhit
dalal

, let φs = {c1, . . . , cn} be an

instance of MaxSATSize. We show that for K = φs we have Ihit
dalal(K) = n− k

with k the maximum number of clauses that can be simultaneously satisfied
in φs, i.e. k is the solution to φs in the MaxSATSize problem.

n−max{|C| | C ⊆ K,
∧
c∈C

6|= ⊥}

=n−max{|{α ∈ K | dd(Mod(α), ω) = 0}| | ω ∈ Ω(At)}
= min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}
=Ihit

dalal(K)

Thus, we have reduced MaxSATSize to ValueIhit
dalal

showing FPNP[logn]-hardness
for the latter.

UpperIΣ
dalal

is NP-complete, LowerIΣ
dalal

is coNP-complete, ExactIΣ
dalal

is

Dp
1-complete, and ValueIΣ

dalal
is FPNP[logn]-complete.

Proof. NP-membership of UpperIΣ
dalal

follows from considering the following

algorithm. For K = {α1, . . . , αn} guess (ω0, ω1, . . . , ωn) ∈ Ω(At)n+1. For each
αi, i = 1, . . . , n, check whether ωi |= αi (this is a polynomial test). Then
compute x =

∑
i=1,...,n dd(ωi, ω0), also in polynomial time. It follows that x

is an upper bound for IΣ
dalal(K). NP-hardness follows from the fact that SAT

can be reduced to UpperIΣ
dalal

with x = 0.
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Except Dp
1-hardness of ExactIΣ

dalal
and FPNP[logn]-hardness of ValueIΣ

dalal
,

all other results follow from Lemmas 4 and 6.
We show Dp

1-hardness of ExactIΣ
dalal

by reducing the problem SAT-UNSAT

to ExactIΣ
dalal

via the reduction RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}. In

particular, note that if (φ, ψ) is a positive instance of SAT-UNSAT then
IΣ

dalal(RSAT-UNSAT(φ, ψ)) = 1. If φ is unsatisfiable, IΣ
dalal(RSAT-UNSAT(φ, ψ)) =

∞. Finally, if both φ and ψ are satisfiable then IΣ
dalal(RSAT-UNSAT(φ, ψ)) = 0.

We show FPNP[logn]-hardness of ValueIΣ
dalal

by reduction from MaxSATSize.

Let φs = {c1, . . . , cn} be an instance of MaxSATSize with φs over variables
{x1, . . . , xm}. We construct K = {α1, α2} with α1 =

∧
1≤i≤n(ci ∨ (¬yi)) and

α2 =
∧

1≤i≤n yi with fresh variables yi. We now show that for k the maximum

number of clauses in φs that can be simultaneously satisfied, n−k = IΣ
dalal(K).

First, we prove that ∀ω ∈ Ω(At)

dd(Mod(α1), ω) + dd(Mod(α2), ω) ≥ n− k. (A.1)

Define shorthands dd(Mod(α1), ω) = a(ω) and dd(Mod(α2), ω) = b(ω). Sup-
pose the contrary, i. e. ∃ω ∈ Ω(At), a(ω) + b(ω) < n− k. The interpretation
ω assigns b(ω) many yi variables to false and n − b(ω) many to true. By
presumption, there must exist a model ω1 of α1 s. t. dd(ω1, ω) < n−k− b(ω).
Consider now the maximum number c of yi variables that ω1 assigns to false.
Under the previous constraint on the symmetric difference, ω1 can assign
all yi variables to false that are also assigned to false by ω (b(ω) many), and
additionally less than n−k−b(ω) (remainder of symmetric difference). Thus
we can bound c by c < b(ω) + n− k − b(ω) and in turn by c < n− k. This
implies that ω1 satisfies at least n− c clauses of φs, i. e. strictly more than k
clauses, a contradiction. Thus, Equation (A.1) holds. There always exists an
ω2 ∈ Ω(At) that assigns all yi to true s. t. Equation A.1 holds with equality.
This implies our claim, i. e. n− k = IΣ

dalal(K). We conclude that ValueIΣ
dalal

is FPNP[logn]-complete.

UpperImax
dalal

is NP-complete, LowerImax
dalal

is coNP-complete, ExactImax
dalal

is

Dp
1-complete, and ValueImax

dalal
is in FPNP[logn].

Proof. NP-membership of UpperImax
dalal

follows from considering the following
algorithm. For K = {α1, . . . , αn} guess (ω0, ω1, . . . , ωn) ∈ Ω(At)n+1. For each
αi, i = 1, . . . , n, check whether ωi |= αi (this is a polynomial test). Then
compute x = maxi=1,...,n dd(ωi, ω0), also in polynomial time. It holds that x
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is an upper bound for Imax
dalal(K). NP-hardness follows from the fact that SAT

can be reduced to UpperImax
dalal

with x = 0.
Except Dp

1-hardness of ExactImax
dalal

, all other results follow from Lemmas 4
and 6.

We show Dp
1-hardness of ExactImax

dalal
by reducing the problem SAT-UNSAT

to ExactImax
dalal

via the reduction RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}. In
particular, note that if (φ, ψ) is a positive instance of SAT-UNSAT then
Imax

dalal(RSAT-UNSAT(φ, ψ)) = 1. If φ is unsatisfiable, Imax
dalal(RSAT-UNSAT(φ, ψ)) =

∞. Finally, if both φ and ψ are satisfiable then Imax
dalal(RSAT-UNSAT(φ, ψ)) =

0.

UpperIforget is NP-complete, LowerIforget is coNP-complete, ExactIforget
is Dp

1-complete, and ValueIforget is FPNP[logn]-complete.

Proof. For NP-containment of UpperIforget
, consider the following non-deterministic

algorithm:

1. Non-deterministically guess triples (a1, i1, φ1), . . . , (ax, ix, φx) with aj ∈
At, ij ∈ N, φj ∈ {⊥,>}, j = 1, . . . , x.

2. Non-deterministically guess an interpretation ω.

3. Replace occurrences of propositions in
∧
K as prescribed by the triples

guessed in step 1.

