
Detecting Hidden Errors in an Ontology Using Contextual
Knowledge

Mehdi Teymourlouiea, Ahmad Zaeria, Mohammadali Nematbakhsha,∗, Matthias
Thimmb, Steffen Staabb

aDepartment of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Iran.
bInstitute for Web Science and Technologies, Universität Koblenz-Landau, Germany.

Abstract

Due to modeling errors in designing ontologies, an ontology may carry incorrect infor-
mation. Ontology debugging can be helpful in detecting errors in ontologies that are
increasing in size and expressiveness day by day. While current ontology debugging
methods can detect logical errors (incoherences and inconsistencies), they are inca-
pable of detecting hidden modeling errors in coherent and consistent ontologies. From
the logical perspective, there are no errors in such ontologies, but this study shows
some modeling errors may not break the coherency of the ontology by not participat-
ing in any contradiction. In this paper, contextual knowledge is exploited to detect
such hidden errors. Our experiments show that adding general ontologies like DB-
pedia as contextual knowledge in the ontology debugging process results in detecting
contradictions in ontologies that are coherent.

Keywords: Ontology Debugging, Hidden Modeling Errors, Contextual Knowledge,
Incoherency, Inconsistency

1. Introduction

Ontologies play a main role in establishing the Semantic Web by providing meaning
to the information published on the Web of Data (Bizer et al., 2009). Many ontologies
have been developed to model the real-world concepts and the relations between them.
Due to the modeling errors occurring in the design of ontologies, an ontology may
carry incorrect information. Also, reasoning and answering queries in these ontologies
result in incorrect information extraction. Debugging these faulty ontologies by human
experts can be difficult as the size and expressiveness of ontologies are increasing day
by day.

∗Corresponding author. Address: Hezar-Jerib Ave. Isfahan 81746-73441, Iran. Phone / Fax :(+98) 313
793 4106

Email addresses: m.teymourlouie@eng.ui.ac.ir (Mehdi Teymourlouie),
zaeri@eng.ui.ac.ir (Ahmad Zaeri), nematbakhsh@eng.ui.ac.ir (Mohammadali
Nematbakhsh), thimm@uni-koblenz.de (Matthias Thimm), staab@uni-koblenz.de (Steffen
Staab)

Preprint submitted to Expert Systems with Applications November 24, 2017

Errors in ontology can be divided into two categories: syntactical and semantic
errors. Syntactical errors occur when the ontology is not compatible with the syntax
or format of the intended ontology language. Semantic errors occur when there are
some unintended meanings that could be concluded from an ontology while they are
not true in the modeled domain. While syntactic errors can be detected and solved by
most ontology editing tools (e.g. Protégé1), semantic errors are hard to resolve. Find-
ing automatic methods to debug ontologies has received much attention in the last few
years (Jannach et al., 2016; Arif et al., 2016; Papacchini & Schmidt, 2015; Friedrich,
2014; Stuckenschmidt, 2008; Moodley, 2010; Wang & Xu, 2008; Rodler et al., 2013;
Shchekotykhin et al., 2012; Corcho et al., 2009; Schlobach et al., 2007; Stucken-
schmidt, 2013; Ji et al., 2012; Kalyanpur et al., 2005; Bell et al., 2007; Lehmann &
Bühmann, 2010; Roussey & Zamazal, 2013).

Previous works focused on detecting logical contradictions (i.e. incoherences and
inconsistencies) as symptoms of the existence of modeling errors (Meilicke & Stuck-
enschmidt, 2008). These methods search for chains of axioms that preserve a logical
contradiction. Such logical contradictions are then eliminated by detecting and repair-
ing the faulty axioms, which are the root causes of contradictions, among the detected
chains. In these methods, debugging stops when no sign of modeling errors (inco-
herency or inconsistency inside the ontology) remains.

A major drawback of the current methods is that they do not consider all kinds of
modeling errors in the ontology and only try to detect incoherences and inconsistencies.
Hence, in these approaches, the problem of debugging incorrect information is reduced
to eliminating incoherences and inconsistencies. However, an ontology can be coherent
and consistent but still include modeling errors.

From the ontology debugging perspective, we can divide the ontology axioms via
the categorization shown in Figure 1. Axioms that are part of some contradiction are
called Suspected Axioms. These axioms could be correct or faulty. The process of
detecting faulty axioms among Suspected Axioms is discussed briefly in Section 3.3.
Those axioms which are not part of any contradiction are called Free Axioms (Hunter
& Konieczny, 2010). Previous works on ontology debugging considered free axioms
as correct axioms because they are not taking part in any contradiction and debuggers
could not find any evidence of incorrectness among them.

In this paper, we go one step deeper and divide free axioms into two separate cate-
gories: 1) truly correct axioms which are truly correct and match the real world mod-
eled in the ontology; and 2) hidden error axioms which are incorrect axioms regarding
the real world. Hidden error axioms could be considered as implicit errors as opposed
to explicit errors that are found by internal conflict checking of the ontologies.

The main focus of this work is to distinguish hidden errors from truly correct ax-
ioms. The goal is to construct some contradictions using hidden errors and some ex-
ternal background knowledge. In this way, hidden errors will take part in some new
contradiction and they will not be free axioms anymore. We assume that the back-
ground knowledge is correctly representing the real world. Hence, conflicting with
background knowledge shows some conflict with the real world. Thus, the debugger

1http://protege.stanford.edu

2

Ontology Axioms

Free Axioms

Hidden Error Axioms

Suspected Axioms

Truly Correct Axioms

Figure 1: The Category of Axioms Types from Ontology Debugging Perspectives.

could consider those axioms that are conflicting with background knowledge as sus-
pected axioms.

Consider the following ontology given in some description logic (Baader et al.,
2010) :

Penguin v Bird (1)
Bird v FlyingAnimals (2)

This ontology is coherent and consistent, so there is no logical contradiction in
the ontology and current methods cannot detect any incorrect information. Axioms 1
and 2 are free axioms. It is inferred from this ontology that Penguin is a subclass of
FlyingAnimal. But we know that in reality penguins cannot fly. Thus, there should be
some error in this ontology. Since the errors are not part of any logical contradiction,
they are hidden errors. The question is how can we detect these hidden errors?

If we ask a human user to debug this ontology, the user can evaluate the ontology
with his/her background knowledge. If there is some statement in the user’s back-
ground knowledge that says “Penguins cannot fly”, then the user can detect some con-
tradiction between the information in the ontology and his/her own knowledge. Hence,
the incorrectness of the information can be concluded.

From a technical point of view, an ontology can be coherent and consistent inter-
nally, but if this information is evaluated w.r.t. to other knowledge-bases, conflicts may
arise. For example, if we evaluate the above ontology with an ontology containing
Axioms (3) and (4), it will become incoherent and Axioms 1 and 2 will be part of the
contradiction. Thus, they will be marked as suspected axioms and the error could be
detected in the debugging process.

Penguin v NonFlyingAnimals (3)
NonFlyingAnimals v ¬FlyingAnimals (4)

In this work, we develop an approach using contextual knowledge to debug on-
tologies. As many errors may be hidden inside the coherent or consistent ontologies,
we want to develop methods to utilize the knowledge of other knowledge-bases for
debugging modeling errors of ontologies. Hence, the goal of our research is to detect
more contradictions by adding and aligning more background knowledge to ontology
debugging and making hidden error axioms as suspect axioms.

The contributions of this work could be summarized as:

1. To the best of our knowledge, this is the first work that outlines the importance
of checking the correctness of ontology with respect to other knowledge bases.

3

We show that even coherent ontologies may contain some hidden errors which
could not be detected by internal coherence checking.

2. Proposing an approach to detect hidden errors is the other contribution of this
paper. We examine the effect of adding background knowledge to the ontology
debugging compared with internal incoherency checking used in the common
ontology debugging methods.

3. Three new functions introduced to evaluate contradictions. These functions are
used to detect error axioms among suspected axioms.

This paper is organized as follows. Section 2 provides basic terminologies in the
ontology debugging field. In Section 3, hidden error detection is discussed in detail.
Experiments to show the effectiveness of our proposed method in debugging real on-
tologies are described in Section 4. Section 5 reviews the related works and finally our
conclusions are drawn in Section 6.

2. Preliminaries of Ontology Debugging

In the rest of this paper, we assume that the readers are familiar with Description
Logics (DL), which is a family of First Order logics. DL is the underlying logic em-
ployed to formalize the representation of concepts and their relations in the ontologies.
See the respective handbook (Baader et al., 2010) for a detailed description of DL.

As stated by Gruber (1993), an ontology is “a formal specification of a shared con-
ceptualization”. An Ontology is a way of knowledge representation to model specific
domain of knowledge. An Ontology is formally defined by Definition 1.

