
Strong Inconsistency

Gerhard Brewka1 and Matthias Thimm1,2 and Markus Ulbricht1

1Department of Computer Science, Leipzig University, Germany
2Institute for Web Science and Technologies (WeST), University of Koblenz-Landau, Germany

Abstract

Minimal inconsistent subsets of knowledge bases play an important role in propo-
sitional logic, most notably for diagnosis and inconsistency measurement. It turns
out that for nonmonotonic reasoning a stronger notion is needed. In this paper we
develop such a notion, called strong inconsistency. We show that—in an arbitrary
logic, monotonic or not—minimal strongly inconsistent subsets play a similar role
as minimal inconsistent subsets in propositional logic. In particular, we show that
the well-known duality between hitting sets of minimal inconsistent subsets and
maximal consistent subsets generalises to arbitrary logics if the strong notion of
inconsistency is used. We investigate the complexity of various related reasoning
problems and present a generic algorithm for computing minimal strongly incon-
sistent subsets of a knowledge base. We also demonstrate the potential of our new
notion for applications, focusing on diagnosis and inconsistency measurement.

Keywords: nonmonotonic reasoning, inconsistency handling, minimal
inconsistent subsets, computational complexity

1. Introduction

Various notions which are highly useful and thus have been studied inten-
sively in classical logic turn out to be of rather limited value when it comes to
nonmonotonic reasoning based on formalisms like Reiter’s default logic (Reiter,
1980), answer set programming (ASP) (Gelfond and Lifschitz, 1991; Gelfond and
Leone, 2002; Brewka et al., 2011), or abstract argumentation (Dung, 1995). An
excellent example is the notion of equivalence. In classical logic equivalence is
important as it guarantees substitutability: whenever two formulas F and F ′ are
equivalent, that is, possess the same models, and F is a subformula of G, then
replacing F by F ′ in G yields a formula equivalent to G. In nonmonotonic for-
malisms this is no longer the case. For instance the two logic programs P1 = {c.}

Preprint submitted to Artificial Intelligence November 12, 2018

and P2 = {c ← not b.} have the same (single) stable model, but substitutability
is not given.1 For example, replacing the first rule in P3 = {c ← not b., b.} with
the fact “c.” changes the semantics of P3. This observation has led to a body of
literature on so-called strong equivalence, a more adequate notion of equivalence
for nonmonotonic reasoning (see for instance (Lifschitz et al., 2001; Eiter et al.,
2005; Oikarinen and Woltran, 2011)).

In this paper we study another notion, namely the notion of minimal inconsis-
tent subsets. Again, this notion is highly interesting for classical, or more gener-
ally monotonic logics, at least for the following reasons:

• Diagnosis and repair of knowledge bases: consistency of an inconsistent
knowledge base K can be restored by computing a minimal hitting set of
the minimal inconsistent subsets of K and eliminating the elements of the
hitting set. The result will be a maximal consistent subset of K (Reiter,
1987).

• Inconsistency measures: various prominent numerical measures of the de-
gree of inconsistency of a knowledge base exist in the literature which
depend on (the number of) minimal inconsistent subsets, see for instance
(Hunter and Konieczny, 2008).

Minimal inconsistent subsets cannot play the same role for nonmonotonic for-
malisms. Consider the logic program P4 = {a← not a, not b., b.}. The program
is consistent and has the stable model {b}. However, it has an inconsistent subset,
namely {a← not a, not b.}which is also a minimal inconsistent subset. Yet, since
P4 is consistent there is nothing to repair at all. Note also that one of the standard
assumptions in the literature on inconsistency measurement is that the inconsis-
tency value of a knowledge base K should be 0 iff K is consistent. The example
thus also shows that the notion of the number of minimal inconsistent subsets is
of no use in defining inconsistency measures for nonmonotonic formalisms.

The goal of this paper is to develop a stronger notion of inconsistency. We will
introduce so-called strongly inconsistent subsets, which generalise the classical
notion adequately to the nonmonotonic case, and study the minimal ones among
these sets. In particular, we show that our objects of study can indeed play the
same role for nonmonotonic reasoning as regular minimal inconsistent subsets for
monotonic reasoning.

1A formal introduction to logic programs is provided in Section 2.

2

The paper is organised as follows: since our main results are independent of
the actual logic used, we first present in Section 2 an abstract notion of logics
which is based on a similar account in the area of multi-context systems (Brewka
and Eiter, 2007). Section 3 then introduces strong inconsistency, proves a gen-
eralised duality result between strongly inconsistent and maximal consistent sets,
and investigates further properties of our new notion. Computational aspects of
strong inconsistency, including a complexity analysis and a generic algorithm for
computing strongly inconsistent subsets, are studied in Section 4. Section 5 dis-
cusses applications of our new notion in diagnosis and inconsistency measure-
ment. Section 6 concludes.

2. Preliminaries

We first describe what we mean by a—potentially nonmonotonic—logic in
an abstract manner, following the characterisation of logics in (Brewka and Eiter,
2007). Here a logic is specified by a set KB of knowledge bases, a set BS of belief
sets, and an acceptability function ACC : KB → 2BS. The analysis in this paper
assumes that knowledge bases are sets of formulas. Moreover, the distinction be-
tween consistent and inconsistent belief sets is crucial. For this reason we extend
Brewka and Eiter’s characterisation as follows:

Definition 2.1. A logic L is a tuple L = (WF,BS, INC,ACC) where WF is a
set of well-formed formulas, BS is a set of belief sets, INC ⊆ BS is an upward
closed2 set of inconsistent belief sets, and ACC : 2WF → 2BS assigns a collection
of belief sets to each subset of WF. A knowledge base K of L is a finite subset of
WF. A knowledge base K is called inconsistent iff ACC(K) ⊆ INC.

Note that a knowledge baseK can be inconsistent because it has no belief sets,
and consistent even if some (but not all) of its belief sets are in INC.

We will illustrate the generality of the above definition by giving instantiations
for several logics in Sections 2.1, 2.2, 2.3, and 2.4 below. However, first we make
precise what we mean by a nonmonotonic logic.

Definition 2.2. A logic L = (WF,BS, INC,ACC) is weakly monotonic whenever
K ⊆ K′ ⊆WF implies

1. if B′ ∈ ACC(K′) then B ⊆ B′ for some B ∈ ACC(K).

2S upward closed means B ∈ S and B ⊆ B′ implies B′ ∈ S.

3

L is monotonic if K ⊆ K′ ⊆WF in addition implies

2. if B ∈ ACC(K) then B ⊆ B′ for some B′ ∈ ACC(K′),

Note that this definition generalises (Brewka and Eiter, 2007) where in addi-
tion ACC is required to be unique for monotonic logics. The two conditions are
needed to guarantee that both skeptical and credulous inference based on inter-
section, respectively union of belief sets are monotonic. One important aspect of
(weakly) monotonic logics is that supersets of inconsistent knowledge bases are
always inconsistent as well.

Lemma 2.3. Let L = (WF,BS, INC,ACC) be weakly monotonic and K ⊆ K′.
If K is inconsistent then so is K′.

Proof. Let K be inconsistent, i. e., ACC(K) ⊆ INC. Let K ⊆ K′. If B′ ∈
ACC(K′), thenB ⊆ B′ for aB ∈ ACC(K). However,B ∈ ACC(K) impliesB ∈
INC and since INC is upward closed, B′ ∈ INC. Thus, ACC(K′) ⊆ INC.

We will call a knowledge base (weakly) monotonic whenever its associated
logic is. This is a slight abuse of terminology since monotonicity is a property of
a logic, not of a knowledge base. However, leaving the actual logic implicit does
no harm in many cases, and we prefer the simpler terminology whenever there is
no risk of confusion.

In the following subsections, we provide instantiations of Definition 2.1 for
classical propositional logic, Priest’s logic of Paradox (Priest, 1979), answer set
programming (Gelfond and Lifschitz, 1991; Gelfond and Leone, 2002; Brewka
et al., 2011), and abstract argumentation frameworks (Dung, 1995). We present
these instantiations to show the generality of Definition 2.1 to model a wide spec-
trum of logics. Furthermore, throughout the paper we will use answer set pro-
gramming (Section 2.3) to illustrate our ideas.

2.1. Propositional Logic
Let A be a set of propositional atoms (a propositional signature). Any atom

a ∈ A is a well-formed formula wrt. A. If φ and ψ are well-formed formulas
wrt. A, then ¬φ, φ ∧ ψ, and φ ∨ ψ are also well-formed formulas wrt. A (we also
assume that the usual abbreviations ⇒,⇔ are defined accordingly). Let WFP

A

be the set of well-formed formulas wrt. A. Let |= be the classical entailment
relation, i. e. ψ |= φ if all models of ψ are also models of φ in the classical

4

propositional semantics. Then define ACCP
A(K) for every K ⊆ WFP

A to be a
singleton containing only the deductive closure of K, i. e.

ACCP
A(K) = {{φ | K |= φ}}

for all K ⊆WFP
A. Furthermore, BSP

A are exactly the deductively closed sets, i. e.

BSP
A = {K ⊆WFP

A | K = ACCP
A(K)}

and INCP
A = {WFP

A}, i. e. the only inconsistent belief set is the set of all formulas.
Then the propositional logic LP

A over the signature A can be defined as

LP
A = (WFP

A,BSP
A, INCP

A,ACCP
A)

Observe that LP
A is a monotonic logic. More precisely, if K,K are two proposi-

tional knowledge bases with K ⊆ K′ then K |= φ implies K′ |= φ and thus both
conditions 1 and 2 of Definition 2.2 are satisfied (note that the two conditions are
indeed equivalent as ACCP

A(K) is always a singleton set).

Example 2.4. Consider the propositional signature A1 = {a, b} and the knowl-
edge bases K1,K2 given via

K1 = {a, a⇒ b} K2 = {a,¬a}

Then

ACCP
A1

(K1) = {{a, a⇒ b, b, a ∨ a, b ∧ b, . . .}}
ACCP

A1
(K2) = {WFP

A1
}

Observe that K1 is consistent while K2 is inconsistent due to ACCP
A1

(K2) ⊆
INCP

A1
= {WFP

A1
}.

2.2. Priest’s Logic of Paradox
Priest’s logic of paradox (Priest, 1979) is a paraconsistent logic that uses the

syntax of propositional logic. So again, let A be a set of propositional atoms. The
set of well-formed formulas for the logic of paradox is the same as in propositional
logic, so we have WFX

A = WFP
A.

We briefly recall the semantics of (Priest, 1979) to define the function ACCX
A.

A three-valued interpretation υ for a signature A is a function υ : A→ {T, F,B}
which assigns one of three truth values to each atom. Here, T stands for “true”,

5

F stands for “false”, and B stands for “both” (the latter is a paraconsistent truth
value). These truth values are strictly ordered by a relation ≺X via F ≺X B ≺X

T . Then υ can be extended to arbitrary well-formed formulas via

υ(φ ∧ ψ) = min
≺X

{υ(φ), υ(ψ)}

υ(φ ∨ ψ) = max
≺X

{υ(φ), υ(ψ)}

υ(¬φ) =

F if υ(φ) = T
T if υ(φ) = F
B otherwise

A three-valued interpretation υ is a model of a formula φ ∈ WFX
A if and only if

υ(φ) ∈ {T,B} and υ is a model of a set {φ1, . . . , φn} ⊆ WFX
A if and only if it is

a model of φ1 ∧ . . . ∧ φn. Then we can define ACCX
A via

ACCX
A(K) = {υ−1(T) | υ is a model of K}

for all K ⊆ WFX
A and accordingly BSX

A = 2A. Note that there are no inconsistent
formulas in Priest’s logic (the interpretation assigning B to every atom is always
a model), so we have INCX

A = ∅. This gives us the logic

LX
A = (WFX

A,BSX
A, INCX

A,ACCX
A)

Observe that LX
A is monotonic. More precisely, observe that for K ⊆ K′ every

model ofK′ is also a model ofK and therefore ACCX
A(K′) ⊆ ACCX

A(K) validating
both conditions of Definition 2.2.

Example 2.5. Consider the propositional signature A1 = {a, b} and the knowl-
edge bases K1,K2 given via

K1 = {a, b} K2 = {a, b,¬a ∨ ¬b}

Then

ACCX
A1

(K1) = {{a, b}, {a}, {b}, ∅}
ACCX

A1
(K2) = {{a}, {b}, ∅}

Observe that both K1 and K2 are consistent.

6

2.3. Answer Set Programming
We will now consider disjunctive logic programs under the answer set seman-

tics, cf. (Gelfond and Lifschitz, 1991; Gelfond and Leone, 2002; Brewka et al.,
2011). Let again A be a set of propositional atoms and let Lit(A) = A ∪ {¬a |
a ∈ A} be the set of corresponding literals. A disjunctive rule r is a rule of the
form

r : l0 or ... or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln. (1)

with l0, . . . , ln ∈ Lit(A) and let WFASP
A be the set of all such rules. For a rule

r we abbreviate head(r) = {l0, . . . , lk}, pos(r) = {lk+1, . . . , lm}, and neg(r) =
{lm+1, . . . , ln}. If m = n = k then r is called a fact and written head(r) instead
of head(r)←.

A set P ⊆ WFASP
A is also called a logic program for short. Furthermore, a

belief set is any set of literals, i. e., BSASP
A = 2Lit(A).

If P ⊆WFASP
A is a logic program without default negation—i. e. for all r ∈ P

we have neg(r) = ∅—then a model M is any set M ∈ BSASP
A such that for all

r ∈ P , if pos(r) ⊆ M then head(r) ∩M 6= ∅. M is a minimal model if it is a
model and there is not model M ′ with M ′ (M . For a logic program P ⊆WFASP

A

with default negation, an answer set M is any set M ∈ BSASP
A such that M is a

minimal model of the logic program without default negation PM defined via

PM = {head(r)← pos(r) | head(r)← pos(r), neg(r) ∈ P, neg(r) ∩M = ∅}.

Then we define ACCASP
A via

ACCASP
A (P) = {M |M is an answer set of P}

for all P ⊆ WFASP
A . Finally, inconsistent belief sets are those sets containing

complementary literals

INCASP
A = {M ∈ BSASP

A | a,¬a ∈M for some a ∈ A}.

