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Abstract

We address the issue of quantitatively assessing the severity of incon-
sistencies in disjunctive logic programs under the answer set semantics.
Taking the non-monotonicity of answer set semantics into account brings
new challenges that have to be addressed by reasonable accounts of in-
consistency measures. We investigate the behaviour of inconsistency in
logic programs by revisiting existing rationality postulates for inconsis-
tency measurement and developing novel ones taking non-monotonicity
into account. Further, we develop new measures for this setting and in-
vestigate their properties, in particular with respect to their compliance
to these rationality postulates and their computational complexity.

1 Introduction

Inconsistency is an omnipresent phenomenon in logical accounts of knowledge
representation and reasoning (KR) [9, 27, 23, 16, 12]. Classical logics usually
suffer from the principle of explosion which renders reasoning meaningless, as
everything can be derived from inconsistent theories. Therefore, reasoning un-
der inconsistency [4, 32, 34] is an important research area in KR. In general,
one can distinguish two paradigms in handling inconsistent information. The
first paradigm advocates living with inconsistency but providing non-classical
semantics that allow the derivation of non-trivial information, such as using
paraconsistent reasoning [7], reasoning with possibilistic logic [16, 17], or for-
mal argumentation [3]. The second paradigm is about explicitly restoring con-
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sistency, thus changing the theory itself, as it is done in e. g. belief revision [27]
or belief merging [33]. A quantitative approach for analyzing inconsistencies
is given by the field inconsistency measurement which investigates functions I
that assign real numbers to knowledge bases, with the intuitive meaning that
larger values indicate more severe inconsistency, see [46, 45, 48] for surveys and
[47, 30, 26, 6, 1, 40] for some recent approaches.

Answer set programming (ASP, see [10] for an overview) is an emerging
problem solving paradigm. It is based on logic programs under the answer set
semantics [22, 21], a popular non-monotonic formalism for knowledge represen-
tation and reasoning which consists of rules possibly containing default-negated
literals. Inconsistencies occur in ASP for two reasons, cf. [43]. First, the rules
allow the derivation of two complementary literals l and ¬l—also called incoher-
ence in e. g. [37]—thus producing inconsistencies similar to e. g. propositional
logic. Second, due to the use of default negation it may happen that some lit-
eral assumed to be false is again derived (called instability). Hence, analyzing
and handling inconsistency in ASP poses additional challenges (in comparison
to monotonic logics) that need to be addressed, cf. [19, 13]. Some few works
handle these challenges by adapting the classical techniques mentioned above
to ASP, such as paraconsistent reasoning [8] or belief revision [15].

In this paper, we investigate the problem of measuring inconsistency in
ASP. The issue of measuring inconsistency in logic programs is more chal-
lenging compared to the setting of propositional knowledge bases due to the
non-monotonicity of answer set semantics. This becomes apparent when con-
sidering the Monotonicity postulate which is usually satisfied by inconsistency
measures for propositional knowledge bases. It demands I(P ′) ≥ I(P ) when-
ever P ⊆ P ′ for any logical theories P and P ′, i. e., the severity of inconsistency
cannot be decreased by adding new information. Consider now the two logic
programs P and P ′ given as follows:

P : b← not a. P ′ : b← not a.

¬b← not a. ¬b← not a.

a.

We have P ⊆ P ′ but P is inconsistent while P ′ is not, so we would expect
I(P ′) < I(P ′) for any reasonable measure I. Therefore, simply taking classi-
cal inconsistency measures and applying them to the setting of logic programs
does not yield the desired behavior. Many rationality postulates such as Mono-
tonicity are already disputed in the case of propositional knowledge bases, cf.
[5]. Taking non-monotonicity of the knowledge representation formalism into
account, a rational account of the severity of inconsistency calls for a specific
investigation, which we will undertake in the remainder of this paper.

The main contributions of this paper are as follows:

1. We revisit the notion of inconsistency measures for ASP and develop
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six new inconsistency measures for this setting (Section 3). Several of
the measures are based on the effort it takes to repair an inconsistent
program, others measure various kinds of distances between the actual
and the intended outcome.

2. We critically examine existing rationality postulates, and develop novel
ones taking non-monotonicity into account (Section 4). Several of our
postulates aim to replace the unintended monotonicity postulate by weaker
variants.

3. We analyze our new measures by checking their compliance with the
rationality postulates (Section 5). In a nutshell, the main outcome of
this analysis is that our new measures are well-behaved in the light of the
postulates.

4. We finally perform an in-depth complexity analysis of computational
problems related to our measures (Section 6).

Furthermore, we will give necessary preliminaries in Section 2 and conclude
in Section 7. Readers familiar with logic programming and thus tempted to
skip the preliminaries section should be aware that—for reasons explained in
Section 2—we use a slightly nonstandard definition of answer sets which allows
programs to have multiple inconsistent answer sets.

A brief description of a proper subset of the postulates and measures inves-
tigated in this paper was presented in the extended abstract [50]. The abstract
did not cover disjunctive programs, and no complexity analysis was given.

2 Preliminaries

In this paper, we consider logic programs with disjunction in the head of rules
and two kinds of negation, namely strong negation “¬” and default negation
“not”, under the answer set semantics [22, 21]. In [22] such programs were
called extended disjunctive databases, whereas Gelfond and Leone [21] simply
speak of logic programs or A-Prolog programs. We will call these programs
extended disjunctive logic programs.

For the remainder of this paper, we assume we are (implicitly) given an
infinite set L of literals. Now, an extended disjunctive logic program P is a
finite set of rules r of the form

l0 ∨ ... ∨ lk ← lk+1, . . . , lm,not lm+1, . . . ,not ln. (1)

where l0, . . . , ln ∈ L and 0 ≤ k ≤ m ≤ n. In particular, no function symbols or
variables occur in r.

For a rule r of the form (1) we write head(r) = {l0, ..., lk}, body(r) =
{lk+1, . . . , lm,not lm+1, . . . ,not ln}, pos(r) = {lk+1, . . . , lm} and neg(r) =
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{lm+1, . . . , ln}. For a set M of literals, let A(M) be the set of all atoms occur-
ring in M . We let A(r) and L(r) be the set of all atoms and literals occurring in
r, respectively. Similarly, let A(P ) and L(P ) be the set of all atoms and literals
that occur in a program P , respectively. Further, let body(P ) = ∪r∈P body(r),
and analogously for pos(P ) and neg(P ).

We write “l0 ∨ . . . ∨ lk.” instead of “l0 ∨ . . . ∨ lk ← .” for rules with a
trivial body. If in addition k = 0 holds, i. e., the rule is of the form “l0.”, we
call it a fact.

The set of all disjunctive logic programs is denoted by P. Throughout the
paper, we distinguish the following subclasses of P:

• Extended disjunctive logic programs, i. e., programs that consist of rules
of the form (1). Since we do not particularly focus on programs without
the occurrence of strong negation “¬”, we will call such programs simply
disjunctive logic programs in most cases.

• Extended logic programs, i. e., programs that consist of rules of the form
(1) with k = 0, i. e., with no occurrence of the disjunction “∨” in the head
of rules. In order to emphasize the lack of disjunction, we will also call
such programs extended disjunction-free logic programs or disjunction-
free logic programs for short. Analogously, we call rules of the form (1)
with k = 0 disjunction-free rules.

• Extended disjunctive classical logic programs, i. e., programs that consist
of rules of the form (1) with n = m, i. e., with no occurrence of the default
negation “not” in the body of rules. We will call such programs simply
classical logic programs. Analogously, we call rules of the form (1) with
m = n classical rules.

• Extended classical disjunction-free logic programs, i. e., programs that
consist of rules of the form (1) with k = 0 and n = m, i. e., neither
“∨” nor “not” occurs in a rule. We will call such programs simply classi-
cal disjunction-free logic programs. Analogously, we call rules of the form
(1) with m = n classical disjunction-free rules.

We now turn to the semantics, i. e., the definition of answer sets. There are
actually variants of the definition in the literature which differ in whether in-
consistent answer sets are admitted or not. The original definition in [22] allows
for a single inconsistent answer set, namely L, in cases where a subset of rules
without default negation generates an inconsistency. In this paper, we are in-
terested in more fine-grained distinctions than the single inconsistent answer
set L would allow. For this reason answer sets in this paper can be arbitrary
subsets of L. For a set M of literals and a literal l we say M satisfies l (M |= l)
iff l ∈ M . If L is a set of literals, then M |= L iff M |= l for all l ∈ L.
Now consider a classical rule, i. e., a rule r of the form (1) with m = n. We
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say M satisfies r, denoted by M |= r iff ∃i ∈ {0, . . . , k} : M |= li whenever
M |= body(r).

Now we are ready to define answer sets of a given program.

Definition 1. Let P be a classical disjunctive logic program. A set M of
literals is called an answer set of P if M |= r for all rules r ∈ P (denoted by
M |= P ) and there is no M ′ (M with M ′ |= P . For an arbitrary program P ,
M is an answer set of P iff M is an answer set of PM , where PM is the reduct
of P with respect to M , i. e.,

PM = {head(r)← pos(r) | r ∈ P, neg(r) ∩M = ∅}.

Note that, so far, we defined what an answer set is no matter whether it
is consistent or not. In principle, any set of literals can be an answer set of a
given program. We now distinguish consistent and inconsistent answer sets.

Definition 2. A set M of literals is called consistent if it does not contain both
a and ¬a for an atom a. A program P is called consistent if it has at least one
consistent answer set, otherwise it is called inconsistent. Let Ans(P ) denote the
set of all answer sets of P and AnsInc(P ) and AnsCon(P ) the inconsistent and
consistent ones, respectively. So we have Ans(P ) = AnsInc(P ) ∪AnsCon(P ).

