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Abstract

We report on the First International Competition on Computational Models
of Argumentation (ICCMA’15) which took place in the first half of 2015 and
focused on reasoning tasks in abstract argumentation frameworks. Perfor-
mance of submitted solvers was evaluated on four computational problems
wrt. four different semantics relating to the verification of the acceptance
status of arguments, and computing jointly acceptable sets of arguments. In
this paper, we describe the technical setup of the competition, and give an
overview on the submitted solvers. Moreover, we report on the results and
discuss our findings.
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1. Introduction

Argumentation is a core technique for humans to reach conclusions in the
presence of conflicting information and multiple alternatives. It is used both
as a means for persuasion in dialogues as well as one owns deliberation mech-
anism. An argument can be regarded as some concise set of pieces of informa-
tion that supports a certain conclusion, such as “As Tweety is a bird and birds
usually fly, Tweety supposedly flies”. Arguments may support contradicting
conclusions—consider e. g. “As Tweety is a penguin and penguins do not fly,
Tweety does not fly despite the fact that he is a bird”—and the process of
argumentation aims at comparing and weighing arguments and counterargu-
ments and ultimately deciding which arguments prevail. While the field of
argumentation theory (van Eemeren et al., 2014) studies the structure and
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interaction of arguments from a philosophical perspective, within artificial in-
telligence, the field of computational models of argumentation (Bench-Capon
and Dunne, 2007; Besnard and Hunter, 2008) has gained some attention in
recent years. In general, this field is concerned with logical formalisations of
models of argumentation that can be used by automatic reasoning systems
to cope with uncertainty and inconsistency. Thus, these models are closely
related to approaches to non-monotonic reasoning and offer a novel perspec-
tive on those. After some earlier works of e. g. Pollock (1994) and Simari
& Louie (1992), abstract argumentation frameworks have been proposed by
Dung (1995) as a general and abstract formalism to represent arguments
and their interactions and have, since then, been most influential. In ab-
stract argumentation frameworks, arguments are represented as vertices in
a directed graph and an arc from a vertex A to a vertex B means that A is
a counterargument for B or that A “attacks” B. Thus, this model abstracts
from most issues of argumentation scenarios—including the inner structure of
arguments—and provides a clean formal view on the issue of conflict between
arguments. Given an abstract argumentation framework the central question
is to decide whether arguments are acceptable, i. e., whether they “survive”
the attacks of their counterarguments due to backing by other arguments. A
set of jointly acceptable arguments is then also called extension.

Abstract argumentation provides a nice framework to discuss issues of
non-monotonic reasoning in general as many other non-monotonic formalisms
such as default theory and logic programs under the stable model semantics
can be cast into abstract argumentation frameworks, cf. (Dung, 1995). On
the other hand, the multitude of different semantics and extensions go be-
yond the expressivity of previous formalisms and provide a novel general ap-
proach to non-monotonic reasoning, cf. e. g. (Dunne et al., 2016). This makes
abstract argumentation frameworks a versatile knowledge representation for-
malism. Many research topics have been spawned around these frameworks
including, among others, semantical issues (Baroni et al., 2011), extensions
on support (Cohen et al., 2014), quantitative approaches (Dunne et al., 2011;
Thimm, 2012; Hunter, 2013), and in particular algorithms (Charwat et al.,
2015). The computational challenges of various reasoning problems are vast
and range up to the second level of the polynomial hierarchy for certain se-
mantics (Dunne and Wooldridge, 2009a; Dvořák, 2012). Among the first im-
plementations for reasoning with abstract argumentation frameworks—which
appeared around 2008—were Dungine (South et al., 2008) and ASPARTIX
(Egly et al., 2008). More followed in the years after and, starting from 2013
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up till now, a number of comparative analyses among argumentation solvers
have been conducted, e.g., (Dvorák et al., 2011; Bistarelli et al., 2013; Dvorák
et al., 2014; Vallati et al., 2014; Bistarelli et al., 2014,a, 2015a; Cerutti et al.,
2016), in order to address a systematic performance comparison. Following
the tradition of the communities of other approaches to knowledge repre-
sentation and reasoning, such as the SAT and the Answer Set Programming
(ASP) communities, a public competition for solver evaluation was planned
soon after.

This paper reports on the First International Competition on Computa-
tional Models of Argumentation (ICCMA’15) which took place in the first
half of 2015. The results of the competition had been officially presented
at the International Workshop on Theory and Applications of Formal Ar-
gument (TAFA’15) which was co-located with the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15) in Buenos Aires, Argentina.
The competition called for solvers on four classical computational problems
in abstract argumentation frameworks wrt. the four classical semantics pro-
posed in (Dung, 1995), including enumerating all extensions of a particular
semantics and deciding whether a certain argument is contained in all of
them. Submitted solvers were evaluated wrt. their runtime performance on
these tasks on a series of artificially generated argumentation frameworks.

Abstract argumentation frameworks are arguably the most investigated
formalism for formal argumentation. However, there are also formalisms for
structured argumentation, such as deductive argumentation (Besnard and
Hunter, 2008) and defeasible logic programming (Garcia and Simari, 2004).
In structured argumentation, arguments are a set of (e. g. propositional) for-
mulas (the support of an argument) that derive a certain conclusion (the
claim of an argument). The attack relation between arguments is then de-
rived from logical inconsistency. For ICCMA’15 only problems of abstract
argumentation have been considered as this is simple and well-understood
formalism for representing computational argumentation. However, consid-
ering tracks on structured argumentation may be a worthwhile endeavour for
future competitions.