4. Check whether ω satisfies the new formula (return true iff this is the
case).

Note that verifying whether an interpretation satisfies a formula can be done
in polynomial time. Therefore, UpperIforget

∈ NP. NP-completeness follows
from the fact that SAT can be reduced to UpperIforget

with x = 0.

Except Dp
1-hardness of ExactIforget

and FPNP[logn]-hardness of ValueIforget
,

all other results follow from Lemmas 4 and 6.
We show Dp

1-hardness of ExactIforget
by reducing the problem SAT-

UNSAT to ExactIforget
via the reduction R′SAT-UNSAT(φ, ψ) = {φ, φcopy, a,¬a∨

ψ}. In particular, note that if (φ, ψ) is a positive instance of SAT-UNSAT
then R′SAT-UNSAT(φ, ψ) can be made consistent by replacing the first occur-
rence of a by >. If φ is unsatisfiable then at least two propositions have
to be replaced in φ and φcopy. Finally, if both φ and ψ are satisfiable then
R′SAT-UNSAT(φ, ψ) is consistent.

For FPNP[logn]-hardness of ValueIforget
, we provide a reduction of MaxSATSize

to ValueIforget
. Let φ = {c1, . . . , cn} be an instance of MaxSATSize. Observe
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that forgetting a variable in a clause ci, i = 1, . . . , n, renders this clause
tautological. Therefore, if forgetting k variables in φ suffices to make φ con-
sistent then n − k clauses are jointly satisfiable. So for sets of clauses the
problem ValueIforget

is the complement of the problem MaxSATSize, i. e., the
solution to MaxSATSize is n− Iforget(φ).

UpperImcsc is NP-complete, LowerImcsc is coNP-complete, ExactImcsc
is Dp

1-complete, and ValueImcsc is in FPNP[logn].

Proof. Before we give the proofs we first have to make some general obser-
vations on MC-covers and Imcsc. Recall that a set of maximal consistent
subsets C ⊆ MC(K) is called an MC-cover if⋃

C∈C

C = K (A.2)

and it is normal if no proper subset of C is an MC-cover. A normal MC-cover
is maximal if

λ(C) = |
⋂
C∈C

C|

is maximal. Then Imcsc(K) = |K| − λ(C) for any maximal MC-cover C. How
many elements can a normal MC-cover C contain? An MC-cover is only
normal if there is no C ∈ C such that all formulas of C are not contained in
some other set C ′ ∈ C. Therefore, every C ∈ C has to contain at least one
formula that is not contained in any other C ′ ∈ C. In order to have (A.2) we
have |C| ∈ {1, . . . , |K|}. In the following, we are devising an algorithm for
UpperImcsc so we can relax several notions in the definition of Imcsc. First, an
MC-cover is supposed to contain maximal consistent sets. But note that any
set of consistent sets that cover K can be extended to an MC-cover as every
consistent set has a maximal consistent superset. By doing so, the number
of subsets can only decrease (if consistent sets become the same when taking
their maximal consistent supersets) and the size of the intersection of these
sets—i. e., the value λ(C)—can only increase (as more formulas are added to
possibly each set), therefore yielding a smaller value of Imcsc. Therefore, any
set of (not necessarily maximal) consistent subsets yields an upper bound
for the true value of Imcsc(K). Second, for the same reason considering non-
maximal MC-covers—or more specifically, non-maximal sets of consistent
subsets that cover K—also yields an upper bound for the true value if Imcsc.
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Now let (K, x) be an instance of UpperImcsc and consider the following non-
deterministic algorithm:

1. Non-deterministically guess a numberm ∈ {1, . . . , |K|}, sets C1, . . . , Cm ⊆
K, and interpretations ω1, . . . , ωm.

2. For each i = 1, . . . ,m, if ωi 6|= Ci return false.
3. If not C1 ∪ . . . ∪ Cm = K return false.
4. If x ≥ |K| − |C1 ∩ . . . ∩ Cm| return true, otherwise return false.

First observe that the above algorithm runs in non-deterministic polynomial
time. In step 1.) only a constant (m), a linear number of sets (of linear size
each) and a linear number of interpretations (each of linear size) are guessed.
Verifying ωi |= Ci in step 2.) is polynomial. The remaining computations in
steps 3.) and 4.) are obviously polynomial as well.

If the algorithms terminates with true it means that there is a set C =
{C1, . . . , Cm} of consistent sets (step 2.) that cover K (step 3.) such that
x ≥ |K| − λ(C) (step 4.). From the discussion from before if follows that
Imcsc(K) ≤ |K| − λ(C) as C may contain non-maximal consistent sets and C
is not necessarily maximal. However, the algorithm solves UpperImcsc .

NP-completeness follows from the fact that SAT can be reduced to Up-
perImcsc with x = 0.

Except Dp
1-hardness of ExactImcsc , all other results follow from Lemmas 4

and 6.
We show Dp

1-hardness of ExactImcsc by reducing the problem SAT-UNSAT
to ExactImcsc via the reduction RSAT-UNSAT(φ, ψ) = {φ, a,¬a ∨ ψ}. In
particular, note that if (φ, ψ) is a positive instance of SAT-UNSAT then
Imcsc(RSAT-UNSAT(φ, ψ)) = 1. If φ is unsatisfiable, Imcsc(RSAT-UNSAT(φ, ψ)) =
∞ (as there is no MC-cover). Finally, if both φ and ψ are satisfiable then
Imcsc(RSAT-UNSAT(φ, ψ)) = 0.

Proposition 6. ChromaticNumber can be polynomially reduced to ValueIhs.

Proof. LetG = (V,E) be an undirected graph and let Adj(v) = {w | {v, w} ∈
E} be the set of neighbours of v ∈ V . We identify each vertex v ∈ V with
an atom and write

φv = v ∧ ¬w1 ∧ . . . ∧ ¬wn
where {w1, . . . , wn} = Adj(v). Define a knowledge base RChromaticNumber(G)
via

RChromaticNumber(G) = {φv | v ∈ V }
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Observe that RChromaticNumber(G) can be constructed in polynomial time. We
claim γ(G) = Ihs(RChromaticNumber(G)) + 1, which provides a polynomial re-
duction from ChromaticNumber to ValueIhs .

