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Abstract. We study rankings over labelings as a generalization of tra-

ditional labeling-based semantics in abstract argumentation. Our ap-
proach is an alternative to recent developments on rankings over argu-

ments. The formal basis is a qualitative abstraction of probability theory

called ranking theory. As a guiding principle in determining rankings
over labelings, we interpret argumentation frameworks similarly to rank-

ing networks (the ranking-theoretic equivalent of Bayesian networks).

1. Introduction

Motivated by the fact that the usual distinction between acceptance and rejection
of arguments is too coarse grained for many applications, various approaches
to ranking-based semantics have been developed in recent years (see [12] for a
survey and [10,1,2,7] for some concrete approaches). The solution proposed in
these approaches is to rank arguments from most acceptable to least acceptable.

In this paper we investigate an alternative approach. Instead of ranking ar-
guments, we rank labelings. As a formal basis we rely on ranking theory [20], a
qualitative abstraction of probability based on ranking functions. These are func-
tions that associate possible worlds with non-negative integers or ∞. These val-
ues, called ranks, represent degrees of surprise: 0 for not surprising, 1 for surpris-
ing, 2 very surprising, and so on. Like conditional probabilities, ranks give rise to
conditional ranks, which can be used to model dynamics of belief.

We consider the notion of a ranking-theoretic semantics, which associates
each argumentation framework with a ranking function over labelings. As a guid-
ing principle in determining such rankings, we interpret argumentation frame-
works similarly to ranking networks. These are the ranking-theoretic equivalent
of Bayesian networks, i.e. directed acyclic graphs in which nodes and edges rep-
resent variables and dependencies. While straightforward in the acyclic case, the
presence of cycles in argumentation frameworks complicates matters. For this case
we introduce the notion of SCC stratification, which is closely related to the SCC
decomposability property studied in argumentation [3,5].

Although our approach is based on rankings over labelings, a ranking over
labelings can be translated into a ranking over arguments by considering marginal
or absolute ranks of arguments. To explore this connection we recall a number of
properties that have been proposed in the literature on rankings over arguments,
and we check whether they are satisfied by our approach.

Overview of this paper: After presenting preliminaries in Section 2 we turn
in Section 3 to the idea of interpreting argumentation frameworks like ranking
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networks, leading to the definition of SCC stratification. We then present in Sec-
tion 4 a general scheme to define a ranking-theoretic semantics on the basis of a
labeling-based semantics. In Section 5 we determine the conditions under which
this scheme satisfies SCC stratification. In Section 6 we make a comparison with
rankings over arguments. We discuss related work in Section 7 and conclude in
Section 8.

2. Preliminaries

In this section we present the necessary basics of abstract argumentation and
ranking theory. We start with a some graph-theoretical notions that we use.

Definition 1. A directed graph is an ordered pair G = (V,→) where V is a set of
vertices and →⊆ V × V a set of edges. We write x→ y whenever (x, y) ∈→.

Definition 2. Let G = (V,→) be a directed graph, let x ∈ V and B ⊆ V .

• x is a parent of y iff x→ y. We denote by PaG(x) the set of parents of x.

• x is a source vertex iff it has no parent. B is a source set iff all its members
are source vertices.

• x is a descendant of y iff x = y or there is a directed path from y to x.

• x is a descendant of B iff x is a descendant of some y ∈ B. The descendants
of B are denoted by DG(B). We also write DG(x) instead of DG({x}).

• x is non-descendant of B iff x is not a descendant of B. The non-descendants
of B are denoted by NDG(B). We also write NDG(x) instead of NDG({x}).

• x is an outparent of B iff x is a parent of some y ∈ B and x 6∈ B. The set
of outparents of B is denoted by OPG(B).

• The context of B is the set B ∪OPG(B) and is denoted by CG(B).

• The restriction of G to B is a new directed graph (B,→ ∩B ×B) and is
denoted by G↓B.