The competition received 18 solvers from research groups in Austria,
China, Cyprus, Finland, France, Germany, Italy, Romania, and the UK.
The solvers were based on different approaches and algorithmic design pat-
terns to solve problems, ranging from reductions to SAT or ASP problems
to novel heuristic algorithms. This paper gives an overview on the setup of
the competition, the submitted solvers, and the results. More specifically,
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the remainder of this paper is organized as follows. In Section 2 we provide
some necessary background on abstract argumentation and give an overview
on the computational tasks considered in the competition. In Section 3 we
describe the technical setup of the competition, including the approach for
benchmark generation, the used evaluation methodology, and the technical
interface requirements. In Section 4 we give an overview on the submitted
solvers. Afterwards, we present and analyze the results of the competition
in Section 5 and we discuss the lessons learned from this first experience in
Section 6. We conclude with a summary in Section 7. Appendix A provides
pseudo code of the graph generators used for creating the benchmark graphs
of the competition. Appendix B gives detailed graph-theoretic statistics on
the benchmark graphs.

2. Background and Competition Overview

In the following, we give a brief overview on abstract argumentation,
the computational problems considered in the competition, and some brief
overviews on answer set programming and satisfiability solving. The latter
are intended to provide some formal background on the inner workings of
solvers based on reductions to those.

2.1. Abstract Argumentation

Abstract argumentation frameworks (Dung, 1995) take a very simple view
on argumentation as they do not presuppose any internal structure of an ar-
gument. Abstract argumentation frameworks only consider the interactions
of arguments by means of an attack relation between arguments.

Definition 1 (Abstract Argumentation Framework). An abstract argumen-
tation framework AF is a tuple AF = (Arg,→) where Arg is a set of arguments
and → is a relation → ⊆ Arg × Arg.

For two arguments A,B ∈ Arg the relation A → B means that argument
A attacks argument B. Abstract argumentation frameworks can be concisely
represented by directed graphs, where arguments are represented as nodes
and edges model the attack relation. Note that we only consider finite ar-
gumentation frameworks here, i. e., argumentation frameworks with a finite
number of arguments.
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Example 1. Consider the abstract argumentation framework AF = (Arg,→)
depicted in Figure 1. Here it is Arg = {A1,A2,A3,A4,A5} and → =
{(A2,A1), (A2,A3), (A3,A4), (A4,A5), (A5,A4), (A5,A3), (A5,A6), (A6,A6)}.

A1 A2 A3

A4

A5 A6

Figure 1: A simple argumentation framework

Semantics are usually given to abstract argumentation frameworks by
means of extensions (Dung, 1995). An extension E of an argumentation
framework AF = (Arg,→) is a set of arguments E ⊆ Arg that gives some
coherent view on the argumentation underlying AF.

In the literature (Dung, 1995; Caminada, 2006b) a wide variety of different
types of semantics has been proposed. In the competition we focused on
the four classical semantics of Dung (1995), namely grounded, complete,
preferred, and stable semantics. For a set of arguments S ⊆ Arg let S− =
{B | ∃A ∈ S : B → A} denote the set of attackers of S and let S+ = {B |
∃A ∈ S : A → B} denote the set of attacked arguments of S.

Definition 2. Let AF = (Arg,→) be an argumentation framework.

1. A set of arguments E ⊆ Arg is conflict-free iff there there are no A,B ∈
E with A → B.

2. An argument A ∈ Arg is acceptable with respect to a set of arguments
E ⊆ Arg iff for every B ∈ Arg with B → A there is A′ ∈ E with
A′ → B.

3. A set of arguments E ⊆ Arg is an admissible extension iff it is conflict-
free and all A ∈ E are acceptable with respect to E.

4. A set of arguments E ⊆ Arg is a complete extension (CO) iff it is
admissible and there is no A ∈ Arg\E which is acceptable with respect
to E.

5. A set of arguments E ⊆ Arg is a grounded extension (GR) iff it is
complete and E is minimal with respect to set inclusion.
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6. A set of arguments E ⊆ Arg is a preferred extension (PR) iff it is
complete and E is maximal with respect to set inclusion.

7. A set of arguments E ⊆ Arg is a stable extension (ST) iff it is complete
and E ∪ E+ = Arg.

If E is some extension we say that each A is accepted wrt. E. The intu-
ition behind admissibility is that an argument can only be accepted if there
are no attackers that are accepted and if an argument is not accepted then
there has to be an acceptable argument attacking it. The idea behind the
completeness property is that all acceptable arguments should be accepted.
The grounded extension is the minimal set of acceptable arguments and
uniquely determined (Dung, 1995). A preferred extension is a maximal set
of acceptable arguments and a stable extension is a complete extension that
attacks all arguments not contained in it. Note that for complete, preferred,
and stable semantics, their extensions are not necessarily uniquely defined
and that for stable semantics an extension does not necessarily exist (Dung,
1995).

For the remainder of the paper we use σ to denote any semantics of GR,
CO, PR, ST.

Example 2. Consider again the argumentation framework AF in Figure 1.
The complete extensions of AF are E1 = {A2}, E2 = {A2,A4}, and E3 =
{A2,A5}. Furthermore, E1 is the grounded extension, E2 and E3 are both
preferred extensions, and only E3 is stable.

An alternative approach to define the semantics of an argumentation
framework is to use labelings instead of extensions (Caminada, 2006a).

Definition 3. (AF-labeling) Let AF = (Arg,→) be an abstract argumenta-
tion framework. An AF-labeling is a total function lab : Arg→ {in, out, undec}.
We define in(lab) = {ai ∈ Arg|lab(ai) = in}, out(lab) = {ai ∈ Arg|lab(ai) =
out}, undec(lab) = {ai ∈ Arg|lab(ai) = undec}.