This gives us the logic

LASP
A = (WFASP

A ,BSASP
A , INCASP

A ,ACCASP
A).

Note that LASP
A is not monotonic as the following example shows.

7

Example 2.6. Consider the propositional signature A1 = {a, b} and the logic
programs P5, P6 given via

P5 = {b.,¬b← not a.}
P6 = {a., b.,¬b← not a.}

Then

ACCASP
A1

(P5) = {{b,¬b}}
ACCASP

A1
(P6) = {{a, b}}

Observe that P5 is inconsistent while P6 is consistent. As P5 ⊆ P6 this also shows
that LASP

A1
is not monotonic.

A rule of the form

r : a← l1, . . . , lm, not lm+1, . . . , not ln, not a. (2)

where a is an atom that does not occur elsewhere in a given program P is called a
constraint. The intuitive meaning is that no answer set of P is allowed to contain
all literals l1, . . . , lm and none of the literals lm+1, . . . , ln. We use the established
shorthand

← l1, . . . , lm, not lm+1, . . . , not ln.

for constraints of the form (2).
Now let WFASPk=0

A ⊆WFASP
A be the set of all rules of the form (1) with k = 0.

Then,

LASPk=0
A = (WFASPk=0

A ,BSASP
A , INCASP

A ,ACCASP
A)

is the logic corresponding to disjunction-free logic programs under answer set
semantics.

2.4. Abstract Argumentation Frameworks
Our final knowledge representation formalism to be considered as a concrete

instantiation for Definition 2.1 are abstract argumentation frameworks (Dung,
1995). In the original formulation, an abstract argumentation framework AF is a
directed graph AF = (A,R) where nodes in A represent arguments and the rela-
tionRmodels “attack”, i. e., for a, b ∈ A, if (a, b) ∈ R then a is a counterargument

8

for b and we say that a attacks b. Abstract argumentation frameworks consider the
problem of argumentation only at this abstract level and do not consider the inner
structure of arguments nor how the attack relation is derived. Semantics are given
to an abstract argumentation framework AF = (A,R) by identifying sets E ⊆ A
of arguments (called extensions) that can be “jointly accepted”. The literature of-
fers various approaches on how to define “jointly accepted” (Dung, 1995), but we
only consider stable semantics here. A set E ⊆ A is called stable extension if
there are no arguments a, b ∈ E with (a, b) ∈ R and for every c ∈ A \ E there
is a ∈ A with (a, c) ∈ R. Note that an abstract argumentation framework may
possess none, one, or multiple stable extensions.

In order to cast abstract argumentation frameworks into our logical frame-
work, let A be some universal set of arguments (comparable to propositional sig-
natures used before). A well-formed formula is then either an argument a ∈ A
(stating that argument a is in the graph) or a pair of arguments (a, b) ∈ A × A
(stating that there are arguments a and b in the in the graph and that there is
an attack from argument a to argument b), i. e., WFAAF

A = A ∪ (A × A). For
S = {a1, . . . , an, (an+1, an+2), . . . , (am−1, am)} ⊆ WFAAF

A we write AF (S) =
({a1, . . . , am}, {(an+1, an+2), . . . , (am−1, am)}) to denote the directed graph rep-
resented by S. Belief sets are then arbitrary sets of arguments, i. e., BSAAF

A = 2A,
INCAAF

A = ∅, and ACCAAF
A is defined via

ACCAAF
A (S) = {E ⊆ A | E is a stable extension of AF (S)}

Observe that a S ⊆WFAAF
A is considered inconsistent ifAF (S) does not have any

stable extensions, i. e., ACCAAF
A (S) = ∅ = INCAAF

A . This gives us the logic

LAAF
A = (WFAAF

A ,BSAAF
A , INCAAF

A ,ACCAAF
A)

Note that LAAF
A is not monotonic as the following example shows.

Example 2.7. Consider the two abstract argumentation frameworksAF1 andAF2

over the vocabulary A2 = {a, b, c, d} depicted in Figures 1 and 2, respectively.
These frameworks can be modelled in our general logic as sets S1, S2 ⊆ WFAAF

A2

via

S1 = {(a, b), (b, a), (c, c), (c, b)}
S2 = {(a, b), (b, a), (c, c), (c, b), (d, c)}

More precisely, we have AF (S1) = AF1 and AF (S2) = AF2. Then

ACCAAF
A2

(S1) = ∅
ACCAAF

A2
(S2) = {{a, d}, {b, d}}

9

cba

Figure 1: The argumentation framework AF1 from Example 2.7

dcba

Figure 2: The argumentation framework AF2 from Example 2.7

Observe that S1 is inconsistent while S2 is consistent. As S1 ⊆ S2 this also shows
that LAAF

A2
is not monotonic.

3. Strong Inconsistency

Let L = (WF,BS, INC,ACC) be a logic and K ⊆ WF a knowledge base of
L. We will leave L implicit in the rest of this section. We use I (K) to denote
the collection of all inconsistent subsets of K. A set H ∈ I (K) is called minimal
inconsistent if H ′ (H implies H ′ is consistent. We let Imin(K) be the set of all
minimal inconsistent subsets of K.

A consistent subset H of K is called maximal K-consistent if H (H ′ ⊆
K implies H ′ is inconsistent. We let C (K) and Cmax (K) denote the set of all
consistent and maximal K-consistent subsets of K, respectively.

3.1. Hitting Set Dualities
In this section, we prove one of the most central results of this paper. In (Re-

iter, 1987), Reiter points out a duality between maximal consistent and minimal
inconsistent subsets of a knowledge base—the well-known hitting set duality. It
is stated within the context of diagnosis and can easily be lifted to first-order logic
or, more generally, any (weakly) monotonic framework. Our notion of strong in-
consistency will facilitate a generalisation to arbitrary logics, which is the main
motivation to consider this extension of ordinary inconsistency.

10

Of course, to generalise Reiter’s hitting set duality, we need the notion of a
hitting set.

Definition 3.1. LetM be a set of sets. We call S a hitting set ofM if S ∩M 6= ∅
for each M ∈ M. A hitting set S ofM is a minimal hitting set ofM if S ′ (S
implies S ′ is not a hitting set ofM.

In the monotonic case, we have the following duality result (see (Reiter, 1987)).

Theorem 3.2 (MinHS duality). Let K be a weakly monotonic knowledge base.
Then, S is a minimal hitting set of Imin(K) if and only if K \ S ∈ Cmax (K).

For nonmonotonic logics, this is not true anymore because a consistent knowl-
edge base may contain inconsistent subsets. In order to obtain the desired gener-
alisation of Theorem 3.2 to the nonmonotonic case, we consider an appropriate
refinement of inconsistency.

Definition 3.3. ForH,K ⊆WF withH ⊆ K, H is called stronglyK-inconsistent
if H ⊆ H ′ ⊆ K implies H ′ is inconsistent. The set H is called strongly inconsis-
tent if it is strongly WF-inconsistent.

In other words, a subset of a knowledge base K is strongly K-inconsistent if
all its supersets within the knowledge base K are inconsistent as well. Intuitively,
one can think of a conflict within K that cannot be resolved by formulas in K
itself. Due to Lemma 2.3 this condition is redundant in weakly monotonic logics
and thus, mere and strong K-inconsistency coincide (cf. Proposition 3.5 below).

Definition 3.4. ForH,K ⊆WF withH ⊆ K,H is minimal stronglyK-inconsistent
if H is strongly K-inconsistent and H ′ (H implies that H ′ is not strongly K-
inconsistent.

Let SI (K) denote the set of all strongly K-inconsistent subsets of K and let
SImin(K) denote the set of all minimal strongly K-inconsistent subsets of K.

The following results are immediate, respectively easy to show:

Proposition 3.5. Let K be a knowledge base.

1. If K is weakly monotonic, then I (K) = SI (K).

2. If K is weakly monotonic, then Imin(K) = SImin(K).

3. K is inconsistent iff SI (K) 6= ∅ iff K ∈ SI (K).

11

4. If H is strongly K-inconsistent and H ⊆ K′ ⊆ K, then H is strongly K′-
inconsistent.

Now, we can generalise Theorem 3.2 to the nonmonotonic case.

Theorem 3.6 (Generalised MinHS duality). Let K be a knowledge base. Then, S
is a minimal hitting set of SImin(K) if and only if K \ S ∈ Cmax (K).

Proof. “⇒”: Let S be a minimal hitting set for SImin(K) and let H = K \ S.
First, we show that any set H ′ with H (H ′ ⊆ K is inconsistent. Such H ′ is of
the form

H ′ = H ∪M with ∅ 6= M ⊆ K \H.
Hence, it holds that ∅ 6= M ⊆ S. Since S was assumed to be a minimal hitting
set of SImin(K), S \M is not a hitting set of SImin(K). Hence,

H ′ = H ∪M = (K \ S) ∪M = K \ (S \M)

contains a strongly K-inconsistent set. Thus, H ′ is inconsistent. So, we have

H (H ′ ⊆ K ⇒ H ′ is inconsistent. (3)

Now we show H ∈ C (K). Then, maximality follows from (3). Let us assume H
is inconsistent. Then, H is strongly K-inconsistent due to (3). Hence, H contains
a minimal strongly K-inconsistent subset H ′′ ⊆ H . Due to

H ′′ ⊆ H = K \ S

we have S ∩H ′′ = ∅ yielding a contradiction as S was assumed to be a hitting set
of SImin(K). Hence,H ∈ C (K). Together with (3), we obtain thatH ∈ Cmax (K).

“⇐”: LetH ⊆ K be a maximal consistent set. LetH = K\S. If S is no hitting set
of SImin(K), then we see as above that H contains a strongly K-inconsistent set,
yielding a contradiction. Hence, S is a hitting set of SImin(K). Now assume that
there is a set S ′ (S that is a hitting set of SImin(K) as well. Assume w. l. o. g.
that S ′ is minimal. Then, K \ S ′ ∈ C (K) as already shown above. However,
S ′ (S implies K \ S (K \ S ′. Hence, K \ S is not maximal in C (K), a
contradiction.

Theorem 3.6 suggests that strong inconsistency can indeed play a similar role
in nonmonotonic frameworks as classical inconsistency does in monotonic ones.
Even though restoring consistency in one part of K by removing a formula could
potentially render another part of K inconsistent, we can resolve inconsistency as
in the monotonic case, using the notion of strong inconsistency.

12

Example 3.7. We give three examples to illustrate the theorem in monotonic and
nonmonotonic frameworks.

(a) Consider the propositional knowledge base K = {a, a ⇒ b, ¬b, c, ¬c}.
We have SImin(K) = Imin(K) = {{a, a⇒ b, ¬b}, {c, ¬c}}. It is straight-
forward to see the 6 possible minimal hitting sets of SImin(K) and to verify
that they correspond to the 6 maximal consistent subsets of K.

(b) Consider again the logic program P4 = {a ← not a, not b., b.} from
before. The single (and thus also minimal) inconsistent subset isH = {a←
not a, not b.}. Since it contains one rule only, it coincides with the minimal
hitting set. P4 \ H is consistent, but not maximal consistent as P4 itself is
consistent. Using strong inconsistency leads to the intended result: H is
inconsistent, but not strongly P4-inconsistent. In fact, SImin(P4) is empty,
and so is the minimal hitting set. The single maximal consistent subset is
P4, as stated in Theorem 3.6.

(c) Consider the slightly more involved program P7 given as follows:

P7 : a or b. a← b.

c← not b. ¬c← not b.

Program P7 includes an interesting nonmonotonic mechanism: Even though
the disjunction “a or b.” could actually resolve the conflict {c← not b.,¬c←
not b.}, this is prevented by the rule “a ← b.”: if a set of atoms contains b,
then it also needs to contain a in order to be an answer set. However, {a, b}
is not a minimal model of the reduct P {a, b}7 = {a or b., a← b.}.
Thus, the maximal consistent subprograms of P7 are obtained by either re-
moving one of the rules {c ← not b., ¬c ← not b.} or “a ← b.”. We
see

Cmax (P7) = {{a or b., a← b., c← not b.},
{a or b., a← b., ¬c← not b.},
{a or b., c← not b., ¬c← not b.}}.

We verify the duality by computing SImin(P7). It is clear that any inconsis-
tent subset of P7 contains {c← not b., ¬c← not b.}. However, this is not a

13

strongly P7-inconsistent subset since adding “a or b.” restores consistency.
Thus, we also need to add “a← b.”. Hence,

SImin(P7) = {{c← not b., ¬c← not b., a← b.}}.

We see that the three minimal hitting sets of SImin(P7) correspond to Cmax (P7).

In (Birnbaum and Lozinskii, 2003), Theorem 4.5, item (d), a similar duality
result is given. Here, the minimal inconsistent subsets of a knowledge base are
considered rather than hitting sets of them. They are obtained by removing a
minimal hitting set of coCmax (K):

Definition 3.8. A setM ⊆ K is in coCmax (K) if there is a setM ∈ Cmax (K) such
that M = K \M .

The following result is given (see (Birnbaum and Lozinskii, 2003)):

Theorem 3.9. LetK be a weakly monotonic knowledge base. Then, S is a minimal
hitting set of coCmax (K) if and only if S ∈ Imin(K).

This Theorem can also be lifted to arbitrary logics. Again, we only need to
replace Imin by SImin .

Theorem 3.10. Let K be a knowledge base. Then, S is a minimal hitting set of
coCmax (K) if and only if S ∈ SImin(K).

Proof. “⇒”: Let S be a minimal hitting set of coCmax (K). Assume for the sake
of contradiction that S is not in SI (K). Hence, there is a consistent set H with
S ⊆ H . We obtain

S ∩ (K \H) = ∅.
Since we can w. l. o. g. assumeH ∈ Cmax (K), S is not a hitting set of coCmax (K).
This is a contradiction.

Now assume S is strongly K-inconsistent, but not minimal. In this case, there
is a set H (S with H ∈ SImin(K). We show that H is a hitting set of coCmax (K)
as well, implying that S is not minimal: If H is not a hitting set of coCmax (K),
then there is a maximal consistent set M ∈ Cmax (K) with H ∩ (K \M) = ∅ and
thus, H ⊆M which contradicts the assumption that H is stronglyK-inconsistent.