• The set of SCCs (strongly connected components) of G, denoted SCC(G),
contains all equivalence classes induced by the path equivalence relation ∼G
defined by x ∼G y iff x and y are each others descendants.

2.1. Abstract Argumentation

The basic notion in abstract argumentation is an argumentation framework [14].

Definition 3. An argumentation framework (AF) is a directed graph F = (A, )
whose vertices are called arguments and whose edges are called attacks.

We restrict our attention in this paper to AFs with finite sets of arguments. A
semantics determines, given an AF, rational points of view on which arguments
can be accepted. In this paper we rely on the three-valued labeling-based defini-
tion of a semantics [9], where a labeling maps each argument to a label I (in or
accepted) O (out or rejected) or U (undecided).
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Definition 4. A labeling of a set A is a function L : A→ {I,O,U}. We denote by
L(A)—or, if F = (A, ), by L(F )—the set of labelings of A. Given a labeling L
of A and set B ⊆ A we denote by L↓B the restriction of L to B. We denote by
I(L) (resp. O(L), U(L)) the set of arguments labeled I (resp. O, U) by L.

The semantics we consider in this paper are based on complete labelings [9].

Definition 5. Let F = (A, ) be an AF. A labeling L ∈ L(F ) is a complete
labeling of F iff, for all x ∈ A:

1. If ∀y ∈ PaF (x), L(y) = O, then L(x) = I.

2. If ∃y ∈ PaF (x) s.t. L(y) = I, then L(x) = O.

3. If ∀y ∈ PaF (x), L(y) 6= I and ∃y ∈ PaF (x) s.t. L(y) = U, then L(x) = U.

A semantics σ maps each AF F to a set Lσ(F ) ⊆ L(F ). Besides the complete
semantics we consider the preferred, grounded and semi-stable semantics, which
yield, respectively, the I-maximal, I-minimal and U-minimal complete labelings.

Definition 6. A semantics σ associates each AF F = (A, ) with a set Lσ(F ) ⊆
L(A) of labelings. The co (complete), pr (preferred), gr (grounded) and ss (semi-
stable) semantics are defined by

Lco(F ) = {L ∈ L(F ) | L is a complete labeling of F},

Lpr(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ) s.t. I(L) ⊂ I(L′)},

Lgr(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ) s.t. I(L) ⊃ I(L′)},

Lss(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ) s.t. U(L) ⊃ U(L′)}.

Under all these semantics, the existence of at least one labeling is guaranteed
(in the finite case). We omit the stable semantics to avoid technical difficulties
due to the possible non-existence of a labeling. The grounded labeling is unique.

2.2. Ranking Theory

Ranking theory is a qualitative abstraction of probability theory in which events
receive ranks [16,20]. A rank is a non-negative integer or∞ and can be understood
as a degree of surprise: 0 for not surprising, 1 for surprising, 2 for very surprising,
and so on, and∞ for impossible. The central notion in ranking theory is a ranking
function (also known as an ordinal conditional function or kappa function).

Definition 7. A ranking function over a set Ω is a function κ : Ω → N ∪ {∞}
such that κ(w) = 0 for at least one w ∈ Ω. A ranking function κ is extended to a
function over propositions or events (i. e., subsets of Ω) by defining κ(X) =∞ if
X = ∅, and κ(X) = min({κ(w) | w ∈ X}), otherwise.

Like probabilities ranks give rise to conditional ranks. These are ranks of
events given that we learn that some other event occurred. Like [16] we define
any rank conditional on an impossible event to be ∞.
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Definition 8. Let κ be a ranking function over Ω and let X,Y ⊆ Ω. We define the
rank of X conditional on Y , denoted κ(X | Y ), by κ(X | Y ) = κ(X ∩ Y )− κ(Y )
if κ(Y ) <∞, and κ(X | Y ) =∞, otherwise.

A ranking function κ induces beliefs using the principle that X is believed iff
the complement X = Ω \X is surprising (i.e. κ(X) > 0). Similarly, X is believed
conditional on Y iff κ(X | Y ) > 0.