While extensions only allow for a two-valued assessment of the justifi-
cation status of an argument—either the argument is in the extension or it
is not—labelings allow a three-valued assessment where the additional as-
sessment value “undec” represents an undecided assessment. Similar condi-
tions as in Definition 2 can be defined for labelings in order to formalise
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when a labeling is conflict-free, admissible, complete, etc., e. g., a label-
ing lab is conflict-free iff there are no A,B ∈ in(lab) with A → B. In-
deed, labeling-based and extension-based semantics are equivalent (Cami-
nada, 2006a) through the following transformations. If E is a conflict-free
(admissible, complete, . . . ) extension then the labeling lab defined through
in(lab) = E, out(lab) = E+, and undec(lab) = Arg \ (E ∪ E+) is a conflict-
free (admissible, complete, . . . ) labeling. Furthermore, if lab is a conflict-free
(admissible, complete, . . . ) labeling then in(lab) is a conflict-free (admissi-
ble, complete, . . . ) extension. For this reason we may use the terms labeling
and extension interchangebly.

2.2. Computational Problems

The most important decision problems discussed in the context of abstract
argumentation are as follows (let σ be any semantics):

Credσ Input: An argumentation framework AF = (Arg,→)
and an argument A ∈ Arg

Output: Yes iff A is contained in at least one σ-extension of AF

Skeptσ Input: An argumentation framework AF = (Arg,→)
and an argument A ∈ Arg

Output: Yes iff A is contained in all σ-extensions of AF

Verσ Input: An argumentation framework AF = (Arg,→)
and a set E ⊆ Arg

Output: Yes iff E is a σ-extension of AF

Existsσ Input: An argumentation framework AF = (Arg,→)
Output: Yes iff AF has at least one σ-extension

Exists¬∅σ Input: An argumentation framework AF = (Arg,→)
Output: Yes iff A has at least one non-empty σ-extension

The decision problem Credσ is about credulous acceptance of an argument,
i. e., whether it is contained in any σ-extension. The problem Skeptσ is
about skeptical acceptance of an argument, i. e., whether it is contained in
all σ-extensions. Furthermore, Verσ is about verifying whether a given set
of arguments is indeed a σ-extension. Finally, the problems Existsσ and
Exists¬∅σ relate to existence problems of extensions. Note that Existsσ is
trivial for most semantics except stable semantics, as they guarantee the
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existence of at least one extension. The harder decision problem Exists¬∅σ
is about checking whether there exist a non-empty σ-extension.

Table 1 gives an overview on the computational complexity of the deci-
sion problems discussed above. The results on the grounded semantics as
well as ExistsPR and ExistsCO follow immediately from the properties of
these semantics shown in (Dung, 1995). The remaining results for complete
semantics are initially by (Coste-Marquis et al., 2005). The results for sta-
ble and preferred semantics follow from their corresponding results for logic
programming (?), except the SkeptPR result which is from (Dunne and
Bench-Capon, 2002). For a more detailed discussion of these results and the
employed techniques see (Dunne and Wooldridge, 2009b; Dvořák, 2012). As
can be seen, grounded semantics is the only semantics where all five decision
problems are tractable. A naive algorithm for computing the grounded ex-
tension can easily be given: first, all arguments that have no attackers are
added to an empty extension E and those arguments and all arguments that
are attacked by one of these arguments are removed from the framework;
then this process is repeated; if one obtains a framework where there is no
unattacked argument, the final set E is the grounded extension. Clearly, this
is a polynomial algorithm that can be used to solve all the above decision
problems wrt. grounded semantics. The problems related to complete and
stable semantics usually reside on the first level of the polynomial hierarchy
and are thus intractable in practice. Preferred semantics is usually assessed
to be computationally harder than the other semantics and particularly the
decision problem Skeptσ lies on the second level of the polynomial hierarchy.

Functional problems, such as computing all σ-extensions of an argumenta-
tion framework AF, have not been investigated much in the literature. This
is in line with general research on computational complexity as functional
problems may also heavily depend on the size of the output. However, the
computational complexity of the corresponding decision problems are usually
sufficient to judge the hardness for the functional problems as well.

Still, solving functional problems is important for the actual usability of
systems using abstract argumentation and have therefore been considered
in the competition as well. More precisely, the problems considered in the
competition are given as follows (with the actual naming convention used for
the competition):

DC-σ Input: An argumentation framework AF = (Arg,→)
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ
CO NP-c in P in P trivial NP-c
PR NP-c ΠP

2 -c coNP-c trivial NP-c
GR in P in P in P trivial in P
ST NP-c coNP-c in P NP-c NP-c

Table 1: Computational complexity of important decision problems in (C-c denotes com-
pleteness for complexity class C). P is the class of decision problems solvable by a de-
terministic Turing machine in polynomial time; NP (resp. coNP) is the class of decision
problems where the Yes (resp. No) instances can be accepted by a non-deterministic
Turing machine in polynomial time; ΠP

2 is the class of decision problems where the com-
plement can be decided by a non-deterministic Turing machine, that has additionally
access to an NP-oracle, in polynomial time, see also (Papadimitriou, 1994).

and an argument A ∈ Arg
Output: Yes iff A is contained in at least one σ-extension of AF

(equivalent to Credσ)

DS-σ Input: An argumentation framework AF = (Arg,→)
and an argument A ∈ Arg

Output: Yes iff A is contained in all σ-extensions of AF
(equivalent to Skeptσ)

SE-σ Input: An argumentation framework AF = (Arg,→)
Output: any σ-extension E of AF

or NO if there are no σ-extensions

EE-σ Input: An argumentation framework AF = (Arg,→)
Output: the set {E1, . . . , En} of all σ-extensions of AF

In the above notation, the abbreviation DC stands for “decide credulous”, DS
for “decide skeptical”, “SE” for “some extension”, and “EE” for “enumerate
extensions”. In the following, we refer to DC, DS, SE, and EE as computa-
tional problems (or simply problems) and to a combination of a problem and
a semantics, e. g. SE-PR, as a track. In the competition we considered the
four problems in combination with each of the four discussed semantics, re-
sulting in a total of 16 tracks. For each track, the aim of the competition was
to evaluate solvers on how fast instances of these tracks could be correctly
solved. Solvers were permitted to enter the competition if they supported at
least one of these 16 tracks, but were not obliged to support all of them.
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2.3. Argumentation, Answer-Set Programming and Satisfiability solvers

In the following, we provide some basics about Answer-set Programming
and Satisfiability solvers. This background is intended to support the reader
in understanding the main insights of the competition solvers, described in
Section 4, implementing such encodings.