“⇐”: Now let S ∈ SImin(K). We just argued that S is a hitting set of coCmax (K),
since otherwise, S would not be stronglyK-inconsistent. We have left to show that
S minimal. So assume H (S is a hitting set of coCmax (K). However, as already
argued,H ∈ SI (K) in this case. Hence, S is not in SImin(K), a contradiction.

14

Example 3.11. Consider the program P7

P7 : a or b. a← b.

c← not b. ¬c← not b.

again. As already pointed out, we have

Cmax (P7) : coCmax (P7) :

{a or b., a← b., c← not b.} {¬c← not b.}
{a or b., a← b., ¬c← not b. {c← not b.}
{a or b., c← not b., ¬c← not b.} {a← b.}

Indeed, the unique minimal hitting set of coCmax (P7) is the only set in

SImin(P7) = {{c← not b., ¬c← not b., a← b.}}.

3.2. On the Notion of Free Formulas
In the literature on classical inconsistency handling the notion of free formulas

plays a special role (Hunter and Konieczny, 2008). There, a free formula is any
formula which is not contained in any minimal inconsistent subset. As it turns out,
there are at least two contemplable ways to generalise this notion to nonmonotonic
logics. We are going to present them and investigate their properties.

Consider a classical logic. Since the minimal inconsistent subsets of a knowl-
edge base K are interpreted as the “raw” conflicts in K, a formula which is not a
member of any of them should not play a role regarding consistency.

Definition 3.12. LetK be a weakly monotonic knowledge base. A formula α ∈ K
is called free if

α ∈ K \
⋃

H∈Imin (K)

H. (4)

Let Free(K) be the set of all free formulas of K.

Another way to define free formulas is requiring that α is contained in all
maximal consistent subsets of K. This is equivalent since

K \
⋃

H∈Imin (K)

H =
⋂

H∈Cmax (K)

H (5)

holds if K is (weakly) monotonic. However, (5) follows directly from Reiter’s
hitting set duality. We thus obtain a similar result:

15

Corollary 3.13. Let K be a knowledge base. Then

K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Proof. “⊆”: Let α ∈ K\
⋃

H∈SImin (K)H . Hence, α does not occur in any minimal
hitting set of SImin(K) and thus, due to Theorem 3.6, it occurs in all maximal
consistent sets M ∈ Cmax (K).
“⊇”: Now assume α /∈ K \

⋃
H∈SImin (K) H , i. e., α ∈ H for a minimal strongly

K-inconsistent set H ∈ SImin(K). Hence, H \ {α} /∈ SImin(K) and thus, there
is a maximal consistent set H ′ with H \ {α} ⊆ H ′. Now, α /∈ H ′ because
otherwise, H ′ would contain a strongly K-inconsistent set. It follows that α /∈⋂

H∈Cmax (K) H .

Corollary 3.13 motivates a very natural generalisation of free formulas, in-
duced by replacing “Imin” with “SImin”:

Definition 3.14. Let K be a knowledge base. A formula α ∈ K is called free
with respect to strong inconsistency (or SI-free or simply free if there is no risk of
confusion) if

α ∈ K \
⋃

H∈SImin (K)

H

We let FreeSI (K) denote the set of all SI-free formulas of K.

Observe that Free(K) and FreeSI (K) coincide in the monotonic case.

Proposition 3.15. LetK be a weakly monotonic knowledge base. Then, Free(K) =
FreeSI (K).

Proof. Due to Proposition 3.5, Item 2, we have Imin(K) = SImin(K). In particu-
lar,

Free(K) = K \
⋃

H∈Imin (K)

H = K \
⋃

H∈SImin (K)

H = FreeSI (K).

We name some equivalent properties in order for α to be in FreeSI .

Proposition 3.16. Let K be a knowledge base. Let α ∈ K. The following are
equivalent:

16

1. α is free, i. e.,

∀H ⊆ K : H /∈ SImin(K)⇒ H ∪ {α} /∈ SImin(K), (6)

2. α does not introduce strong K-inconsistency in general, i. e.,

∀H ⊆ K : H /∈ SI (K)⇒ H ∪ {α} /∈ SI (K), (7)

3. α is contained in every maximal consistent subset, i. e.,

∀H ⊆ K : H ∈ Cmax (K)⇒ α ∈ H.

Proof. “1.⇔ 3.” holds due to Corollary 3.13. Furthermore, 2. trivially implies 1.
We show “1. ⇒ 2.”: Assume (7) is wrong, i. e., there is a set H /∈ SI (K) with
H ∪ {α} ∈ SI (K). H ∪ {α} contains a minimal K-inconsistent set H ′. Observe
that α ∈ H ′, because otherwise, H ′ has a consistent superset as it is the case for
H . Since H ′ is minimal, it holds that H ′ \ {α} /∈ SI (K), but H ′ ∈ SI (K) and
thus, α does not satisfy (6).

Example 3.17. Consider program P7 from above again:

P7 : a or b. a← b.

c← not b. ¬c← not b.

As already discussed,

SImin(P7) = {c← not b., ¬c← not b., a← b.}.

We obtain
FreeSI (P7) = {a or b.}.

Furthermore, recall

Cmax (P7) = {{a or b., a← b., c← not b.},
{a or b., a← b., ¬c← not b.},
{a or b., c← not b., ¬c← not b.}}.

Since “a or b.” is the only formula appearing in all maximal consistent sets, we
obtain ⋂

H∈Cmax (P7)

H = {a or b.} = K \
⋃

H∈SImin (P7)

H

as stated in Corollary 3.13.

17

We will now turn to another generalisation of free formulas, namely neutral
formulas. Even though considering the set

FreeSI (K) =
⋂

H∈Cmax (K)

H

seems quite natural, it has some undesired properties in nonmonotonic frame-
works. The following example shows that FreeSI (K) is not necessarily consistent,
making it a debatable notion of “free formulas”.

Example 3.18. Consider the logic program

P8 : a. ¬a. ← not a, not ¬a.

One can verify that
SImin(P) = {{a., ¬a.}}.

Hence,
FreeSI (K) = {← not a, not ¬a.}

is inconsistent.

The reason why such a situation may occur is that we consider inconsistency
only within the context of all subsets of a given knowledge base K.

Instead of defining free formulas in a way that they “do not introduce strongK-
inconsistency” one could also formalise that they should be “irrelevant regarding
(in)consistency”. So consider a (weakly) monotonic knowledge base K. One can
see that α is free if

∀H ⊆ K : H ∈ C (K)⇒ H ∪ {α} ∈ C (K). (8)

In a nonmonotonic framework, (8) does not necessarily mean that α is irrelevant
regarding consistency of K, because α could restore consistency. Hence, for our
notion, we explicitly require an equivalence.

Definition 3.19. Let K be a knowledge base. A formula α ∈ K is called neutral
if it satisfies

∀H ⊆ K : H ∈ C (K)⇔ H ∪ {α} ∈ C (K). (9)

A formula α ∈ K is called consistency restoring if it satisfies (8), but not (9).
The neutral and the consistency restoring formulas in K are denoted Ntr(K) and
Res(K), respectively.

18

Of course, in the monotonic case, we do not need to explicitly require the
equivalence in (9) and hence, Free and Ntr coincide.

Proposition 3.20. If K is weakly monotonic, then (8) and (9) coincide and hence,
Ntr(K) = Free(K) and Res(K) = ∅.

Proof. That is clear by definition.

Note that in general, this is a stronger notion than FreeSI .

Proposition 3.21. Let K be a knowledge base. Then

Ntr(K) ∪ Res(K) ⊆ FreeSI (K).

Proof. Let α ∈ Ntr(K) ∪ Res(K). Due to (8), it can be added to any set H ⊆ K
without introducing inconsistency. Hence, α ∈

⋂
H∈Cmax (K) H = FreeSI (K).

In contrast to SI -free formulas, the neutral ones do not make use of strong K-
inconsistency. Even though the hitting set duality from Theorem 3.6 suggests to
utilize this notion, the neutral formulas are still quite well-behaving. The reason
is that neutral formulas do not depend as much on the structure of the rest of the
knowledge base. For example, here we have (cf. Example 3.18):

Proposition 3.22. If L is a logic such that ∅ is consistent andK a knowledge base
of L, then Ntr(K) is consistent.

Proof. That is clear.

The neutral formulas also do not influence the structure of SImin(K).

Proposition 3.23. Let K be a knowledge base and let α ∈ Ntr(K). Then,

SImin(K) = SImin(K \ {α}).

Proof. For any set H ⊆ K \ {α} it holds that H ∈ SI (K) if and only if H ∈
SI (K \ {α}), because α is neutral. Hence, the claim follows if we can prove that
no set H ∈ SImin(K) contains α. This, however, is clear: H being strongly K-
inconsistent means any H ′ with H ⊆ H ′ ⊆ K is inconsistent as well. Since α is
neutral, this is also the case if we replace H ′ with H ′ \ {α}. Hence, H \ {α} is
strongly K-inconsistent. So, if α ∈ H , then H cannot be minimal in SI (K).

19

It is easy to see that a formula α ∈ FreeSI (K) does not need to have this
property. For example, ifK is minimal stronglyK-inconsistent itself, butK∪{α}
is consistent.

We can, however, strengthen the notion of free formulas in order to obtain a
similar result. Consider

∀H ⊆ K : H /∈ SI (K)⇒ H ∪ {α} /∈ SI (K) (7)

again. Replacing “⇒” with “⇔”—as we have done it in (9)—obviously does
not make sense, because due to the use of strong K-inconsistency, this would
be equivalent. To obtain a notion ensuring that α does not “resolve strong K-
inconsistency”, we need to consider K without the formula α. Otherwise, α in-
herently never resolves strong K-inconsistency.

Definition 3.24. Let K be a knowledge base. A formula α ∈ K is called nonpar-
ticipating if

∀H ⊆ K : H ∈ SI (K \ {α})⇒ H ∈ SI (K).

We denote the set of all nonparticipating formulas of K by NP(K)

Example 3.25. Consider the program P4 again:

P4 : a← not a, not b. b.

The rule “b.” is not in NP(P4), because it restores consistency by satisfying the
constraint “a← not a, not b.”: We have

P4 \ {b.} = {a← not a, not b.}

and thus for H = {a← not a, not b.} it holds that

H ∈ SI (P4 \ {b.}), H /∈ SI (P4).

Now, we can characterise when addition or removal of α does not change
SImin(K).

Proposition 3.26. Let K be a knowledge base. Let α ∈ K. Then,

SImin(K) = SImin(K \ {α}) ⇔ α ∈ FreeSI (K) ∩ NP(K).

20

Proof. “⇒”:
We show α ∈ FreeSI (K): Assume α /∈ FreeSI (K). Then there is a set H ⊆ K
with

H /∈ SI (K), H ∪ {α} ∈ SI (K).

Note thatH∪{α} contains a minimal stronglyK-inconsistent setH ′ ∈ SImin(K).
Since H is not strongly K-inconsistent itself, α ∈ H ′. This, however, implies

H ′ * K \ {α}

and in particular,
H ′ /∈ SImin(K \ {α}).

We obtain SImin(K) 6= SImin(K \ {α}).
We show α ∈ NP(K): Assume α /∈ NP(K). Consider

H ∈ SI (K \ {α})

with
H /∈ SI (K).

Consider a consistent set H∗ with

H ⊆ H∗ ⊆ K.

Since H is strongly K \ {α}-inconsistent, α ∈ H∗. Moreover, let H ′ ⊆ H be
minimal, i. e.,

H ′ ∈ SImin(K \ {α}).
Due to α ∈ H∗, it holds that H ′ ∪ {α} ⊆ H∗ and hence H ′ ∪ {α} /∈ SImin(K).
Thus we obtain SImin(K) 6= SImin(K \ {α}) again.

“⇐”: We show
SImin(K) = SImin(K \ {α}).

“⊆”: Let H ∈ SImin(K \ {α}). In particular,

H ∈ SI (K \ {α}).

Now, α ∈ NP(K) implies H ∈ SI (K). Thus, we have left to show minimality
of H: Assume H ′ (H exists with H ′ ∈ SImin(K). Due to H ′ ⊆ H and H ∈
SI (K \ {α}), we have α /∈ H ′. Hence, H ′ ∈ SI (K \ {α}) as well, which is a
contradiction since H was assumed to be in SImin(K \ {α}).
“⊇”: If H ∈ SImin(K), then α /∈ H since α ∈ FreeSI (K). Hence H ∈ SImin(K \
{α}) as well.

21

Example 3.27. Let us consider the previous example again:

P4 : a← not a, not b. b.

We already pointed out that b. /∈ NP(P4) and in fact, removing it changes the
structure of SImin(P4). We have

SImin(P4) = ∅

as P4 itself is consistent, but

SImin(P4 \ {b.}) = {a← not a, not b.}

because without “b.”, the constraint is not satisfied anymore. In contrast, “a ←
not a, not b.” is clearly free, which is easy to see because P4 is consistent. More-
over, one can see that a ← not a, not b. ∈ NP(P4) as well. So, the constraint is
in FreeSI (P4) ∩ NP(P4). In fact,

SImin(P4) = ∅ = SImin(P4 \ {a← not a, not b.})

as stated in Proposition 3.26.

Recall that in Proposition 3.23 we pointed out that

SImin(K) = SImin(K \ {α}) (10)

holds for α ∈ Ntr(K). However, we did not state an equivalence. In fact, we
found the equivalence of (10) and α ∈ FreeSI (K) ∩ NP(K) in Proposition 3.26.
Thus, we have

α ∈ Ntr(K) ⇒ SImin(K) = SImin(K \ {α}) ⇔ α ∈ FreeSI (K) ∩ NP(K)

which raises the question whether the first implication is an equivalence and thus,
Ntr(K) = FreeSI (K) ∩ NP(K) holds. This, however, is not the case as the
following example shows.

Example 3.28. We consider P9—a slightly different program than P4—given as
follows:

P9 : ← not a, not b. a. b.

We see a. ∈ NP(P9), because due to “b.” the constraint is satisfied even without
“a.”. However, “a.” is not neutral, because

{a., ← not a, not b.} ∈ C (P9), {← not a, not b.} /∈ C (P9).

22

In order to finish our discussion on different notions of free formulas, we make
one more quite simple observation. Recall from Definition 3.19 that α ∈ K is
called consistency restoring if it satisfies

∀H ⊆ K : H ∈ C (K)⇒ H ∪ {α} ∈ C (K) (8)

but not

∀H ⊆ K : H ∈ C (K)⇔ H ∪ {α} ∈ C (K). (9)

In addition to the observation from Proposition 3.21 the following example shows
that α ∈ Res(K) can be either be in NP(K) or not.