To show the claim, let γ(G) = k and let col : V → {1, . . . , k} be a
corresponding colouring. Then for i = 1, . . . , k the set

Ki = {φv | col(v) = i} ⊆ RChromaticNumber(G)

is consistent (it could only be inconsistent iff it contains φv and φv′ of two
adjacent nodes). Let ωi be an interpretation with ωi |= Ki, for i = 1, . . . , k.
Then {ω1, . . . , ωk} is a hitting set of RChromaticNumber(G) and we have γ(G) ≥
Ihs(RChromaticNumber(G)) + 1. The other direction is analogous.

Proposition 9. UpperIp is Πp
2-complete, LowerIp is Σp

2-complete, ExactIp
is Dp

2-complete., and ValueIp is in FPΣp2[logn].

Proof. Let the knowledge base K together with x be an arbitrary instance of
LowerIp . Eiter and Gottlob (1992) have shown that checking whether some
φ ∈ K is contained in any MI is in Σp

2. For membership of LowerIp in Σp
2,

we guess K′ ⊆ K with |K′| = bxc and use the non-deterministic algorithm
utilizing a coNP oracle given by (Eiter and Gottlob, 1992) to verify that each
φ ∈ K′ is contained in an MI of K.

For hardness, we utilize a similar, but simpler, reduction as in Propo-
sition 8. Let φ = ∃X∀Y ψ be a QBF with X = {x1, . . . , xn}. Construct
K =

⋃
1≤i≤n{xi,¬xi} ∪ {¬ψ}. We now claim that φ is true iff Ip(K) =

2 ·n+1 = |K|. That is, 2 ·n+1 is a lower bound iff φ is true. It is immediate
that for any φ we have Ip(K) ≥ 2 · n, since for any i with 1 ≤ i ≤ n it holds
that {xi,¬xi} is an MI. It holds that

I(K) ≥ 2 · n+ 1

iff ∃M ∈ MI(K) s.t. ¬ψ ∈M
iff ∃K′ ⊆ K s.t.

K′ ⊆ (K \ {¬ψ}) 6|= ⊥ and K′ ∪ {¬ψ} |= ⊥
iff ∃ω defined on X s.t. ¬ψ[ω] |= ⊥
iff φ is true.

Except Dp
2-hardness of ExactIp , all other results follow from Lemmas 4

and 6.
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To show Dp
2-hardness of ExactIp , we reduce ∀∃QBF2 to it. Let σ =

(∃X∀Y φ,∀Y ′∃X ′ψ) be a pair of QBFs. We assume that φ and ψ do not
share any atoms. Let ∀Y ′′∃X ′′ψ′ be an exact copy of ∀Y ′∃X ′ψ with fresh
atoms not appearing in either φ or ψ. Consider the following construction

Kσ =
⋃
x∈X

{x,¬x} ∪ {¬φ} ∪
⋃
y′∈Y ′
{y′,¬y′} ∪ {ψ} ∪

⋃
y′′∈Y ′′

{y′′,¬y′′} ∪ {ψ′}

We claim that σ is a positive instance of ∀∃QBF2, i. e., both QBFs in σ
evaluate to true, if and only if Ip(Kσ) = 2|X| + 4|Y ′| + 1. This shows that
∀∃QBF2 can be reduced to ExactIp .

In order to show the claim, recall that the proof of Proposition 9 already
established that ∃X∀Y φ evaluates to true if and only if

Ip(
⋃
x∈X

{x,¬x} ∪ {¬φ}) = 2|X|+ 1

If ∃X∀Y φ evaluates to false the above becomes 2|X|. Similarly, observe that
∀Y ′∃X ′ψ evaluates to true if and only if

Ip(
⋃
y′∈Y ′
{y′,¬y′} ∪ {ψ}) = 2|Y ′|

If ∀Y ′∃X ′ψ evaluates to false the above becomes 2|Y ′| + 1. As φ, ψ, ψ′ do
not share any atoms, respectively, we have

Ip(Kσ) = Ip(
⋃
x∈X

{x,¬x} ∪ {¬φ}) + 2 ∗ Ip(
⋃
y′∈Y ′
{y′,¬y′} ∪ {ψ})

It follows, if σ is a positive instance then Ip(Kσ) = 2|X|+4|Y ′|+1. If ∃X∀Y φ
evaluates to false and ∀Y ′∃X ′ψ evaluates to true then Ip(Kσ) = 2|X|+4|Y ′|.
If ∃X∀Y φ evaluates to true and ∀Y ′∃X ′ψ evaluates to false then Ip(Kσ) =
2|X|+4|Y ′|+3. Finally, if ∃X∀Y φ evaluates to false and ∀Y ′∃X ′ψ evaluates
to false then Ip(Kσ) = 2|X|+ 4|Y ′|+ 2.

Proposition 11. LowerICC is in Σp
3.

Proof. Using the the insight from Proposition 10 we can devise an algorithm
for LowerICC that runs in Σp

3 = NPΣp2 = NPΠp2 . Let (K, x) be an instance of
LowerICC .
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1. Guess {K1, . . . , Kn}
2. Use Πp

2-oracle to verify that {K1, . . . , Kn} is a conditional independent
MUS partition of K

3. If n ≥ x return True, otherwise return False

Note that the above algorithm is polynomial as only sets {K1, . . . , Kn} with
n ≤ |K| have to be considered as each pair must be disjoint.

Proposition 12. LowerIMI
and UpperIMI

are CNP-complete, ExactIMI
is

C=NP-hard.

Proof. Membership for LowerIMI
follows from the fact that there is a prob-

lem in B ∈ Dp s.t. (K,M) is a yes instance iff M is a MI of K. For a given
instance of LowerIMI

, i.e., a knowledge base K and a number k (which we
round up to the next integer), (K, k) is a yes instance of LowerIMI

iff there
are at least k MI’s of K iff CkM∈2K(K,M) ∈ B. It holds that the size of any
subset of K is polynomially bounded by the size of K. Thus, LowerIMI

is
in CNP (recall that CNP = CDp). Membership for UpperIMI

holds since
an instance (K, k) is a yes instance of UpperIMI

iff (K, k + 1) is a no in-
stance of LowerIMI

. The latter can be characterized as a no instance of a
problem in CNP. It holds that CNP is closed under complementation, i.e.,
co-CNP = CNP (Wagner, 1986, Theorem 4).