Definition 1 (Ontology). An ontology O is a set of axioms, having Signature of SO

O = {α1, α2, . . . , αn}
SO =< CO, RO, IO >

where CO is a set of Concepts, RO is a set of Relations (Properties) and IO is a list of
Individuals represented in the ontology.

Usually, ontologies are divided into two parts: Terminological Box (TBox) and
Assertional Box (ABox). The TBox includes axioms’ defining concepts of the domain
and the relations between them. The ABox includes axioms asserting the individuals
into concepts and relations defined in the TBox.

Ontologies are created manually by human experts or automatically by applying
some ontology learning methods. Both of the methods are prone to errors. When
speaking about errors, we are talking about the semantic errors occurring during the
modeling process rather than syntactical errors. Nowadays detecting and fixing syntac-
tical errors by ontology editors is fairly easy.

One of the most common semantic errors in ontology modeling is incoherency.
Incoherent ontology is defined by Definition 2 which is an ontology with at least one
unsatisfiable concept.

Definition 2 (Incoherent Ontology). Ontology O is incoherent iff ∃C ∈ CO s.t. O |=
C v ⊥.

4

Unsatisfiable concepts (classes) in an ontology are usually unintended results of
some erroneous axioms. The Theory of Diagnosis developed by Reiter (1987) states
that when there is some unwanted behavior in a system, there should be some parts
in the system that are malfunctioning. So considering an ontology as a system and
unsatisfiable classes as the unwanted behavior of ontology, then there should be some
axioms in the ontology that are incorrectly modeled. Thus, the task of ontology debug-
ging is to detect such incorrect axioms.

To explain why a concept C is unsatisfiable, one can detect a set of axioms in
the ontology which preserve the unsatisfiability of it. These sets are called Minimum
Unsatisfiability Preserving Set (MUPS). MUPS is defined formally as Definition 3.

Definition 3 (MUPS). Minimum Unsatisfiability Preserving Set:

M(C) = {M|M ⊆ O,M |= C v ⊥,∀M′ ⊂M,M′ 6|= C v ⊥}

M(O) =
⋃

C∈CO

M(C)

Definition 3 defines an MUPS as a minimum set of all the axioms which altogether
imply that C is unsatisfiable. For an unsatisfiable concept C, it could be more than one
MUPS. So,M(C) is the set of all MUPSs which imply that C is unsatisfiable. From
Definition 3, we can conclude that if conceptC is satisfiable then the set of MUPSs will
be empty (i.e. M(C) 6= ∅ iff C is unsatisfiable in O.) and if an ontology is coherent,
there will be no MUPS for its concepts (i.e.M(O) = ∅ iff O is coherent.).

We know that in each MUPS there is at least one incorrect axiom which causes the
unsatisfiability of at least one concept. For eliminating each MUPS, a diagnosis should
be found. Definition 4 defines Diagnosis as a set of axioms wherein removing them
from ontology results in coherency of the ontology. In fact, a diagnosis is a hitting set
forM(O).

Definition 4 (Diagnosis). D ⊆ O is a diagnosis for incoherent ontology O iffM(O \
D) = ∅. The set of Diagnosis for ontology O will be denoted as D(O).

Hence, the task of ontology debugging can be summarized as detecting a set of
axioms that are incorrect, eliminating them from the ontology, and turning the ontology
back to the coherent state.

3. Detecting Hidden Errors

In Section 1, we discussed that there are some incorrect axioms in ontologies that
are not part of any MUPS. We called them hidden errors. Finding these hidden errors
as well as the other incorrect axioms is the goal of our approach.

The idea behind adding background knowledge to the debugging process is that
no ontology has a complete representation of its modeled domain. Therefore, error
axioms could be hidden when some knowledge is missed in the ontology. Thus, if we
add some correct knowledge to the ontology, we can help debugging methods detect
some new MUPSs, which include those hidden erroneous axioms.

5

Different ontologies modeling the same domain are good candidates for such con-
textual background knowledge. They model the same domain from different perspec-
tives and may carry some knowledge that is not in the ontology being debugged. Our
approach is to use such ontologies in the debugging process. Detecting hidden errors
could be possible by detecting new MUPSs that could have not been found without
adding the contextual knowledge. Before we start explaining our suggested process,
let’s define the background contextual knowledge.

Definition 5 (Knowledge-Base Profile). A Knowledge-Base Profile is a set of ontolo-
gies used as background knowledge. Hence, profile ontology consists of the union of
axioms in all of the ontologies in a knowledge-base profile:

PROFILE = {O1,O2, . . . ,On}

Oprofile =
m⋃
i=1

Oi

SOprofile
=< COprofile

, ROprofile
, IOprofile

>

=<

m⋃
i=1

Ci,

m⋃
i=1

Ri,

m⋃
i=1

Ii >

We call the background ontologies the Knowledge-Base Profile, which is a set
of ontologies modeling the same domain as the ontology being debugged. Profile
ontology (Oprofile) is the ontology consisting of the union of all the axioms in the
knowledge-base profile ontologies.

The suggested process is depicted in Figure 2. The first step is to merge the profile
ontology (Oprofile) with the ontology being debugged which is called Odebug in the
rest of the paper. At the end of the first step, we have a merged ontology that is used in
the next step to detect MUPS sets. In the third step, all of the MUPS sets are analyzed
altogether to detect the incorrect axioms. Repairing the incorrect axioms is the last
step. We discuss the details of these steps in the following subsections.

Assumption 1. There is no error in the profile ontology.

Here, we make Assumption 1 about the correctness of the axioms in the profile on-
tology. It means that we trust in the knowledge of the profile ontology. In this manner,
the profile ontology is a correct representation of the real world. Selecting ontolo-
gies as contextual knowledge could be done by human experts that perform ontology
debugging.

Researches in the ontology evaluation field suggest criteria to ensure validity and
verification of the profile ontology. Vrandečić (2009) discusses some quality crite-
ria for ontology verification. Obrst et al. (2007) suggests requirements for ontology
validation. Neuhaus et al. (2014) reports existing best practices and tools in the field
of ontology evaluation. As discussed in Gelernter & Jha (2016); Vrandečić (2009),
choosing the ontology evaluation criteria that fits into an application mostly needs a
human level intelligence. Hence, the selection of ontologies as the profile ontology
needs human expertise.

6

Merging

Detecting MUPS

Root Error Pinpointing

Repairing Axioms

Ontology Contextual
Knowledge

Merged Ontology

MUPS Sets

Set of Incorrect Axioms

Cleaned
Ontology

Figure 2: The Process of Ontology Debugging using Contextual Knowledge

One of the most important selection criteria is the relatedness of the profile ontology
to the ontology being debugged in terms of the realm of the interest they are modeling.
Having more logical axioms could be another criteria since, having more axioms could
be a sign of better coverage of the knowledge in the real world.

One important thing about our methodology is that we only debug the TBox of an
ontology to detect MUPS sets. Hence, we drop the ABox axioms before starting the
process.

3.1. Step 1: Merging
The first step in using the knowledge of the profile ontology is to align the concepts

and the relations in the signatures of Odebug and Oprofile. The alignment is a set of
axioms that defines correspondences between concepts and relations of two ontologies
and is defined formally via Definition 6.

Definition 6 (Alignment).

A ⊆{xyz|x ∈ COdebug
, y ∈ {≡,v,w}, z ∈ COprofile

}
∪{xyz|x ∈ ROdebug

, y ∈ {≡,v,w}, z ∈ ROprofile
}

7

If the signature of Odebug is a subset of the signature of Oprofile (i.e. COdebug
⊆

COprofile
and ROdebug

⊆ ROprofile
), then there is no need to generate the alignment

A. In that case, A is the empty set (∅).
After generating the alignment using a state-of-the-art ontology matcher, merging

Odebug and Oprofile will be easy as the union of their axioms. The merged ontology
(Om) is defined in Definition 7.

Definition 7 (Merged Ontology).

Om = Odebug ∪ Oprofile ∪ A

3.2. Step 2: Detecting MUPS
The story of the debugging process starts with unsatisfiable concepts. Ontology

reasoners (e.g. Hermit, Pellet, ...) can be easily used to detect the list of unsatisfiable
concepts in the ontology. Hence, we want to detect MUPSs for each unsatisfiable
concept according to Definition 3.

The set of MUPS inM(Om) can be categorized into three types:

• TYPE1: All of its axioms belong to Odebug and formally defined as

MTY PE1 ∈ {M|∀α ∈M : α ∈ Odebug}.

These MUPSs are contained inM(Odebug), so they could also be detected using
other debugging methods.

• TYPE2: Some of the axioms of the MUPS belong to Odebug and some of them
belong to the profile ontology. TYPE2 MUPS is formally defined as

MTY PE2 ∈ {M|∃α ∈M : α ∈ Odebug ∧ ∃β ∈M : β ∈ Om ∪ A}.