Example 3.29. Consider the programs

P4 : ← not a, not b. b.

P9 : ← not a, not b. b. a.

We have b. ∈ Res(P4) and b. ∈ Res(P9), but b. /∈ NP(P4), while b. ∈ NP(P9)

This finishes our discussion on the structure of a knowledge base K with re-
spect to the four subsets we introduced:

• FreeSI (K),

• Ntr(K),

• Res(K),

• NP(K).

Figure 3 depicts the relationship between the sets we considered.

3.3. Strong Inconsistency and Strong Equivalence
In the Introduction, we mentioned equivalence as another notion that has been

strengthened for nonmonotonic logics. We consider now a connection between
strong equivalence and strong inconsistency. Strong equivalence, mainly studied
in logic programming and argumentation, can be generalised to arbitrary logics in
the following way:

Definition 3.30. Let L = (WF,BS, INC,ACC) be a logic. The knowledge bases
K and K′ are strongly equivalent iff ACC(K ∪ H) = ACC(K′ ∪ H) for each
H ⊆WF.

23

Ntr(K)

Res(K)

FreeSI (K) NP(K)

Figure 3: Venn Diagram of the considered subsets of K

Example 3.31. As expected, the programs P10 and P11 given as

P10 : b← not a. P11 : b.

¬ b← not a. ¬ b.

are not strongly equivalent, even though they have the same answer set. Moreover,
if we view them as subprograms of P12 given via

P12 : b← not a. b. a.

¬ b← not a. ¬ b.

then P11 is strongly P12-inconsistent while P10 is not.

The previous example contained two knowledge bases that are not strongly
equivalent. However, as the following proposition shows, strong inconsistency is
compatible with strong equivalence.

Proposition 3.32. Let K, K′ and H be knowledge bases. If K and K′ are strongly
equivalent, then K is strongly K ∪ H-inconsistent iff K′ is strongly K′ ∪ H-
inconsistent.

Proof. The knowledge baseK is stronglyK∪H-inconsistent if and only ifK∪G
is inconsistent for any G ⊆ H . Since K and K′ are strongly equivalent, this is the
case if and only if K′ ∪ G is inconsistent for any G ⊆ H , which is the definition
of K′ being strongly K′ ∪G-inconsistent.

24

3.4. Some Remarks on Strengthening Consistency
The analysis so far was based on inconsistency. Instead, one could also think

of a refined notion of consistency. We will now discuss such a refinement, ob-
taining rather similar results. In a nutshell, we replace “consistency” with “strong
consistency” this time, leading to a second possibility to generalise the results
from monotonic frameworks.

Not only the following results are rather similar to the previous ones, but also
their proofs. We will thus omit them for ease of presentation.

Definition 3.33. For H,K ⊆WF with H ⊆ K, H is called strongly K-consistent
if H ′ ⊆ H implies H ′ is consistent. Furthermore, H is called maximal strongly
K-consistent subset if H (H ′ ⊆ K implies H ′ is not strongly K-consistent. Let
SC (K) (SCmax (K)) denote the (maximal) strongly consistent subsets of K.

Proposition 3.34. Let K be a knowledge base.

1. If K is weakly monotonic, then C (K) = SC (K).

2. If K is weakly monotonic, then Cmax (K) = SCmax (K).

Definition 3.35. A set M ⊆ K is in coSCmax (K) if there is a set M ∈ SCmax (K)
such that M = K \M .

We give the analogous duality results. Note that classical inconsistency is used
rather than strong K-inconsistency.

Theorem 3.36. Let K be a knowledge base.

1. S is a minimal hitting set of Imin(K) if and only if K \ S ∈ SCmax (K).

2. S is a minimal hitting set of coSCmax (K) if and only if S ∈ Imin(K).

Corollary 3.37. Let K be a knowledge base. Then⋂
H∈SCmax (K)

H = K \
⋃

H∈Imin (K)

H.

We turn to free formulas. As the reader might expect already, we define:

Definition 3.38. Let K be a knowledge base. A formula α ∈ K is called free
with respect to strong consistency (or SC-free or simply free if there is no risk of
confusion) if

∀H ⊆ K : H ∈ SC (K)⇒ H ∪ {α} ∈ SC (K).

We let FreeSC (K) denote the set of all SC-free formulas of K.

25

Again, the expected result:

Proposition 3.39. Let K be a knowledge base. Then

FreeSC (K) =
⋂

H∈SCmax (K)

H = K \
⋃

H∈Imin (K)

H.

Note that here, the classical notion of inconsistency and strong consistency
are used. It is interesting that these complementary results can be obtained by
considering strong consistency instead of strong inconsistency. However, we be-
lieve that in nonmonotonic reasoning, strong inconsistency and usual consistency
as used for the previous results are more appropriate. For example, inconsistent
subsets of a knowledge base should not be an issue as long as the knowledge base
itself is consistent. That is why we continue our investigation focusing on strong
inconsistency rather then strong consistency.

4. Computational Complexity

The notion of strong K-inconsistency includes consideration of all supersets
of a given set, which is apparently more involved than considering inconsistency
in monotonic logics. So, we are interested in the computational complexity of de-
ciding (minimal) strong K-inconsistency and in particular the difference between
monotonic and nonmonotonic logics.

We assume the reader to be familiar with the classes P, NP and coNP. Fur-
thermore, we consider the polynomial hierarchy as usual: we let Σp

0 = Πp
0 = P

and for m ≥ 1, Σp
m is the class of all languages L such that there is a polynomial

time Turing machine M (with output M(x,X1, ..., Xm)) and a polynomial p such
that x ∈ L if and only if

∃X1 . . . QmXm : M(x,X1, . . . , Xm) = 1 (11)

with |X1|, ..., |Xm| ≤ p(|x|) and Qi ∈ {∃, ∀} for 2 ≤ i ≤ m. The class Πp
m is

defined analogously, but the expression in (11) starts with a universal quantifier
rather then an existential one. Note that Σp

1 = NP and Πp
1 = coNP.

An equivalent formalisation makes use of oracle machines. Let CD be the class
of decision problems solvable in C having access to an oracle for some problem
that is complete in D. Now, Σp

m+1 = NPΣp
m and Πp

m+1 = coNPΣp
m for m ≥ 0.

A quantified Boolean formula (QBF) Φ is a formula

Φ = Q1X1 . . . QmXm φ

26

with quantifiersQ1, . . . , Qm ∈ {∀,∃}, pair-wise disjoint sets of variablesX1, . . . , Xm,
and a propositional formula φ over the variables X1 ∪ . . .∪Xm. A QBF Φ is true
if φ evaluates to true with respect to the quantifiers, e. g., ∀x1∃x2(x1∨¬x2) is true
as for every truth value of x1 one can find a truth value of x2 such that x1 ∨ ¬x2

evaluates to true. A QBF Φ is in prenex normal form if the quantifiersQ1, . . . , Qm

alternate between ∀ and ∃. The problem of deciding whether a QBF Φ with m al-
ternating quantifiers starting with ∃ (resp. starting with ∀) is true is the canonical
Σp

m-complete (resp. Πp
m-complete) problem (Papadimitriou, 1994).

We also make use of the differences classes Dp
m (Papadimitriou, 1994). They

were introduced to capture threshold problems like “Is it true that a given graph G
has a Hamiltonian cycle, but if one removes an arbitrary edge, the resulting graph
does not?” Formally,

Dp
1 = {L1 \ L2 | L1, L2 ∈ NP}

or, equivalently,

Dp
1 = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}.

For example, the generic Dp
1-complete problem is SAT-UNSAT, where we are

given two propositional formulas φ1 and φ2, and have to decide whether φ1 is
satisfiable while φ2 is not. The natural generalisation of Dp

1 is

Dp
m = {L1 ∩ L2 | L1 ∈ Σp

m, L2 ∈ Πp
m}.

Moreover, we consider PSPACE, i. e., the class of all languages L that can be
computed using polynomial space. In contrast to Σp

m and Πp
m, where we can de-

cide the truth value of a QBF withm alternating quantifiers, the generic PSPACE-
complete problem is deciding the truth value of an arbitrary QBF.

While examining the structure of a knowledge baseK, one might be interested
in the number of minimal strongly K-inconsistent subsets. We will thus consider
counting complexity classes (cf. (Valiant, 1979)). They are defined using witness
functions w that assign words from an input alphabet Σ to finite subsets of an
alphabet Γ. Given a string x from the alphabet Σ, the task is to return |w(x)|, i. e.,
the number of witnesses. Given a class C of decision problems, by #·C we denote
the class of counting problems such that

• for every input string x, each y ∈ w(x) is polynomially bounded,

• the decision problem “Is y ∈ w(x)?” is in C.

27

Thus, verifying a potential solution is in C and the length of it is polynomi-
ally bounded. For example, the generic #·Πp

2-complete problem is counting the
number of truth assignments to the X-variables rendering a formula of the form
Φ = ∀Y φ(X, Y) true. Here, Mod(Φ) is the witness function assigning to a given
formula the corresponding models. As required, each truth assignment is polyno-
mial bounded and given an assignment to the X-variables, the decison problem
whether ∀Y φ(X, Y) holds is in coNP.

4.1. Minimal Unsatisfiability for QBFs
In order to assess the computational complexity of deciding (minimal) strong

inconsistency, we compare it to the classical setting: in (Papadimitriou and Wolfe,
1988), it has been shown that Minimal Unsatisfiability (MU) is Dp

1-complete. MU
is the following problem: “Given a propositional formula φ in CNF, is it true that
it is unsatisfiable, but removing an arbitrary clause renders it satisfiable?” Our
first observation in this section is a generalisation of this result to higher levels of
the polynomial hierarchy.

For this we let QBF-MU(Q1, ..., Qm) be the following problem:

Given a QBF Φ = Q1X1 . . . QmXm φ in prenex normal form with
φ = C1 ∧ . . . ∧ Cr and formulas C1, . . . , Cr, is it true that Φ is false,
but removing any conjunct Ck from φ renders Φ true?

Since φ is a conjunction, Φ is true if and only if all conjuncts C1, . . . , Cr evaluate
to true (with respect to the quantifiers). Note that Φ evaluates to true if φ is the
empty conjunction.

For the problem QBF-MU(Q1, ..., Qm), we obtain a similar result as (Pa-
padimitriou and Wolfe, 1988), which, to our knowledge, has not been stated ex-
plicitly before.

Theorem 4.1. If m ≥ 2, then QBF-MU(Q1, ..., Qm) is Dp
m-complete.

Proof. (Membership) Given a QBF

Φ = Q1X1 . . . QmXm φ

with φ = C1∧. . .∧Cr we can verify that it is a “yes” instance of QBF-MU(Q1, ..., Qm)
by

• checking that Φ is false which is in Πp
m if Q1 = ∃ and in Σp

m if Q1 = ∀ and

28

• checking that for each k = 1, ..., r the formula

Q1X1 . . . QmXm C1 ∧ . . . ∧ Ck−1 ∧ Ck+1 ∧ . . . ∧ Cr

is true which is in Σp
m if Q1 = ∃ and in Πp

m if Q1 = ∀.

Since the latter consists of only linearly many checks, we obtain membership in
Dp

m.

(Hardness) We consider the generic Dp
m-complete problem which, given two QBFS

Φi = Q1X1 . . . QmXmφi, i = 1, 2, asks whether Φ1 is false while Φ2 is true. First,
we give a (polynomial) construction to obtain a formula Ψ which is a “yes” in-
stance of QBF-MU(Q1, ..., Qm) if and only if Φ1 is false. A minor adjustment
will lead to a second formula Ψ′ which is a “yes” instance of QBF-MU(Q1, ..., Qm)
if and only Φ2 is true. Combining both constructions will yield Dp

m-hardness.
Since both reductions are considered independently, we omit the indices 1 and 2
for ease of presentation and denote the formula by Φ = Q1X1 . . . QmXmφ in both
steps.

So let φ = C1 ∧ . . . ∧ Cr be a conjunction and let

Φ = Q1X1 . . . QmXm φ

be a QBF in prenex normal form where m ≥ 2. We distinguish two cases, de-
pending on the final quantifier.

Case 1: Qm = ∃.
Here, we can assume that φ is in 3-CNF, i. e., all Ck are disjunctions containing at
most three literals, say Ck = xk,1 ∨ . . .∨ xk,3 for k = 1, ..., r. Our proof is similar
to the one given in Papadimitriou and Wolfe (1988), Theorem 1. The reader may
be referred to this proof since we do not give as many details. We use a similar
construction, where we, roughly speaking, ignore variables that occur in the scope
of an universal quantifier for the most part.

For any k ∈ {1, . . . , r}, we assume w. l. o. g. that the disjunction Ck is not a
tautology, i. e., does not contain both a and ¬a for an atom a.

Let X be the set of all variables in Φ that occur in the scope of an existential
quantifier. Let y1, . . . , yr be fresh atoms not appearing in Φ and define

Y = y1 ∨ . . . ∨ yr.

Let
Y − yk := y1 ∨ . . . ∨ yk−1 ∨ yk+1 ∨ . . . ∨ yr

29

for each k = 1, . . . , r. We construct a formula ψ containing the following con-
juncts.

• If Ck occurs in φ, then

Dk = Ck ∨ (Y − yk)

is a conjunct of ψ.

• Let Ck = xk,1 ∨ . . . ∨ xk,3. Then, for j = 1, 2, 3 and xk,j ∈ X

Ek,j = ¬xk,j ∨ (Y − yk) ∨ ¬yk

occurs in ψ as a conjunct.

• For each i, j = 1, . . . , r with i 6= j

Hi,j = ¬yi ∨ ¬yj

is a conjunct of ψ.

Consider
Ψ = Q1X1 . . . Qm−1Xm−1∃Xm ∪ {y1, . . . , yr} ψ.

We claim that Φ is false if and only if Ψ is a “yes” instance of QBF-MU(Q1, ..., Qm).