2.3. Ranking Networks

A ranking network (also known as an OCF-network) is the ranking-theoretic ana-
logue of a Bayesian network [16]. Like a Bayesian network, a ranking network is a
directed acyclic graph (DAG) that encodes conditional independence relationships
among variables and can be used to compactly represent a ranking function.

To define it, we assume that Ω is determined by a set of variables. This
requires some notation. Let X be a finite set of variables. For simplicity we assume
each variable to have the same domain Dom(X ). A valuation of a set B ⊆ X
is a function V from B to Dom(X ). We say that Ω is determined by X iff Ω
consists of all valuations of X . If V is a valuation of B and B′ ⊆ B, we denote
by V↓B′ the restriction of V to B′. If x ∈ X and v ∈ Dom(X ), we denote by
x =Ω v the set {V ∈ Ω | V(x) = v} (i. e., the event that x equals v), omitting
the subscript Ω if clear from context. Similarly, x 6=Ω v denotes the event that x
does not equal v. If V is a valuation of B we also denote (abusing notation) by
V the set ∩x∈Bx = V(x). A ranking network over X is a DAG G = (X ,→). A
ranking function is said to be stratified w.r.t. G if it can be decomposed into the
sum of conditional ranks corresponding to each variable given its parents [16]:

Definition 9. If Ω is determined by the set X of variables then a ranking function
κ over Ω is stratified w.r.t. a ranking network G = (X ,→) iff for all V ∈ Ω,

κ(V) =
∑
x∈X

κ(x = V(x) | V↓PaG(x)). (1)

Stratification w.r.t. a ranking network implies that each variable depends only
on its parents or, more precisely, is independent of its non-descendants given its
parents [16]. This independence condition resembles the probabilistic one [18].

Proposition 1. Let Ω be determined by the set X of variables and let κ be a ranking
function over Ω. If κ is stratified w.r.t. G then, for each x ∈ X and v ∈ Dom(X ),
and each valuation Pax of PaG(x) and NDx of NDG(x) that agree on the values
assigned to PaG(x)1, we have

κ(x = v |NDx) = κ(x = v | Pax) whenever κ(NDx) <∞.

A conditional ranking table (CRT) plays the same role as a conditional prob-
ability table in the probabilistic setting [18]. Given a ranking function κ over a

1Note that, because G is acyclic, we have PaG(x) ⊆ NDG(x).
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set Ω determined by variables X with domain {v1, . . . , vn}, a CRT for a variable
x ∈ X specifies, for each valuation Pax of PaG(x), the conditional ranks

κ(x = v1 | Pax), . . . , κ(x = vn | Pax),

such that at least one conditional rank per valuation Pax is zero. If κ is stratified
w.r.t. G and if we know the CRTs of all variables, then κ is uniquely determined,
because for each V ∈ Ω we can fill in the terms on the right-hand side of Eq. (1).

3. SCC stratification

Our aim is to generalize labeling-based semantics to ranking-theoretic seman-
tics, which associate each AF with a ranking function over labelings. The idea
is that the rank of a labeling represents its degree of surprise, and that external
information about the status of an argument is processed via conditionalization.

In the next section we present a constructive definition of a family of ranking-
theoretic semantics. Apart from a constructive definition, however, one may ask:
which properties should such a semantics satisfy? Such properties (like princi-
ples studied in abstract argumentation [4]) can then be used to check whether a
particular semantics behaves as desired.

In this section we propose one such property, called SCC stratification. We
will argue that any reasonable ranking function over labelings of an AF should be
SCC stratified and, hence, that any ranking-theoretic semantics should associate
each AF F with a ranking function that is SCC stratified.

3.1. Stratified Rankings over Labelings

We first limit our attention to acyclic AFs. A plausible requirement for a ranking
function κ over the labelings of an acyclic AF F is that the status of each argument
x is independent of the status of its nondescendants given the status of its parents.
In other words, the status of an argument x depends only on the status of its
attackers. We already know how to express this requirement formally: κ should
be stratified w.r.t. F . That is, for each L ∈ L(F ),

κ(L) =
∑
x∈A

κ(x = L(x) | L↓PaF (x)).