2.3.1. Answer-Set Programming

Answer set programming (ASP) (?) is a modern approach to declarative
programming, where a user focusses on declaratively specifying her problem.
ASP has its roots in deductive databases, logic programming, logic-based
knowledge representation and reasoning, constraint solving, and satisfiabil-
ity testing. It can be applied in a uniform way to search problems in the
classes P, NP, and NPNP in applications like planning, decision support,
model checking, and many more.

As discussed in (Toni and Sergot, 2011), ASP relies upon:

1. the representation of knowledge in terms of disjunctive logic programs
with negation as failure (possibly including explicit negation and vari-
ous forms of constraints),

2. the interpretation of these logic programs under the stable model/answer
set semantics and its extensions (dealing with explicit negation and
constraints), and

3. efficient computational mechanisms, called ASP solvers, to compute
answer sets for grounded logic programs.

We fix a countable set U of domain elements, called constants. An atom is
an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0, and each ti
is either a variable or an element from U . An atom is called ground if it is
free of variables. BU denotes the set of all ground atoms over U .

A disjunctive rule r is of the form

a1| . . . |an ← b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are
literals, and not represents default negation. The head of r is the set H(r) =
{a1, . . . , an} and the body of r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}.
Furthermore, we have that B+(r) = {b1, . . . , bk} and B(r) = {bk+1, . . . , bm}.
A rule r is normal if n ≤ 1 and a constraint is normal if n = 0. A rule
r is safe if each variable in r occurs in B+(r). A rule r is ground if no
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variable occurs in r. A fact is a ground rule without disjunction and empty
body. An input database is a set of facts. A program is a finite set of
disjunctive rules. For a program π and an input database D, we write π(D)
instead of D ∪ π. If each rule in a program is normal (resp. ground), we
call the program normal (resp. ground). For any program π, let Uπ be the
set of all constants appearing in π. Gr(π) is the set of rules rσ obtained by
applying, to each rule r ∈ π, all possible substitutions σ from the variables
in r to elements of Uπ. An interpretation I ⊆ BU satisfies a ground rule r iff
H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B(r) ∩ I = ∅. An interpretation I
satisfies a ground program π, if each r ∈ π is satisfied by I. A non-ground
rule r (resp., a program π) is satisfied by an interpretation I iff I satisfies
all groundings of r (resp., Gr(π)). We have that I ⊆ BU is an answer
set of π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
πI = {H(r)← B+(r)|I ∩B(r) = ∅, r ∈ Gr(π)}. For a program π, we denote
the set of its answer sets by AS(π).

ASP is particularly well-suited for enumeration problems since these sys-
tems enumerate by default all solutions of a given program, thus enabling
the enumeration of extensions of an abstract argumentation framework in an
easy manner. Moreover, disjunctive ASP is capable of expressing problems
being even complete for the second level of the polynomial hierarchy, which
is of interest for abstract argumentation considering that several semantics
such as the preferred semantics are of this high complexity, cf. the previous
section.

Several approaches have been proposed in the literature for computing
the extensions of abstract argumentation frameworks using ASP solvers,
e. g., (Nieves et al., 2008; Egly et al., 2008; Faber and Woltran, 2009; Wakaki,
2010). All these approaches rely upon the mapping of an argumentation
framework into a logic program whose answer sets are in one-to-one corre-
spondence with the extensions of the original abstract argumentation frame-
work. The approaches differ in the kinds of extensions they focus on, and in
the mappings and correspondences they define. For an exhaustive overview,
we refer the reader to (Toni and Sergot, 2011). In Section 4, we will provide
the specific features of the ASP solvers which participated in the competition.

2.3.2. Satisfiability Solvers

A propositional formula over a set of Boolean variables is satisfiable iff
there exists a truth assignment of the variables such that the formula evalu-
ates to true. Checking whether such an assignment exists is the satisfiability
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(SAT) problem (Weissenbacher and Malik, 2012). SAT solvers largely owe
their success to efficient search heuristics (e.g., (Moskewicz et al., 2001)) and
conflict-driven back-tracking (Silva and Sakallah, 1996).

Let us consider the standard setting of propositional logic over a set
P = {a, b, c, . . .} of propositional atoms, and the standard logical connectives
∧,∨,¬, denoting conjunction, disjunction, and negation, respectively. A
literal is an atom p ∈ P or its negation ¬p. A clause C is a set of literals
representing the disjunction

∨
l∈C l. A propositional formula in Conjunctive

Normal Form (CNF) is a conjunction of clauses. An interpretation I : P →
{true, false} maps atoms to Boolean values. An interpretation I satisfies a
formula ϕ (I |= ϕ) if ϕ evaluates to true under the assignment determined by
I. A formula ϕ is satisfiable if there exists an interpretation I such that I |=
ϕ, and unsatisfiable otherwise. A satisfiability solver is a decision procedure
which determines whether a given formula ϕ, in CNF, is satisfiable or not.
State-of-the-art SAT solvers are capable of solving instances with hundreds
of thousands of literals and clauses. SAT solvers operate in the following
way: conflict clauses derived from a previous instance ϕ can be retained in
a subsequent run of the solver on a formula ψ if ϕ ⊆ ψ. Moreover, the
back-tracking capabilities of SAT solvers make it possible to fix a tentative
assignment (or assumption, respectively) for a subset S of A in form of a
conjunction of literals over S. Assumptions can be discarded in subsequent
calls. This capability to perform iterative calls is crucial to the performance
of the SAT-based algorithms proposed for abstract argumentation problems.