“⇒”: We start by showing that Ψ is false. Afterwards, we prove minimality. The
first step is to argue that all y-variables would need to be false in order for Ψ to
be true. Due to the Hi,j conjuncts, at most one y-variable can be true, say yk. We
can assume that at least one Ek,j (j = 1, 2, 3) exists, i. e., Ck contains variables
in X . Otherwise, all variables in Ck occur in the scope of an universal quantifier.
Since we assumed no tautological conjunct exists, there is an assignment to those
variables rendering Ck false. Thus, in order for Ψ to be true, there has to be a
k′ 6= k such that yk′ is true (because of the conjunct Dk), which is not possible, as
argued above.

Now consider Ek,j . To render it true, xk,j needs to be false (j = 1, 2.3).
However, we also need to consider the conjunct

Dk = xk,1 ∨ xx,2 ∨ xk,3 ∨ (Y − yk).

If all three variables xk,1, . . . , xk,3 are in X , then Dk is false. Otherwise, the
remaining variables occur in the scope of an universal quantifier. Again, there is a
assignment to those variables rendering Dk false.

30

Hence, if one y-variable is true, then Ψ is false. This, however, finishes the
first step already: Since Φ is false by assumption and all y-variables need to be
false, Ψ is false as well.

We turn to minimality and argue that removal of any conjunct in ψ renders Ψ
true.

• If we remove Hi,j then letting yi and yj be true ensures satisfaction of all
conjuncts. Of course, the other y-variables need to be false.

• If Ek,j is removed (assuming it exists and hence xk,j ∈ X), then let xk,j and
yk be true, the other y-variables false. If Ek,j′ exists for j′ 6= j, then xk,j′
needs to be false. This assignment ensures satisfaction of all conjuncts.

• If we removeDk, then all conjuncts are satisfied if yk is true and xk,1, . . . , xk,3
are false (for the j such that xk,j ∈ X). The latter are needed for the Ek,j

(which exists for the j such that xk,j ∈ X).

“⇐”: Assume Ψ is false. In particular, this means that Ψ is false even if all y-
variables are false. Thus, Φ is false.

So, Ψ is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if Φ is false.
As mentioned above, we need a second reduction to obtain a formula Ψ′ that

is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if Φ is true. To obtain
such a formula, use the same construction and add y1 ∨ . . . ∨ yr as a conjunct to
ψ. Then, Ψ′ is definitely false and minimal if and only if Φ is true, as similar
considerations show.

Hence, we obtain the two desired formulas Ψ and Ψ′. We describe below how
they are combined, which does not depend on the cases we distinguish.

Case 2: Qm = ∀.
We may assume φ to be in 3-DNF here, i. e., r = 1 and C := C1 is in 3-DNF. Let
C = D1 ∨ . . . ∨ Dn with Di = xi,1 ∧ xi,2 ∧ xi,3 for i = 1, . . . , n. We see that
Ψ = Φ is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if the formula Φ
is false, since removing the only conjunct (i. e., the whole formula φ) renders Φ
true, because the empty conjunct is true by definition. Moreover,

Ψ′ = Q1X1 . . . Qm−2Xm−2∃Xm−1 ∪ {y}∀Xm ψ′

with
ψ′ = ((D1 ∧ y) ∨ . . . ∨ (Dn ∧ y)) ∧ (¬y)

31

is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if Φ is true.

Combining:

In both cases above, we obtain two formulas Ψ and Ψ′ that are both positive
instances of QBF-MU(Q1, ..., Qm). To finish our proof for hardness, we make
one formula out of them. We assume w. l. o. g. that Ψ and Ψ′ are QBFs over
disjoint sets of variables. Given these two QBFs, we construct one formula Θ as
it is done in (Papadimitriou and Wolfe, 1988), Lemma 3. Let

Ψ = Q1X1 . . . QmXm ψ, Ψ′ = Q1X
′
1 . . . QmX

′
m ψ′

with

ψ = C1 ∧ . . . ∧ Cr, ψ′ = C ′1 ∧ . . . ∧ C ′r′ .

Now, Θ contains of all possible pairs of clauses, one from ψ and one from ψ′, i. e.,
for

θp,q = Cp ∧ C ′q, p = 1, . . . , r, q = 1, . . . , r′

we let
Θ = Q1X1 ∪X ′1 . . . QmXm ∪X ′m

∧
p=1,...,r,q=1,...,r′

θp,q

Now, removing θp,q from Θ corresponds to removing Cp from Ψ and C ′q from Ψ′.
Hence, Θ is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if both Ψ and
Ψ′ are.

To summarize, Θ is a positive instance of QBF-MU(Q1, ..., Qm) if and only
if Φ1 is false while Φ2 is true. Hardness in Dp

m follows.

Combining Theorem 4.1 and the result in (Papadimitriou and Wolfe, 1988)
(i. e., the case where m = 1 and Q1 = ∃), one can observe that the case where Φ
is of the form Φ = ∀Xφ is missing. Indeed, it turns out to be easier.

Proposition 4.2. QBF-MU(∀) is NP-complete.

Proof. Let Φ be the sentence
Φ = ∀Xφ

with φ = C1 ∧ . . . ∧ Cr. Verifying that Φ is false is obviously NP-complete in
general. However, there is nothing to check beyond that, because removal of an
arbitrary conjunct renders Φ true if and only if r = 1, i. e., φ consists of one
conjunct only. That is easy to see: Assume r ≥ 2 and assume Φ is false. Then,

32

there is a k and a truth assignment to the variables such that Ck is false. If we
remove k′ for any k′ 6= k, then Ck is still false for the same truth assignment and
thus,

∀X (C1 ∧ . . . ∧ Ck′−1 ∧ Ck′+1 ∧ . . . ∧ Cr)

is still false, i. e., Φ is a “no” instance of QBF-MU(∀).

Remark 4.3. We can cast the logic of quantified Boolean formulas into our gen-
eral logical framework as well. Given quantifiersQ1, . . . , Qm and sets of variables
X1, . . . , Xm, we define a corresponding logicL = L(Q1, . . . , Qm, X1, . . . , Xm) =
(WF,BS, INC,ACC) as follows: WF = WF(X1∪ . . .∪Xm) is the set of all well-
formed Boolean formulas over the atoms in X1∪ . . .∪Xm, BS = {⊥,>}, INC =
{⊥} and for a knowledge base K = {C1, . . . , Cr} we let φ(K) = C1 ∧ . . . ∧ Cr

and define ACC = ACC(Q1, . . . , Qm) via

ACC(K) =

{
{>}, if Q1X1 . . . QmXm φ(K),

{⊥}, otherwise.

Now, deciding whether Φ is a “yes” instance of QBF-MU(Q1, ..., Qm) corre-
sponds to checking whether K is minimal (strongly) inconsistent.

4.2. (Minimal) Strong Inconsistency in General
We now turn to the general discussion on the computational complexity of

problems related to strong inconsistency. For that, we assume an arbitrary but
fixed logic L = (WF,BS, INC,ACC) for the remainder of this section. To be
able to assess how difficult it is to check whether a subset H ⊆ K of a knowledge
base K is (minimal) strongly K-inconsistent, we consider checking satisfiability
of K as the basis of our investigation. More precisely, we consider the following
decision problems:

SATL Input: K ⊆WF
Output: TRUE iff K is consistent

S-INCL Input: K ⊆WF, H ⊆ K
Output: TRUE iff H ∈ SI (K)

MIN-S-INCL Input: K ⊆WF, H ⊆ K
Output: TRUE iff H ∈ SImin(K)

In other words, SATL is the generalisation of the satisfiability problem in our gen-
eral logic L, S-INCL is about deciding whether H is stronglyK-inconsistent, and

33

MIN-S-INCL is about deciding whether H is a minimal strongly K-inconsistent
set. If L is (weakly) monotonic and SATL ∈ C for some class C, then S-INCL

is in co-C. However, in a nonmonotonic framework, checking whether a given
subset H ⊆ K is strongly K-inconsistent involves considering all sets H ′ with
H ⊆ H ′ ⊆ K and corresponding consistency checks. This may increase compu-
tational complexity in some cases, but not always as the following result shows.

Theorem 4.4. Let K be a knowledge base. Let m ≥ 1. If the decision problem
SATL is in

(a) Σp
m, then S-INCL is in Πp

m,

(b) Πp
m, then S-INCL is in Πp

m+1,

(c) Πp
m and L is weakly monotonic, then S-INCL is in Σp

m.

Proof. See proof of Theorem 4.5.

Theorem 4.1 already showed how difficult MIN-S-INCL is compared to the
decision problem SATL in the generic framework of QBFs (cf. Remark 4.3). As
stated in Theorem 4.4, checking strong inconsistency is in general more diffi-
cult in nonmonotonic frameworks and we obtain a similar result in the case of
MIN-S-INCL. However, the increase of the computational complexity stems
from checking the “strong“ part in “strong minimal inconsistency” rather than the
“minimal” part. For that reason and as the following result shows, moving from
the problem S-INCL to the problem MIN-S-INCL—i. e., additionally asking for
minimality—does not involve going up an additional level in the polynomial hi-
erarchy but only moving to the corresponding Dp

m class.

Theorem 4.5. Let K be a knowledge base. Let m ≥ 1. If the decision problem
SATL is in

(a) Σp
m, then MIN-S-INCL is in Dp

m,

(b) Πp
m, then MIN-S-INCL is in Dp

m+1,

(c) Πp
m and L is weakly monotonic, then MIN-S-INCL is in Dp

m.

Proof. (a) We need to show that it is sufficient to solve one problem in Σp
m

and one in Πp
m. To check whether H is strongly K-inconsistent, we need to

check that H ′ is inconsistent for each H ⊆ H ′ ⊆ K. Checking that H ′ is

34

a “no” instance of SATL is in Πp
m. Since there are only exponentially many

H ′ ⊆ K, we can also decide in Πp
m whether

∀H ⊆ H ′ ⊆ K : H ′ is inconsistent

is true. The minimality of H can be written as

∀G (H ∃G′ : G ⊆ G′, G′ is consistent (12)

stating that each proper subset G of H has a consistent superset G′, which
ensures that G is not strongly K-inconsistent. However, it is sufficient to
check |H| subsets of H: Let H = {α1, . . . , αk} and let Hi = H \ {αi},
i. e., we consider the |H| possible subsets of size |H| − 1. Now consider an
arbitrary set G (H . Clearly, there is one i such that G ⊆ Hi. Hence, if
Hi has a consistent superset H ′i, then so has G. Thus, all proper subset of
H do have a consistent superset if and only if this is the case for H1, ..., Hk.
Hence, we only need to check these subsets of H and therefore, deciding
whether

∃Hi ⊆ H ′i : H ′i is consistent

is true (with H1, ..., Hk as described) is sufficient. Since there are only
linearly many Hi and only exponentially many potential sets Hi ⊆ H ′i, this
is in Σp

m if SATL is in Σp
m. Now, the claim follows due to the definition of

Dp
m.

(b) This follows from (a) since Πp
m ⊆ Σp

m+1.

(c) If L is weakly monotonic and SATL in Πp
m, then MIN-S-INCL corresponds

to

• verifying that H is inconsistent (which is in Σp
m) and

• verifying that H1, ..., Hk as in (a) are consistent (which is in Πp
m).

Thus, MIN-S-INCL is in Dp
m.

In the above theorems we required m ≥ 1, i. e., we did not consider logics
where SATL is in P. Indeed, the statements are not true anymore for m = 0 as
pointed out in Theorem 4.11 below.

So far, the decision problem SATL was assumed to be in a fixed level of the
polynomial hierarchy, where the generic complete problem is deciding the truth

35

value of a QBF with a fixed amount of quantifiers. As mentioned above, deciding
the truth value of arbitrary QBFs is the generic complete problem for PSPACE.
Thus, it seems natural to continue our investigation here. However, PSPACE is
already “too big” in order to be interesting for us, because one can just enumerate
all subsets of K. Then, the decision problems we considered so far depend on
deciding (un)satisfiability only. The minimality check as well as considering all
supersets of H ⊆ K are rendered trivial.

Proposition 4.6. Let K be a knowledge base. If the decision problem SATL is in
PSPACE, then

(a) S-INCL is in PSPACE and

(b) MIN-S-INCL is in PSPACE.

Proof. In PSPACE, we can successively enumerate all subsets of K and then
perform the corresponding consistency checks. It is then clear whether or not
(K, H) is a “yes” instance of S-INCL resp. MIN-S-INCL.

We briefly discuss the natural counting problem corresponding to MIN-S-INCL:

#MIN-S-INC(L) Input: K ⊆WF
Output: |SImin(K)|

The result regarding membership is similar to Theorem 4.5. Recall that we con-
sidered the same three cases in Theorem 4.5 and note that (b) is the most difficult
one again.

Theorem 4.7. Let K be a knowledge base. Let m ≥ 1. If the decision problem
SATL is in

(a) Σp
m, then #S-INC(L) and #MIN-S-INC(L) are in #·Πp

m,

(b) Πp
m, then #S-INC(L) and #MIN-S-INC(L) are in #·Πp

m+1,

(c) Πp
m and L is weakly monotonic, then #S-INC(L) and #MIN-S-INC(L) are

in #·Πp
m.

Proof. We make use of the observation that

#·∆p
m+1 = #·Πp

m

(see (Hemaspaandra and Vollmer, 1995)). Furthermore, it is clear that

Dp
m ⊆ ∆p

m+1.

So, we use Theorems 4.4 and 4.5 and obtain:

36

(a) If SATL is in Σp
m, then S-INCL is in Πp

m and thus, #S-INC(L) is in #·Πp
m.

Moreover, MIN-S-INCL is in Dp
m and hence, #MIN-S-INC(L) is in #·∆p

m =
#·Πp

m.

Analogously, (b) and (c) follow from Theorems 4.4 and 4.5.

4.3. Hardness Results for Logic Programs and Abstract Argumentation
In Theorems 4.4 and 4.5, only membership statements are given. But bear

in mind that these results are valid for every logic that can be phrased via Defini-
tion 2.1. One cannot expect to obtain similar general hardness results as reductions
may work very differently for different logics (and they do for the cases we are
going to consider). Nonetheless, we are now going to give some concrete hardness
results for specific cases. First, we construct an arbitrary logic witnessing that the
result in item (b) of the two theorems cannot be improved in general. Moreover,
we consider abstract argumentation frameworks and logic programming. Those
frameworks belong to case (a) of Theorems 4.4 and 4.5 and hardness in the be-
longing class will be proven.