This implies, via proposition 1, that the status of an argument is independent of
the status of its nondescendants given the status of its parents.

We can now determine a ranking over labelings of F by filling in the CRTs for
each argument. These CRTs determine how the status of each argument depends
on the status of its attackers. Here we present a possible scheme to fill in these
CRTs. Apart from serving as an example, we will later show that this particular
scheme also makes sense formally.

Definition 10. Let F = (A, ) be an acyclic AF and let κ be a ranking function
over L(F ). We say that κ is rank-complete w.r.t. F iff, for each x ∈ A and each
labeling Pax of PaF (x),
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(1) If for all y ∈ PaF (x), Pax(y) = O, then

κ(x = O | Pax) = 1, κ(x = U | Pax) =∞, κ(x = I | Pax) = 0.

(2) If for some y ∈ PaF (x), Pax(y) = I, then

κ(x = O | Pax) = 0, κ(x = U | Pax) =∞, κ(x = I | Pax) =∞.

(3) If for all y ∈ PaF (x), Pax(y) 6= I and for some y ∈ PaF (x), Pax(y) = U, then

κ(x = O | Pax) = 1, κ(x = U | Pax) = 0, κ(x = I | Pax) =∞.

This definition consists of three parts: (1) If we learn that all attackers of x
are O, then x is normally I, surprisingly O, but never U; (2) If we learn that an
attacker of x is I, then x is always O; (3) If we learn that no attacker of x is I
but at least one is U, then x is normally U, surprisingly O, but never I. These
conditions mirror those of completeness (Def. 5) except that they leave open the
surprising possibility that an argument is O while no attacker is I.

Stratification plus rank-completeness uniquely determines a ranking over la-
belings. Thus, together, they form a ranking-theoretic semantics, although only
for acyclic AFs. This semantics generalizes the gr semantics in the following sense.

Proposition 2. Let F = (A, ) be an AF and let κ be a ranking func-
tion over L(F ). If κ is stratified and rank-complete w.r.t. F then κ(L) =
0 iff L is the grounded labeling of F .

Ranking functions that are stratified and rank-complete encode a general
principle that the rank of a labeling equals the number of violations that it con-
tains (i. e., arguments being rejected while no attacker is accepted). Thus, (con-
ditional) beliefs are based on the principle of minimizing such violations.

ba

c

d

Figure 1.: An acyclic AF F

a b c d Rank
L1 I O I I 0
L2 O I O O 1
L4 I O O I 1
L5 I O I O 1
L3 O O I I 2
L6 I O O O 2
L7 O O O O 4

Table 1.: A ranking function over L(F )

Example 1. Let F be the AF shown in Figure 1. Table 1 shows the unique ranking
κ over L(F ) that is stratified and rank-complete w.r.t. F (labelings with rank
∞ are omitted). Note that only the grounded labeling L1 is ranked zero. We
have, for example, that rejection of c and d leads to belief in rejection of a:
κ(a 6= O | c = O ∩ d = O) = 1 (rejection of a explains rejection of c and d with
the least number of violations). Because κ is stratified we have, for example, that
if we know that b is rejected then learning that c or a is also rejected does not
affect our belief about d:

κ(d = I | b = O ∩ c = O) = κ(d = I | b = O ∩ a = O) = κ(d = I | b = O).
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3.2. SCC Stratified Rankings over Labelings

We now introduce the notion of SCC stratification as a generalisation of strati-
fication that enables us to deal with general (i.e., possibly cyclic) AFs. To mo-
tivate it we first discuss the SCC decomposability property known from abstract
argumentation. This property is what Baroni et al. [3] call full decomposability
w.r.t. SCC partitioning. Here we simplify their definition somewhat. A semantics
σ is said to be SCC decomposable if the σ labelings of an AF F can be computed
seperately for each SCC S given the labelings of the outparents of S:

Definition 11. A local function L is a function that assigns to each AF F = (A, ),
each source set I of F , and each labeling LI ∈ L(I), a set L(F, I,LI) ⊆ L(A \ I).
A semantics σ is SCC decomposable iff there exists a local function L such that,
for each AF F = (A, ) and each L ∈ L(A),

L ∈ Lσ(F ) iff ∀S ∈ SCC(F ),L↓S ∈ L(F↓CF (S),OPF (S),L↓OPF (S)). (2)

Of the semantics we consider, only semi-stable fails SCC decomposability [3].

Proposition 3. The co,pr and gr semantics are SCC decomposable but the ss
semantics is not.

We can similarly require, of a ranking function over labelings of F , that it can
be decomposed into the sum of conditional ranks corresponding to each SCC S
of F given the outparents of S. This is what we call SCC stratification. Formally:

Definition 12. Let F be an AF. A ranking function κ over L(F ) is SCC stratified
w.r.t. F iff, for each L ∈ L(A),

κ(L) =
∑

S∈SCC(F )

κ(L↓S | L↓OPF (S)). (3)

SCC stratification implies that each SCC S is independent of its non-
descendant given its outparents and reduces to stratification in the acyclic case.

Proposition 4. If κ is SCC stratified w.r.t. F then, for all S ∈ SCC(F ) and all
valuations S of S, OP S of OPF (S), and NDS of NDF (S) that agree on the
values assigned to OPF (S)2, we have

κ(S |NDS) = κ(S | OP S) whenever κ(NDS) <∞. (4)

Proposition 5. Let F be an AF and κ a ranking function over L(F ). If F is
acyclic then κ is SCC stratified w.r.t. F iff κ is stratified w.r.t. F .

We believe that, in the presence of cycles, SCC stratification adequately cap-
tures the (in)dependence relationships between (sets of) arguments that should
hold for a ranking function over labelings. After presenting a constructive defini-
tion of a family of ranking-theoretic semantics, we will establish, in section 5, the
conditions under which these semantics yield SCC stratified rankings.

2Note that for each SCC S we have OPF (S) ⊆ NDF (S).
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4. The σ∗ Ranking-Theoretic Semantics

We now define the general notion of a ranking-theoretic semantics, which asso-
ciates each AF F with a ranking function over L(F ).

Definition 13. A ranking-theoretic semantics ρ maps each AF F = (A, ) to a
ranking function over L(A) denoted by Kρ(F ).

Here we propose a family of ranking-theoretic semantics based on a scheme
that turns any semantics σ into a ranking-theoretic semantics denoted by σ∗. First
a definition. We say that a set of arguments B σ-enforces a labeling L (written
(F,B, σ) → L) if adding a new argument attacking the members of B turns L
into a σ labeling. This is a special case of enforcement [6]. We assume that there
is a unique argument (denoted Q) playing the role of the added attacker.

Definition 14. Let F = (A, ) be an AF. Give a set B ⊆ A we denote by F I B
the AF (A ∪ {Q}, ∪{(Q, x) | x ∈ B}). Given a semantics σ, we say that B
σ-enforces a labeling L (written ((A, ), B, σ)→ L) iff L ∈ Lσ(F I B)↓A.

The σ∗ semantics assigns to each labeling a rank that equals the size of a
cardinality-wise minimal set that σ-enforces L. Thus, the rank of a labeling is the
minimal number of arguments we need to attack to turn it into a σ labeling.

Definition 15. Let σ be a semantics. Let F = (A, ) be an AF. The ranking-
theoretic semantics σ∗ of F is defined by

Kσ∗(F )(L) = min({|B| | B ⊆ A, ((A, ), B, σ)→ L} ∪ {∞}).