Hence, a program P can be inconsistent, because

• it has no answer set, i. e., Ans(P ) = ∅ or

• it only has inconsistent answer sets, i. e., Ans(P ) = AnsInc(P ).

Note that in particular, P is inconsistent iff AnsCon(P ) = ∅.
Example 1. The program

P1 : a ∨ ¬a. ¬a← a.

has two answer sets, {a, ¬a} and {¬a}. The latter is consistent and so is
the program. The same program with “a ← ¬a.” as additional rule, i. e., the
program

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

has {a, ¬a} as unique answer set and is therefore inconsistent. Now consider
the program

P3 : b← not c. c← not d. d← not b.

One can check that P3 does not have an answer set. In fact, it is a quite simple
example of an inconsistency that stems from an odd loop in the dependency
graph (cf. Definition 15 below). In contrast,

P ′3 : b← not c. c← not d. d← not b.

d← not e.
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has {b, d} as answer set, because d can inferred due to the added rule “d ←
not e.”. However, the program

P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

again has no answer set.

3 Inconsistency Measures

In the literature on inconsistency measurement—see e. g. [28, 24, 46]—incon-
sistency measures are functions that aim at assessing the severity of the in-
consistency in knowledge bases formalized in propositional logic. Here, we are
interested in measuring inconsistency for logic programs and only consider mea-
sures defined on those. Let R∞≥0 be the set of non-negative real values including
∞.

Definition 3. An inconsistency measure I is a function I : P → R∞≥0.

The basic intuition behind an inconsistency measure I is that the larger
the inconsistency in P the larger the value I(P ). We now propose concrete
inconsistency measures for logic programs. Inconsistency of logic programs can
occur due to two different reasons, namely because the program has no answer
set at all or because all answer sets are inconsistent, cf. [43]. Different measures
should assess those reasons differently.

We start with a very simple measure which just indicates whether a given
program is consistent or not [29].

Definition 4. Define I01 : P → {0, 1} via

I01(P ) =

{
0 if P is consistent,

1 otherwise

for all P ∈ P.

We call I01 the drastic inconsistency measure. Of course, this measure fails
to provide the distinction we are aiming for, namely the distinction between
less and more inconsistent programs. We will therefore introduce various more
fine-grained measures in the remainder of this section.

In Section 3.1, we introduce a generalization of the measure IMI [29] which,
in its original definition, counts the number of minimal inconsistent subsets of
a knowledge base K (a set of propositional formulas). For that, we utilize a
notion of inconsistency for nonmonotonic logics developed in [11]. We continue
with measures that are based on the distance of inconsistent answer sets to
consistent ones (Section 3.2). Then, we consider syntactic approaches that are
based on the effort needed to turn an inconsistent program into a consistent
one (Section 3.3).
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3.1 Measures based on Strong Inconsistency

One of the most basic inconsistency measures for a propositional knowledge
base K is IMI [29] defined via IMI(K) = |MI(K)| where MI(K) is the set of mini-
mal inconsistent subsets of K. As consistent programs may contain inconsistent
subsets—cf. e. g., P ′3 from above—this measure is quite meaningless in ASP.
In [11], a refined notion of inconsistency for nonmonotonic logics has been pro-
posed which does not have this drawback. We give the definition for the special
case of ASP.

Definition 5. Let P be a logic program. A subset H ⊆ P , is called strongly P -
inconsistent if H ⊆ H ′ ⊆ P implies H ′ is inconsistent. The set H is minimal
strongly P -inconsistent if H is strongly P -inconsistent and H ′ ( H implies
that H ′ is not strongly P -inconsistent. Let SImin(P ) be the set of all minimal
strongly P -inconsistent subsets of P .

The main motivation for this notion of inconsistency is that a generalization
of Reiter’s hitting set duality [42] can be proved (cf. [11] for more details). Now,
we can define our generalized measure as follows.

Definition 6. Define IMSI : P → R∞≥0 via

IMSI(P ) = |SImin(P )|

i. e., the measure outputs the number of minimal strongly P -inconsistent sub-
sets of P .

Given a propositional knowledge base K, the minimal inconsistent subsets
MI(K) are interpreted as the “raw” conflicts within K. Similarly, IMSI counts
the number of “raw” conflicts within a program P .

Example 2. Consider

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

again. Any proper subset H of the program is consistent. Hence, P2 itself is
the only strongly P2-inconsistent subset. We obtain

IMSI(P2) = 1.

Now consider

P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

The subset
H = {b← not c., c← not d., d← not b.}
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is inconsistent, but it is not strongly P ′′3 -inconsistent as it is contained in the
consistent set

P ′3 : b← not c. c← not d. d← not b.

d← not e.

One can verifiy that

SImin(P ′′3 ) = {{b← not c., c← not d., d← not b., e.}}

and hence,
IMSI(P

′′
3 ) = 1.

3.2 Distance-based Measures

We now consider measures that focus on the (possibly inconsistent) answer
sets of a program instead of the program itself. To this end, we now introduce
inconsistency measures that make use of distance measures to assess the in-
consistency of answer sets. Note that distance-based measures have also been
used in the setting of propositional logic, see for instance [26].

Observe that, while a program P might not have an answer set, for any
set M of literals the reduct PM is a classical logic program and thus has a
nonempty set of answer sets. So, one could consider the distance between a set
M and consistent answer sets in AnsCon(PM ).

Definition 7. A mapping d : 2L×2L → [0,∞) is called a distance if it satisfies

• d(X,Y ) = 0 if and only if X = Y ,

• d(X,Y ) = d(Y,X),

• d(X,Y ) ≤ d(X,Z) + d(Z, Y )

for any X,Y, Z ⊆ L.

In the following, we only consider the number of literals in the symmet-
ric difference of two sets as an example of a distance measure between sets.
Investigating other distances is left for future work.

Definition 8. LetM andM ′ be two sets of literals. The sd-distance (sd=“symmetric
difference”) dsd(M,M ′) between M and M ′ is defined via dsd(M,M ′) = |(M ∪
M ′) \ (M ∩M ′)|. If M is a set of sets of literals, we let

dsd(M,M) = min
M ′∈M

d(M,M ′).

It should be obvious that dsd is indeed a distance function on sets according
to Definition 7.

Now we can consider measures of the following kind.
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Definition 9. Let d be a distance measure. Define Id : P → R∞≥0 via

Id(P ) = min
M ⊆ L

M consistent

{d(M,M ′) |M ′ ∈ AnsCon(PM )}

for all P ∈ P with min ∅ =∞.

Note that we only allow consistent sets of literals because we want to mea-
sure the distance between a potential consistent answer set M of P and the
consistent models of PM . In the following, we abbreviate the inconsistency
measure Idsd

simply by Isd and focus on this instance.

Example 3. Consider the simple case

P3 : b← not c. c← not d. d← not b.

We formally show that Isd(P3) = 1. As the program is inconsistent, it is quite
easy to see that Isd(P3) ≥ 1 holds. Now let M = {b}. Then the reduct is given
via

PM
3 : b. c.

with minimal model {b, c}. We thus found a set M with

∃M ′ ∈ AnsCon(PM
3 ) : dsd(M,M ′) = 1.

Thus, Isd(P3) ≤ 1. For the program

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

we see that Isd(P2) = ∞ because there is no set M of literals such that PM
2

has a consistent answer set.

Remark 1. Note that Isd(P ) ∈ {0,∞} if P is a classical program.

Another approach that is based on the semantics of a program P rather than
the syntax is considering all answer sets of P and measuring the distance to a
consistent one. Again, one could do this with arbitrary distances d. However,
we will again only look at the symmetric difference dsd. Given an inconsistent
set M of literals, the minimal distance dsd(M,M ′) between M and a consistent
set M ′ is simply the number of complementary literals in M . Let N0 denote
the set of natural numbers including zero.

Definition 10. A set M of literals is called k-inconsistent, k ∈ N0, if there are
exactly k atoms a such that a ∈M and ¬a ∈M .
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Further, we have to take into account that a program might be inconsistent
due to having no answer set. We assign ∞ to such programs as they are a
special case for this measure.

Definition 11. Define I# : P → R∞≥0 via

I#(P ) = min
M∈Ans(P )

{k |M is k-inconsistent}

with min ∅ =∞.

Example 4. Since

P3 : b← not c. c← not d. d← not b.

has no answer set, I#(P3) =∞. For the program

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

we obtain I#(P2) = 1 due to the inconsistent answer set M = {a, ¬a.}.

This concludes our discussion on distance-based measures.

3.3 Modification-based Measures

Our next measure I± aims at measuring the effort needed to turn an inconsis-
tent program into a consistent one. More specifically, it quantifies the number
of modifications in terms of deleting and adding rules, necessary in order to
restore consistency. Deleting certain rules can surely be sufficient to prevent P
from entailing contradictions, but as already pointed out before, adding rules
can also resolve inconsistency.

Definition 12. Define I± : P → R∞≥0 via

I±(P ) = min{|A|+ |D| | A,D ∈ P such that (P ∪A) \D is consistent}

for all P ∈ P.

Example 5. Let us consider our examples from above again. Since deleting
any rule of

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

renders the program consistent, I±(P2) = 1. The same is true for

P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

In the latter case, however, one could also add rules. For example, P ′′3 ∪ {d.}
is consistent.
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The definition of I± allows the addition of any rule in order to restore
consistency. But in fact, it is sufficient to only consider addition of facts instead
of general rules. First, we show that adding rules with disjunction in the head
is not necessary, which is intuitive since ASP requires minimality anyway.