These MUPS sets could be helpful in the detection of the hidden errors.

• TYPE3: All of the axioms in this type belong to the Oprofile and are defined as

MTY PE3 ∈ {M|∀α ∈M : α ∈ Om}.

These MUPSs show some incoherency in the background knowledge.

Figure 3 shows an example of MUPS types in terms of the introduced types.M1 is
completely inside ofOdebug and is categorized as TYPE1.M2 shows a TYPE2 MUPS,
and finally,M3 is a TYPE3 MUPS which is completely inside the profile ontology.

TYPE3 shows some conflicts inside the profile ontology. The desirable results will
be achieved if there is no TYPE3 MUPS. To this end, the one who uses this approach
is responsible to choose some correct background knowledge.

Since we are debugging Odebug , we are not interested in the third type, and they
are not processed in this step. Thus, the main focus will be on MUPS sets of TYPE1
and TYPE2.

MUPSs belonging to TYPE2 reveal some conflicts between some axioms from
the profile ontology and some axioms from Odebug . In order to define hidden errors in
Odebug , the knowledge of the ontology is evaluated with respect to the profile ontology.
In this way we could define the Suspected Hidden Error as Definition 8.

8

Oorigin

Oprofile

A

M3

M1

M2

Om

Figure 3: Example of MUPS sets positioning in Om. Axioms are shown by stars and ellipses represent
MUPS sets. M1 is TYPE1, M2 is TYPE2 and M3 is TYPE3 MUPS.

Definition 8 (Suspected Hidden Error). A suspected hidden error axiom is an axiom
from Odebug that takes part only in TYPE2 MUPSs. This could be formally defined as:

α is a suspected hidden error iff:

α ∈ Odebug,∀M : α ∈M→M ∈MTY PE2(Om)

whereMTY PE2(Om) is the set of all TYPE2 MUPS inM(Om).

Reiter (1987) proofed that the set of minimal diagnosis for an unsatisfiable con-
cept is equivalent to the minimal hitting set of MUPS of the concept. Based on this
theorem he proposed the HST (Hit Set Tree) algorithm (Reiter, 1987) to enumerate
all the MUPS of an unsatisfiable concept. HST is a sound and complete algorithm
(see Kalyanpur et al. (2007); Reiter (1987) for the proof of it). Algorithm 1 shows the
pseudo-code of the hit set algorithm.

The HST algorithm constructs a search tree, and each node of the search tree is
an MUPS or a diagnosis. The MUPS nodes are expanded in the breadth-first mode to
build the hit set tree. A first-in-first-out (FIFO) queue is used to maintain the list of
not expanded nodes. The algorithm starts with a random MUPS as the root node of the
tree.

Each MUPS node is expanded, and, for each axiom inside it, a new child node is
generated. The edge is labeled with the associated axiom. The algorithm examines the
new path from the root to the new node. The algorithm first checks for early termination
conditions (which will be discussed below). If the early termination conditions are
satisfied, then the new branch will be marked as � and the expansion of the node will
be stopped. If not, the algorithm calls the random MUPS detector procedure to check
if there is an MUPS inside the ontology resulting from removing the axioms of the
new path from the debugging ontology. If it could detect an MUPS in the absence of

9

Algorithm 1 HST Algorithm for Enumerating All MUPS of an Unsatisfiable Concept.
Require: O, Unsatisfiable Concept C
Ensure: MC is set of MUPSs which preserve unsatisfiability of Concept C

1: procedure FINDMUPSS(O,C)
2: MC ← ∅, DC ← ∅
3: M← GENERATERANDOMMUPS(O,C)
4: ENQUEUE(notExpandedNodes,<M, ∅ >
5: while notExpandedNodes is not empty do
6: <M, path >← DEQUEUE(notExpandedNodes)
7: for all α ∈M do
8: newPath← path ∪ {α}
9: if @D′ ∈ DC s.t. D′ ⊆ newPath and @ < M′, path′ >∈
notExpandedNodes s.t. path′ = newPath then . path is not examined before

10: M′ ← GENERATERANDOMMUPS(O \ newPath,C)
11: ifM′ = ∅ then . newPath is a diagnosis!
12: DC ← DC ∪ newPath
13: else . new MUPS is found
14: MC ←MC ∪M′
15: ENQUEUE(notExpandedNodes,<M′, newPath >
16: end if
17: end if
18: end for
19: end while
20: end procedure

10

Odebug α1 : WaterwayTunnel v Place
α2 : Infrastructure v ¬Place
α3 : Place v ¬WaterwayTunnel

Oprofile α4 : Infrastructure v ArchitecturalStructure
α5 : ArchitecturalStructure v Place
α6 : RouteOfTransportation v Infrastructure
α7 : WaterwayTunnel v RouteOfTransportation

Figure 4: An Example of Merged Ontology Taken From a Real Debugging Task. In this example, concept
WaterwayTunnel is unsatisfiable.

the new path’s axioms, then the new node with the detected MUPS and the new path
will be added to the queue for further expansion. If the unsatisfiable concept becomes
satisfiable in the absence of the new path’s axiom, it means that the new path is a
diagnosis for the concept. In this situation, the new node will be marked as X and the
new path will be added to the set of diagnoses. Hence, removing the axioms in the path
from ontology yields the satisfiability of the concept. The queue processing for the
expansion of the tree will be continued until the notExpandedNodes become empty.

The algorithm is optimized by not expanding the paths that satisfy one of the early
termination conditions. The early termination conditions are:

1. If the new path (set of the axioms in the path) is a superset of some diagnosis,
then the new path is also a diagnosis and there is no need to be expanded more.
This is due to the simple fact that any superset of a satisfiable path is also a
satisfiable path.

2. If there is another not-expanded node with the same path, then the new path is a
duplication of the waiting path and expanding new path will be redundant.

Algorithm 1 exploits a procedure named GenerateRandomMUPS to detect a
random MUPS for an unsatisfiable concept in a given ontology. Generally, it employs
the expand-shrink strategy to get a random MUPS. The expand phase starts with an
empty set of axioms and then a random number of axioms are included to get a set of
axioms M ⊆ O s.t. M |= C v ⊥. Then, at the shrink phase, M will be reduced to
getM which complies with the minimality of MUPS in Definition 3. See Kalyanpur
(2006) for the details of GenerateRandomMUPS.

Figure 4 shows a merged ontology that consists of 3 axioms ({α1, α2, α3}) from
Odebug and 4 axioms ({α4, α5, α6, α7}) from Oprofile. Let’s assume that Odebug and
Oprofile have the same signature, so the alignment A is an empty set. In this ontol-
ogy, concept WaterwayTunnel is an unsatisfiable concept. The hit set tree built by
Algorithm 1 is shown in Figure 5.

Let’s assume that GenerateRandomMUPS detects randomly M1 as the root
node of the tree. The algorithm tries to expand the root node by making a branch
for each axiom in M1. The tree is expanded using breadth-first strategy. Thus,
the root node is expanded for α1 and the edge is labeled α1 (left branch). Since
there is no diagnosis at the start of the algorithm and there is no awaiting node in
the queue, the early termination condition is not satisfied. The algorithm tries to de-
tect an MUPS in O \ {α1}. GenerateRandomMUPS returns M2. So, the new

11

M1 = {α1, α3}

M3 = {α1, α2, α6, α7}

XXXM2 = {α2, α4, α5, α6, α7}

�����

α2 α4 α5 α6 α7

α1 α2 α6 α7

M2 = {α2, α4, α5, α6, α7}

XXXXM4 = {α3, α4, α5, α6, α7}

����X

α3 α4 α5 α6 α7

α2 α4 α5 α6 α7

α1 α3

Figure 5: Hit Set Tree built by Algorithm 1 to enumerate all MUPS of the Concept WaterwayTunnel.
Nodes of the tree represent MUPS sets. Paths marked by X are diagnosis and those marked by � are early
terminated ones due to some early termination condition.

node is marked as MUPS node and < M2, {α1} > is queued. In a similar way
< M3, {α3} > is enqueued. Expanding < M2, {α1} > results in the new node
< M4, {α1, α2} >. The other four nodes will be marked X as satisfiable paths.
The rest of tree is expanded in a similar way. The nodes with � label are early ter-
minated due to the first condition. For example, the path [α1 − α2 − α4] is early
terminated since it’s a superset of {α1, α4}. The set of MUPS nodes of the tree are
M(WaterwayTunnel) = {M1,M2,M3,M4}.

Running Algorithm 1 for the unsatisfiable concept Infrastructure will result in find-
ingM5 = {α2, α4, α5} and running it for RouteOfTransportation will result in finding
M6 = {α2, α4, α5, α6}.