The σ∗ semantics generalizes the σ semantics in the sense that Kσ∗(F )(L) =
0 iff L ∈ Lσ(F ). Furthermore, in the acyclic case, the gr∗ semantics (as well
as the co∗, pr∗ and ss∗ semantics, which all coincide in this case) is completely
characterized by stratification plus rank-completeness.

Theorem 1. Let F = (A, ) be an acyclic AF and let κ be a ranking function
over L(F ). If κ is stratified and rank-complete w.r.t. F then κ = Kgr(F ).

d

a

cb

Figure 2.: The AF F

a b c d Rank
L1 I I O O 0
L2 I O I O 0
L3 I U U O 0
L4 O I O U 1
L5 O O I O 1
L6 O U U U 1
L7 I O O O 2
L8 O I O O 2
L9 O U U O 2
L10 O O O U 3
L11 O O O O 4

Table 2.: Kco∗(F )

a b c d Rank
L1 I O I O 0
L2 I I O O 0
L3 O O I O 1
L4 O I O U 2
L5 I O O O 2
L6 O I O O 2
L7 O I O O 3
L8 O O O O 4

Table 3.: Kss∗(F )
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Example 2. Let F be the AF shown in Figure 2. Table 2 shows the rankingKco∗(F )
(labelings with rank ∞ are omitted). To illustrate, this ranking encodes that, if
we learn that a and c are rejected, we believe that d is undecided: Kco∗(F )(d 6=
U | a = O ∩ c = O) > 0. On the other hand, learning the status of a does not
affect beliefs about b and c. That is, for all la, lb, lc ∈ {I,O,U} we have

Kco∗(F )(b = lb ∩ c = lc | a = la) = Kco∗(F )(b = lb ∩ c = lc).

5. SCC Stratification and the σ∗ Semantics

Does the σ∗ semantics produce SCC stratified ranking functions? The answer is
yes, provided that σ is SCC decomposable.

Theorem 2. If a semantics σ satisfies SCC decomposability then for each AF F ,
Kσ∗(F ) is SCC stratified w.r.t. F .

If σ does not satisfy SCC decomposability, then σ∗ may produce ranking func-
tions that are not SCC stratified. This is demonstrated by the following example,
which is based on the non-SCC-decomposable semi-stable semantics.

Example 3. Table 3 shows the ranking Kss∗(F ) for F shown in Figure 2 (labelings
with rank ∞ are omitted). The SCC {b, c} has non-descendant a and no outpar-
ents. If Kss∗(F ) were SCC-stratified w.r.t. F then Proposition 4 would imply

Kss∗(F )(b = I ∩ c = O | a = O) = Kss∗(F )(b = I ∩ c = O).

In words: b and c are independent of a. But this is false, because we have

Kss∗(F )(b = I ∩ c = O | a = O) = 1 and Kss∗(F )(b = I ∩ c = O) = 0.

Thus, Kss∗(F ) is not SCC stratified. A more direct way to verify this is to check
condition (3), which implies that

Kss∗(F )(L4) = Kss∗(F )(a = O) +Kss∗(F )(b = I ∩ c = O) +

Kss∗(F )(d = U | a = O ∩ c = O)

= 1 + 0 + 0 = 1.

This is false, as shown in Table 3. Intuitively, the failure of SCC stratification
here is due to the fact that, if we reject a, we must accept c to prevent d from
becoming undecided, which changes our initial belief in b = I ∩ c = O.

6. Rankings Over Arguments

Our approach, which is based on ranking labelings, can be seen as an alternative
to recent developments based on rankings over arguments [10,1,2,7,12]. In these
rankings arguments are ordered from “least acceptable” to “most acceptable” (we
limit our attention here to total preorders). A ranking over labelings can, however,
be turned into a ranking over arguments in a straightforward way.
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Definition 16. Let σ be a semantics and F = (A, ) an AF. Define the preorder
�σ∗F ⊆ A×A via a �σ∗F b iff Kσ∗(F )(a = I) ≤ Kσ∗(F )(b = I).