Hardness for LowerIMI
follows from the reduction R#MI(χ) = K for the

CNP-complete problem of deciding whether there are at least k many models
of χ = ∀Y φ(X, Y ). By Lemma 7, it holds that |Mod(χ)| = |MI(K)| − |X|.
This implies that |Mod(χ)| ≥ k iff |MI(K)| − |X| ≥ k iff |MI(K)| ≥ k + |X|.
Thus, (K, k+ |X|) is a yes instance of LowerIMI

iff |Mod(χ)| ≥ k iff (χ, k) is
a yes instance of the problem of deciding whether there are at least k models
of χ.

Regarding C=NP-hardness of ExactIMI
, for a given instance of the C=NP-

complete problem of deciding whether a given open QBF of form χ =
∀Y φ(X, Y ) has exactly k models, it follows, by Lemma 7, that |Mod(χ)| =
|MI(K)| − |X| with R#MI(∀Y φ(X, Y )) = K. Thus, (χ, k) is a yes instance of
the problem of deciding whether χ has exactly k models iff |MI(K)| = k+ |X|
iff (K, k + |X|) is a yes instance of ExactIMI

.

Proposition 13. ValueIMI
is #·coNP-complete under subtractive reduc-

tions.
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Proof. Regarding membership, we use the fact that #·coNP = #·∆p
2 (Hemas-

paandra and Vollmer, 1995, Theorem 1.5) and further that it holds that
verifying whether a given subset is an MI is a Dp

1-complete problem (Pa-
padimitriou and Wolfe, 1988). This means ValueIMI

is in #·coNP, since MI
is the witness function producing finite subsets for a given knowledge base,
all such subsets are polynomially bounded in size of the given knowledge
base, and checking whether such a set is indeed an MI is in ∆p

2.
For hardness, let χ(X) = ∀Y φ(X, Y ) with X = {x1, . . . , xn} be an arbi-

trary instance of the #·coNP-complete problem # Π1SAT. In this problem
we have to compute the number of assignments on X that satisfy χ, which
contains also variables over set Y .

By Lemma 7, it holds that |Mod(χ)| = |MI(K)|−|X| withR#MI(∀Y φ(X, Y )) =
K. Let K′ =

⋃
1≤i≤n{φi} and K′ =

⋃
1≤i≤n{φi}. By construction, it follows

that MI(K′ ∪ K′) ⊆ MI(K), due to monotonicity of MI, i.e. if K1 ⊆ K2 then
MI(K1) ⊆ MI(K2). It holds that MI(K′ ∪ K′) = |X|. To see this, consider
M ∈ MI(K′ ∪ K′). If there is an integer i with 1 ≤ i ≤ |X| s.t. neither φi
nor φi is in M , then M is consistent. If both φi and φi are in M for some
i, then for all j 6= i it must hold that exactly one of {φj, φj} must be in
M , otherwise M would either be not minimal or consistent. Thus, there are
exactly |X| minimal inconsistent subsets of K′ ∪ K′.

The preceding results and lemma imply that |Mod(χ)| = |MI(K)| −
|MI(K′ ∪K′)| and MI(K) ⊇ MI(K′ ∪K′), i.e., we have a subtractive reduction
from # Π1SAT to ValueIMI

.

Proposition 14. LowerI
MIC

and UpperI
MIC

are both CNP-hard problems,
and ExactI

MIC
is a C=NP hard problem.

Proof. We reduce from the CNP-complete problem of deciding whether a
given open QBF of the form χ = ∀Y φ(X, Y ) has at least k models, for a
given integer k. Let K = R#MI(χ) be the constructed knowledge base from
reduction R#MI. By Lemma 7, it follows that Mod(χ) = |MI(K)|− |X|. From
the proof of that lemma, it also follows that ∀M ∈ MI(K) : |M | = |X|+ 1.

Mod(χ) = |MI(K)|︸ ︷︷ ︸
∀M∈MI(K):|M |=|X|+1

−|X|, and

IMIC(K) =
∑

M∈MI(K)

(
1

|X|+ 1
)
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By straightforward manipulations we get

Mod(χ)

|X|+ 1
=
|MI(K)|
|X|+ 1

− |X|
|X|+ 1

Mod(χ)

|X|+ 1
=IMIC(K)− |X|

|X|+ 1

IMIC(K) =
Mod(χ)

|X|+ 1
+
|X|
|X|+ 1

=
Mod(χ) + |X|
|X|+ 1

This implies that that (χ, k) is a yes instance of the problem of deciding

whether χ has at least k models iff Mod(χ) ≥ k iff IMIC(K) ≥ k+|X|
|X|+1

.
Analogously, we can reduce the problem of deciding whether χ has strictly

less than k models to IMIC(K) ≤ (k−1)+|X|
|X|+1

(with the case k = 0 being trivial).

Finally, hardness for ExactI
MIC

holds, if we ask whether IMIC(K) = k+|X|
|X|+1

.

Proposition 15. ValueI
MIC

is in FP#·coNP.

Proof. Let K be an arbitrary instance of ValueI
MIC

. Consider the following
algorithm.

1. For each x ∈ {1, . . . , |K|}: computeMx = |{M |M ∈ MI(K), |M | = x}|
2. Compute M =

∑
1≤i≤|K|

1
i
· Mi

It holds that M = IMIC(K) (each M ∈ MI(K) has size between 1 and K).
Each step 1 of the loop can be computed via a functional oracle call #·coNP,
i.e., the problem of asking for the number of MI’s of size exactly x from a
given K is in #·coNP. Algorithm runs in linear time (if oracle calls require
constant time), since each size (from which there are linearly many) the
oracle is called once. Finally, the generated number can be represented in
polynomial space (see Lemma 3).

Lemma 8. Let χ = ∀Y φ(X, Y ) be an open QBF with X and Y sets of vari-
ables. For K = R#MC(∀Y φ(X, Y )) it holds that |Mod(χ)| = 2|X|−|MC(K)|+
1.