3.3. Step 3: Root Error Pinpointing

Detecting MUPS sets in the previous step helps us to separate the free axioms from
the suspected ones. The axioms that are part of some MUPS are suspected axioms.
Some of these axioms are incorrect and are the root cause of incoherency in the ontol-
ogy. Therefore the goal of this step is to find incorrect axioms in the MUPS sets. The
set of these incorrect axioms is a diagnosis for the ontology. Before proceeding with
root error detection, we make two assumptions to reduce the complexity of debugging.

Assumption 2. All the axioms in the alignment A are correct.

In Assumption 1, we trust in the axioms in the profile ontology. Assumption 2 is
also about trusting in the axioms which align Odebug to Oprofile. If the alignment is
manually revised (i.e. incorrect correspondences in A are manually removed by some
human expert) or if it is a reference alignment, then Assumption 2 will be realistic.

According to Assumptions 1 and 2, all of the axioms inOprofile andA are correct.
Hence the axioms ofOprofile orA contained in the MUPS setM(O) are correct, only
the axioms contained in Odebug could be responsible for the bugs detected.

Now we can define the candidate error set as Definition 9. The candidate error set
E should be one of the diagnosis D(Om) such that all of it’s axioms belong toOdebug .

Definition 9 (Candidate Error Set). E ∈ D(Om) is an error set for Om iff E ⊆
Odebug.

12

Algorithm 2 Greedy Algorithm to Detect the Error Set
Require: M(Om), Cost(α)
Ensure: E is an Error Set at the end of algorithm

1: E ← ∅
2: unCoveredMUPS ← all MUPS ∈M(Om)
3: while unCoveredMUPS 6= ∅ do
4: axioms← {α|α ∈ mups : mups ∈ unCoveredMUPS}
5: sort axioms ASC using Cost(α)
6: i← 0
7: while i < length(axioms) && axioms[i] ∈ Oprofile ∪ A do
8: i← i+ 1
9: end while

10: if i! = length(axioms) then
11: αmin ← axioms[i]
12: else
13: αmin ← axioms[0]
14: end if
15: E ← E ∪ {αmin}
16: unCoveredMUPS ← {M|@α ∈M : α ∈ E}
17: end while

The candidate error sets E(Om) should be evaluated to select one of them as the
Error Set such that removing them from ontology will result in a minimal cost. So we
should be able to evaluate axioms of each candidate error set to select the one with the
least effect on the ontology.

Definition 10 (Error Set). E is a candidate error set iff it minimize the cost function
over it’s axioms.

E ∈ argmin
E

∑
α∈E

Cost(α)

Definition 10 defines detecting root causes of incoherency as an optimization prob-
lem. Since finding all the candidate error sets and choosing the error set with the
minimum cost is not a polynomial time algorithm, we use Algorithm 2 which exploits
a greedy approach to construct the error set. The complexity of the algorithm is O(n)

Algorithm 2 starts with an empty E and select the axiom αmin with the minimum
cost which is not contained in Oprofile ∪ A as an error and adds it to E . In TYPE 3
MUPS sets (which all of its axioms are contained inOprofile∪A), the algorithm cannot
find an axiom from Odebug to cover it (in lines 7-9), So it chooses the first axiom with
minimum cost as an error (line 13). It will continue to repeat this loop and adds more
such axioms until E turns into a hit set forM(Om) and could cover all the MUPSs in
M(Om). At this point, it will terminate and ensure that E is a hitting set forM(Om)
with the minimum cost.

Defining the Cost function has a major role in detecting the error set. This function
is used to rank the axioms when looking for the most guilty axiom in MUPS. In fact, it
defines to what extent an axiom is incorrect with respect to the others. When an axiom

13

has a lower cost value, it indicates that removing this axiom from ontology will not
result in much knowledge loss. So the cost function should return the lowest cost value
for the incorrect axioms. In the following subsections, we introduce three new cost
functions. Also, the cost function used in the SWOOP ontology debugging tool (Parsia
et al., 2005), is introduced to be used as the baseline in the evaluation of our new cost
functions.

3.3.1. Support Cost Function
Since the knowledge in profile (background context ontologies) are trusted, Support

cost function uses it as a reference knowledge in evaluating axioms. Definition 11 de-
fines Support value for an axiom as a sum of support value each ontology in the profile
provides with the axiom. If an axiom is entailed by an ontology in the knowledge-base
profile, it is supposed that the axiom has support from that ontology. But if the nega-
tion of the axiom is entailed by the ontology, then the ontology is against the axiom
and have a negative support for that axiom.

Definition 11 (Support Function). Support Function determines how much support for
an axiom exists in the background knowledge

Supp(α) =
∑

Oi∈PROFILE
SuppOi(α)

where,

SuppO(α) =

 K if O |= α
−K if O |= ¬α
0 otherwise

K is a large positive number (e.g. K = 1000).

Example 1. In the ontology Odebug as shown in the Figure 4, Oprofile |= α1. So
SuppOprofile

(α1) = K. In the same ontology, the negation of α3 is entailed from
Oprofile (Oprofile |= ¬α3), so the support value of profile ontology for α3 will be
−K. It means that cost of removing α3 is much lower than α1 according to Support
function. Hence, using Support function in Algorithm 2 will result in choosing α3 as
error axiom.

3.3.2. ShapleyMI Cost Function
Hunter & Konieczny (2010) used the idea of Shapley Value from the game theory

to compute some penalty value for the axioms which take part in some inconsistency
sets. Shapley Minimum Inconsistency Value (SMI) is defined as Definition 12.

Definition 12 (Shapley Minimum Inconsistency Value).

SMI(α) =
∑

M∈M(Om) s.t. α∈M

1

|M|

SMI assumes that each axiom ofM has equal role in bringingM into existence.
Hence, SMI assigns the penalty of α in MUPSM inversely proportional to the size of

14

M. In fact, 1
|M| is the role of each axiom in the existence of such conflict set. If the

axiom is in more than one MUPS, the total penalty will be sum of all such penalties.
ShapleyMI Cost Function (as defined by Definition 13) assumes that the proba-

bility of being an error axiom is directly proportional to the penalty value (SMI) an
axiom has. Since our algorithm assumes that error axioms have less cost, we defined
ShapleyMI function equal to the inverse of SMI .

Definition 13 (ShapleyMI Function).

ShapleyMI(α) =
1

SMI(α)

Example 2. α4 in the ontology shown in Figure 4, takes part in MUPS sets M2 =
{α2, α4, α5, α6, α7} andM4 = {α3, α4, α5, α6, α7}. So the axiom α4 will get penalty
value as SMI(α4) = 1

5 + 1
5 = 0.4 and ShapleyMI function computes the cost of

removing this axiom as 1
0.4 = 2.5.

Example 3. In the same ontology, α3 takes part inM4 andM1 = {α1, α3}. So the
penalty value of α3 will be SMI(α3) =

1
5 + 1

2 = 0.7. The ShapleyMI value of α3 is
1
0.7 ≈ 1.43 that is smaller than the ShapleyMI value of α4. It means that removing α3

has less cost than removing α4. In other words, since α3 has more penalty than α4,
our algorithm prefers to choose α3 as error axiom in compare to α4.

3.3.3. ShapleySupport Cost Function
Support cost function has a weakness that it gives the same cost value either for all

of the axioms that are supported by the profile or for all of the axioms that the negation
of them are supported (i.e. either +K or −K). So this function does not distinguish
between each of the supported axioms nor not supported axioms.

At the other side, ShapleyMI cost function evaluates axioms by considering the
frequency of appearance of axioms in MUPS sets as well as the size of such MUPS
sets. ShapleyMI considers the positioning of the axioms in the MUPS sets. So this
function seems to be a good choice to cover the weakness of the Support function
which exploits only the semantic of axioms.

We define ShapleySupport cost function as Definition 14. It combines the Shapley
Value into Support Value.

Definition 14 (ShapleySupport Function).

ShapleySupport(α) =

 Supp(α) ∗ ShapleyMI(α) if Supp(α) > 0
ShapleyMI(α) if Supp(α) = 0
Supp(α)/ShapleyMI(α) if Supp(α) < 0

Example 4. In the example ontology of Figure 4, the negation of α2 and α3 is sup-
ported by Oprofile. The cost value of Support function for these axioms is −K.
In this way, Support function could not distinguish between α2 and α3 and the de-
gree of being error is the same for both axioms. Computing ShapleySupport cost
value for these axioms results in ShapleySupport(α2) = −1000

0.97 = −2066.67 and
ShapleySupport(α3) = −1000

1.43 = −1400. In this way, ShapleySupport differentiate
between two unsupported axioms and assigns α2 less cost value than α3.