Theorem 4.8. For anym ≥ 1, there is a logicLΠp
m

= (WFΠp
m
,BSΠp

m
, INCΠp

m
,ACCΠp

m
)

such that SATL
Π
p
m

is in Πp
m and

(a) S-INCL
Π
p
m

is Πp
m+1-complete and

(b) MIN-S-INCL
Π
p
m

is Dp
m+1-complete.

Proof. For this proof, we make use of the following notation: Assume we are
given a set X of atoms and a formula φ over X . Consider a (partial) assignment
ω : X → {0, 1}. Now, we let φ[ω] be the formula where the atoms are evaluated
according to ω, i. e., a ∈ X is substituted by 1 if ω(a) = 1, by 0 if ω(a) = 0 and
remains unchanged if ω is not defined on a.

Now let m ≥ 1. Consider quantifiers Q1 = ∀, . . . , Qm and sets of vari-
ables X1, . . . , Xm. We define a logic LΠp

m
= LΠp

m
(Q1, . . . , Qm, X1, . . . , Xm) =

(WFΠp
m
,BSΠp

m
, INCΠp

m
,ACCΠp

m
). The set WFΠp

m
consists of tuples of the form

(φ, L), where φ is a boolean formula over the variables in X1 ∪ . . . ∪ Xm and L
is a set of literals over X1 ∪ . . . ∪Xm. Let BSΠp

m
= {⊥,>} and INCΠp

m
= {⊥}.

The mapping ACCΠp
m

works similar as in Remark 4.3, except formulas are tuples
(φ, L) now. In a nutshell, the set L in (φ, L) defines a partial assignment. So given
a knowledge base

K = {(C1, L1), . . . , (Cr, Lr)}

37

we let LK = L = L1 ∪ . . . ∪ Lr. If L contains two complementary literals,
then ACCΠp

m
(K) = {⊥}, rendering K inconsistent (the reason is that L shall

correspond to a (partial) assignment to the variables; hence, it cannot contain a
complementary pair of literals). Otherwise, let ωK = ω : X1∪ . . .∪Xm → {0, 1}
be the (partial) assignment corresponding to L, i. e.,

ω(l) =

{
1 if l ∈ L,
0 if l /∈ L.

The mapping ACCΠp
m

treats the formulas C1, . . . , Cr in K as conjuncts while re-
specting the (partial) assignment ω, i. e., we let φK = φ = C1 ∧ . . . ∧ Cr and

ACCΠp
m

(K) =

{
{>} if ∀X1 . . . QmXm φ[ω],

{⊥} otherwise.

This mechanism introduced by ω is important for us due to two different rea-
sons: First, we can introduce formulas that correspond to partial assignments to
“neutralise” a universal quantifier, which gives our logic the nonmonotonic layer
we need. Second, we can construct knowledge bases such that supersets cor-
respond to assignments. As strong K-inconsistency considers all supersets of a
given H ⊆ K, this facilitates simulation of an additional universal quantifier.

We now show that LΠp
m

has the properties we claim, i. e., SATL
Π
p
m

is in Πp
m,

S-INCL
Π
p
m

is Πp
m+1-complete and MIN-S-INCL

Π
p
m

is Dp
m+1-complete.

(Membership) Since we consider m quantifiers, where the first one is universal,
it is rather easy to see that SATL

Π
p
m

is in Πp
m. Then S-INCL

Π
p
m
∈ Πp

m+1 and
MIN-S-INCL

Π
p
m
∈ Dp

m+1 follow from Theorems 4.4 and 4.5.

(Hardness) Assume we are given a formula

Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ. (13)

Note that Φ contains m + 1 quantifiers, i. e., deciding whether it is true is Σp
m+1-

complete in general. We assume φ is an arbitrary conjunction, i. e., φ = C1∧ . . .∧
Cr. We consider the logic

LΠp
m

= LΠp
m

(∀, Q3, . . . , Qm+1, Z ∪X2, X3, . . . , Xm+1).

For (a), we show that there is a knowledge base K with a subset H that is a “yes”
instance of S-INCL

Π
p
m

if and only if Φ is false. The statement (b) follows from
(a) utilizing a formula similar to Θ we constructed in the proof of Theorem 4.1.

38

(a) We prove the following statement: Given the formula

Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ (13)

where φ = C1 ∧ . . . ∧ Cr is an arbitrary conjunction, the pair (K, H) with

K = {(C1, ∅), . . . , (Cr, ∅), (>, z1), (>,¬z1), . . . , (>, zn), (>,¬zn)},
H = {(C1, ∅), . . . , (Cr, ∅)}

is a “yes” instance of S-INCL
Π
p
m

if and only if Φ is false.

Note that we can identify H with {φ, ∅} due to the definition of our logic.
The subset H is considered consistent if

∀Z ∪X2Q3X3 . . . Qm+1Xm+1 φ

is valid and hence, inconsistent if

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ (14)

holds, where Qi is the complementary quantifier. Note that the formulas
besides the (Ci, ∅) are all of the form (>, zk) resp. (>,¬zk). Hence, all
they do is fixing z-variables. So, naturally, any set H ′ with H ⊆ H ′ ⊆ K
corresponds to the formula Φ with respect to a partial assignment onZ. This
motivates the following notation: Given a (partial) assignment ω : Z →
{0, 1}, we let Hω be the set of formulas of the form (>, zk) resp. (>,¬zk)
that naturally corresponds to the assignment, i. e., if ω(zk) = 1, then (>, zk)
occurs in Hω and if ω(zk) = 0, then (>,¬zk) occurs in Hω.

Now, we show: Φ is false if and only if H is strongly K-inconsistent.

“⇐”: Assume H is strongly K-inconsistent. Consider an assignment ω :
Z → {0, 1} and the set

H ′ = H ∪Hω.

Since H is strongly K-inconsistent, H ′ is inconsistent. The formulas Hω

augment φ with conjuncts “>” only, which can be ignored. Additionally,
the z-variables are fixed according to ω, making the consideration of φ[ω]
rather than φ itself necessary. Thus, H ′ being inconsistent means

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

39

holds. Since ω fixes the z-variables, this is equivalent to

∃X2Q3X3 . . . Qm+1Xm+1 ¬φ[ω].

Since ω was an arbitrary assignment, we obtain that

∀Z∃X2Q3X3 . . . Qm+1Xm+1 ¬φ

holds. Hence,
Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ (13)

is false.

“⇒”: Now assume Φ is false. Hence,

∀Z∃X2Q3X3 . . . Qm+1Xm+1 ¬φ (15)

holds. Again, consider an assignment ω : Z → {0, 1}. Since (15) is true,
we obtain that in particular,

∃X2Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

is true. Since the z-variables are fixed anyway,

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

holds as well. Due to the definition of our logic, this means that the set

H ′ = H ∪Hω

is inconsistent. Now consider any set H∗ with H ⊆ H∗ ⊆ H ′. Such H∗

naturally corresponds to an assignment ω∗ : Z∗ → {0, 1} with Z∗ ⊆ Z and
ω|Z∗ = ω∗. It is an easy observation that

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

being true now implies that

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω∗]

holds as well, because the latter is the same formula with less z-variables
being fixed. Again by definition of our logic, H∗ is inconsistent. Since ω
and ω∗ are arbitrary, we obtain that any

H ′ = H ∪Hω

40

where ω is a (partial) assignment is inconsistent. Now, the remaining setsH ′

with H ⊆ H ′ ⊆ K do not correspond to a (partial) assignment. Hence, all
of them contain at least one pair of the form {(>, zk), (>,¬zk)} rendering
them inconsistent (recall the definition of ACCΠp

m
if the set L contains a

complementary pair of literals). Hence, H is strongly K-inconsistent.

This completes (a).

(b) For (b), the technical work is already done. Assume we are given the generic
Dp

m+1-complete problem, i. e., two formulas Φ1 and Φ2 of the form

Φi = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φi (13)

and have to decide whether Φ1 is false while Φ2 is true. We construct the
formula

Θ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 θ

as it is done in the proof of Theorem 4.1, within the last step. Thus, θ is a
conjunction and for notational convenience, we assume θ = C1 ∧ . . . ∧ Cr.
Recall that Θ is a “yes” instance of QBF-MU(Q1, ..., Qm+1) if and only if
Φ1 is false while Φ2 is true. Consider (K, H) given as in (a), i. e.,

K = {(C1, ∅), . . . , (Cr, ∅), (>, z1), (>,¬z1), . . . , (>, zn), (>,¬zn)},
H = {(C1, ∅), . . . , (Cr, ∅)}.

Now (K, H) is a “yes” instance of MIN-S-INCL
Π
p
m

if and only if H is
strongly K-inconsistent, but no proper subset of H . Due to (a), this is the
case if and only if Θ is false, but removing any conjunct from θ renders it
true. By construction of Θ, this is the case if and only if Φ1 is false, while
Φ2 is true. This yields hardness in Dp

m+1.

We give two more hardness results for case (a) of Theorem 4.5 for the frame-
work of logic programming, i. e., the logics LASP

A and LASPk=0
A we introduced in

Section 2.3. Be reminded that deciding whether a given disjunction-free logic
program P is consistent is NP-complete (Eiter and Gottlob, 1995).

Theorem 4.9. It holds that

(a) the problem S-INC
L

ASPk=0
A

is Πp
1-complete,

41

(b) the problem MIN-S-INC
L

ASPk=0
A

is Dp
1-complete.

Proof. (Membership) The membership statements follow from Theorems 4.4 and 4.5
since SAT

L
ASPk=0
A

is in NP.

(Hardness) As mentioned above, the problem MU, i. e., checking whether a given
formula in CNF is unsatisfiable, but removing one clause renders it satisfiable, is
Dp

1-complete (Papadimitriou and Wolfe, 1988). Given such a formula, we con-
struct a program P and a subprogram H that is minimal strongly P -inconsistent
if and only if Φ is a “yes” instance of MU.

Let Φ be in 3-CNF, i. e., the conjunction of C1, ..., Cr with Ck = lk,1 ∨ . . . ∨
lk,3. Let a1, ..., an be the atoms occurring in Φ. Let σ be the mapping translating
classical negation into default negation, i. e.,

σ(l) =

{
ai if l = ai ∈ {a1, ..., an},
not ai if l = ¬ai ∈ {¬a1, ...,¬an}.

Let P and H be the following programs:

P :

a1., . . . , an.

wCk
← σ(lk,1). k = 1, . . . , r

wCk
← σ(lk,2). k = 1, . . . , r

wCk
← σ(lk,3). k = 1, . . . , r

← not wCk
. k = 1, . . . , r

H :

← not wCk
. k = 1, . . . , r

Intuitively, for each k the atom wCk
shall witness that the clause Ck is true.

That is why it can be included in an answer set whenever one of the literals
σ(lk,1), . . . , σ(lk,3) is. Note that the construction of P is polynomial. We prove
the claimed hardness results, starting with the second one.

(b) We claim that H is minimal strongly P -inconsistent if and only if Φ is a
“yes” instance of MU.

“⇒”: Assume H ∈ SImin(P). Hence, no program H ′ with H ⊆ H ′ ⊆ P is
consistent.

42

We argue that Φ must be unsatisfiable: For the sake of contradiction, assume
there is a satisfying assignment ω to the variables a1, . . . , an. Augment H
with the fact “ai” for the i such that ω(ai) = 1. Moreover, add all rules of
the form “wCk

← σ(lk,i)”. Since ω renders Φ true, all constraints in H are
satisfied. Thus, H ′ is consistent—a contradiction since H was assumed to
be strongly inconsistent. Similarly, minimality of H in SI(P) ensures that
removing any conjunct from Φ renders it satisfiable.

“⇐”: Now assume Φ is a “yes” instance of MU. Then, the construction
as described above does not work; no super-program of H is consistent.
Hence, H is strongly inconsistent. Minimality is similar, again.

As we already mentioned, MU is Dp
1-hard. Hence, we obtain hardness of

MIN-S-INC
L

ASPk=0
A

in Dp
1 as well.

(a) Φ is an arbitrary formula, i. e., deciding whether it is unsatisfiable is Πp
1 =

coNP-complete. As argued above, H is strongly P -inconsistent if and only
if Φ is unsatisfiable. Hardness in coNP follows.

Consider again the program P from the previous proof. Except the constraints
“← not wCk

.” the program is even stratified (Apt et al., 1988). This is particularly
interesting since deciding consistency of stratified programs is in P. However, as
seen in the proof, the construction suffices to show hardness of S-INC

L
ASPk=0
A

and MIN-S-INC
L

ASPk=0
A

in Πp
1 and Dp

1, respectively. Thus, we see that Theo-
rems 4.4 and 4.5 are not applicable for m = 0, as we already mentioned earlier.
For that, we recall the notion of stratification (Apt et al., 1988).

Definition 4.10. A logic program P over a set A of atoms is called stratified if
there is a mapping ‖·‖ : A→ N such that for any rule

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

from P it holds that

• k(l0) ≥ k(li) for i = 1, ...,m,

• k(l0) > k(lj) for j = m+ 1, ..., n.

43

Now, we construct a simple logic that rejects any program which is not strati-
fied. A knowledge base is going to consist of rules and integers corresponding to
strata for the atoms. It is thus quite easy to see that the satisfiability check of this
logic is in P. We utilize the same construction as in the proof of Theorem 4.9 for
the hardness results.

Theorem 4.11. There is a logicLPStrat
A = (WFPStrat

A ,BSPStrat
A , INCPStrat

A ,ACCPStrat
A)

such that SAT
L
PStrat
A

is in P = Σp
0 and

(a) S-INC
L
PStrat
A

is coNP-complete and

(b) MIN-S-INC
L
PStrat
A

is Dp
1-complete.