Proposition 1. Let P be an inconsistent program. If r is a rule such that
P ∪ {r} is consistent, then there is a literal a ∈ head(r) such that P ∪ {a ←
body(r).} is consistent.

Proof. Let M be a consistent answer set of P∪{r}. P being inconsistent implies
that M is not an answer set of P . Thus, M |= body({r}M ) and {r}M 6= ∅
because otherwise one could delete the rule while maintaining M as answer
set. It follows that head(r) ∩M 6= ∅ since M is a model of (P ∪ {r})M . Let
a ∈ head(r) ∩M . We show that M is an answer set of P ∪ {a ← body(r).}
as well. By definition, M is a minimal model of (P ∪ {r})M . Since a ∈ M ,
M is a model of (P ∪ {a ← body(r).})M as well. Now assume M is not a
minimal model and let M ′ (M be a model of (P ∪{a← body(r).})M . Due to
a ∈ head(r) this implies that M ′ is a model of (P ∪ {r})M , too. Since M was
assumed to be an answer set of (P ∪ {r})M , this yields a contradiction.

Now we are ready to show that facts are sufficient.

Proposition 2. Let P be an inconsistent program. If r is a rule such that
P ∪ {r} is consistent, then there is a literal a ∈ head(r) such that P ∪ {a.} is
also consistent.

Proof. Using Proposition 1, we assume that head(r) contains only one literal a.
As in the proof of Proposition 1, we see that M |= body({r}M ) and {r}M 6= ∅.
Since M is a model of PM , we obtain a ∈ M . However, this means M is an
answer set of P ∪ {a.}.

We now consider a simplified version of I± that focuses entirely on additions
of rules to restore consistency. This measure is adequate whenever the infor-
mation in the given program is considered highly reliable and when it is thus
more likely that information was forgotten rather than represented incorrectly.
Adding additional assumptions seems to be a reasonable solution to resolve all
the inconsistencies in such situations. This motivates the measure I+ which
applies this solution.

Definition 13. Let I+ : P → R∞≥0 be the measure given via

I+(P ) = min{|A| | A ∈ P such that P ∪A is consistent}

with min ∅ =∞.
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The case I+(P ) = ∞ occurs whenever adding rules cannot resolve incon-
sistency, e. g., if a program contains two contradicting facts. Note that Propo-
sition 2 applies to I+ as it does to I±. Hence, we can also w. l. o. g. assume
the set A in the definition of I+ to be a set of facts.

Example 6. The program

P2 : a ∨ ¬a. ¬a← a. a← ¬a.

cannot be repaired by adding rules. Hence, I+(P2) = ∞. As argued before,
the inconsistency of

P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

can be resolved by adding e. g. “d.”. Thus, I+(P ′′3 ) = 1.

The following observation is obvious.

Proposition 3. For any program P ∈ P, I±(P ) ≤ I+(P ).

Remark 2. If P is an inconsistent classical program, then adding rules will
never resolve inconsistency. Hence I+(P ) ∈ {0,∞} if P is a classical program.

Of course, it is also possible to focus entirely on deletions of rules. Since
the empty program is obviously consistent, it is always possible to restore
consistency via deletions alone. Deletions are the obvious choice when modeling
errors may have occurred.

Definition 14. Let I− : P → R∞≥0 be the measure given via

I−(P ) = min{|D| | D ∈ P such that P \D is consistent}

for any P ∈ P.

The following observations also follow directly by definition.

Proposition 4. For any P ∈ P, I±(P ) ≤ I−(P ). If P is a classical program,
I±(P ) = I−(P ).

4 Rationality Postulates for Inconsistency Mea-
sures

Research in inconsistency measurement is driven by rationality postulates, i. e.,
desirable properties that should hold for concrete approaches. There is a grow-
ing number of rationality postulates for inconsistency measurement but not ev-
ery postulate is generally accepted, see [5] for a recent discussion on this topic.
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In the following, we revisit a selection of the most popular postulates—see [45]
for a recent survey—and phrase them within our context of logic programs.

Let I : P → R∞≥0 be some inconsistency measure and P, P ′ ∈ P some
disjunctive logic programs. The most central property of any inconsistency
measure is that it is able to distinguish consistency from inconsistency.

Consistency P is consistent iff I(P ) = 0.

The above postulate establishes that 0 is the minimal inconsistency value and
that it is reserved for consistent programs.

We have already mentioned Monotonicity as a desirable property for incon-
sistency measures in monotonic logics in the introduction.

Monotonicity I(P ) ≤ I(P ′) whenever P ⊆ P ′.

Satisfaction of this postulate is generally not desirable for ASP, as we discussed
before.

In the rest of this section we will propose new postulates for logic programs.
We first discuss weaker variants of monotonicity in Section 4.1 and then discuss
some further postulates in Section 4.2.

4.1 Weakening Monotonicity

Although monotonicity as a general property is undesired, as we have seen,
we still wish to require some form of monotonicity in special cases. First, if a
program P does not contain any default negation, no additional information
can resolve any conflicts in P .

CLP-Monotonicity If P is a classical logic program and P ′ an arbitrary one,
then I(P ) ≤ I(P ∪ P ′).

In the above postulate, CLP stands for “classical logic program”. We can fur-
ther elaborate on the idea of CLP-Monotonicity : Whenever P ′ has no influence
on P , then I(P ) ≤ I(P ∪ P ′) should hold as well. To make this precise, we
need the notion of the dependency graph of a program [2].

Definition 15. Let P be an extended logic program. The dependency graph
DP of the program P is a labeled directed graph having L(P ) as vertices and
there is an edge (li, lj , s) iff P contains a rule r such that lj ∈ head(r) and
li ∈ pos(r) ∪ neg(r). The label s ∈ {+,−} indicates whether li ∈ pos(r) or
li ∈ neg(r). For any l ∈ L(P ), let Path(P, l) be the set of all literals l′ such
that there is a directed path (with any labels) from l to l′ in DP (including l
itself). For a set M of literals, let

Path(P,M) =
⋃
l∈M

Path(P, l).
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Example 7. Consider the union of the programs considered in Example 1
except the fact “e.” i. e., the program P4 given as follows:

P4 : a ∨ ¬a. ¬a← a. a← ¬a..
b← not c. c← not d. d← not b.

d← not e.

The dependency graph of P4 is depicted in Figure 1. For example, Path(P4, b) =
{b, c, d}.

b

ce

a¬a

d

−

−

−

−

+

+

Figure 1: Dependency graph of P4

Now we are ready to describe the notion of splitting logic programs [36].

Definition 16. Let P be an extended logic program. A set U of literals is
called a splitting set for P , if head(r) ∩ U 6= ∅ implies L(r) ⊆ U for any rule
r ∈ P . For a splitting set U , let botU (P ) be the set of all rules r ∈ P with
head(r) ⊆ U . This set of rules is called the bottom part of P with respect to
U .

In other words, if l is a literal that is not contained in U , i. e., l ∈ L(P ) \U ,
then it cannot be in the head of any rule in botU (P ). For the dependency
graph DP , this means that while there could be a path from a literal l′ ∈ U to
l, the converse is not true. Splitting is used, for example, to effectively compute
answer sets because it allows handling botU (P ) without taking the rest of the
program into account, see [36] for more details. However, since splitting is
generally useful to examine the structure of a program, we are also interested
in this notion here.
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Example 8. Consider program P4 again.

P4 : a ∨ ¬a. ¬a← a. a← ¬a.
b← not c. c← not d. d← not b.

d← not e.

For the splitting set U = {a, ¬a, e}, botU (P4) is the program

botU (P4) : a ∨ ¬a. ¬a← a. a← ¬a.

The definition of a splitting set ensures that the set of nodes that corresponds
to U = {a, ¬a, e} has no in-going edge from outside in the dependency graph,
cf. Figure 1.

Theorem 1 ([36]). Let U be a splitting set for a program P . Every answer set
M of P is of the form M = X ∪ Y with an answer set X of botU (P ) and a set
Y of literals.

Corollary 1. Let U be a splitting set of P . If P is consistent, then so is
botU (P ).

Proof. Let U be a splitting set of P and M a consistent answer set. Due to
Theorem 1, there is a subset X of M such that X is an answer set of botU (P ).
M being consistent implies X is consistent. Thus, botU (P ) is consistent.

Example 9. We continue Example 8. The bottom part botU (P4) has one
answer set, namely {a, ¬a}. Due to Theorem 1, all answer sets of P4 contain
both a and ¬a. Indeed, P4 has the single answer set {a,¬a, b, d, }. In particular,
it is impossible to resolve the inconsistency of the program without changing
the bottom part.

Intuitively, if botU (P ) is inconsistent, changing the rest of the program will
not remove the reason why the bottom part is inconsistent; it is imposed on P .
So, it is reasonable to assume that P is at least as inconsistent as botU (P ).

Split-Monotonicity If U is a splitting set for P , then I(botU (P )) ≤ I(P ).

In the above notions of monotonicity, we always require properties ensuring
that, once a program entails a contradiction, the added rules do not fix this.
In the case of CLP-Monotonicity, this is done by requiring P to be a classical
program and in the presence of a splitting set U , this property is inherent
since the bottom part is just independent from the remainder of the program.
However, we also achieve this goal if we “avoid” non-monotonicity: Adding a
rule r to a program P will not resolve inconsistency as long as we make sure
that the rule is not “involved in the non-monotonicity” of the program. This
is the case if there are no paths from any literal of the head of r to default-
negated literals. This ensures that the rule is meaningless for the derivation of
such literals. To motivate this postulate, we make the following observations.
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Lemma 1. Let P be a disjunctive logic program and r /∈ P a rule with

Path(P ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅. (2)

Then, for all answer sets M∗ of P ∪ {r}, there is an answer set M of P with
M ⊆M∗.