Proof. Assume M ∈ MC(K). Consider case distinction (i) ψ is not in M or
(ii) ψ is in M . For (i), then M =

⋃
1≤i≤|X|{φi, φi} (M is maximal). Assume

now (ii), i.e., ψ ∈M . Then for any i with 1 ≤ i ≤ |X| it holds that not both
φi and φi are in M (otherwise M would be unsatisfiable). By assumption,
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it holds that there is a truth assignment that satisfies M , and in particular
the truth assignment satisfies ¬φ(X, Y ). This truth assignment assigns a
value to each variable in X. If the assigned value is true for an x ∈ X, then
φi ∈ M , otherwise φi ∈ M (otherwise, M is not maximal; either φi or φi
can be added to M without violating satisfiability). Thus, for any i with
1 ≤ i ≤ |X| it holds that |{φi, φi} ∩M | = 1, i.e., exactly one of each φi or φi
is in M .

For an interpretation f let f |X be the restriction of f to the function
assigning only values to variables in X and to these exactly those as assigned
by f . We now show that if M ∈ MC(K) is of form (ii), then the truth
assignment f defined by f = f ′|X for any model f ′ of M (which exists by
assumption and all models assign the same values to variables in X) is not in
Mod(χ), i.e., f /∈ Mod(χ). It holds that f ′ |= M , f ′ |= ψ, and f ′ |= ¬φ(X, Y ).
Thus, f is not a model of χ since f can be extended (e.g. to f ′) s.t. φ(X, Y )
is not satisfied.

Assume now that an interpretation f defined on X is not in Mod(χ).
Then define M with

M = {φ | f(x) = true} ∪ {φ | f(x) = false} ∪ {ψ}.

It holds that M ∈ MC(K) and M is of form (ii). To see that M is consistent,
it holds that f is not a model of χ, and, thus, there is an extension of f to
all the variables in Y , call it f ′, s.t. f ′ 6|= φ(X, Y ). By construction of K,
this means that f ′ |= M . Maximality of M is straightforward: any addition
of a formula in K renders M unsatisfiable (note that ψ ∈ M and for each
1 ≤ i ≤ |X| one of φi or φi is in M).

Summarizing, we have a bijection between 2X \Mod(χ) (interpretations
that refute χ) and any maximal consistent subset of K that does contain ψ.
Thus 2|X| − |Mod(χ)| = |MC(K)| − 1 and the claim of the lemma follows
(there is exactly one maximal consistent subset of K which does not contain
ψ).

Proposition 16. LowerImc and UpperImc are CNP-complete, ExactImc
is C=NP-hard.

Proof. CNP-membership claims of the proposition are based on the fact that,
for a given arbitrary knowledge base K, verifying whether M ⊆ K is either
(i) a singleton self-contradicting formula, or (ii) a maximal consistent subset
of K, are both problems in Dp, and can be compressed into one problem,
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say B. For the complexity of B, complexity of verifying whether a set is a
maximal consistent subset of K is in Dp

1, and checking whether (i) holds is
in coNP. In the combined problem B, the complexity is in a class of the
Boolean hierarchy, more concretely in a class that consists of an intersection
of a problem in NP and coNP, and, together, a union with a problem in coNP.
For a given instance (K, k) of LowerImc it holds that (K, k) is a yes instance
iff Ck+1

M∈2K
(K,M) ∈ B. Thus, LowerImc is in CNP (due to (Wagner, 1986,

Theorem 4, item 5) it holds that CNP is equal to CNP = CB(NP) with B(NP)
being the Boolean closure of NP). For an instance (K, k) of UpperImc , this
is a yes instance iff (K, k + 1) is a no instance of LowerImc , and, therefore,
UpperImc is in CNP (this class is closed under complementation (Wagner,
1986, Theorem 4)).

For hardness, we reduce from the CNP-complete problem of deciding
whether there are at least k models of an open QBF of form χ = ∀Y φ(X, Y ).
First, note that this problem remains CNP-complete if restricted to non-
tautological formulas φ (one can reduce the former problem to the latter via
conjoining φ with a fresh variable). Assume that φ is non-tautological. From
instance χ and k, we construct an instance of UpperImc by applying the
reduction K = R#MC(∀Y φ(X, Y )) defined above. By Lemma 8, it holds that
|Mod(χ)| = 2|X|−|MC(K)|+1. Note that K is free of self-contradicting formu-
las (each is individually satisfiable by assumption that φ is non-tautological).
Therefore, it holds that Imc(K) = |MC(K)| − 1. Thus, |Mod(χ)| ≥ k iff
2|X| − |MC(K)|+ 1 ≥ k iff 2|X| − Imc(K) + 2 ≥ k iff 2|X| + 2− k ≥ Imc(K).

Finally, an instance (K, k) of LowerImc is a yes instance iff (K, k − 1)
is a no instance of UpperImc . Thus, we reduce the complementary problem
of deciding whether there are at least k models of an open QBF of the form
above to an instance of LowerImc to prove hardness for LowerImc .

We show C=NP-hardness of ExactImc as follows. We reduce from the
C=NP-complete problem of deciding whether an open QBF of form χ =
∀Y φ(X, Y ) has exactly k models. Similarly as above, we look at QBFs
where φ is not tautological (this problem remains C=NP-complete). Let
K = R#MC(∀Y φ(X, Y )). By Lemma 8, it holds that |Mod(χ)| = 2|X| −
|MC(K)| + 1. Further, no formula in K is self-contradicting. Therefore, χ
has exactly k models iff k = 2|X| − |MC(K)|+ 1 iff k = 2|X| − Imc(K) + 2 iff
Imc(K) = 2|X| − k + 2.

Corollary 4. #MaxModels is #·coNP-complete via subtractive reductions.