One method for using SAT solvers in abstract argumentation is to reduce
the argumentation problem at hand to a formula in propositional logic. Re-
ductions of this kind make sophisticated SAT solvers amenable for the field
of argumentation. Using classical propositional logic to evaluate abstract ar-
gumentation frameworks was first advocated by (Besnard and Doutre, 2004)
and then extended to quantified propositional logic (Arieli and Caminada,
2013; Egly and Woltran, 2006) to efficiently reduce abstract argumentation
problems with complexity beyond NP. Several implementations show how
modern SAT technology can be used for solving such hard problems in the
area of argumentation. In Section 4, we will provide the specific features of
the SAT solvers which participated to the competition.
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3. Technical Setup and Evaluation

In this section, we give an overview on how the benchmarks for the com-
petition were generated (Section 3.1), describe the evaluation measures (Sec-
tion 3.2), and give some details on the execution of the competition (Sec-
tion 3.3).

3.1. Benchmarks

The availability of real-world benchmarks for argumentation problems
was, at the point of time of the competition, quite limited, some few excep-
tions are (Cabrio et al., 2013; Cabrio and Villata, 2015) or AIFdb1. However,
these benchmarks are tailored towards problems of argument mining (Wells,
2014) and their representation as abstract argumentation frameworks usu-
ally lead to topologically simple graphs, such as cycle-free graphs. These
kinds of graphs are not suitable for comparing the computational perfor-
mance of solvers for abstract argumentation problems, as, e. g., all classi-
cal semantics coincide with grounded semantics on cycle-free graphs (Dung,
1995), for which all considered computational problems are tractable, cf. Sec-
tion 2.3. Another possibility to obtain benchmark examples is to utilize other
problem areas such as automatic planning, satisfiability, or other reasoning
problems and encode these problems as abstract argumentation frameworks.
Although these problem transformations generally lead to complex and chal-
lenging graphs, they are all structurally similar. As a consequence, solvers
optimizied for specific graph-theoretic features may have an advantage over
other solvers. In order to be able to distinguish the computational perfor-
mance on all considered semantics and on different graph-theoretic features,
we decided to use artificially generated graphs as benchmarks, in line with
the preliminary performance evaluation of (Bistarelli et al., 2013).

In order to provide challenging benchmarks for the abstract argumenta-
tion setting, we created three different graph generators called Grounded-

Generator, StableGenerator, and SccGenerator, each addressing different
aspects of computationally hard benchmark graphs. These graph generators
implement heuristic algorithms for generating graphs with specific features
such as a large number or size of extensions of a specific semantics. An-
other possibility to generate graphs for argumentation problems would have

1http://corpora.aifdb.org
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been to use exact methods such as algorithms solving the realizability prob-
lem (Dunne et al., 2015) or the recently proposed method for synthesizing
frameworks of (Niskanen et al., 2016). Given a specific set of extensions these
methods would construct an argumentation framework with exactly this set
of extensions. We decided to use heuristic algorithms instead of these exact
methods because of the following two reasons. First, exact methods rely on
a deterministic approach to construct an argumentation framework. Conse-
quently, the generated graphs possess similar graph-theoretic features that
could be exploited by specific solvers. Although it is possible to alter these
algorithms in order to incorporate some randomness this would then lead to
heuristic algorithms as well that do not necessarily give the desired result.
Second, solving the realizability problem is computationally hard. Initial ex-
periments showed that it was more feasible to run our heuristic algorithms
and test whether the resulting graphs have sufficiently good characteristics.
We will now briefly outline algorithms for these generators and the features
of graphs generated by the algorithms. Pseudo code formalizations of the
algorithms can be found in Appendix A.

A: GroundedGenerator This graph generator aims at generating graphs with
a large grounded extension. As all extensions of all considered seman-
tics always contain the grounded extension (Dung, 1995), graphs gen-
erated by this generator test whether solvers can exploit this property
to efficiently compute extensions.

Given some upper bound “maxA” for the number of arguments and
some predefined probability “p”, this generator first randomly deter-
mines the actual number “A” of arguments (uniformly distributed in
{1, . . . ,maxA}) which are named a1, . . . , aA. Afterwards, for each pair
i, j = 1, . . . ,A with j < i an attack between ai and aj is added with
probability “p”. The resulting intermediate graph component is there-
fore guaranteed to be acyclic and possibly not fully connected. After-
wards random attacks are added between the not-yet connected argu-
ments and the graph component from before (uniformly distributed).

B: StableGenerator This graph generator aims at generating graphs with
many stable extensions (and therefore also many complete and pre-
ferred extensions). Graphs generated by this generator pose huge com-
binatorial challenges for solvers addressing the computational tasks of
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determining (skeptical or credulous) acceptance of arguments and enu-
merating extensions.

After having determined the number of arguments “A” as in Grounded-

Generator, this generator first identifies a set of arguments grounded
to form an acyclic subgraph which will contain the grounded extension.
Afterwards another subset M (a candidate for a stable extension) of
arguments is randomly selected and attacks are randomly added from
some arguments within M to all arguments neither in M nor grounded.
This process is repeated until a number of desired stable extensions M
is reached.

C: SccGenerator The third graph generator aims at generating graphs which
feature many strongly-connected components and are therefore chal-
lenging for solvers which do not rely on decomposition techniques (Liao
et al., 2011).

After having determined the number of arguments “A” as in Grounded-

Generator, in a first step these arguments are partitioned (with a uni-
form distribution) into a given number N of components C1, . . . , Cn.
Within each component attacks are added randomly with a high prob-
ability given as a parameter (and thus likely forming a strongly con-
nected component). In-between components attacks are randomly added
with less probability (also given as parameter), but only from a com-
ponent Ci to Cj with i > j (in order to avoid having few large strongly
connected components).