Proof. For notational convenience, we let

P ∗ = P ∪ {r}.

Let M∗ be an answer set of P ∗, i. e., M∗ ∈ AnsCon((P ∗)M
∗
). The outline of

the proof is as follows: From M∗ we find a minimal model M of PM∗ with
M ⊆ M∗. Using (2), we will see that PM∗ = PM and hence, M being a
minimal model of PM∗ implies it is a minimal model of PM as well. However,
this means that M is an answer set of P .

So let M∗ be a minimal model of (P ∗)M
∗
. Of course, M∗ is a model of PM∗

as well, but it might not be minimal. Since PM∗ is a classical program, it has a
minimal model. So, we can remove literals from M∗ until we obtain a minimal
model M ⊆M∗ from PM∗ . We now examine the set X = M∗ \M . We assume
X 6= ∅, i. e., M is a proper subset of M∗. Otherwise, the claim follows trivially.
Hence, M is not a model of (P ∗)M

∗
, because M∗ was assumed to be minimal.

However, the only rule in (P ∗)M
∗

that is not contained in PM∗ is {r}M∗ . Since
M is a model of PM∗ , this means that M does not satisfy {r}M∗ .

As a minimal model of (P ∗)M
∗
, M∗ satisfies {r}M∗ . Thus, we can find a

literal l1 ∈ X = M∗ \M with l1 ∈ head(r). Now, M1 = M ∪ {l1} satisfies
{r}M∗ . Clearly, M1 ⊆ M∗. If M1 = M∗, then we found that l1 is the only
literal that we need to add, i. e., that it is the only literal in X = M∗ \M .
Otherwise, M1 cannot be a model of (P ∗)M

∗
, because M∗ was assumed to be

minimal. In this case, we find a rule that is not satisfied and continue as above
to obtain a set M2 = M1 ∪ {l2} ⊆ M∗. Since M∗ is a model of (P ∗)M

∗
, we

will never encounter a situation, where at some point Mi cannot be augmented
with an additional literal to satisfy an unsatisfied rule. Since M∗ is minimal,
the procedure will not stop until we constructed M∗, i. e., found an n such
that Mn = M∗. In particular, this means that we have to augment M with all
literals in X.

Recall that the first literal we added, l1, was contained in head(r). Since
M is a model of PM∗ , M satisfies all rules in PM∗ . Thus, the fact that we
might have to add further literals stems from augmenting M with l1. Using this
observation, one can easily inductively verify that all literals in X = M∗ \M ,
i. e., all literals we added in the procedure described above, are contained in
Path(P ∪ {r}, head(r)).

Now, we are ready to show that PM∗ = PM . As pointed out, M∗ is of the
form

M∗ = M ∪X (3)
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with
X ⊆ Path(P ∗, head(r)). (4)

Now, (4) and (2) imply

X ∩ neg(P ∗) ⊆ Path(P ∗, head(r)) ∩ neg(P ∗) = ∅.

Since the construction of the reduct depends on literals in neg(P ) only, the
literals in X can be ignored and thus we obtain

PM∗ = PM∪X = PM . (5)

As already mentioned, this implies that M is a minimal model of PM as well
and thus an answer set of P .

In particular, this means that moving from P ∪ {r} to P cannot introduce
inconsistency.

Corollary 2. Let P be a disjunctive logic program and r /∈ P a rule with

Path(P ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅.

If P ∪ {r} is consistent, then so is P .

Proof. Let M∗ be a consistent answer set of P ∪ {r}. Due to Lemma 1, there
is a subset M ⊆ M∗ such that M is an answer set of P . M∗ being consistent
implies M is consistent. So, P has a consistent answer set.

Example 10. Consider again the inconsistent program P ′′3 .

P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

If we add the fact “r = d.”, the program becomes consistent, having {b, d} as
the only answer set. However, we have d ∈ neg(P ) and in particular,

Path(P ′′3 ∪ {r}, head(r)) ∩ neg(P ′′3 ∪ {r}) 6= ∅

and thus, this example does not satisfy the premise of Corollary 2.

Due to the above considerations, we deem the following postulate as desir-
able (I=“Independence”).

I-Monotonicity If r is a rule with Path(P ∪{r}, head(r))∩neg(P ∪{r}) = ∅,
then I(P ) ≤ I(P ∪ {r}).

So far, we considered situations where augmenting a program P with rules
cannot prevent the entailment of contradictions. However, there is another
situation where a rule r should never decrease the severity of inconsistency—
namely, if r is a constraint:
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Definition 17. Let P be a disjunctive logic program. A rule of the form

a← l1, . . . , lk, not lk+1, . . . ,not lm, not a. (6)

where a is an atom which does not occur elsewhere in the program is called a
constraint.

Intuitively, a constraint r ∈ P of the form (6) ensures that a set M of
literals cannot be an answer set of P if M contains the literals {l1, . . . , lk}, but
none of lk+1, . . . , lm. Hence, constraints reduce the amount of answer sets of a
program. It is straightforward to see that the inconsistency of P implies the
inconsistency of P ∪ {r} for a constraint r.

This motivates the following postulate (Con=“Constraint”).

Con-Monotonicity If r is a constraint, then I(P ) ≤ I(P ∪ {r}) for any
P ∈ P.

This concludes our discussion on weaker versions of monotonicity.

4.2 Further Postulates

We will now discuss postulates which consider cases where the inconsistency
value should not change. For this reason, we consider established notions of
equivalence for logic programs, cf. [35, 49].

Definition 18. Two logic programs P, P ′ are equivalent, denoted by P ≡ P ′,
if Ans(P ) = Ans(P ′). They are strongly equivalent, denoted by P ≡s P

′, if
Ans(P ∪H) = Ans(P ′ ∪H) for every H ∈ P.

The notion of equivalence is only useful if we are interested in the answer sets
of a given program. Two programs can be equivalent while encoding different
information, e. g.,

P : b← not a. P ′ : b.

¬b← not a. ¬b.

Furthermore, the above programs behave differently if we consider them as
parts of a larger program. Even though this shows that this notion of equiv-
alence is weak, respecting equivalent programs still seems to be a desirable
property for inconsistency measures that are determined by the answer sets of
a program rather than other aspects.

E-Indifference If P ≡ P ′, then I(P ) = I(P ′).

The analogous postulate for strongly equivalent programs is obviously even
more desirable.
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SE-Indifference If P ≡s P
′, then I(P ) = I(P ′).

Due to the definition of ≡s, the postulate Exchange from [5], which is advocated
by Besnard as desirable for propositional logics, seems reasonable for strongly
equivalent programs P and P ′, too.

Exchange If P ≡s P
′, then for all H ∈ P, I(P ∪H) = I(P ′ ∪H).

However, Exchange and SE-Indifference coincide.

Proposition 5. Let I be an inconsistency measure. If I satisfies E-Indifference,
then it satisfies SE-Indifference as well. Furthermore, it satisfies SE-Indifference
if and only if it satisfies Exchange.

Proof. The first statement is clear. The satisfaction of Exchange implies the
satisfaction of SE-Indifference, because we can choose H = ∅. The converse
holds since P ∪H ≡s P

′ ∪H for any program H.

Our final two postulates are concerned with the language used in a program.
Intuitively, parts of a program which do not share any vocabulary elements
with the rest of the program should be assessed separately with respect to
inconsistency.

Language Separability If A(P )∩A(P ′) = ∅, then I(P ∪P ′) = I(P )+I(P ′).

Example 11. Consider again the following programs from Example 1

P2 : a ∨ ¬a. ¬a← a. a← ¬a..
P ′′3 : b← not c. c← not d. d← not b.

d← not e. e.

As they do not share any atoms, their conflicts should be considered indepen-
dent and hence,

I(P2 ∪ P ′′3 ) = I(P2) + I(P ′′3 )

should hold.

Another approach builds on the notion of safe formulas [44]. A consistent
formula α is safe with respect to a set K of propositional formulas if α and K do
not share any atoms. So, adding α to K will never introduce inconsistency. The
corresponding postulate safe-formula independence requires I(K) = I(K∪{α})
whenever α is safe with respect to K.

Due to the directedness of rules we can be somewhat more liberal in defining
a corresponding notion of safeness for the ASP-setting and do not need to
require completely disjoint languages for r and P . There are two different ways
in which a single rule r can have an effect on the consistency of a program P .
First of all, the literals in the head of r may interact with the the program and
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thus introduce or eliminate inconsistency. To make sure this kind of interaction
cannot happen, we have to require that the atoms in the head of r are disjoint
from the atoms appearing in P . But there is another, more indirect way in
which a new rule can cause contradiction, namely if r is self-contradictory,
in the sense that a literal is derivable if and only if it is not derivable. The
simplest example is the rule “a ← not a.” which leads to the non-existence of
answer sets if added to a program P whenever atom a does not appear in P .
To eliminate the possibility of this phenomenon we require that the literals in
the head of r not occur default-negated in the body of r. This leads to the
following definition.

Definition 19. Let P be a disjunctive logic program. A rule r is called safe
with respect to P if A(head(r)) ∩ A(P ) = ∅ and head(r) ∩ neg(r) = ∅.

Our discussion motivates the following postulate.

Safe-Rule Independence If P is a logic program and r safe with respect to
P , then I(P ) = I(P ∪ {r}).