In other words, a �σ∗F b (“a is at least as acceptable as b”) if the marginal
rank of the event that a is accepted is less or equal than the marginal rank of
the event that b is accepted. How does �σ∗F compare to other proposals? Let us
recall a number of rationality postulates that have been proposed and that capture
various intuitions behind ranked acceptability [7]. We leave a more in-depth study
to future work and consider only four rather simple ones.

Let �F be some ranking over the arguments of F . Two AFs F = (A, ) and
F ′ = (A′, ′) are isomorphic (written F ≡ F ′) if there is a bijective function
γ : A → A′ such that a  b iff γ(a)  ′ γ(b) for all a, b ∈ A (γ is then called
an isomorphism). The first postulate, called abstraction, states that names of
arguments play no role in assigning ranks.

Abstraction For every pair F = (A, ), F ′ = (A′, ′) of isomorphic frameworks
and every isomorphism γ : A→ A′, for all a, b ∈ A, a �F b iff γ(a) �F ′ γ(b).

A connected component of F is a maximal subgraph F ′ = (A′, ′) of F
such that every pair a, b ∈ A′ is connected through a path while ignoring edge
directions. Let cc(F ) be the set of all connected components of F . Independence
states that the evaluation of each connected component is independent.

Independence For every F = (A, ) and F ′ = (A′, ′) ∈ cc(F ), for all a, b ∈ A′,
a �F ′ b iff a �F b.

Void precedence states that unattacked arguments are ranked higher than others.

Void precedence For every F = (A, ), for all a, b ∈ A, if a is not attacked and
b is attacked then b 6�F a.

Self-contradiction says that self-attacking arguments are ranked lower than others.

Self-contradiction For every F = (A, ), for all a, b ∈ A, if b b and not a a
then a �F b and b 6�F a.

It turns out that our semantics satisfies three of these four postulates.

Proposition 6. Let σ ∈ {co, gr,pr, ss} and F = (A, ) an AF. The ranking �σ∗F
satisfies abstraction, independence, and self-contradiction.

To see why �σ∗F does not satisfy void precedence, consider an AF with argu-
ments a, b, c where a attacks b and b attacks c. We then have a �σ∗F c and c �σ∗F a
for all semantics σ.

7. Related Work

Addressing belief revision in argumentation is often done, following the AGM
approach, using orderings over extensions or labelings [8,11,13,19]. Our approach
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fits into this line of work, as it also provides an account of revision in argumenta-
tion based on orderings. The notion of SCC stratification is novel in this context,
although the conditional directionality principle studied in [19] is related.

Other work in which ranking functions are applied in the context of argumen-
tation includes a ranking-based semantics for defeasible logic programming [17]
and an approach to structured argumentation using conditionals which induce
rankings [25]. In [21], stratified labelings are introduced as a new semantics for
abstract argumentation that directly correlate to ranking functions. However, this
approach is based on rankings over arguments rather than labelings.

Various approaches to combining Bayesian networks and argumentation have
been considered. Most of these (e.g., [22,23,24]) are based on extracting structured
arguments and attacks from Bayesian network, which is quite different from what
we do. An exception is [15], which deals with translating Bayesian networks into
a general kind of numerical AFs, but leaves handling of cycles to future work.

8. Conclusion

We studied ranking functions over labelings as a generalization of regular labeling-
based semantics. We demonstrated that, in this setting, AFs can be interpreted
similarly to ranking networks. In particular, the SCC stratification property,
which is related to SCC decomposability, generalizes the notion of stratification
in the presence of cycles. Finally, rankings over labelings induce rankings over
arguments in a natural way and we made some initial steps in comparing these
induced rankings to established approaches in this direction [12].

As for future work we plan a broader study of different types of ranking-
theoretic semantics, as well as a more detailed look at the relationship between
rankings over labelings and over arguments. Another possibility is to apply the
ideas presented here in a probabilistic setting, in which we consider probability
distributions over labelings and interpret AFs like Bayesian networks.
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