15

3.3.4. SWOOP Cost Function
Swoop ontology editing and debugging tool (Kalyanpur et al., 2006) is one of the

systems which perform well in debugging OWL ontologies (Stuckenschmidt, 2008).
So in this section, we introduce the method used in Swoop to rank the suspected ax-
ioms. The Swoop method used as a baseline for evaluating the methods proposed in
the previous subsections.

Kalyanpur (2006) used three factors to rank the suspected axioms as an error and
implemented them in the Swoop editor. These three factors are:

Frequency : Number of MUPS that the axiom participates in them.

Semantic Impact : Number of entailments that will be lost if the axiom is removed
from the ontology.

Usage : This factor is about in what extent the signature of the axioms is used in the
signature of the other axioms and is equal to the percent of axioms that include
the signature of the axiom.

Swoop calculates the weighted sum of these factors to obtain the value of each
axiom which is used as cost value. The definition of the Swoop cost function is as
Definition 15.

Definition 15 (Swoop Function).

swoop(α) = w0/Freq(α) + w1 ∗ Impact(α)/maxImpact + w2 ∗ Usage(α)

where maxImpact is the maximum impact among all suspected axioms that is used to
normalize the impact value between [0,1].

Example 5. Calculation of swoop(α2) is as:

• Freq(α2) = 4, as α2 is participating inM2,M3,M5 andM6.

• Impact(α2) = 1,

• Usage(α2) =
6
7 = 0.86

• maxImpact = 10 (semantic impact of α6 and α7 is 10)

Using 0.9, 0.7 and 0.1 respectively for w1, w2 and w3 results in Swoop(α2) = 0.9 ∗
4 + 0.7 ∗ 1/10 + 0.1 ∗ 0.86 = 3.76

3.4. Step 4: Repairing Axioms
Treating axioms detected as incorrect ones is the last step in debugging. The sim-

plest solution is to eliminate them from the ontology. Since the error set (E) is a hitting
set for the set of MUPS (M(Om)), removing them will result in an ontology which
has no unsatisfiable concepts. Thus, the ontology will be coherent. The alternative
option is to repair axioms automatically or manually using a human ontology expert.
Since this paper is about detecting errors, not repairing axioms, we leave it to the user
to decide what kind of repair is appropriate for each incorrect axiom.

16

4. Evaluations

We implemented our proposed method as a configurable Java tool. OntoDebugger2,
the implemented tool, uses OWL API3 v4.x library for managing ontologies. It can
use any standard reasoner that supports OWL API (e.g. Pellet, Hermit, . . .) to check
satisfiability of concepts. As described before, the standard reasoner is used as a black
box for checking satisfiability of concepts. However, all the debugging functions are
implemented inside OntoDebugger. Hermit4 is used as the standard ontology reasoner
in our experiments.

To evaluate the effect of the proposed method on detecting hidden errors in ontolo-
gies, we did our experiments on two different ontology sets. In the following subsec-
tions, we describe our test cases. In each case, we analyze the effect of adding back-
ground knowledge in detecting hidden errors in terms of the number of unsatisfiable
concepts and the number of TYPE2 MUPS sets.

4.1. Case 1: Debugging Automatically Learned Disjointness Ontology
The ontology used in this experiment is learned automatically by analyzing statisti-

cal schema induction on DBpedia instances (see Fleischhacker et al. (2012); Völker &
Niepert (2011)) and generated by GoldMiner (Fleischhacker & Völker, 2011) tool. The
learned axioms mostly include Disjointness axioms between concepts of DBpedia on-
tology and have ALCH expressiveness. Völker et al. (2015) published a high-quality
gold standard for class disjointness of DBpedia concepts.

Fleischhacker et al. (2013) used this ontology to construct a dataset of 11 ontologies
namedO0, O1, · · · , O10. Constructing the dataset started with randomly choosing 20%
of the axioms in the ontology as O0 and gradually adding some random axioms to the
previous ontology to get a new ontology. Hence, ontologies with larger indices contain
ontologies with lower indices (i.e. Oi ⊆ Oi+1). These ontologies contain only T-Box
axioms. The summary of the dataset is given in Table 1. Based on the gold standard,
approximately 1% of axioms of each ontology are erroneous axioms.

The dataset constructed by Fleischhacker et al. (2013) allows us to answer the ques-
tions like “Is there any relation between the size of the knowledge base and the number
of hidden errors in the ontology?” or “Is finding errors in small ontologies easier than
large ontologies?”. Also, we can analyze the performance of the debugging methods
while debugging ontologies with larger axiom sets.

Since the dataset contains ontologies that enrich the ontology of DBpedia, we
used DBpedia itself as the profile ontology to evaluate the correctness of the newly
learned axioms. We used DBpedia ontology 2015-04 which has 26697 axioms with
ALCHF(D) expressiveness. Some of the axioms in DBpedia ontology are also in our
dataset ontologies (i.e. DBpedia ∩ Oi 6= ∅). Since the dataset enriched the DBpedia
ontology, it has the same signature as DBpedia ontology. Therefore, there is no need to
use alignment between them. Hence, the alignment A in this experiment is the empty
set (∅).

2OntoDebugger will be published publicly soon.
3https://github.com/owlcs/owlapi
4http://www.hermit-reasoner.com/

17

https://github.com/owlcs/owlapi
http://www.hermit-reasoner.com/

Table 1: Summary of information about ontologies in the dataset learned from DBpedia
Ont. # Axioms # Classes # Prop. # Error Axioms

O0 23,702 301 667 225
O1 32,821 305 684 306
O2 41,942 314 700 398
O3 51,030 314 716 481
O4 60,122 317 726 570
O5 69,224 321 730 654
O6 78,335 323 733 731
O7 87,426 324 738 820
O8 96,521 324 740 901
O9 105,628 324 741 988
O10 114,731 324 742 1,084

Table 2: Results of MUPS detection at step 2 are summarized. The number of the detected MUPS is catego-
rized into three types introduced in Section 3.2.

Ontology # TYPE1 # TYPE2 # TYPE3

O0m 6 244 3
O1m 13 347 3
O2m 21 585 3
O3m 32 705 3
O4m 46 755 3
O5m 73 998 3
O6m 87 1084 3
O7m 153 1328 3
O8m 242 1465 3
O9m 532 2102 3
O10m 305 1695 3

As proposed in Section 3, we start the debugging with the merging step where we
obtained a merged ontology by getting the union of axioms in DBpedia ontology and
Oi, i = 0, 1, . . . , 10. So we can obtain Oim as:

Oim = DBpedia ∪Oi (5)

For the evaluation of our proposed idea, we start by looking at the number of
MUPSs found in the debugging process. Table 2 shows how many MUPS are de-
tected in Oim. Also, the categorization of MUPSs according to the types introduced in
Section 3.2 (i.e. TYPE1, TYPE2, TYPE3) is shown. The second column (# TYPE1)
shows how many MUPS are in the original ontology. As it can be seen in the third
column (# TYPE2), lots of MUPSs are detected after adding the profile ontology in
the debugging process. Since there are some incoherences in the DBpedia ontology
2015-04, 3 MUPS of TYPE3 are detected in the debugging process (the last column).

Table 3 shows how effective is the addition of DBpedia ontology as a profile on-
tology in the debugging process. The third column shows the number of error axioms
that are part of some MUPSs when debugging only Oi, and the fourth column shows

18

Table 3: Hidden Errors Found in Debugging the Dataset using DBpedia as the Profile Ontology.

Ontology # Total Errors
Errors

Participated in
M(Oi)

Errors Participated
in M(Oim)

Discovered
Hidden Errors

O0 225 3 20 17
O1 306 6 25 19
O2 398 10 31 21
O3 481 17 40 23
O4 570 26 47 21
O5 654 35 56 21
O6 731 41 64 23
O7 820 52 74 22
O8 901 66 82 16
O9 988 83 92 9
O10 1084 102 102 0

the number of errors that could be found when the profile ontology is added to the
debugged ontology. The difference between these two columns (fifth column) shows
how many hidden errors could be found when debugging ontology Oi with the profile
ontology.

Although the number of error axioms inM(Oim) is greater thanM(Oi) (except
for i = 10), the number of hidden errors found by our proposed method is decreasing
as the size of the debugged ontology (Oi) is growing.

The main point here is that the ontology with fewer axioms has less knowledge
to contradict with error axioms than the one with larger axioms count. For example,
if there is an error axiom in the ontology with 10 axioms and another error axiom in
another ontology with 1000 axioms, the probability of finding a contradiction in the
ontology with 10 axioms is less than finding a contradiction in the ontology with 1000
axioms. In other words, errors could not be easily found in smaller ontologies.

In the case of O10, contrary the other ontologies, adding DBpedia has no effect on
finding hidden errors. As can be seen in the last row of Table 2, 1695 new (TYPE2)
MUPSs are found in O10m. But 0 discovered hidden errors in these 1695 MUPS
shows that all TYPE2 MUPS are built using the same axioms which are participated in
M(Oi).