Remark 3. Consider a disjunctive logic program P and a rule r that is safe
with respect to P . We can view U = L(P ) as a splitting set of P ∪ {r}
and obtain P as a bottom part. Then, for any measure I that satisfies Split-
Monotonicity, we have I(P ) ≤ I(P ∪ {r}). The same holds for any measure I
satisfying I-Monotonicity, since Path(P ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅ is
clear for a safe rule r. Neither Split-Monotonicity nor I-Monotonicity implies
Safe-Rule Independence, though, since we do not obtain I(P ) ≥ I(P ∪ {r}).

5 Compliance with Rationality Postulates

Table 1 gives an overview of the compliance of our measures with respect to the
rationality postulates from Section 4 and thus summarizes Propositions 6-12
and Examples 12-14 below. Note that, naturally, none of our measures satisfies
the ordinary Monotonicity postulate which is also not desired for ASP, cf.
Section 1.

Proposition 6. I01 satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, E-Indifference, SE-Indifference,
Exchange and Safe-Rule Independence

Proof. Split-Monotonicity follows from Corollary 1 and I-Monotonicity from
Corollary 2. The rest is clear.

Naturally, I01 does not satisfy Language Separability since I01(P ) ∈ {0, 1}
for any program P ∈ P.
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I01 I± I+ I− IMSI I# Isd
Consistency 3 3 3 3 3 3 3
Monotonicity 7 7 7 7 7 7 7
CLP-Monotonicity 3 3 3 3 3 3 3
Split-Monotonicity 3 3 3 3 3 3 3
I-Monotonicity 3 3 3 3 3 3 3
Con-Monotonicity 3 3 3 3 3 3 3
E-Indifference 3 7 7 7 7 3 7
SE-Indifference 3 7 3 7 7 3 7
Exchange 3 7 3 7 7 3 7
Language Separability 7 3 3 3 3 3 3
Safe-Rule Independence 3 3 3 3 3 3 3

Table 1: Compliance of inconsistency measures with respect to our rationality
postulates

Proposition 7. I± satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, Language Separability and Safe-
Rule Independence.

Proof. Consistency Clear from the definition of I±.

CLP-Monotonicity Let P be a classical program and P ′ an arbitrary one.
Assume I±(P ∪P ′) = k. Let (P ∪P ′∪A)\D be consistent with |A|+ |D| = k.
Since P is a classical logic program, P \ D must be consistent as well since
adding rules cannot restore consistency. Hence, I±(P ) ≤ |D| ≤ |A|+ |D| = k.

Split-Monotonicity Let P be a program and U a splitting set. Let I±(P ) = k
and let (P ∪A) \D be consistent with |A|+ |D| = k. We use Proposition 2 to
assume that A is a set of facts. Thus, (P ∪A) \D contains no additional edges
in the dependency graph compared to P which implies that U is a splitting
set of (P ∪ A) \ D as well. In particular, if we let AU be the subset of A
such that r ∈ AU if and only if head(r) ⊆ U , then (botU (P )) ∪ AU ) \ D is
the corresponding bottom program. Now let M be a consistent answer set of
(P ∪ A) \ D. Due to Theorem 1, there is a subset X ⊆ M such that X is
an answer set of (botU (P )) ∪ AU ) \D. As a subset of the consistent set M of
literals, X is consistent. Therefore, (botU (P )) ∪AU ) \D is consistent. Hence,

I±(botU (P )) ≤ |D|+ |AU | ≤ |D|+ |A| = k.

I-Monotonicity Let I±(P ∪ {r}) = k. Let (P ∪ {r} ∪ A) \ D be consistent
with |A| + |D| = k. Let M∗ be a consistent answer set of (P ∪ {r} ∪ A) \D.
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Using Proposition 2, we assume that A is a set of facts. So, since

Path(P ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅,

we also obtain

Path(((P ∪A) \D) ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅,

because adding facts (and deleting rules) does not extend the dependency
graph. Furthermore, we have

neg(((P ∪A) \D) ∪ {r}) = neg((P \D) ∪ {r}) ⊆ neg(P ∪ {r})

and hence,

Path(((P ∪A) \D) ∪ {r}, head(r)) ∩ neg(P ∪ {r}) = ∅

also implies

Path(((P ∪A) \D) ∪ {r}, head(r)) ∩ neg(((P ∪A) \D) ∪ {r}) = ∅.

So, we can apply Lemma 1 to the program (P ∪ A) \ D and the additional
rule r. Since M∗ was assumed to be an answer set of (P ∪ {r} ∪ A) \ D, we
obtain that (P ∪ A) \D has an answer set M with M ⊆M∗. With M∗ being
consistent, M is consistent, too. Likewise, (P ∪ A) \ D is consistent. Thus,
I±(P ) ≤ |A|+ |D| = k = I±(P ∪ {r}).

Con-Monotonicity If r is a constraint and (P ∪ {r} ∪ A) \ D is consistent,
then (P ∪A) \D is consistent as well.

Language Separability This is clear since P and P ′ need to be considered
independently.

Safe-Rule Independence That is clear, since no matter which facts A we
add or rules D we delete, whether or not (P ∪ A) \D is consistent will never
depend on a safe rule r. The only exception would be adding a fact “¬a.” for
an atom a ∈ head(r) which, however, will never be beneficial to resolve the
inconsistency of P anyway.

It is clear that I± does not satisfy the remaining postulates (S)E-Indifference
and Exchange since the notion of (strong) equivalence does not take into ac-
count how many rules a program contains to ensure the entailment of certain
atoms. The measure I±, however, is tailored to assess this. Consider, for
example

22



Example 12.

P : a. ¬a.

P ′ : a. ¬a.
b. a← b. ¬a← a.

with I±(P ) = 1 and I±(P ′) = 2

In contrast, the measure I+ satisfies SE-Indifference and Exchange as only
adding rules is considered here. The rest is rather similar to I±.

Proposition 8. I+ satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, SE-Indifference, Exchange, Lan-
guage Separability and Safe-Rule Independence.

Proof. Consistency This is clear.

CLP-Monotonicity If P is consistent, then I+(P ) = 0. If P is inconsis-
tent, then I+(P ) = ∞ since adding rules cannot resolve inconsistency. For
the same reason, P being inconsistent implies that P ∪ P ′ is inconsistent with
I+(P ∪ P ′) =∞. Hence, in both cases, we obtain I+(P ) ≤ I+(P ∪ P ′).

Split-Monotonicity, I-Monotonicity and Con-Monotonicity Similar to
I±.

SE-Indifference Exchange and Proposition 5.

Exchange Let P ≡s P
′ and let H ∈ P. Let I+(P ∪ H) = k. This means

that there is a set A of facts with |A| = k such that P ∪ H ∪ A is con-
sistent. P ≡s P ′ implies that P ′ ∪ H ∪ A is consistent as well, yielding
I+(P ′ ∪H) ≤ k = I+(P ∪H). Of course, we obtain I+(P ∪H) ≤ I+(P ′ ∪H)
similarly.

Language Separability and Safe-Rule Independence Similar to I±.

The postulate E-Indifference is not satisfied by I+.

Example 13. The programs

P : b← not a. P ′ : b.

¬b← not a. ¬b.

are equivalent. However, I+(P ) = 1 and I+(P ′) =∞.
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Proposition 9. I− satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, Language Separability and Safe-
Rule Independence.

Proof. Similar to I±.

For the same reason as I±, the measure I− does not satisfy (S)E-Indifference
and Exchange.

We now turn to the measure IMSI.

Proposition 10. IMSI satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, Language Separability and Safe-
Rule Independence.

Proof. Consistency As already pointed out in [11], SImin(P ) = ∅ iff P is con-
sistent.

CLP-Monotonicity Let P be a classical program and P ′ an arbitrary one.
If H is strongly P -inconsistent, then H is strongly P ∪P ′-inconsistent as well,
because conflicts within P cannot be resolved by adding rules. Similarly, one
can see that the minimality of H is preserved. Hence, H ∈ SImin(P ) im-
plies H ∈ SImin(P ∪ P ′). Hence, SImin(P ) ⊆ SImin(P ∪ P ′) which implies
IMSI(P ) ≤ IMSI(P ∪ P ′).

Split-Monotonicity Let P be a program and U a splitting set. By Theorem 1
(and similar considerations as above) we obtain SImin(botU (P )) ⊆ SImin(P ).
The claim follows.

I-Monotonicity Similar, utilizing Lemma 1.

Con-Monotonicity Similar as constraints cannot restore consistency.

Language Separability and Safe-Rule Independence are clear.

Regarding (S)E-Indifference and Exchange, the situation is similar as in the
case of I±.

Proposition 11. Isd satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, Language Separability and Safe-
Rule Independence.

Proof. Consistency This is clear by definition.

CLP-Monotonicity If P is inconsistent, then it has only inconsistent answer
sets. In this case, the reduct of P ∪P ′ with respect to any set of literals has only
inconsistent answer sets as well. Hence, Isd(P ∪ P ′) = ∞. If P is consistent,
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then Isd(P ) = 0. In both cases, Isd(P ) ≤ Isd(P ∪ P ′) holds.

Split-Monotonicity Let P be a disjunctive logic program, U a splitting set
and botU (P ) the corresponding bottom program. The case Isd(P ) = ∞ is
clear. We consider Isd(P ) = k <∞. Let M be a consistent set of literals with
dsd(M,M ′) = k for an M ′ ∈ AnsCon(PM ). Note that U is also a splitting
set of PM with (botU (P ))M as the corresponding bottom part. So, due to
Theorem 1, M ′ is of the form X ′ ∪ Y ′ with

X ′ ∈ AnsCon((botU (P ))M ).