Proof. Our logic

LPStrat
A = (WFPStrat

A ,BSPStrat
A , INCPStrat

A ,ACCPStrat
A)

is similar to

LASPk=0
A = (WFASPk=0

A ,BSASP
A , INCASP

A ,ACCASP
A)

with some minor modifications: in addition to rules r, WFPStrat
A contains tuples

(l, k(l)) where l is a literal and k(l) a nonnegative integer. The integer k(l) is the
stratum corresponding to l. Hence, formally a knowledge base K is of the form
K = P ∪ S where P is a set of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

and S (S for strata) is a set of tuples of the form (l, k(l)) with l ∈ A. Now given
a knowledge base K = P ∪ S we check in polynomial time that for every literal l
occurring in P , exactly one tuple (l, k(l)) is contained in S. Then, for every rule
(except for the constraints occurring in P)

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

we check in polynomial time that

• ‖l0‖ ≥ ‖li‖ for i = 1, ...,m,

• ‖l0‖ > ‖lj‖ for j = m+ 1, ..., n,

44

i. e., that the program is stratified and the integers k(l) correspond to appropriate
strata for the atoms. If there is a literal l occurring in the program such that (l, k(l))
is not contained or occurring twice for two different integers k1(l) and k2(l) in S,
then K is considered inconsistent. Otherwise, K is consistent if and only if the
(stratified) program P has an answer set, i. e., all constraints are satisfied by the
unique answer set of P . This check is done in polynomial time as well (Apt et al.,
1988) and hence SAT

L
PStrat
A

is in P = Σp
0.

Now we utilize the construction given in the proof of Theorem 4.9 to see the
hardness results.

As a second example, we consider disjunctive logic programs i. e., the logic
LASP
A as introduced in Section 2.3. Due to (Eiter and Gottlob, 1995), deciding

whether a given disjunctive program is consistent is Σp
2-complete.

Theorem 4.12. It holds that

(a) the problem S-INCLASP
A

is Πp
2-complete,

(b) the problem MIN-S-INCLASP
A

is Dp
2-complete.

Proof. (Membership) The membership statements follow from Theorems 4.4 and 4.5
since SATLASP

A
is in Σp

2.

(Hardness) In (Eiter and Gottlob, 1995), it has been shown that deciding whether a
disjunctive logic program is consistent is Σp

2-complete. We sketch the proof since
we are going to make use of the construction.

Assume we are given a QBF

Φ = ∃X∀Y φ

where φ is in 3-DNF, i. e., φ = C1 ∨ . . . ∨ Cr with Ck = lk,1 ∧ . . . ∧ lk,3. Let
X = {x, . . . , xn} and Y = {y1, . . . , ym}. We introduce fresh atoms {x′1, . . . , x′n}
and {y′1, . . . , y′m} corresponding to the classical negation of the atoms. We let σ
be the appropriate mapping, i. e.,

σ(l) =

l if l is of the form xi or yj,
x′i if l is of the form ¬xi,
y′j if l is of the form ¬yj.

45

We consider the following program P .

P :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j. j = 1, ...,m

yj ← w. j = 1, ...,m

y′j ← w. j = 1, ...,m

w ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

← not w.

Now, in order for a set M to be an answer set of P , w needs to be contained in
M . Since w ∈ M , all y-variables have to be in M as well. Thus, in order for M
to be a minimal model, it needs to be possible to entail w for any choice of the
y-variables (that is the translation of the universal quantifier). We refer the reader
to (Eiter and Gottlob, 1995) for more details.

Now, for (b), i. e., the hardness of MIN-S-INCLASP
A

in Dp
2, we proceed as in

the proof of Theorem 4.1. We assume we are given an instance of the generic
Dp

2-complete problem, i. e., two formulas

Φi = ∃Xi∀Yi φi, i = 1, 2

where we have to decide whether it holds that Φ1 is false while Φ2 is true. We
construct programs (P1, H1) that are a “yes” instance of MIN-S-INCLASP

A
if and

only if Φ1 is false, programs (P2, H2) that are a “yes” instance of MIN-S-INCLASP
A

if and only if Φ2 is true and then we show how to combine them to one instance
(Q,G) of MIN-S-INCLASP

A
which is a positive one if and only if both (P1, H1) and

(P2, H2) are. Utilizing the construction of (P1, H1) yields (a).
As in the proof of Theorem 4.1, we omit the indices and denote the formula by

Φ for both constructions. We assume w. l. o. g. that both formulas are over disjoint
sets of variables. So consider

Φ = ∃X∀Y φ

as above. The reason why we have to adjust the construction given in (Eiter and
Gottlob, 1995) is the translation of the universal quantifier. The rules “yj ← w.”
and “y′j ← w.” make sure that the formula is true for any choice of the y-variables.
However, given H , one might construct H ′ with H ⊆ H ′ ⊆ P such that H ′ does

46

not contain all rules of this form. Then, the universal quantifier is not translated
correctly.

To solve this issue, we allow entailment of w only if all yj and y′j are true.
Thus, we introduce the atom w∗ as a tool to obtain the y-variables. They, in turn,
allow entailment of w. So we construct P1 and H1 as follows.

P1 :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j. j = 1, ...,m

yj ← w∗. j = 1, ...,m

y′j ← w∗. j = 1, ...,m

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← y1, y
′
1, . . . , ym, y

′
m.

← not w.

H1 :

← not w.

We can already argue for hardness of S-INCLASP
A

in Πp
2.

(a) Deciding whether Φ is true is Σp
2-complete in general. Since P1 is strongly

P1-inconsistent if and only if it is inconsistent itself, we see (as in (Eiter
and Gottlob, 1995)): Φ is false if and only if (P1, P1) is a “yes” instance of
S-INCLASP

A
. Hence, the latter is Πp

2-hard in general.

(b) We claim that Φ is false if and only ifH1 is minimal strongly P1-inconsistent.

“⇒”: Minimality is clear since H1 consists only of one rule. Now assume
H1 is not strongly P1-inconsistent. Then, there is a program H1 ⊆ H ′1 ⊆ P1

that is consistent. We argue that in this case, P1 itself is consistent. The
program H ′1 must contain “w ← y1, z1, . . . , ym, zm.”. One can see that
any answer set M of H ′1 has to contain y1, y

′
1, . . . , ym, y

′
m. Hence, the rules

of the form “yj ← w.” and “y′j ← w.” can all assumed to be contained in
H ′1. It is easy to see that the remaining rules do not introduce inconsistency.
Hence, P1 is consistent. Thus, Φ is true (cf. (Eiter and Gottlob, 1995)), a
contradiction.

“⇐”: AssumeH1 is minimal strongly inconsistent. Then, P1 itself is incon-
sistent. Hence, Φ is false.

47

As already mentioned, we need a second program. As stipulated above, we
denote the given QBF by Φ again. We make use of the same notations as
above. Recall, however, that we assume the formulas to be over disjoint sets
of variables. Also note that our goal is now to obtain programs (P2, H2) that
are a positive instance of MIN-S-INCLASP

A
if and only if Φ is true. Consider:

P2 :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j. j = 1, ...,m

yj ← v∗. j = 1, ...,m

y′j ← v∗. j = 1, ...,m

v∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

v ← y1, y
′
1, . . . , ym, y

′
m.

← not v.
← v.

H2 :

← not v.
← v.

The situation is similar except that now, H2 is strongly P2-inconsistent in
any case. Furthermore, the subprogram {← v.} is consistent. So, we have:

H2 minimal strongly P2-inconsistent
⇔ {← not v.} not strongly P2-inconsistent
⇔ P2 \ {← v.} consistent
⇔ Φ true.

Combining:

Now assume we are given two formulas Φ1 and Φ2 as above over disjoint
sets of variables. Construct P1 and P2 as above, except the occurring con-
straints. Let P be the union of both programs, i. e.,

P = (P1 ∪ P2) \ {← not w., ← not v.,← v.}

48

Consider Q and G given as follows.

Q :

P

← not v, not w. ← v, not w.

G :

← not v, not w. ← v, not w.

Using the considerations above, we can easily verify that G is minimal
strongly Q-inconsistent if and only if Φ1 (responsible for entailment of w)
is false while Φ2 (responsible for entailment of v) is true.

To summarize, (Q,G) is a “yes” instance of MIN-S-INCLASP
A

if and only if
Φ1 is false while Φ2 is true. We thus obtain the desired hardness result.

We turn to argumentation frameworks under stable model semantics, i. e., the
logic LAAF

A introduced in Section 2.4. It turns out that we obtain similar results.
Recall that deciding whether a stable extension exists is NP-complete in general
(Dunne and Wooldridge, 2009).

Theorem 4.13. It holds that

(a) the problem S-INCLAAF
A

is coNP-complete and

(b) the problem MIN-S-INCLAAF
A

is Dp
1-complete.

Proof. Membership follows from Theorems 4.4 and 4.5, so we need to show hard-
ness.

Assume we are given a formula Φ in 3-CNF, i. e., the conjunction of C1, ..., Cr

with Ck = lk,1∨ . . .∨ lk,3. Let a1, ..., an be the atoms occurring in Φ. We construct
a framework AF = (A,R) as follows, cf. similar constructions in (Dimopoulos
and Torres, 1996). A contains an element for each literal and each clause in φ,
i. e.,

A = {a1, . . . , an,¬a1, . . . ,¬an, C1, . . . , Cr}.

The relation R shall ensure that a stable extension corresponds to a satisfying
assignment. Hence, we include

(a1,¬a1), . . . , (an,¬an), (¬a1, a1), . . . , (¬an, an)

49

a1¬a1 . . . an ¬an

C1 C2
. . . Cr

. . .

Figure 4: Construction for Arg

to make sure each stable model contains either ai or ¬ai for any stable model.
Moreover, all clauses need to be satisfied which we translate as “need to be at-
tacked”, i. e., we include the attacks

(C1, C1), . . . , (Cr, Cr).

Now, each Ck attacks itself (k = 1, . . . , r). Hence, in any stable model, every
Ck is “attacked” from another argument. So, finally, we include that the literals
lk,1, . . . , lk,3 are the ones rendering Ck true (“attacking Ck”):

(lk,1, Ck), . . . , (lk,3, Ck), k = 1, . . . , r.

To summarize, R is given as follows.

R = {(a1,¬a1), . . . , (an,¬an), (¬a1, a1), . . . , (¬an, an)} (assignment)

∪ {(C1, C1), . . . , (Cr, Cr)} (each Ci has to be
attacked)

∪ {(l1,1, C1), . . . , (l1,3, C1), . . . , (lr,1, Cr), . . . , (lr,3, Cr)} (attacked if true)

Observe that Φ is satisfiable if and only if AF has a stable extension (Dimopou-
los and Torres, 1996), i. e., if AF is consistent wrt. stable semantics. Consider
AFH = (AH , RH) ⊆ AF = (A,R) given as AH = {C1, . . . , Cr} and RH =
{(C1, C1), . . . , (Cr, Cr)}. Note that AFH is inconsistent (wrt. stable semantics).

(a) It is easy to verify that AFH is not strongly AF -inconsistent iff there is a
satisfying assignment to Φ. Hence, we obtain hardness for S-INCLAAF

A
in

coNP.

50

Input: a knowledge base K
Result: SI (K)
n := |K|; H := ∅; H ′ := ∅;
if K inconsistent then H ′ := {K};
while H 6= H ′ do

n := n− 1; H := H ′; New := ∅ ;
for each S ∈ H with |S| = n+ 1 do

for each S ′ ⊆ S with |S ′| = n do
if S ′ inconsistent and
S ′ ∪ {φ} ∈ H for each φ ∈ K \ S ′
then New := New ∪ {S ′};

end
end
H ′ := H ′ ∪New;

end
return H .

Algorithm 1: A generic algorithm for computing SI (K)

(b) It is also straightforward to see that (AF,AFH) is a “yes” instance of MIN-S-INCLAAF
A

iff Φ is one for MU. We thus obtain Dp
1-hardness.

4.4. A Generic Algorithm
To conclude this discussion on computational complexity, we present a generic

algorithm for computing SI (K). Algorithm 1 computes strongly K-inconsistent
subsets in the order of decreasing cardinality, starting withK. It is based on the ob-
servation that a proper subset S ofK can only be stronglyK-inconsistent if all sub-
sets of K which contain one additional element are also strongly K-inconsistent
(this property is checked during the computation of New). This additional check
presumably reduces the search space in many cases, but a detailed evaluation of
this algorithm is left for future work. The algorithm is somewhat reminiscent of
the Apriori algorithm for computing frequent sets in data mining (Agrawal and
Srikant, 1994), but rather than working bottom up from smaller to bigger sets, it
works in the opposite direction. The algorithm can easily be turned into one for
SImin(K) by deleting non-minimal elements whenever New is added to H ′.

Proposition 4.14. Algorithm 1 is sound, complete, and has runtime O(2n ∗ n ∗
f(n)) where f(n) is the runtime of an algorithm for checking consistency in the
given logic.

51

Proof. In order to prove soundness let H be the result of applying Algorithm 1
on K and let S ∈ H . We have to show that S ∈ SI (K). If S = K then S has
been added to H before the while-loop because K is inconsistent. By definition it
follows S ∈ SI (K). If S 6= K then S has been added to H at the end of the while-
loop. This is due to the fact that S is inconsistent and, by induction, each union of
S with another formula is stronglyK-inconsistent (second if-statement). It follows
that S is strongly K-inconsistent as well. For completeness, let T ∈ SI (K). Then
there is a chain T = T0 (T1 (. . . (Tk−1 (Tk = K such that T0, . . . , Tk ∈
SI (K) (note that this statement actually holds for all such chains). As Tk = K
is strongly K-inconsistent it is inconsistent as well and added to H before the
while-loop. By induction, each Ti (in reverse order) is found in the following
while-loops as all subsets of the given cardinality are tested for inconsistency.

Let now f(n) be the runtime of an algorithm for checking consistency. First,
observe that the worst-case runtime of Algorithm 1 is attained when SI (K) =
2K \ {∅}, i. e., all subsets of K (except the empty set) are strongly K-inconsistent.
Then the first for-loop is iterated exactly once for each S ∈ SI (K)—i. e. 2|K|−1 =
2n − 1 times— during the execution of the algorithm as it considers all sets with
decreasing cardinality (note that the actual number of iterations of the outer while-
loop is thus irrelevant for the runtime analysis). For each S ∈ SI (K) we then
consider each subset of S with cardinality |S| − 1 of which there are at most
|K| = n many. For each of those one consistency check with runtime f(n) is
executed and at most |K| = n many member checks (of constant runtime) are
performed. In total we have that Algorithm 1 has runtime O(2n ∗ n ∗ f(n)).

We expect that for specific logics one can do better. For instance, for logic
programs without classical negation it is well-known that inconsistency can only
arise if there are certain negative loops in the dependency graph. The analysis
of such loops may lead to more direct algorithms. This topic is currently under
investigation.