The source code for the above generators can be found in the source code
repository2 of probo (Cerutti et al., 2014b), the benchmark suite used to
run the competition, which will be discussed in more detail in Section 3.3.
In contrast to the preliminary performance evaluation of (Bistarelli et al.,
2013), we decided to use these proprietary graph generators, instead of well-
known graph models from network theory such as the Erdös-Rényi (Erdös
and Rényi, 1959), Watts-Strogatz (Watts and Strogatz, 1998), or Barabási-
Albert (Barabási and Albert, 1999) models, because of the following reason.
Graph models from network theory are designed to explain the topology of

2http://sourceforge.net/p/probo/code/HEAD/tree/trunk/src/net/sf/probo/

generators/
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e. g. social networks. An important concept often (indirectly) implemented
in graph models is that of triangle closure, i. e., the tendency of nodes directly
connecting to the neighbors of its neighbors (as in the saying “the friend of my
friend is also my friend”). From the perspective of challenging benchmarks
for abstract argumentation, this feature often trivializes computation. Initial
experiments suggest that the generated graphs contain empty or very small
grounded extensions, usually no stable extensions, and very few and small
complete and preferred extensions. The latter observation is also due to the
fact that these graph models aim at modeling the “small world” property of
many real-world graphs3. This leads to many arguments directly or indirectly
being in conflict with each other.

For each of the three benchmark generators A, B, and C, we generated
72 argumentation graphs of different sizes and partitioned each set into three
equal-sized subsets of small, medium, and large instances. This results in
9 test sets, each having 24 argumentation graphs (see Appendix B for the
exact numbers of arguments and attacks). We conducted some preliminary
experiments using alpha versions of available solvers in order to check whether
these graphs are not too easy or too hard. There we discovered that the
test set corresponding to the largest argumentation graphs generated by B
was too difficult for every solver. As a consequence, the whole test set was
removed from the evaluation. All other test sets seemed to be appropriate
to be used for the actual competition. Therefore, the 192 instances used for
the evaluation in the competition consisted of

• 24 small-sized argumentation graphs from generator A (test set 1)

• 24 medium-sized argumentation graphs from generator A (test set 2)

• 24 large-sized argumentation graphs from generator A (test set 3)

• 24 small-sized argumentation graphs from generator B (test set 4)

• 24 medium-sized argumentation graphs from generator B (test set 5)

• 24 small-sized argumentation graphs from generator C (test set 6)

3This property basically states that there are always “relatively short” paths from any
node to every other node (Watts and Strogatz, 1998); for example the theory of “six
degrees of separation” suggests that in the social network of the known world the longest
shortest path between any two persons is six.
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• 24 medium-sized argumentation graphs from generator C (test set 7)

• 24 large-sized argumentation graphs from generator C (test set 8)

All argumentation graphs of the competition can be downloaded from the
competition website.4 Appendix B gives some more detailed statistics on
the benchmark graphs. For a discussion on the relationships between these
statistics and argumentation-specific properties see (Vallati et al., 2014).

3.2. Evaluation Measures

The aim of the competition was to measure and compare the compu-
tational performance of the submitted solvers on solving instances of the
problems presented in Section 2.3. For the problems SE (compute some
extension) and EE (compute all extensions) we used every one of the 192 ar-
gumentation graphs (see previous section) as an individual instance for each
semantics. For the problems DS (decide skeptical acceptance) and DC (de-
cide credulous acceptance) we randomly selected three arguments from every
argumentation graph, yielding in total 576 instances for each semantics.

For each instance of a track, a solver was given 10 minutes time to com-
pute the answer. In case of a timeout or a wrong answer, the solver received
zero points for this instance.5 If it gave the correct answer within the time
limit, it received one point and the actual runtime for solving the instance
was saved separately. For each track, the cumulative number of points was
used as the main ranking criterion (solvers which received more points were
ranked higher than solvers with less points). If two or more solvers reached
the same number of points, their cumulative runtimes on all correctly solved
instances were compared to break ties (solver with smaller total runtime were
ranked higher than solvers with larger total runtime). This procedure results
in a total of 16 rankings of the solvers, one for each track.

For those solvers, which supported all 16 tracks of the competition, we
aggregated their scores in the individual tracks to obtain a global ranking

4http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip, note
that the test sets are numbered differently in the competition and on the website; in
particular, test sets 6, 7, and 8 from above are numbered 7, 8, and 9 there to accommo-
date for the removed test set 6.

5The initial policy for wrong answers was to disqualify the solver completely for the
track. However, quite a few solvers occasionally produced wrong results and in order to
provide a comprehensive picture on the state-of-the-art we revised this policy; the final
results would differ only slightly when enforcing this policy though (see Tables 5–8)
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using Borda count. For that, every solver received one point for every first
place in any ranking, two points for every second place in any ranking, and
so on. A global ranking was obtained by ordering the resulting total number
of points from smallest to largest.

3.3. Competition Details

The competition was realized using the benchmark framework probo (Cerutti
et al., 2014b), which provides the possibility to run the instances on the in-
dividual solvers, verify the results, measure the runtime, and log the results
accordingly. The software probo is written in Java and requires the imple-
mentation of a simple command line interface from the participating solvers.6

All benchmark graphs were made available in two file formats. The triv-
ial graph format7 (TGF) is a simple representation of a directed graph which
simply lists all appearing vertices and edges. The ASPARTIX format (APX)
(Egly et al., 2008) is an abstract argumentation-specific format which repre-
sents an argumentation framework as facts in a logic programming-like way.

In order to verify the answers of solvers, the solutions for all instances
were computed in advance using the Tweety libraries for logical aspects of
artificial intelligence and knowledge representation (Thimm, 2014). Tweety
contains naive algorithms for all considered semantics that implement the
formal definitions of all semantics in a straightforward manner and thus pro-
vides verified reference implementations for all considered problems.