We can w. l. o. g. assume X ′ ∩ Y ′ = ∅.
Now consider X = M ∩ U and Y = M \X. Then, similarly to X ′ and Y ′ we
have X ∪ Y = M and X ∩ Y = ∅.
We obtain (botU (P ))M = (botU (P ))X due to the construction of the reduct
and U being a splitting set. Thus,

X ′ ∈ AnsCon((botU (P ))X).

The last step argues that the constructed sets are disjoint: We have X,X ′ ⊆ U
and Y ∩ U = Y ′ ∩ U = ∅. So, X ∩ Y ′ = X ′ ∩ Y = ∅. Furthermore, X ∩ Y =
X ′ ∩ Y ′ = ∅ was already mentioned. Thus, we can calculate

dsd(X,X ′) ≤ dsd(X ∪ Y,X ′ ∪ Y ′) = dsd(M,M ′) = k.

To summarize, we found two setsX,X ′ of literals withX ′ ∈ AnsCon((botU (P ))X)
and dsd(X,X ′) ≤ k. Hence, Isd(botU (P )) ≤ k.

I-Monotonicity Again, we only have to consider the case Isd(P ∪{r}) = k <
∞. Let M∗ be a consistent set of literals such that (M∗)′ ∈ AnsCon((P ∪
{r})M∗) is consistent with dsd(M∗, (M∗)′) = k.
Consider P (M∗). As seen in the proof of Lemma 1, there is a set M ′ ∈
AnsCon(PM∗) of literals such that (M∗)′ is of the form (M∗)′ = M ′ ∪ X ′
for a set X ′ of literals with P (M∗)′ = PM ′∪X′ = PM ′ (cf. (3) and (5)). Fur-
thermore, M ′ and X ′ are disjoint.
Now consider M = M∗ \X ′. We have M ′ ∈ AnsCon(PM∗) = AnsCon(PM∗\X′)
and

dsd(M,M ′) = dsd(M∗ \X ′, (M∗)′ \X ′) ≤ dsd(M∗, (M∗)′) = k.

This implies Isd(P ) ≤ k.

Con-Monotonicity If M ′ ∈ AnsCon((P ∪ {r})M ) with dsd(M,M ′) = k, then
we have M ′ ∈ AnsCon(PM ) as well and hence Isd(P ) ≤ k.

Language Separability and Safe-Rule Independence are clear.
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The following example shows that Isd does not satisfy SE-Indifference. It
makes use of the following observation: Even for two strongly equivalent logic
programs P and P ′, the corresponding reducts PM and P ′M with respect to
to a given set M of literals might not be equivalent. It follows that Isd does
not satisfy E-Indifference or Exchange, either.

Example 14. Consider the following program P5.

P5 : a. b1 ← not a. b2 ← not a.

c1 ← not b1,not c1. c2 ← not b2,not c2.

The program is inconsistent since b1 and b2 are not entailed. We obtain the
best set of literals if we get rid of a (to be able to use the default “not a”). The
corresponding reduct is

P
{b1, b2}
5 : a. b1. b2.

with dsd({b1, b2},AnsCon(P
{b1, b2}
5 )) = 1. Since the program is inconsistent

(i. e., Isd(P5) ≥ 1), Isd(P5) = 1. Now consider the same program with two
additional rules that prevent us from considering sets of literals without a.

P6 : a. b1 ← not a. b2 ← not a.

c1 ← not b1,not c1. c2 ← not b2,not c2.

d← not a. ¬d← not a.

For any set M of literals with a /∈M , the reduct PM
6 contains “d.” and “¬d.”.

Hence, we have to consider sets containing a and thus, the reduct will never
contain “b1.” or “b2.”. Now one can check that Isd(P6) = 2: For example, if
we use the set {a, b1} we obtain the reduct

P
{a, b1}
6 : a. c2.

with minimal model {a, c2}, i. e., the distance is 2.
However, the programs P5 and P6 are strongly equivalent since the fact

“a.” renders the rules “d ← not a.” and “¬d ← not a.” meaningless. Thus,
SE-Indifference is not satisfied.

Proposition 12. I# satisfies Consistency, CLP-Monotonicity, Split-Mono-
tonicity, I-Monotonicity, Con-Monotonicity, E-Indifference, SE-Indifference,
Exchange, Language Separability and Safe-Rule Independence.

Proof. Consistency Clear due to the definition.

CLP-Monotonicity Clear due to the monotonicity of classical logic programs.
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Split-Monotonicity Let P be a program and U a splitting set. Let X̃ be
an answer set of botU (P ) with a minimal amount of complementary literals,
say 2k. Thus, I#(botU (P )) = k. Now let M be an answer set of P . Due to
Theorem 1, X ⊆M for an answer set X of botU (P ). Thus, M contains at least
as many complementary literals as X, which itself contains at least as many as
X̃. Hence, I#(P ) ≥ k.

I-Monotonicity Let I#(P ∪{r}) = k∗ and let M∗ be a k∗-inconsistent answer
set of P ∪{r}. By Lemma 1, there is an answer set M of P with M ⊆M∗. So,
if M is k-consistent, then k ≤ k∗ and we obtain I#(P ) ≤ k ≤ k∗ = I#(P∪{r}).

Con-Monotonicity If I#(P ∪ {r}) = k and M is a k-inconsistent answer
set of P ∪ {r}, then M is a k-inconsistent answer set of P as well and hence,
I#(P ) ≤ k.

E-Indifference Clear due to the definition of I#.

SE-Indifference E-Indifference and Proposition 5.

Exchange E-Indifference and Proposition 5.

Language Separability The number of complementary literals adds up.

Safe-Rule Independence This is clear.

Our analysis shows that the measures investigated in this paper satisfy most
of the postulates we discussed—with the exception of monotonicity, which, as
explained, is not desirable in our context anyway. This provides our measures
with some basic justification and shows that they behave in an expected way.
The proposed postulates were adapted from existing ones for propositional
logics and only modifications necessary to account for the non-monotonicity of
ASP were made.

6 Computational Complexity

We now address the computational complexity of the measures we developed
in this paper. After establishing some notation and making some general ob-
servations we investigate the complexity of our measures on disjunctive logic
programs in Section 6.1. Afterwards, we have a look at some special cases.
In particular, we discuss the complexity of disjunction-free programs in Sec-
tion 6.2, stratified programs in Section 6.3, and classical disjunction-free pro-
grams in Section 6.4. The techniques we are going to use for our investigation
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are not applicable for the measure IMSI, though, and we leave a rigorous inves-
tigation of its computational complexity for future work.

Following [48], we consider the three decision problems ExactI , UpperI ,
LowerI , and the natural function problem ValueI . Let I be an arbitrary
inconsistency measure on logic programs. As we will investigate complexity
with respect to different subclasses of logic programs, let X ⊆ P be some set
of logic programs.

ExactX
I Input: P ∈ X, x ∈ [0,∞]

Output: true iff I(P ) = x

UpperX
I Input: P ∈ X, x ∈ [0,∞]

Output: true iff I(P ) ≤ x
LowerX

I Input: P ∈ X, x ∈ (0,∞]
Output: true iff I(P ) ≥ x

ValueXI Input: P ∈ X
Output: The value of I(P )

We assume the reader to be familiar with the complexity classes P, NP and
coNP. We make use of the polynomial hierarchy, defined using oracle machines

as Σp
0 := Πp

0 := P and Σp
i+1 := NPΣp

i and Πp
i+1 := coNPΣp

i for i ≥ 0. Here,

CD is the class of decision problems solvable in C having access to an oracle for
some problem that is complete in D. The class Dp

i consists of all languages that
are the intersection of a language in Σp

i and a language in Πp
i . We also con-

sider the functional complexity classes FPNP[log n] and FPΣp
2 [log n], i. e., classes

that contain problems whose solution can be computed in P with access to a
logarithmically bounded number of calls to an NP resp. Σp

2 oracle.
In order to discuss computational complexity we need a measure of the size

of the input to our problems. For that we use the following straightforward
notion of the length of a logic program.

Definition 20. Let r be a rule of the form

l0 ∨ ... ∨ lk ← lk+1, . . . , lm,not lm+1, . . . ,not ln.

Then the length len(r) of r is defined as len(r) = n+ 1. For a program P , its
length is defined via len(P ) =

∑
r∈P len(r).

The work [48] already established some relationships between the individ-
ual computational problems for the propositional case, in particular, results
pertaining to the bounds for the complexity of other problems if the complex-
ity of one problem is known. We will now extend these results to the case of
logic programs. For that, we introduce a simple notion of expressivity for our
measures, cf. [46].
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Definition 21. Let I be an inconsistency measure. The expressivity CI of I
is the function CI : N → 2R defined via CI(n) = {I(P ) | len(P ) ≤ n} for all
n ∈ N.

In other words, CI(n) is the set of values I can attain on logic programs of
length n or smaller. For our measures we can see that the size of this set is
bounded linearly by the length of the programs.

Lemma 2. For I ∈ {I01, I±, I+, I−, Isd, I#}, CI(n) ⊆ {0, . . . , n,∞}.

Proof. For I ∈ {I±, I−}, the claim follows from |P | ≤ |len(P )| and the ob-
servation that the empty program is consistent. Since we can consider adding
facts only in the case of I+, at most |L(P )| ≤ |len(P )| rules can be added. If
adding rules cannot restore consistency, the value is∞. Hence, I+(P ) ≤ n+ 1.
The case I ∈ {Isd, I#} is similar using |L(P )| ≤ |len(P )|.