Proof. Membership follows from the fact that it is in coNP to decide whether
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a given interpretation is subset-maximal and satisfies the formula. Within
this proof we use the notation wc for an interpretation w to denote that
w and wc are complementary in their truth assignments, i. e. w(x) = true
iff wc(x) = false and w(x) = false iff wc(x) = true. Let φ be an arbitrary
instance of #CIRCUMSCRIPTION, i. e. φ is a formula in CNF. We construct φ′

by replacing each literal l in φ by its complement, i. e. if l = p is a proposition
with ¬p and otherwise if l = ¬p with p. It holds that w |= φ iff wc |= φ′. To
see this, consider a clause c ∈ φ s. t. w |= c. Then there is a literal l in c s. t.
w |= l. This implies that wc satisfies the complementary literal of l, and thus,
wc models the clause c′ where all literals are replaced by their complementary
literal. Since this holds for all clauses, we have wc |= φ′. It then holds that
w ∈ {ω |= φ | @ω′ s.t. ω′ <t ω} iff wc ∈ {ω |= φ′ | @ω′ s.t. ω <t ω

′}.

Proposition 17. The problem of counting all maximal consistent subsets of
a given knowledge base is #·coNP-complete under subtractive reductions.

Proof. Membership follows from the fact that verifying whether a subset of a
knowledge base is a maximal consistent subset is in Dp

1. We show hardness by
the following subtractive reduction from #MaxModels (#·coNP-completeness
proved in Corollary 4). Let φ be an instance of #MaxModels with {x1, . . . , xn}
the vocabulary of φ. Construct

K ={(xi ∧ p ∧ φ) | 1 ≤ i ≤ n} ∪ {¬p} ∪ {p ∧ φ}, and

K′ ={¬p}

with p a fresh variable not occurring in φ. We claim that |MC(K ∪ K′)| −
|MC(K)| is equal to the number of subset maximal models of φ.

We distinguish two cases, (i) φ is satisfiable and (ii) φ is unsatisfiable.
Independently of (i) and (ii), it holds that MC(K′) = {{¬p}} and {¬p} ∈
MC(K∪K′). First, assume (i), i.e., φ is satisfiable. For an M ∈ MC(K∪K′)
with M 6= {¬p} it holds that M 6= ∅ (since {¬p} is always consistent), and
that (p∧φ) ∈M (M must contain a formula of (K∪K′)\{¬p} by assumption
and if M contains any other than (p∧ φ) then this formula can be added, as
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well). For such an M it holds that

M ∈ MC(K ∪ K′)
iff M 6|= ⊥ and @M ′ s. t. M ⊂M ′ and M ′ 6|= ⊥

iff φ ∧
∧

(xi∧p∧φ)∈M

xi 6|= ⊥ and

φ ∧ (
∧

(xi∧p∧φ)∈M

xi) ∧
∨

(xi∧p∧φ)∈K\M

xi |= ⊥

iff ωM |= φ with ωM(xi) = true iff (xi ∧ p ∧ φ) ∈M and

ω′ 6|= φ ∀ω′ with wM <t w
′.

Thus, there is a bijection between the set of maximal models of φ and the
maximal consistent subsets of (K ∪ K′) which do not contain {¬p}. It then
holds that |MC(K∪K′)| − |MC(K)| = N + 1− 1 with N the maximal models
of φ.

Now assume (ii), i.e., φ is unsatisfiable. Then, by construction, we have
MC(K∪K′) = MC(K′) = 1, and |MC(K∪K′)| − |MC(K)| = 1− 1 = 0, which
is equal to the number of of maximal models of φ (0).

Proposition 18. The problem of counting unsatisfiable formulas in a given
knowledge base is FPNP[logn]-complete.

Proof. Membership follows from posing logarithmically many queries ask-
ing whether in a subset of size k every formula is satisfiable (guessing the
set together with interpretations for each). Hardness follows from a re-
duction from MaxSATSize. Let φ = c1 ∧ · · · ∧ cn be an arbitrary instance
of MaxSATSize. Construct K = {(EXACT(i, Y ) ∧ φ′ | 1 ≤ i ≤ n} with
φ′ = (c1 ∨ y1) ∧ · · · ∧ (cn ∨ yn), Y = {y1, . . . , yn} fresh variables, and
EXACT(i, Y ) a formula that evaluates to true under an assignment iff that
assignment assigns exactly i many variables of Y to true. We assume,
w.l.o.g., that each EXACT(i, Y ) is built over its own vocabulary. The for-
mula EXACT(i, Y ) can be constructed in polynomial time wrt. the size of
Y (Roussel and Manquinho, 2009, Section 22.2.3.). It follows immediately
from construction that (EXACT(i, Y ) ∧ φ′) is satisfiable iff i many clauses of
φ can be satisfied simultaneously.

Proposition 19. #MCAndContradictory is #·coNP-complete under subtrac-
tive reductions. Hardness holds even for knowledge bases without self-contradictory
formulas.
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Proof. Membership follows from the fact that verifying whether a subset
of a knowledge base is a maximal consistent subset or a self-contradicting
formula is a problem in ∆p

2. Hardness holds, under subtractive reductions,
for the fragment of the problem in the proposition where there are no self-
contradictory formulas. To see this, consider an instance K = (φ1, . . . , φn)
of the problem of counting the number of maximal consistent subsets of K.
Construct K′ = {(φi ∨ d) | φi ∈ K}∪ {d,¬d} and K′′ = K \ {¬d}. The single
unique maximal consistent subset of K′′ is K′′ itself (by any model assigning
d to true). The same set is also a maximal consistent subset of K′. For any
other M ∈ MC(K′) s.t. M 6= K′′, it holds that ¬d ∈M . Thus, there must be
a model satisfying all φi’s with (φi ∨ d) ∈ M . Due to maximality, it holds
that M ′ = {φi | (φi ∨ d) ∈M} is a maximal consistent subset of K. Further,
for any M ′ ∈ MC(K) it holds that {¬d} ∪ {(φi ∨ d) | φi ∈ M ′} is a maximal
consistent subset of K′. Thus, |MC(K)| = |MC(K′)|− |MC(K′′)|. Finally, any
formula in K′ and K′′ is (individually) satisfiable.

Lemma 9. Let K be a knowledge base and R#IS(K) = K′. It holds that
|MI(K)| = |IS(K′)|+ 1.