4.2. Case 2: Debugging Ontologies in Web of Data

The ontologies debugged in this experiment are gathered from the web of data.
Mostly, they are published in Linked Open Vocabularies (LOV5). About 495 ontologies
were downloaded from LOV in Sep. 2015. Also, 238 other ontologies were searched
using Google’s search engine and added to LOV ontologies to make our dataset richer.
A total of 733 ontologies are gathered.

5https://lov.okfn.org/dataset/lov/

19

https://lov.okfn.org/dataset/lov/

Table 4: Summary of the Dataset used in the second debugging experiment.
Number of ontologies downloaded from LOV 495
Number of other ontologies downloaded from web 238
Number of ontologies skipped due to errors in loading/matching 126
Number of ontologies actually debugged 607
Number of incoherent ontologies in the dataset 16
Number of incoherent ontologies after merging with profile ontology 37

Number of discovered ontologies with hidden errors 21

We used DBpedia ontology 2015-04, which we have used in the previous experi-
ment, as a profile ontology. For aligning the profile ontology and the debugged ontolo-
gies, we used AgreementMakerLight6 (AML) ontology matcher. AML is one of the
best ontology matchers according to the result of the competitions held by Ontology
Alignment Evaluation Initiative7 (OAEI). AML is an open source project which en-
abled us to easily integrate it with our implemented system. The alignments generated
by AML were used after applying 0.8 as alignment acceptance threshold.

In the merging step, generating alignments for 21 ontologies were interrupted due
to a 24-hour timeout. Also, loading ontologies in OWLAPI v4 or in Hermit reasoner
encountered runtime exceptions for 105 other ontologies. Hence, these 126 ontologies
are excluded from our initial dataset. Therefore, the number of debugged ontologies is
reduced to 607.

The summary of the dataset and the result of adding DBpedia as a profile ontol-
ogy in the debugging process are shown in Table 4. In our dataset, 21 ontologies are
coherent, but after merging them with DBpedia, they become incoherent.

Table 5 shows the list of discovered erroneous ontologies. For each discovered
ontology, the number of incoherent entities (concepts or object properties) is reported
in the second column. The number of MUPS found in the ontologies is shown in the
third column. The number of all suspected axioms in merged ontologies is shown in the
fourth column, while the number of these suspected axioms that belong to the original
ontologies is shown in the last column.

In fact, the last column shows the number of axioms that are “Free Axioms” in the
original ontology, but our proposed method marks these axioms as “Suspected Axiom”
after merging the original ontology with DBpedia.

4.3. Evaluation of Root Error Pinpointing

We’ve introduced four cost functions in Section 3.3 to evaluate suspected axioms
and detect error axioms among them. In this section we compare the cost functions
according to the precision, recall and f-measure of the error sets. Equations (6), (7) and

6https://github.com/AgreementMakerLight
7http://oaei.ontologymatching.org/

20

https://github.com/AgreementMakerLight
http://oaei.ontologymatching.org/

Table 5: Coherent Ontologies in the Dataset Which Become Incoherent After Merging With DBpedia.

Ontology
Incoherent

Entities
MUPS

Suspected
Axioms

Discovered Hidden
Suspected Axioms

aiiso 2008-09-25 6 12 17 1
EDAM 36 259 94 70
ExtendedDnS 9 45 20 9
frapo 2014-01-31 6 12 17 1
frbr 2009-05-16 45 1276 169 18
ipo 2015-07-30 2 22 28 6
ka 6 13 22 3
km4c 2015-07-28 56 230 79 24
ma-ont 2013-03-20 24 103 108 10
omnfed 2015-04-04 76 174 94 4
ov 2011-11-25 2 2 14 2
schema 2015-08-06 154 235 196 142
sio 2015-04-21 29 32 40 9
sio 29 32 40 9
swc 2009-05-11 2 4 16 2
swrc 2007-06-22 6 13 22 3
tp 2015-06-08 1 1 6 1
umbel 2014-08-28 2 2 5 3
univ-bench 9 25 38 7
vag 2013-11-28 1 2 10 3
vivo-core-public-1.5 21 104 55 11

21

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
0.40

0.50

0.60

0.70

0.80

0.90

1.00

Swoop ShapleyMI Support ShapleySupport

Ontology

P
re
ci
si
o
n

Figure 6: Comparison of Precision of the Cost Functions Introduced in Section 3.3

(8) define these measures.

precision =
tp

|E|
(6)

recall =
tp

truly errors inM(Om)
(7)

f −measure = 2 ∗ precision ∗ recall
precision+ recall

(8)

where tp is the number of real errors in the error set (E).
The configurations of our experiments use 1000 as the value of the parameter K in

the support-based functions. We used 0.9, 0.7 and 0.1 respectively for w1, w2 and w3

of the Swoop method as used in the Swoop editor.
Figure 6 shows the precision of the cost functions used to detect error axioms in

the ontology set learned from DBpedia (see Section 4.1). In all cases, the accuracy of
the profile based functions (Support and ShapleySupport) is significantly better than
Swoop function. Although ShapleyMI function is not significantly better than Swoop
function, combining it with Support function (i.e. in ShapleySupport function) im-
proves the accuracy of Support function.

As shown in Figure 7, the recall value of the cost functions are slightly equal and
they could find an equal number of errors among suspected axiom sets. However,
comparison of the f-measure values (as shown in Figure 8) shows the superiority of the
support based methods.

According to the results of the experiments, evaluating the correctness of the ax-
ioms with respect to some trusted knowledge base (the profile ontology) significantly
outperforms current methods which are mostly based on the frequency of participation
of the axioms in the MUPS sets.

Comparing the run time of the cost functions (Figure 9) shows that ShapleyMI has
the lowest runtime and Swoop function needs lots of time to compute axioms costs.
Profile-based functions have much lower run time than Swoop method. Although Sup-
port and ShapleySupport need more time than ShapleyMI, the accuracy of these meth-

22

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
0.40

0.50

0.60

0.70

0.80

0.90

1.00

Swoop ShapleyMI Support ShapleySupport

Ontology

R
e
ca

ll

Figure 7: Comparison of Recall of the Cost Functions Introduced in Section 3.3

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
0.40

0.50

0.60

0.70

0.80

0.90

1.00

Swoop ShapleyMI Support ShapleySupport

Ontology

F
-M

e
a
su

re

Figure 8: Comparison of F-Measure of the Cost Functions Introduced in Section 3.3

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
1

10

100

1000

10000

100000

1000000

10000000

Swoop ShapleyMI Support ShapleySupport

Ontology

Ti
m

e
 (

m
s)

Figure 9: Run Time Comparison of the Cost Functions Introduced in Section 3.3

23

Table 6: Comparison of Three Error Pinpointing Functions in Detecting Errors in LOV Dataset.
Measure/Function Swoop ShapleyMI ShapleySupport

True Positive 4 2 5
False Positive 21 24 29
Precision 0.16 0.08 0.15
Recall 0.09 0.05 0.12
F-Measure 0.12 0.06 0.13
Average Time 38 hours 125 milliseconds 2 minutes

ods justify preferring them to the ShapleyMI function.
Since we don’t have ground truth for erroneous axioms of the ontologies in LOV

dataset, we asked three ontology experts to evaluate axioms in MUPS sets discov-
ered during Case 2 experiments (see Section 4.2). We used voting to accumulate the
ontology experts evaluations. Then we compared the results of running root error pin-
pointing algorithms to the error set determined by ontology experts.

The set of suspected axioms for all of the 21 ontologies with hidden errors (see
Table 5) has 789 unique axioms. Ontology experts marked 43 axioms as error axioms.
The summary of evaluation results for the second dataset is shown in Table 6. From
the previous experiments, it’s obvious that Support and ShapleySupport functions have
similar functionality. Since the results of ShapleySupport functions performed slightly
better than the Support function, in this experiment we have omitted to evaluate Support
function.

From Table 6, we can see that ShapleySupport has detected one more error axiom
than the other methods. Swoop function detected less false error axioms but recall and
f-measure of the ShapleySupport function are slightly better than the other methods.
While the result of ShapleySupport does not outperform Swoop method, but having a
reasonable run-time make it a better choice for detecting the root cause of errors in the
ontologies.

5. Related Works

In this section, we discuss how our work is related to the other works in the field
of ontology debugging. In this work, we used external knowledge to find logical errors
in the terminology (T-Box) of the ontologies. In a similar way, Paulheim & Gangemi
(2015) used DOLCE ontology as the background knowledge to find inconsistencies in
the assertional axioms (A-Box) of DBpedia dataset. In Paulheim & Gangemi (2015)
the axioms of DOLCE ontology are considered alongside DBpedia axioms. Using
reasoners, they could find inconsistencies in the auto-generated axioms of DBpedia.