The above results allow us to adopt Lemma 2 from [48] which provides an
upper bound for the complexity of ValueXI given the complexity of UpperX

I .
As there are only linearly many different values of I one can perform a binary
search on these values in order to realize an algorithm for ValueXI while using
only logarithmically many calls to an algorithm for UpperX

I .

Lemma 3 (Lemma 2 in [48]). Let I be an inconsistency measure, i > 0 an
integer, and X ⊆ P. If UpperX

I is in Σp
i or Πp

i and |CI(n)| ∈ O(nk) for some

k ∈ N, then ValueXI is in FPΣp
i [log n].

Naturally, we expect UpperX
I and LowerX

I to be complementary problems
and ExactX

I a combination of both. However, in order to see this, we adopt
the following notion from [48].

Definition 22. An inconsistency measure I is called well-serializable if the
following problems are in P:

• Given n ∈ N and x ∈ CI(n), find y ∈ CI(n) such that x < y and there is
no y′ ∈ CI(n) with x < y′ < y.

• Given n ∈ N and x ∈ CI(n), find y ∈ CI(n) such that y < x and there is
no y′ ∈ CI(n) with y < y′ < x.

In other words, finding the immediate successor and predecessor of a value
x ∈ CI(n) is tractable for a well-serializable measure I. Being able to calculate
them enables us to adopt the following result for logic programs.

Lemma 4 (Lemma 3 in [48]). Let I be a well-serializable inconsistency measure
and X ⊆ P. Let i ∈ N and C ∈ {Σp

i , Πp
i }. Then,

• UpperX
I is C-complete iff LowerX

I is co-C-complete.
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• if UpperX
I or LowerX

I is in C, then ExactX
I is in Dp

i .

It is straightforward to see that our proposed measures are indeed well-
serializable, cf. Lemma 2.

Proposition 13. For I ∈ {I01, I±, I+, I−, Isd, I#}, I is well-serializable.

In the remainder of this section, we will give complexity results for the four
problems for our measures on different classes of logic programs. Due to the
insights above we will focus on the problem UpperX

I which allows us to easily
derive complexity bounds for the other classes.

6.1 The General Case

We first turn to the complexity of our measures on general disjunctive logic
programs. Recall that P denotes the set of all disjunctive logic programs. As
already mentioned, checking the consistency of a logic program in the general
case is Σp

2-complete.

Theorem 2 ([18]). Deciding whether a disjunctive logic program P ∈ P is
consistent is Σp

2-complete.

As inconsistency measures are supposed to generalize the concept of in-
consistency by obeying the Consistency postulate, the above result already
provides a lower bound for the complexity of UpperPI .

Proposition 14. Let I be an inconsistency measure that satisfies Consistency.
Then UpperPI is Σp

2-hard.

Proof. Due to Consistency, checking whether I(P ) ≤ 0 corresponds to checking
whether the program is consistent, which is Σp

2-hard as stated in Theorem 2.

However, for every measure I we proposed in this paper, we obtain member-
ship in Σp

2 for UpperPI via guess-and-check algorithms, yielding completeness
for Σp

2.

Theorem 3. For I ∈ {I01, I±, I+, I−, Isd, I#}, UpperPI is Σp
2-complete.

Proof. Hardness follows from Proposition 14. Completeness for UpperPI01 is

also obvious. Let (P, x) be an instance of UpperPI .

1. UpperPI±∈ Σp
2: We guess sets M , A of literals and a set D ⊆ P of rules

and verify in polynomial time that M is a model of ((P ∪A)\D)M . Using
an NP oracle we verify that there is no proper subset M ′ ⊆ M that is
also a model of ((P ∪A) \D)M . Checking whether |A|+ |D| ≤ x is also
clearly in P. Hence, deciding UpperPI± is in Σp

2.
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2. UpperPI+∈ Σp
2: analogous to above.

3. UpperPI−∈ Σp
2: analogous to above.

4. UpperPIsd∈ Σp
2: Similarly, guess a set M of literals and a set M ′ (a

potential answer set of PM ). Checking that M ′ is a minimal model
of PM is in coNP, i. e., can be done using an NP oracle. Calculating
dsd(M,M ′) is in P.

5. UpperPI#∈ Σp
2: Guess a set M and verify that M ∈ AnsCon(PM ). Count-

ing the amount of complementary literals in M is in P.

Combining the above result with Lemma 3 and Lemma 4 we obtain the
following picture on the computational complexity for general programs.

Corollary 3. For I ∈ {I01, I±, I+, I−, Isd, I#}, LowerPI is Πp
2-complete,

ExactPI is in Dp
2 and ValuePI is in FPΣp

2 [log n].

6.2 Disjunction-free Programs

We continue our investigation by considering only disjunction-free logic pro-
grams, i. e., programs with rules of the form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln.

Let P 6 ∨ ⊆ P be the set of all disjunction-free logic programs. For this class
of programs we already have the following result from [18] pertaining to the
complexity of deciding only consistency.

Theorem 4 ([18]). Deciding whether an extended logic program P without
disjunction is consistent is NP-complete.

As before we can utilize this result to obtain a lower bound on the com-
plexity of the problem UpperP

6 ∨

I .

Proposition 15. Let I be an inconsistency measure that satisfies Consistency.

Then UpperP
6 ∨

I is NP-hard.

We obtain the following theorem which is similar to our results above.

Theorem 5. For I ∈ {I01, I±, I+, I−, Isd, I#}, UpperP
6 ∨

I is NP-complete.

Proof. For all measures, hardness follows from Proposition 15. Completeness

for UpperP
6 ∨

I01 is also obvious. Let (P, x) be an instance of UpperP
6 ∨

I .
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1. UpperP
6 ∨

I± ∈ NP: We guess sets M , A of literals and a set D ⊆ P of

rules and verify in polynomial time that M is the unique model of ((P ∪
A) \D)M . Checking whether |A| + |D| ≤ x is also clearly in P. Hence,

UpperP
6 ∨

I± is in NP.

2. UpperP
6 ∨

I+ ∈ NP: analogous to above.

3. UpperP
6 ∨

I− ∈ NP: analogous to above.

4. UpperP
6 ∨

Isd∈ NP: We can guess a set M of literals and determine the

unique model M ′ of PM in non-deterministic polynomial time. Comput-
ing dsd(M,M ′) can also be done in polynomial time.

5. UpperP
6 ∨

I# ∈ NP: We can guess a set M of literals and check whether M

is indeed the unique model of PM in non-deterministic polynomial time.
Determining the number of contradictory literals in M can also be done
in polynomial time.

Corollary 4. For I ∈ {I01, I±, I+, I−, Isd, I#}, LowerP
6 ∨

I is coNP-complete,

ExactP
6 ∨

I is in Dp
1 and ValueP

6 ∨

I is in FPNP[log n].

6.3 Stratified Programs

We now consider stratified programs as another special case, see e. g. [2].

Definition 23. Let P be a disjunction-free program consisting of rules of the
form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln. (7)

We call P stratified if there is a mapping ‖.‖ : L(P ) → N such that for each
rule r ∈ P of the form (7) the following holds:

1. ‖li‖ ≤ ‖l0‖ for each 1 ≤ i ≤ m,

2. ‖lj‖ < ‖l0‖ for each m+ 1 ≤ j ≤ n.

Let P‖·‖ be the set of all stratified programs. A stratified program has a
unique answer set which can be computed in polynomial time [2, 14] which
gives them many advantages in practical applications. A simple corollary of
this is the following observation.

Corollary 5 (implied by [2]). Deciding whether a stratified logic program P is
consistent is in P.
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The results so far and the above observation may lead to the conjecture

that the decision problem UpperP
‖·‖

I for our measures can also be solved in
polynomial time. At least for the measures I01 and I#, this conjecture is true.

Theorem 6. UpperP
‖·‖

I01 ∈P and UpperP
‖·‖

I# ∈P.

Proof. We can calculate the unique answer set M of P and count the number
of complementary literals in M in polynomial time.

Corollary 6. LowerP
‖·‖

I01 ∈P, ExactP
‖·‖

I01 ∈P, ValueP
‖·‖

I01 ∈FP, LowerP
‖·‖

I# ∈P,

ExactP
‖·‖

I# ∈P, ValueP
‖·‖

I# ∈FP

Unfortunately, the decision problem UpperP
‖·‖

I for the other measures re-
mains NP-complete.

Theorem 7. UpperP
‖·‖

I± and UpperP
‖·‖

I− are NP-complete.

Proof. Membership in NP is given through Theorem 5 and the fact that every
stratified program is also a disjunction-free program. Hardness follows from
Theorems 10 and 11 (see the next section) and the fact that every classical
disjunction free program is also a stratified program.

Theorem 8. UpperP
‖·‖

I+ and UpperP
‖·‖

Isd are NP-complete.

Proof. We show NP-hardness by reduction of the Set Cover Problem, which is
known to be NP-complete [31]. Given a set of integers U = {1, ...,m}, a set of
subsets S = {S1, ..., St}, Sj ⊆ U for each j, and an integer k, the Set Cover
Problem asks whether there are at most k sets in S that cover U .

Given an instance U = {1, ...,m}, S = {S1, ..., St}, Sj ⊆ U for each j of the
Set Cover Problem and an integer k, we construct the following program P :

• For each number i ∈ U , we construct two rules ri and ¬ri having literals
pi and ¬pi as head, respectively.

• For each set Sj ∈ S, we let an atom aj appear in neg(ri) and neg(¬ri) if
and only i ∈ Sj .