5. Applications

We will now discuss some of the potential applications of strong inconsistency
in nonmonotonic reasoning, namely knowledge base diagnosis and inconsistency
measurement.

5.1. Diagnosis and Repair
Theorem 3.6 already shows how consistency of a knowledge base K can be

restored by deleting a minimal subset of formulas. As in the classical case, the

52

key is to compute certain inconsistent subsets of the knowledge base. The hitting
sets of these subsets then are the candidates for deletion. Unlike in monotonic
logics, in the general case one has to compute hitting sets of minimal strongly
inconsistent subsets. Our theorem shows that this guarantees minimality of the
modification performed on K.

Example 5.1. Consider the following logic program P13:

P13 : a← not b. b← not c. a← not d. e.

c← not a. d. ¬e.

Minimal inconsistent subsets of P13 are M1 = {a ← not b., b ← not c., c ←
not a.} and M2 = {e.,¬e.}. Whereas M2 is also minimal strongly inconsistent,
M1 is not as adding the rule “a ← not d.” resolves inconsistency. The second
minimal strongly inconsistent subset is M3 = M1 ∪ {d}. Hitting sets consist of
one element of M3 and one of M2. The program P13 can be repaired by deleting
the rules in any of these hitting sets.

It is worth mentioning that in the nonmonotonic case, this is not the only
way of repairing a knowledge base, as adding formulas may also restore consis-
tency (as long as the knowledge base does not contain a general strongly inconsis-
tent subset). However, deletion-based repair is also important for nonmonotonic
knowledge bases for various reasons. First of all, in many cases it is far from clear
how to select and justify the added formulas. Secondly, there are situations where
modelling errors are more probable than modelling gaps, and where identifying
such errors simply is the better option. And finally, there are cases where there is
simply no choice as some inconsistencies cannot be repaired by additions alone.

The results of this paper are not only relevant for knowledge base repair, but
also for model-based diagnosis of technical systems along the lines of (Reiter,
1987; de Kleer et al., 1992). In this approach a system description SD is given in
terms of first-order logic. SD describes the correct behaviour of a set of compo-
nents Comp and uses ab predicates for this purpose. The idea is then to identify
minimal sets of components C such that SD∪Obs∪{ab(c) | c ∈ C} is inconsis-
tent. The results of this paper allow us to capture system descriptions expressed
in more general logics. All we have to do is replace the inconsistency check with
a strong inconsistency check.

5.2. Measuring Inconsistency
An inconsistency measure Inc is a function that maps knowledge bases to non-

negative real numbers. The intuition behind such functions is that larger values

53

indicate severe inconsistencies in the knowledge base and the value 0 indicates
minimal inconsistency, i. e., consistency. Different approaches to measuring in-
consistency have been proposed in the literature, mostly for classical propositional
logic, see (Thimm, 2016) for a recent survey. In this context, a simple but popular
approach to measure inconsistency is to take the number of minimal inconsistent
subsets (Hunter and Konieczny, 2008), i. e., to define IncMI(K) = |Imin(K)| for
a classical knowledge base K. This measure already complies with some basic
ideas of inconsistency measurement, in particular IncMI(K) = 0 iff K is consis-
tent. By also taking the size and the relationships of minimal inconsistent subsets
into account, a wide variety of different inconsistency measures can be defined
on top of that idea, see e. g. (Hunter and Konieczny, 2008; Jabbour et al., 2016;
Jabbour and Sais, 2016).

Measuring inconsistency in nonmonotonic logics has only recently gained
some attention (Ulbricht et al., 2016) and a thorough study is still needed. In
this setting, a measure such as IncMI is not applicable as a consistent nonmono-
tonic knowledge baseKmay contain minimal inconsistent subsets, recall the logic
program P4 = {a ← not a, not b., b.} from the introduction. However, using our
notion of strong inconsistency the wide spectrum of measures based on minimal
inconsistent subsets can be lifted to the general case. Here, we only consider the
measure IncMI.

Definition 5.2. Define IncMSI via IncMSI(K) = |SImin(K)| for every knowledge
base K.

If K is weakly monotonic then IncMSI(K) = IncMI(K) due to Proposition 3.5,
item 2. So the measure IncMSI faithfully generalises IncMI to all kinds of logics.

Example 5.3. For the logic program P4 = {a ← not a, not b., b.} we obtain
IncMSI(P4) = 0, despite the fact that P4 contains a (classical) minimal inconsistent
subset. For P14 = {a.,¬a., b← not b.} we have IncMSI(P14) = 2.

The field of inconsistency measurement is driven by rationality postulates,
i. e., the development of general properties that should hold for an inconsistency
measure, cf. (Thimm, 2016). Many of them specify desirable behaviour in terms
of minimal inconsistent subsets and can thus easily be lifted to the general case.
The following result shows the compliance of our generalised measure with some
important properties.

Theorem 5.4. Let K be a (monotonic or nonmonotonic) knowledge base.

54

Consistency IncMSI(K) = 0 if and only if K is consistent.

Independence If α ∈ Ntr(K) then IncMSI(K) = IncMSI(K \ {α}).

Separability If SImin(K1 ∪ K2) = SImin(K1) ∪ SImin(K2) and SImin(K1) ∩
SImin(K2) = ∅ then IncMSI(K1 ∪ K2) = IncMSI(K1) + IncMSI(K2).

Proof. Consistency follows directly from Proposition 3.5, item 3. Independence
holds since for any H ⊆ K, H is minimal strongly K-inconsistent if and only if
H \ {α} is (because α cannot introduce or resolve inconsistency). Separability
follows from the definition of IncMSI.

The measure IncMSI violates one important property though, which is usually
demanded for classical measures: the monotonicity postulate. This postulate re-
quires Inc(K) ≤ Inc(K′) whenever K ⊆ K′ and formalises the intuition that
inconsistency can only increase when adding new information. However, this in-
tuition is inadequate for nonmonotonic logics as the addition of new information
may resolve inconsistencies. Therefore, satisfaction of the monotonicity postulate
is indeed not desirable in general, see (Ulbricht et al., 2016) for a discussion on
this topic.

In the same vein, other approaches that utilise minimal inconsistent sets for
inconsistency measurement (Hunter and Konieczny, 2008; Jabbour et al., 2016;
Jabbour and Sais, 2016) can also be lifted to the general case.

6. Conclusions

In this paper we studied inconsistency in an abstract setting covering arbi-
trary logics, including nonmonotonic ones. We showed that in the general case
the standard notion of inconsistency is unable to play the same role it does in
monotonic reasoning. Our main contribution is the identification of an adequate
strengthening of inconsistency. One of our main results shows that the duality
between minimal inconsistent subsets and maximal consistent subsets of a knowl-
edge base, which does not hold for nonmonotonic logics, can be restored when
minimal strongly inconsistent subsets are used. We established rather encour-
aging complexity results for problems related to strong inconsistency, presented
a generic algorithm for computing (minimal) strongly inconsistent subsets of a
knowledge base, and demonstrated possible applications of our new notion in di-
agnosis/repair and inconsistency measurement.

Although there is a rich literature on inconsistency handling (see (Bertossi
et al., 2005) for an introduction and (Bienvenu et al., 2016) for a recent approach),

55

we are not aware of any work addressing the issues we studied in this paper –
with one notable exception: in (Eiter et al., 2014) Thomas Eiter and colleagues
have studied ways of restoring consistency in multi-context systems (Brewka and
Eiter, 2007). They focus on the case where the source of inconsistency can be at-
tributed to the bridge rules of a multi-context system. These nonmonotonic rules
are similar to rules in normal logic programs, but may refer to beliefs held in
other contexts. They are thus able to facilitate the information exchange between
different contexts. Inconsistencies originating from bridge rules are repaired in
two different ways: by rule deletions and by eliminations of rule bodies, which
amounts to treating rule heads as unconditional facts. Since we are not dealing
with modifications of formulas in knowledge bases nor with inconsistency han-
dling via new formulas outside the knowledge base, the notion most relevant to
our work is deletion-explanation (Eiter et al., 2014, Def. 7). A subset E of the
bridge rules is a deletion-explanation if the multi-context system at hand is incon-
sistent for each subset of its bridge rules containing E. This is obviously strong
inconsistency in a restricted setting. In a nutshell, our work generalizes what Eiter
and colleagues have done for bridge rules in multi-context systems to arbitrary
logics, albeit neglecting the possibility of modifying rather than deleting formulas
in the knowledge base.

In future work we will investigate algorithms for specific nonmonotonic log-
ics, elaborate the use of strong inconsistency in model-based diagnosis and con-
tinue the study of inconsistency measures based on strong inconsistency.

Acknowledgements

This work was partially funded by DFG (Research Training Group 1763;
project BR 1817/7-2).

56

References

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules in
large databases. In: VLDB’94, Proceedings of 20th International Conference
on Very Large Data Bases. pp. 487–499.
URL http://www.vldb.org/conf/1994/P487.PDF

Apt, K. R., Blair, H. A., Walker, A., 1988. Towards a theory of declarative knowl-
edge. In: Foundations of Deductive Databases and Logic Programming. Mor-
gan Kaufmann, pp. 89–148.

Bertossi, L. E., Hunter, A., Schaub, T. (Eds.), 2005. Inconsistency Tolerance. Vol.
3300 of Lecture Notes in Computer Science. Springer.

Bienvenu, M., Bourgaux, C., Goasdoué, F., 2016. Query-driven repairing of in-
consistent dl-lite knowledge bases. In: Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016. pp. 957–964.
URL http://www.ijcai.org/Abstract/16/140

Birnbaum, E., Lozinskii, E. L., 2003. Consistent subsets of inconsistent systems:
structure and behaviour. Journal of Experimental & Theoretical Artificial Intel-
ligence 15 (1), 25–46.

Brewka, G., Eiter, T., 2007. Equilibria in heterogeneous nonmonotonic multi-
context systems. In: Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada.
pp. 385–390.

Brewka, G., Eiter, T., Truszczynski, M., 2011. Answer set programming at a
glance. Commun. ACM 54 (12), 92–103.
URL http://doi.acm.org/10.1145/2043174.2043195

de Kleer, J., Mackworth, A. K., Reiter, R., 1992. Characterizing diagnoses and
systems. Artif. Intell. 56 (2-3), 197–222.
URL http://dx.doi.org/10.1016/0004-3702(92)90027-U

Dimopoulos, Y., Torres, A., 1996. Graph theoretical structures in logic programs
and default theories. Theoretical Computer Science 170 (1–2), 209–244.

57

Dung, P. M., 1995. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.
77 (2), 321–358.
URL http://dx.doi.org/10.1016/0004-3702(94)00041-X

Dunne, P. E., Wooldridge, M., 2009. Complexity of Abstract Argumentation.
Springer US, Boston, MA, Ch. 5, pp. 85–104.

Eiter, T., Fink, M., Schüller, P., Weinzierl, A., 2014. Finding explanations of in-
consistency in multi-context systems. Artif. Intell. 216, 233–274.
URL https://doi.org/10.1016/j.artint.2014.07.008

Eiter, T., Fink, M., Tompits, H., Woltran, S., 2005. Strong and uniform equiva-
lence in answer-set programming: Characterizations and complexity results for
the non-ground case. In: Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. pp.
695–700.
URL http://www.aaai.org/Library/AAAI/2005/
aaai05-109.php

Eiter, T., Gottlob, G., 1995. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Annals of Mathematics and Artificial Intelli-
gence 15 (3-4), 289–323.

Gelfond, M., Leone, N., 2002. Logic programming and knowledge representation
– the A-Prolog perspective. Artificial Intelligence 138 (1–2), 3–38.

Gelfond, M., Lifschitz, V., 1991. Classical negation in logic programs and dis-
junctive databases. New Generation Comput. 9 (3/4), 365–386.
URL http://dx.doi.org/10.1007/BF03037169

Hemaspaandra, L. A., Vollmer, H., 1995. The satanic notations: counting classes
beyond# p and other definitional adventures. ACM SIGACT News 26 (1), 2–13.

Hunter, A., Konieczny, S., 2008. Measuring inconsistency through minimal in-
consistent sets. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Eleventh International Conference, KR 2008, Sydney, Aus-
tralia, September 16-19, 2008. pp. 358–366.
URL http://www.aaai.org/Library/KR/2008/kr08-035.php

58

Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y., 2016. A MIS Partition Based
Framework for Measuring Inconsistency. In: Proceedings of the 15th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’16). pp. 84–93.

Jabbour, S., Sais, L., 2016. Exploiting MUS Structure to Measure Inconsistency
of Knowledge Bases. In: Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI’16). pp. 991–998.

Lifschitz, V., Pearce, D., Valverde, A., 2001. Strongly equivalent logic programs.
ACM Trans. Comput. Log. 2 (4), 526–541.
URL http://doi.acm.org/10.1145/502166.502170

Oikarinen, E., Woltran, S., 2011. Characterizing strong equivalence for argumen-
tation frameworks. Artif. Intell. 175 (14-15), 1985–2009.
URL http://dx.doi.org/10.1016/j.artint.2011.06.003

Papadimitriou, C., 1994. Computational Complexity. Addison-Wesley.

Papadimitriou, C. H., Wolfe, D., 1988. The complexity of facets resolved. Journal
of Computer and System Sciences 37 (1), 2–13.

Priest, G., 1979. Logic of Paradox. Journal of Philosophical Logic 8, 219–241.

Reiter, R., 1980. A logic for default reasoning. Artif. Intell. 13 (1-2), 81–132.
URL http://dx.doi.org/10.1016/0004-3702(80)90014-4

Reiter, R., 1987. A theory of diagnosis from first principles. Artif. Intell. 32 (1),
57–95.
URL http://dx.doi.org/10.1016/0004-3702(87)90062-2

Thimm, M., August 2016. On the compliance of rationality postulates for incon-
sistency measures: A more or less complete picture. Künstliche Intelligenz.

Ulbricht, M., Thimm, M., Brewka, G., November 2016. Measuring Inconsistency
in Answer Set Programs. In: Proceedings of the 15th European Conference on
Logics in Artificial Intelligence (JELIA’16). pp. 577–583.

Valiant, L. G., 1979. The complexity of computing the permanent. Theoretical
computer science 8 (2), 189–201.

59