Proof. If M ∈ MI(K) with M = {β1, . . . , βk} then {β1 ∨ p, . . . , βk ∨ p,¬p} ∈
MI(K′), and vice versa, so |MI(K)| = |MI(K′)|. Furthermore, every singleton
set in MI(K′) is an independent set and every M ⊆ MI(K′) with |M | > 1 is
not independent as all minimal inconsistent sets share the formula ¬p. As
the empty set is also independent we have

|MI(K′)|+ 1 = |{M ⊆ MI(K′)|M is independent}.

Proposition 20. LowerIis and UpperIis are CNP-complete and ExactIis
is C=NP hard.

Proof. For membership of LowerIis and UpperIis , assume an arbitrary in-
stance (K, k) of these problems. Verifying whether a given subset of K is a
MI is a Dp

1-complete problem (Papadimitriou and Wolfe, 1988). Furthermore,
checking whether all sets M1, . . . ,Mk are individually minimal inconsistent
for linearly bounded k is Dp

1-complete as well. Note that each independent
set’s size is polynomially bounded by |K| (each formula α ∈ K can be con-
tained at most once in an independent set due to disjointedness). Finally,
verifying whether a set {M1, . . . ,Mk} is independent can be done in polyno-
mial time. Thus, both LowerIis and UpperIis are in CNP (the bound can be
extracted straightforwardly from k by applying the inverse of the logarithm).
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Hardness for all three problems follows from the reduction R#IS(K) = K′
from the CNP-complete (C=NP-complete) problem of deciding whether there
are at least (exactly) k minimal inconsistent subsets of K. The correspon-
dence has been proven in Lemma 9.

Proposition 21. #is is #·coNP-complete via subtractive reductions.

Proof. Similar as before, recall that #·coNP = #·∆p
2 (Hemaspaandra and

Vollmer, 1995, Theorem 1.5) and that verifying whether a given subset is an
independent set is in Dp

1 (see also proof of Proposition 20). So counting the
number of independent subsets of a given knowledge base is in #·coNP. As
mentioned in the proof of Proposition 20, each independent set is polynomial
in size: each formula α ∈ K can be present at most once in an independent
set.

For hardness, we reduce ValueIMI
to the present problem via reduction

R#IS(K) = K′ for a given K. By Lemma 9 it holds that IMI(K) + 1 is
equal to the number of independent sets of K′. The difference of one can be
remedied by having another knowledge base with only the empty set being
an independent set; the difference of these two constructed knowledge bases
is exactly the number of independent sets.

Proposition 22. For all K ⊆ LCNF (At), Id(K) = Imax
dalal(K) = Ihs(K).

Proof. Let ω ∈ Ω(At) be any interpretation and observe that dd(Mod(α), ω) ∈
{0, 1} for every clause α (either ω satisfies α or only one atom needs to be
flipped). It follows Imax

dalal(K) ∈ {0, 1} for all K ∈ LCNF (At) and therefore
Id(K) = Imax

dalal(K). Similarly, observe that every clause is satisfied by either
1.) the interpretation that assigns true to all atoms, or 2.) the interpretation
that assigns false to all atoms. It follows Ihs(K) ∈ {0, 1} for allK ∈ LCNF (At)
and therefore Id(K) = Ihs(K) as well.

Proposition 23. For all K ⊆ LCNF (At), IΣ
dalal(K) = Ihitdalal(K) = Iforget(K).

Proof. Let K ⊆ LCNF (At). From the proof of Proposition 22, recall that
for ω ∈ Ω(At), dd(Mod(α), ω) ∈ {0, 1} for every clause α (either ω satisfies
α or only one atom needs to be flipped). Then IΣ

dalal(K) is the minimal
number of clauses in K that are not satisfied by some ω ∈ Ω(At). This
establishes IΣ

dalal(K) = Ihit
dalal(K). As for Iforget, observe that any clause α

becomes tautological if any atom in it is forgotten (i. e., replaced by >).
Therefore, at most one atom must be forgotten per clause. In fact, if K′ ⊆ K
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is a maximal (wrt. cardinality) consistent subset of K then for each clause in
K \K′, one atom must be forgotten in order to obtain a consistent set. This
establishes IΣ

dalal(K) = Ihit
dalal(K) = Iforget(K).

Proposition 25. For I ∈ {IΣ
dalal, Ihitdalal, Iforget}, UpperHI is NP-complete,

LowerHI is coNP-complete, ExactHI is in Dp
1, and ValueHI is in FPNP[logn].

Proof. Due to Proposition 23 we only show the statements wrt. Ihit
dalal. In

fact, all results follow from only showing that UpperHIhit
dalal

is NP-hard. For

this, we provide a reduction from the problem MaxHornSAT defined as

MaxHornSAT Input: K ⊆ LH(At), K ∈ N
Output: true iff there is K′ ⊆ K with |K′| ≥ K and K′ 6|=⊥

The problem MaxHornSAT is NP-complete (Jaumard and Simeone, 1987) and
there is an obvious correspondence between MaxHornSATand UpperHIhit

dalal
:

(K, K) is a positive instance of MaxHornSAT iff (K, |K| −K) is positive in-
stance of UpperHIhit

dalal
. This completes the proof.

Proposition 27. For I ∈ {IΣ
dalal, Ihitdalal, Iforget}, UpperKI is NP-complete,

LowerKI is coNP-complete, ExactKI is in Dp
1, and ValueKI is in FPNP[logn].

Proof. Due to Proposition 23 we only show the statements wrt. Ihit
dalal. In

fact, all results follow from only showing that UpperKIhit
dalal

is NP-hard. For

this, we provide a reduction from the problem Max2SAT defined as

Max2SAT Input: K ⊆ LK(At), K ∈ N
Output: true iff there is K′ ⊆ K with |K′| ≥ K and K′ 6|=⊥

The problem Max2SAT is NP-complete (Papadimitriou, 1994) and there is an
obvious correspondence between Max2SATand UpperKIhit

dalal
: (K, K) is a posi-

tive instance of Max2SAT iff (K, |K|−K) is positive instance of UpperKIhit
dalal

.

This completes the proof.

Lemma 10. Deciding whether a set M ⊆ LK(At) is a minimal inconsistent
set is in P.