Our work is inspired by the doctoral thesis of Meilicke (2011), entitled “Align-
ment Incoherence in Ontology Matching”. Meilicke targeted the debugging of ontol-
ogy alignments in the field of ontology matching. He used two aligned ontologies as
background knowledge to debug the generated alignment. If the generated alignment
is considered as the ontology being debugged, the union of the two matched ontologies
constructs the profile ontology to check incoherences in the generated alignment. We

24

generalized his methodology to offer a solution to debugging ontologies using other
ontologies as the background knowledge.

In the literature, ontology debugging methods are categorized into two major ap-
proaches: Black-Box and White-Box methods. This categorization is based on how
such methods use logical reasoning methods. Black-Box methods use standard rea-
soners as the oracle to ask questions regarding the coherency or consistency of ontolo-
gies. Our proposed method follows the black-box paradigm as well as other works like
Schlobach et al. (2007); Kalyanpur et al. (2007); Horridge (2011); Baader & Suntisri-
varaporn (2008); Suntisrivaraporn (2009); Ji et al. (2009).

White-box methods use special reasoning services which are designed specifically
for ontology debugging. Extending tableau algorithms for checking coherency or con-
sistency of ontologies is the basic technique used in the white-box methods. There
are lots of white-box methods including Schlobach et al. (2007); Parsia et al. (2005);
Kalyanpur et al. (2007); Baader & Peñaloza (2010). This categorization is not so rigid.
Some methods including Schlobach et al. (2007); Kalyanpur et al. (2007) use both
approaches in their methodologies.

There is another paradigm in the ontology debugging field, which relies on pat-
terns in detecting ontology errors. These methods including Jarrar & Heymans (2008);
Ji et al. (2012), provide some explanation for incoherent concepts that match some
patterns in their pattern list. Although pattern-based methods are not considered as
complete methods, they are more efficient compared to the other methods.

6. Conclusion

Previous works on ontology debugging find errors in the ontology by detecting log-
ical contradictions (e.g. incoherences and inconsistencies). The assumption is that the
erroneous axioms take part in some logical contradictions, and finding the contradic-
tions could reduce the number of suspected axioms in finding the erroneous axioms.
However, some error axioms might not contradict with other axioms in the ontology.
Hence, detecting logical contradictions inside the ontology could not help finding those
axioms. We call these hidden errors since there is no evidence for error regarding these
axioms. We have proposed the idea of adding contextual background knowledge to
the ontology in the ontology debugging process. Adding background knowledge might
reveal some contradictions between hidden errors and the knowledge in the added on-
tology. Thus, hidden errors could be detected. Our results show that adding general
background knowledge like DBpedia could result in discovering many hidden error ax-
ioms in the terminologies of the ontologies (T-Box). Many ontologies from LOV have
been investigated and shown that logically coherent ontologies became incoherent af-
ter adding DBpedia as the background knowledge in the proposed ontology debugging
process.

To the best knowledge of the authors, this is the first work that has suggested using
background knowledge in the ontology debugging process, and we’ve shown that this
could result in a remarkable increase in the number of discovered errors. The idea of
this work is more useful when the ontology has a small number of axioms. In such
ontologies, there might not be enough knowledge to contradict the error axioms, so
error axioms could easily be hidden. Our results provide compelling evidence that the

25

search for errors in the ontology should not be limited to the logical contradictions
inside the ontology. Checking the correctness of the knowledge in the ontology against
other ontologies which model the same domain is necessary in order to detect hidden
errors.

Selecting the appropriate background knowledge and matching it with the ontol-
ogy is one of the challenges within the proposed process. The background knowledge
should model the same domain as the ontology does. Although a match between back-
ground knowledge and the ontology could be generated using the state-of-art ontology
matching methods, the correctness of the matching should be guaranteed.

Our proposed approach does not guarantee to find every hidden errors. It’s a fact
that no complete background knowledge exists in any domain. So, technically it could
be some hidden errors that remain hidden even after adding some background knowl-
edge.

Also in this work, we introduced three functions to evaluate MUPS axiom sets to
pinpoint root causes of the contradictions in the ontologies. Suggested ShapleySupport
function outperforms traditional methods like Swoop.

26

References

Arif, M. F., Mencı́a, C., Ignatiev, A., Manthey, N., Peñaloza, R., & Marques-Silva, J.
(2016). BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies.
In Theory and Applications of Satisfiability Testing – SAT 2016: 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings (pp. 521–530). Cham:
Springer International Publishing. doi:10.1007/978-3-319-40970-2_32.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F.
(2010). The Description Logic Handbook: Theory, Implementation and Applica-
tions. (2nd ed.). New York, NY, USA: Cambridge University Press.

Baader, F., & Peñaloza, R. (2010). Axiom Pinpointing in General Tableaux. Journal
of Logic and Computation, 20, 5. doi:10.1093/logcom/exn058.

Baader, F., & Suntisrivaraporn, B. (2008). Debugging SNOMED CT Using Axiom
Pinpointing in the Description Logic EL+. In Proceedings of the Third International
Conference on Knowledge Representation in Medicine, Phoenix, Arizona, USA, May
31st - June 2nd, 2008. CEUR-WS.org volume 410 of CEUR Workshop Proceedings.
URL: http://ceur-ws.org/Vol-410/Paper01.pdf.

Bell, D., Qi, G., & Liu, W. (2007). Approaches to Inconsistency Handling in
Description-Logic Based Ontologies. In On the Move to Meaningful Internet
Systems 2007: OTM 2007 Workshops (pp. 1303–1311). Springer Berlin Hei-
delberg volume 4806 of Lecture Notes in Computer Science. doi:10.1007/
978-3-540-76890-6_58.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - the story so far.
International Journal on Semantic Web and Information Systems, 5, 1–22. URL:
http://eprints.soton.ac.uk/271285/.

Corcho, Ó., Roussey, C., Blázquez, L. M. V., & Pérez, I. (2009). Pattern-based OWL
Ontology Debugging Guidelines. In WOP. CEUR-WS.org volume 516 of CEUR
Workshop Proceedings.

Fleischhacker, D., Meilicke, C., Johanna, V., Niepert, M., & Völker, J. (2013). Comput-
ing Incoherence Explanations for Learned Ontologies. In RR (pp. 80–94). Springer
volume 7994 of Lecture Notes in Computer Science.

Fleischhacker, D., & Völker, J. (2011). Inductive Learning of Disjointness Ax-
ioms. In On the Move to Meaningful Internet Systems: OTM 2011 - Confed-
erated International Conferences: CoopIS, DOA-SVI, and ODBASE 2011, Her-
sonissos, Crete, Greece, October 17-21, 2011, Proceedings, Part II (pp. 680–697).
Springer volume 7045 of Lecture Notes in Computer Science. doi:10.1007/
978-3-642-25106-1_20.

Fleischhacker, D., Völker, J., & Stuckenschmidt, H. (2012). Mining RDF Data for
Property Axioms. In On the Move to Meaningful Internet Systems: OTM 2012,
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012,

27

http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1093/logcom/exn058
http://ceur-ws.org/Vol-410/Paper01.pdf
http://dx.doi.org/10.1007/978-3-540-76890-6_58
http://dx.doi.org/10.1007/978-3-540-76890-6_58
http://eprints.soton.ac.uk/271285/
http://dx.doi.org/10.1007/978-3-642-25106-1_20
http://dx.doi.org/10.1007/978-3-642-25106-1_20

Rome, Italy, September 10-14, 2012. Proceedings, Part II (pp. 718–735). Springer.
doi:10.1007/978-3-642-33615-7_18.

Friedrich, G. (2014). Interactive Debugging of Knowledge Bases. In International
Workshop on Principles of Diagnosis (DX’14) (pp. 1–4).

Gelernter, J., & Jha, J. (2016). Challenges in Ontology Evaluation. Journal of Data
and Information Quality, 7, 1–4. doi:10.1145/2935751.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5, 199–220. doi:http://dx.doi.org/10.1006/
knac.1993.1008.

Horridge, M. (2011). Justification based explanation in ontologies. Disserta-
tion University of Manchester. URL: http://www.bcs.org/upload/pdf/
dd-matthew-horridge.pdf.

Hunter, A., & Konieczny, S. (2010). On the measure of conflicts: Shapley Inconsis-
tency Values. Artificial Intelligence, 174, 1007–1026. doi:10.1016/j.artint.
2010.06.001.

Jannach, D., Schmitz, T., & Shchekotykhin, K. (2016). Parallel Model-Based Diag-
nosis on Multi-Core Computers. Journal of Artificial Intelligence Research, 55,
835–887.