Besides serving as the benchmark framework for executing the compe-
tition, probo also contains several abstract classes and interfaces for solver
specification that could be used by participants in order to easily comply with
the solver interface specification. We also provided a tutorial8 and a generic
shell-script9 that implements the solver interface specification, in order to
enable participants to implement their solvers in a way that is compatible
with the competition requirements.

The competition itself was executed on a cloud computing platform avail-
able at the University of Koblenz-Landau, which provides 320 cores with

6See http://argumentationcompetition.org/2015/iccma15notes_v3.pdf for the
formal interface description

7http://en.wikipedia.org/wiki/Trivial_Graph_Format
8http://argumentationcompetition.org/2015/iccma15probotutorial_v2.pdf
9http://sourceforge.net/p/probo/code/HEAD/tree/trunk/solvers/

generic-interface.sh?format=raw
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No. Solver SE EE DC DS
CO PR GR ST CO PR GR ST CO PR GR ST CO PR GR ST

1 LabSATSolver X X X X X X X X X X X X X X X X
2 ArgSemSAT X X X X X X X X X X X X X X X X
3 ArgTools X X X X X X X X X X X X X X X X
4 Cegartix X X X
5 Dungell X X X X X X X X
6 ZJU-ARG X X
7 ASPARTIX-V X X X
8 CoQuiAAS X X X X X X X X X X X X X X X X
9 ASPARTIX-D X X X X X X X X X X X X X X X X
10 ConArg X X X X X X X X X X X X
11 GRIS X X X X X X X X
12 ASGL X X X X X X X X X X X X X X X X
13 LamatzSolver X
14 ProGraph X X
15 DIAMOND X X X X X X X X X X X X X X X X
16 Carneades X X X X X X X X X X X X X X X X
17 prefMaxSAT X
18 ASSA X X X X

Table 2: Supported tracks of the participating solvers.

2.9GHz each and 2.2TB of usable RAM. For each test set of benchmark
graphs we used a single virtual machine with 1 CPU and 8GB of RAM to
run all tracks on the set. The results for all tracks were aggregated after-
wards.

4. Participants

In this section, we provide a description of the solvers which participated
in the competition, and we classify them with respect to their supported
tracks. Note that the solvers are numbered according to their registration
number.

Table 2 gives an overview on the participating solvers, and their supported
tracks.

Table 3 gives some further information on the solvers, i. e., development
country, programming language and paradigm, total number of lines of code,
and a reference to contributions describing the solver in more detail. Most
of the solvers have been developed in Europe with the exception of the ZJU-
ARG solver from China and the ArgTools solver from Jordan. Moreover,
we can note that solvers have been developed mainly using logic and object-
oriented programming languages.
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1 LabSAT Germany Java object-oriented 1300 (Brons, 2015)
2 ArgSemSAT UK, Italy C++ object-oriented 7800 (Cerutti et al., 2015)
3 ArgTools Jordan, UK C++ object-oriented 6000 (Nofal et al., 2015)
4 Cegartix Austria, Finland C++ object-oriented 850 (Dvořák et al., 2015)
5 Dungell UK Haskell direct/functional 240 (van Gijzel, 2015)
6 ZJU-ARG China, Luxembourg Java object-oriented 2100 (Guo and Liao, 2015)
7 ASPARTIX-V Italy, Finland, Austria ASP logic 750 (Ronca et al., 2015)
8 CoQuiAAS France C++ object-oriented 1600 (Lagniez et al., 2015)
9 ASPARTIX-D Germany ASP logic 640 (Gaggl and Manthey, 2015)
10 ConArg2 Italy C++ object-oriented 3644 (Bistarelli et al., 2015)
11 GRIS UK C++ object-oriented 2190 (Rodrigues, 2015)
12 ASGL Germany Lisp functional 900 (Sprotte, 2015)
13 LamatzSolver Germany Java object-oriented 550 (Lamatz, 2015)
14 ProGraph Romania Prolog logic 305 (Groza and Groza, 2015)
15 DIAMOND Germany Python/ASP logic 420 (Ellmauthaler and Strass, 2015)
16 Carneades Germany Go N/A 1242 (Gordon, 2015)
17 prefMaxSAT UK, Italy C++ object-oriented 750 (Vallati et al., 2015)
18 ASSA Cyprus Java object-oriented N/A (Hadjisoteriou and Georgiou, 2015)

Table 3: Detailed information of the participating solvers.
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No. Solver License Source code repository
1 LabSAT GNU LGP https://github.com/fbrns/LabSATSolver

2 ArgSemSAT MIT http://sourceforge.net/projects/argsemsat/

3 ArgTools GNU GPL http://sourceforge.net/projects/argtools/

4 Cegartix GNU GPL http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/

5 Dungell BSD3 http://www.cs.nott.ac.uk/~psxbv/DungICCMA/

6 ZJU-ARG N/A http://mypage.zju.edu.cn/en/beishui/685664.html

7 ASPARTIX-V N/A http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

8 CoQuiAAS GNU GPL http://www.cril.univ-artois.fr/coquiaas/

9 ASPARTIX-D ad-hoc https://ddll.inf.tu-dresden.de/web/Sarah_Alice_Gaggl/ASPARTIX-D

10 ConArg N/A http://www.dmi.unipg.it/conarg/

11 GRIS GNU GPL http://www.inf.kcl.ac.uk/staff/odinaldo/gris/

12 ASGL ad-hoc https://github.com/kisp/asgl

13 LamatzSolver N/A https://bitbucket.org/Cloudkenny/lamatzsolver/

14 ProGraph N/A http://cs-gw.utcluj.ro/~adrian/tools/prograph/ProGraph-ArgComp2015.tar

15 DIAMOND GNU GPL http://diamond-adf.sourceforge.net/

16 Carneades MPL 2.0 https://carneades.github.io/

17 prefMaxSAT MIT http://sourceforge.net/projects/prefmaxsat/

18 ASSA N/A http://www.mertjiandata.com/assa.html

Table 4: Licenses and source code repositories of the participating solvers.