Example 15. For U = {1, 2, 3} and S = {S1, S2, S3} = {{1, 2}, {2, 3}, {1, 3}},
we obtain the following program:

p1 ← not a1,not a3.

¬p1 ← not a1,not a3.

p2 ← not a1,not a2.

¬p2 ← not a1,not a2.

p3 ← not a2,not a3.

¬p3 ← not a2,not a3.

33



Clearly, this program is stratified. Furthermore, if A is a set of facts such that
P ∪ A is consistent, then we see as above that A corresponds to a cover of U .
We obtain hardness for I+.

Similarly, if PM is consistent, then M corresponds to a cover of U . Fur-
thermore PM will always have ∅ as the minimal model. So, such a set M with
dsd(M,AnsCon(PM )) ≤ k corresponds to a cover with at most k sets. Hence,

we obtain hardness for UpperP
‖·‖

Isd .

Corollary 7. For I ∈ {I±, I+, I−, Isd}, LowerP
‖·‖

I is coNP-complete,

ExactP
‖·‖

I is in Dp
1 and ValueP

‖·‖

I is in FPNP[log n].

6.4 Classical Disjunction-free Programs

Finally, we investigate the computational complexity of our measures on the
easiest class of logic programs, namely classical disjunction-free programs P
consisting of rules of the form

l0 ← l1, . . . , lm. (8)

with literals l0, . . . , lm. Let P 6not6 ∨ ⊆ P be the set of all classical disjunction-free
programs.

Recall that every classical disjunction-free program has a unique answer
set that can be computed in polynomial time. This also implies the following
observation.

Corollary 8. Deciding whether a classical disjunction-free program is consis-
tent is in P.

As every classical disjunction-free program is also a stratified program, i. e.
P 6not6 ∨ ⊆ P‖·‖, Theorem 6 and Corollary 6 already give us the following results.

Corollary 9. UpperP
6not6 ∨

I01 ∈P, UpperP
6not 6 ∨

I# ∈P, LowerP
6not 6 ∨

I01 ∈P, ExactP
6not 6 ∨

I01 ∈P,

ValueP
6not6 ∨

I01 ∈FP, LowerP
6not6 ∨

I# ∈P, ExactP
6not6 ∨

I# ∈P, ValueP
6not 6 ∨

I# ∈FP.

Also the problems related to the measures I+ and Isd turn out to be feasible
for classical disjunction-free programs.

Theorem 9. For I ∈ {I+, Isd}, UpperP
6not 6 ∨

I ∈P, LowerP
6not 6 ∨

I ∈P, ExactP
6not 6 ∨

I ∈P,

ValueP
6not6 ∨

I ∈FP.

Proof. Note that if a classical program P is inconsistent there is no A such
that P ∪A becomes consistent. Therefore, for every P ∈ P 6not6 ∨ we have either
I+(P ) = 0 or I+(P ) = ∞. We can decide I+(P ) ≤ 0 in polynomial time
due to Corollary 8. Furthermore, note that for a classical program P we have
P = PM for every set of literals M . It follows that for every P ∈ P 6not 6 ∨ we
have either Isd(P ) = 0 or Isd(P ) =∞ as well.

The remaining cases follow from these observations.
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Unfortunately, for measures I± and I−, all problems remain infeasible even
for the class P 6not6 ∨.

Theorem 10. UpperP
6not6 ∨

I± is NP-complete.

Proof. Membership is clear since this is a special case of Theorem 5. Again,
we show NP-hardness using the Set Cover Problem [31]. Thus, we let U =
{1, ...,m} be a set, S = {S1, ..., St} be a set of subsets of U and k an integer.
Recall that the Set Cover Problem asks whether there are at most k sets in S
that cover U .

Suppose we were given an integer k and could solve UpperP
6not 6 ∨

I± . We con-
struct the following classical disjunction-free program P :

• For each number i ∈ U , we construct two rules ri and ¬ri having literals
pi and ¬pi as head, respectively.

• For each set Sj ∈ S, we consider an atom aj , construct a fact “aj .” and
let aj appear in pos(ri) and pos(¬ri) if and only i ∈ Sj .

Example 16. For U = {1, 2, 3} and S = {S1, S2, S3} = {{1, 2}, {2, 3}, {1, 3}},
we obtain the following classical disjunction-free program:

a1. a2. a3.

p1 ←a1, a3.

¬p1 ←a1, a3.

p2 ←a1, a2.

¬p2 ←a1, a2.

p3 ←a2, a3.

¬p3 ←a2, a3.

If D is a subset of the facts {a1., . . . , at.} such that P \D is consistent, then each
pair “ri” and “¬ri” of rules is not applicable anymore. Thus, D corresponds to
a cover of U . It is only left to show that we can assume the set D of deleted rules
to not contain any of the “ri” and “¬ri”. However, this is clear since deleting
one of them resolves at most one conflict and can be mimicked by removing
the corresponding fact from an atom which appears in the rules. (This also
corresponds to adding one set Sj that covers at least one additional integer in
U which is trivial at any point.) Moreover, the set A of added rules can be
assumed to be empty since we constructed a classical program.

We obtain the same result with the same proof for I−.

Theorem 11. UpperP
6not6 ∨

I− is NP-complete.
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Corollary 10. For I ∈ {I±, I−}, LowerP
6not 6 ∨

I is coNP-complete, ExactP
6not 6 ∨

I
is in Dp

1 and ValueP
6not6 ∨

I is in FPNP[log n].

Table 2 summarizes the results of this section.

Q = P Q = P 6 ∨ Q = P‖·‖ Q = P 6not 6 ∨

I±

UpperQI± Σp
2-c NP-c NP-c NP-c

LowerQI± Πp
2-c coNP-c coNP-c coNP-c

ExactQI± Dp
2 Dp

1 Dp
1 Dp

1

ValueQI± FPΣ
p
2 [log n] FPNP[log n] FPNP[log n] FPNP[log n]

I−

UpperQI− Σp
2-c NP-c NP-c NP-c

LowerQI− Πp
2-c coNP-c coNP-c coNP-c

ExactQI− Dp
2 Dp

1 Dp
1 Dp

1

ValueQI− FPΣ
p
2 [log n] FPNP[log n] FPNP[log n] FPNP[log n]

I+

UpperQI+ Σp
2-c NP-c NP-c P

LowerQI+ Πp
2-c coNP-c coNP-c P

ExactQI+ Dp
2 Dp

1 Dp
1 P

ValueQI+ FPΣ
p
2 [log n] FPNP[log n] FPNP[log n] FP

Isd

UpperQIsd
Σp

2-c NP-c NP-c P
LowerQIsd

Πp
2-c coNP-c coNP-c P

ExactQIsd
Dp

2 Dp
1 Dp

1 P

ValueQIsd
FPΣ

p
2 [log n] FPNP[log n] FPNP[log n] FP

I#

UpperQI#
Σp

2-c NP-c P P

LowerQI#
Πp

2-c coNP-c P P

ExactQI#
Dp

2 Dp
1 P P

ValueQI#
FPΣ

p
2 [log n] FPNP[log n] FP FP

I01

UpperQI01 Σp
2-c NP-c P P

LowerQI01 Πp
2-c coNP-c P P

ExactQI01 Dp
2 Dp

1 P P

ValueQI01 FPΣ
p
2 [log n] FPNP[log n] FP FP

Table 2: Computational complexity of various problems related to our incon-
sistency measures

7 Summary and Discussion

In this paper, we addressed the challenge of measuring inconsistency in ASP by
critically reviewing the propositional framework of inconsistency measurement
and taking non-monotonicity into account. We developed novel rationality
postulates and measures that are more apt for analyzing inconsistency in ASP
than existing approaches. Intuitively, some of our measures take the effort
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needed to restore the consistency of programs into account (I±, I+, I−), and
our results show that it does not matter whether this is done on the level of the
original program or on the level of the reduct. Others measure inconsistency
in terms of the quality of the produced output, e. g. I# which considers the
minimal number of inconsistencies in an answer set. We showed that our new
measures comply with many of our rationality postulates and illustrated their
usage.

To the best of our knowledge, measuring inconsistency in extended logic
programs under the answer set semantics has not been addressed before. The
closest related works are by Madrid and Ojeda-Aciego, see e. g. [37, 38], who
address inconsistencies in residuated logic programs under fuzzy answer set
semantics. In their setting, rules such as (1) are augmented with fuzzy values
in [0, 1] (or some arbitrary lattice) and inconsistency is measured by considering
minimal changes in the values to restore the existence of fuzzy stable models.
However, Madrid and Ojeda-Aciego do not discuss the propositional case and
rationality postulates.

Inconsistency measures have numerous applications, for instance in belief
revision where the degree of inconsistency of new information may provide
useful guidance as to whether the new information should be accepted or not,
or in belief merging where the degree of inconsistency may be used to decide
whether the views of a particular agent should be taken into account. The
overview paper [28] contains an analysis of these and various other potential
applications. The results of this paper pave the way for similar applications
in the context of ASP, which has become a popular language for declarative
problem solving.

In future work, we would like to extend our analysis to more general classes
of logic programs, e. g., programs with choice rules, weight constraints and
aggregates. For an overview on these extensions see [20]. It would also be
interesting to see whether our measures, or similar ones, can be applied to other
non-monotonic formalisms, like default logic [41] or autoepistemic logic [39]. In
another recent paper [11], we explored the issues of minimal inconsistent sets
in general non-monotonic formalisms in more depth. There, we also hinted
to possible applications for inconsistency measurement which is also part of
ongoing work.
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