Jarrar, M., & Heymans, S. (2008). Towards Pattern-Based Reasoning for Friendly On-
tology Debugging. International Journal on Artificial Intelligence Tools, 17, 607–
634.

Ji, Q., Gao, Z., Huang, Z., & Zhu, M. (2012). An Efficient Approach to Debugging
Ontologies Based on Patterns. In The Semantic Web SE - 33 (pp. 425–433). Springer
Berlin Heidelberg volume 7185 of Lecture Notes in Computer Science. doi:10.
1007/978-3-642-29923-0_33.

Ji, Q., Qi, G., & Haase, P. (2009). A Relevance-Directed Algorithm for Finding Justifi-
cations of DL Entailments. In The Semantic Web: Fourth Asian Conference, ASWC
2009, Shanghai, China, December 6-9, 2009. Proceedings (pp. 306–320). Springer
Berlin Heidelberg. doi:10.1007/978-3-642-10871-6_21.

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding All Justifications
of OWL DL Entailments. In ISWC/ASWC (pp. 267–280). Springer volume 4825 of
Lecture Notes in Computer Science.

Kalyanpur, A., Parsia, B., Sirin, E., Grau, B. C., & Hendler, J. A. (2006). Swoop: A
Web Ontology Editing Browser. Journal of Web Semantics., 4, 144–153.

Kalyanpur, A., Parsia, B., Sirin, E., & Hendler, J. A. (2005). Debugging unsatisfiable
classes in OWL ontologies. J. Web Sem., 3, 268–293.

28

http://dx.doi.org/10.1007/978-3-642-33615-7_18
http://dx.doi.org/10.1145/2935751
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://www.bcs.org/upload/pdf/dd-matthew-horridge.pdf
http://www.bcs.org/upload/pdf/dd-matthew-horridge.pdf
http://dx.doi.org/10.1016/j.artint.2010.06.001
http://dx.doi.org/10.1016/j.artint.2010.06.001
http://dx.doi.org/10.1007/978-3-642-29923-0_33
http://dx.doi.org/10.1007/978-3-642-29923-0_33
http://dx.doi.org/10.1007/978-3-642-10871-6_21

Kalyanpur, A. A. (2006). Debugging and repair of owl ontologies. Dissertation Uni-
versity of Maryland. URL: http://drum.lib.umd.edu/handle/1903/
3820.

Lehmann, J., & Bühmann, L. (2010). ORE - A Tool for Repairing and Enriching
Knowledge Bases. In International Semantic Web Conference (2) (pp. 177–193).
Springer volume 6497 of Lecture Notes in Computer Science.

Meilicke, C. (2011). Alignment Incoherence in Ontology Matching. Dissertation Uni-
versity of Mannheim, Germany.

Meilicke, C., & Stuckenschmidt, H. (2008). Incoherence as a Basis for Measuring
the Quality of Ontology Mappings. In OM. CEUR-WS.org volume 431 of CEUR
Workshop Proceedings.

Moodley, K. (2010). Debugging and repair of description logic ontologies. Disser-
tation University of KwaZulu-Natal, Westville. URL: http://hdl.handle.
net/10413/9762.

Neuhaus, F., Ray, S., & Sriram, R. D. (2014). Toward ontology evaluation across the
life cycle. Appl. Ontology, 8, 179–194. doi:10.6028/NIST.IR.8008.

Obrst, L., Ceusters, W., Mani, I., Ray, S., & Smith, B. (2007). The Evaluation
of Ontologies. In Semantic Web (pp. 139–158). Springer US. doi:10.1007/
978-0-387-48438-9_8.

Papacchini, F., & Schmidt, R. A. (2015). Debugging of ALC-Ontologies via Mini-
mal Model Generation. In Automated Reasoning Workshop 2015 Bridging the Gap
between Theory and Practice ARW 2015 (pp. 5–6).

Parsia, B., Sirin, E., & Kalyanpur, A. (2005). Debugging OWL ontologies. In WWW
(pp. 633–640). ACM. URL: http://dl.acm.org/citation.cfm?id=
1060837.

Paulheim, H., & Gangemi, A. (2015). Serving DBpedia with DOLCE More than Just
Adding a Cherry on Top. In The Semantic Web - ISWC 2015 SE - 11 (pp. 180–
196). Springer International Publishing volume 9366 of Lecture Notes in Computer
Science. doi:10.1007/978-3-319-25007-6_11.

Reiter, R. (1987). A Theory of Diagnosis from First Principles. Artif. Intell., 32, 57–95.

Rodler, P., Shchekotykhin, K., Fleiss, P., & Friedrich, G. (2013). RIO: Minimizing
User Interaction in Ontology Debugging. In Web Reasoning and Rule Systems: 7th
International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Pro-
ceedings (pp. 153–167). Springer Berlin Heidelberg volume 7994 of Lecture Notes
in Computer Science. doi:10.1007/978-3-642-39666-3_12.

Roussey, C., & Zamazal, O. (2013). Antipattern detection: how to debug an ontology
without a reasoner. In WoDOOM (pp. 45–56). CEUR-WS.org volume 999 of CEUR
Workshop Proceedings.

29

http://drum.lib.umd.edu/handle/1903/3820
http://drum.lib.umd.edu/handle/1903/3820
http://hdl.handle.net/10413/9762
http://hdl.handle.net/10413/9762
http://dx.doi.org/10.6028/NIST.IR.8008
http://dx.doi.org/10.1007/978-0-387-48438-9_8
http://dx.doi.org/10.1007/978-0-387-48438-9_8
http://dl.acm.org/citation.cfm?id=1060837
http://dl.acm.org/citation.cfm?id=1060837
http://dx.doi.org/10.1007/978-3-319-25007-6_11
http://dx.doi.org/10.1007/978-3-642-39666-3_12

Schlobach, S., Huang, Z., Cornet, R., & van Harmelen, F. (2007). Debugging Incoher-
ent Terminologies. J. Automated Reasoning, 39, 317–349.

Shchekotykhin, K. M., Rodler, P., Fleiss, P., & Friedrich, G. (2012). On Direct Debug-
ging of Aligned Ontologies. In International Semantic Web Conference (Posters &
Demos). CEUR-WS.org volume 914 of CEUR Workshop Proceedings.

Stuckenschmidt, H. (2008). Debugging OWL Ontologies - A Reality Check. In EON.
CEUR-WS.org volume 359 of CEUR Workshop Proceedings.

Stuckenschmidt, H. (2013). Debugging weighted ontologies. In WoDOOM (pp. 1–8).
CEUR-WS.org volume 999 of CEUR Workshop Proceedings.

Suntisrivaraporn, B. (2009). Polynomial-time reasoning support for design and main-
tenance of large-scale biomedical ontologies. Ph.D. thesis Technischen Universita”t
Dresden.

Völker, J., Fleischhacker, D., & Stuckenschmidt, H. (2015). Automatic acquisition of
class disjointness. Web Semantics: Science, Services and Agents on the World Wide
Web, 35, Part 2, 124–139. doi:10.1016/j.websem.2015.07.001.

Völker, J., & Niepert, M. (2011). Statistical Schema Induction. In The Semantic
Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC
2011, Heraklion, Crete, Greece, May 29-June 2, 2011, Proceedings, Part I (pp. 124–
138). Springer volume 6643 of Lecture Notes in Computer Science. doi:10.1007/
978-3-642-21034-1_9.

Vrandečić, D. (2009). Ontology Evaluation. In Handbook on Ontologies (pp.
293–313). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/
978-3-540-92673-3_13.

Wang, P., & Xu, B. (2008). Debugging Ontology Mappings: A Static Approach. Com-
puting and Informatics, 27, 21–36. URL: http://www.cai.sk/ojs/index.
php/cai/article/view/271/220.

30

http://dx.doi.org/10.1016/j.websem.2015.07.001
http://dx.doi.org/10.1007/978-3-642-21034-1_9
http://dx.doi.org/10.1007/978-3-642-21034-1_9
http://dx.doi.org/10.1007/978-3-540-92673-3_13
http://dx.doi.org/10.1007/978-3-540-92673-3_13
http://www.cai.sk/ojs/index.php/cai/article/view/271/220
http://www.cai.sk/ojs/index.php/cai/article/view/271/220

	Introduction
	Preliminaries of Ontology Debugging
	Detecting Hidden Errors
	Step 1: Merging
	Step 2: Detecting MUPS
	Step 3: Root Error Pinpointing
	Support Cost Function
	ShapleyMI Cost Function
	ShapleySupport Cost Function
	SWOOP Cost Function

	Step 4: Repairing Axioms

	Evaluations
	Case 1: Debugging Automatically Learned Disjointness Ontology
	Case 2: Debugging Ontologies in Web of Data
	Evaluation of Root Error Pinpointing

	Related Works
	Conclusion