Proof. Checking whether M is minimally inconsistent is equivalent to check-
ing whether GM (see Definition 26) is the union of two shortest paths from
some a to ¬a and back. More precisely, it can first be checked in polynomial
time whether M is consistent by considering each atom a appearing in M
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and checking whether there is a cycle in GM involving both a and ¬a, cf.
(Papadimitriou, 1994). Then, for each such found a, we can compute short-
est paths from a to ¬a and back in polynomial time and verify whether all
edges in M have been used for this. If not, M is not a minimal inconsistent
set.

Proposition 28. For X ∈ {H,K}, LowerXIp is in NP, UpperXIp is in coNP,

ExactXIp is in Dp
1, and ValueXIp is in FPNP[logn]

Proof. Consider the problem LowerHIp and the following non-deterministic

algorithm for input K ⊆ LH(At), x ∈ R∞≥0. Without loss of generality assume
x ∈ N \ {0} (as Ip is integer-valued) and x ≤ |K| (in the extreme case all
formulas of K are in a minimal inconsistent set).

1. For each i = 1, . . . , x guess a set Mi ⊆ K (not necessarily distinct).

2. Using the algorithm from (Davydov et al., 1998) verify that each Mi is
minimally inconsistent, i = 1, . . . , x.

3. If |
⋃x
i=1 Mi| ≥ x return true, otherwise return false.

It should be clear that the above algorithm solves LowerHIp and, due to
(Davydov et al., 1998), runs in polynomial time.

The remaining statements follow using Lemma 10 and similar reasoning
as in Lemmas 4 and 6.

Proposition 29. For X ∈ {H,K}, LowerXImv is in NP, UpperXImv is in

coNP, ExactXImv is in Dp
1, and ValueXImv is in FPNP[logn].

Proof. Consider the problem LowerHImv and the following non-deterministic
algorithm for input K ⊆ LH(At), x ∈ R∞≥0. Without loss of generality assume
x = y/|At| with y ∈ N \ {0} and y ≤ |At| (in the extreme case all atoms of K
are mentioned in a minimal inconsistent set).

1. For each i = 1, . . . , y guess a set Mi ⊆ K (not necessarily distinct).

2. Using the algorithm from (Davydov et al., 1998) verify that each Mi is
minimally inconsistent, i = 1, . . . , x.

3. If |
⋃x
i=1 At(Mi)| ≥ y return true, otherwise return false.

It should be clear that the above algorithm solves LowerHImv and, due to
(Davydov et al., 1998), runs in polynomial time.

The remaining statements follow using Lemma 10 and similar reasoning
as in Lemmas 4 and 6.

95



Proposition 30. For X ∈ {H,K}, LowerXInc is in NP, UpperXInc is in
coNP, ExactXInc is in Dp

1, and ValueXInc is in FPNP[logn].

Proof. Membership of LowerXInc follows directly from the proof of Proposi-
tion 8: checking whether a set K′ ⊆ K is consistent can be done in polynomial
time in the Horn and Krom fragments. The remaining statements follow us-
ing a similar reasoning as in Lemmas 4 and 6.

Proposition 31. For X ∈ {H,K}, LowerXICC is in Σp
2, UpperXICC is in

Πp
2, ExactXICC is in Dp

2, and ValueXICC is in FPΣp2[logn].

Proof. Recall the problem coDecMusPart from the proof of Proposition 9
and consider its restriction to Horn logic coDecMusPart(H):

coDecMusPart(H) Input: K ⊆ LH(At), {K1, . . . , Kn}
Output: true iff {K1, . . . , Kn} is not a cond.

independent MUS partition of K

Observe that the same algorithm showing Σp
2-membership of the general

problem coDecMusPart shows NP-membership of coDecMusPart(H)
as step 6 becomes polynomially solvable due to (Davydov et al., 1998). It
follows that LowerHICC is in Σp

2 and the other results as in Proposition 11
and Corollary 3.

The remaining statements follow using Lemma 10 and similar reasoning
as in Lemmas 4 and 6.

Proposition 32. For X ∈ {H,K}, ValueXIMI
is #P-complete under Turing

reductions.

Proof. For hardness, we recall the result of (Peñaloza and Sertkaya, 2017,
Corollary 42), and present a proof directly adapted to our setting. Consider
a directed graph G = (V,E) with s, t ∈ V (source and target). We give a
parsimonious reduction from the problem of counting all simple paths in G
from s to t to the problem of counting minimal unsatisfiable subsets in the
Horn and Krom knowledge base K = {s,¬t} ∪ {(¬x ∨ y) | (x, y) ∈ E}. Let
M ⊆ K be an unsatisfiable subset (not necessarily minimal). It holds that
one can reach from s the vertex t via the edge set E ′ ⊆ E corresponding to M ,
by E ′ = {(x, y) | (¬x∨y) ∈M}. To see this, by unsatisfiability, it must hold
that both s and ¬t are in M (otherwise assigning all to true or false satisfies
M). If there is a path from s to t, via the edge set E ′, then M is unsatisfiable:
the clauses corresponding to E ′ give a chain of implications that imply t to
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be true (and s to be false). If there is no path from s to t in edge set E ′,
then one can partition the edges of E ′ into those that are reachable from
s (are in a path from s), are backwards reachable from t, and are neither.
Assigning all variables to true in the first edge set (all vertices in the edges)
and all variables to false in the second edge set satisfies the corresponding
clauses: if a variable is “reachable” from s then this variable is not backwards
reachable from t, and vice versa. Thus, this gives a partial truth assignment
satisfying all clauses of the first two sets. For the third set, first consider all
variables already implied by the partial variable assignment. This satisfies
all clauses where a variable occurs in the partial assignment: if the variable
is assigned false, then it must be negated in the clause (otherwise it would be
in the second set), similarly for assignments to true. The remaining variables
can be assigned to true, satisfying the remaining clauses. Thus, unsatisfiable
subsets of K directly correspond to sub graphs of G from which one can reach
t from s. If the unsatisfiable subset is minimal, the sub graph corresponds
to a simple path, implying the correctness of the reduction.
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