Table 4 lists the solvers’ license information (when available), and pro-
vides a link to their source code repositories. Most of the repositories are
available under the GNU GPL license, while some of them chose more spe-
cific licenses like the MIT license. In general, however, the source code of all
solvers participating in the competition has been made available for research
purposes, which was also a requirement for participating.

In the following, we give some details on the individual solvers that par-
ticipated in the competition. For the complete system descriptions, we refer
the reader to (Thimm and Villata, 2015).

LabSATSolver

The LabSAT solver (Brons, 2015) solves all tasks of the competition wrt.
all semantics. It encodes the labeling approach (Caminada, 2006a) as a
boolean satisfiability problem (SAT) following the proposal of Cerutti and
colleagues (Cerutti et al., 2013). Roughly, the approach proposed in (Cerutti
et al., 2013), called PrefSAT, is a depth-first search in the space of complete
extensions to identify those that are maximal, namely preferred extensions
and enumerate them. Each step of the search process requires the solution
of a SAT problem through the invocation of a SAT solver. The algorithm
is based on the idea of encoding the constraints corresponding to complete
labelings of an AF (Caminada, 2006a) as a SAT problem, and then iteratively
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producing and solving modified versions of the initial SAT problem according
to the needs of the search process. For more details about the encoding, we
refer the reader to (Cerutti et al., 2013). Complete and preferred extensions
are computed by the LabSAT solver using the PrefSAT approach (Cerutti
et al., 2013). To compute the stable extension, additional clauses are added
to the SAT solver (i.e., the label undec is excluded). The SAT solver used
in LabSAT is lingeling (Biere, 2014). It is worth noticing that the grounded
semantics is computed without the use of the SAT solver, relying on a Java
implementation of the algorithm proposed in (Modgil and Caminada, 2009).

ArgSemSAT

The ArgSemSAT solver (Cerutti et al., 2015, 2013, 2015a, 2016b) im-
plements a collection of algorithms for solving all tasks of the competition
wrt. all semantics. ArgSemSAT-1.0 encodes the constraints corresponding
to complete labelings of an AF as a SAT problem, and then iteratively pro-
duces and solves modified versions of the initial SAT problem according to
the needs of the search process. As for the LabSAT solver, also ArgSemSAT
implements the PrefSAT approach (Cerutti et al., 2013) described above, for
enumerating the preferred extensions. PrefSAT first solves a SAT problem
whose solutions correspond to the complete extensions of an AF, and second,
a hill-climbing approach is used to find a maximal wrt. set inclusion com-
plete extension, i. e., a preferred extension. Already computed extensions
are excluded from subsequent search steps. In addition, ArgSemSAT-1.0
implements the SCC-P algorithm (Cerutti et al., 2014a) exploiting the SCC-
recursiveness schema (Baroni et al., 2005) using the partial order of strongly
connected components (SCCs). In SCC-P, the extensions of the frameworks
restricted to the SCC not receiving any attack are computed and combined
together. Then, each SCC which is attacked only by such unattacked SCCs
is considered: the extensions of such a SCC are computed and merged with
those already obtained. Finally, the subsequent (wrt. the partial order)
SCCs are considered until no remaining SCCs are left. The schema is recur-
sive, and the base of the recursion is reached when there is only one SCC:
in this case a solver similar to PrefSAT is called. It is worth noticing that
SCC-P resulted to be more efficient than PrefSAT on AFs with numerous
SCCs. ArgSemSAT-1.0 exploits the Glucose solver (Audemard et al., 2013)
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and the PrecoSAT10 solver.

ArgTools

The ArgTools solver (Argumentation Tools) (Nofal et al., 2015, 2014) is
a system based on backtracking algorithms for solving all tasks of the com-
petition wrt. all semantics. The backtracking algorithms of ArgTools are
based on exploration of an abstract binary search tree. The two key features
of ArgTools are i) to enhance the backtracking search for sets of acceptable
arguments by a new pruning strategy, called the global looking-ahead strat-
egy, and ii) to set out a backtracking-based approach to decide acceptance
under different semantics, i. e., whether an argument is in some/all set(s)
of acceptable arguments of a given AF, without necessarily enumerating all
such sets. Roughly, the global looking-ahead pruning strategy enables a back-
tracking procedure during traversing the search space to regularly look-ahead
for dead-ends, i. e., for paths that do not lead to solutions, early enough such
that considerable time is saved. For more details about this strategy, we refer
the reader to (Nofal et al., 2016).

CEGARTIX

The CEGARTIX (Counter-Example Guided Argumentation Reasoning
Tool) solver (Dvořák et al., 2015; Dvorák et al., 2014) supports the compu-
tation of credulous acceptance under semi-stable, and stage semantics, the
skeptical acceptance under preferred, semi-stable, and stage semantics, it
returns an arbitrary preferred extension, and enumerates all preferred exten-
sions. Note that only the part regarding the preferred semantics is relevant
for the participation in the competition. Each step in the exploration is
delegated to a complete Boolean satisfiability (SAT) solver. The strategy ex-
ploited by this solver consists first in the identification of first-level fragments
(NP/coNP layer) of second-level reasoning tasks for two main reasons: i) such
fragments present particular sources of complexity of the considered prob-
lems, and ii) NP fragments can be efficiently reduced to the SAT problem.
CEGARTIX uses the NP decision procedures as NP oracles in an iterative
way. For problems complete for the second level of the polynomial hierarchy,
this leads to general procedures which, in the worst case, require an exponen-
tial number of calls to the NP oracle, which is indeed unavoidable under the

10http://fmv.jku.at/precosat/
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assumption that the polynomial hierarchy does not collapse. Nevertheless,
such procedures can be designed to behave adequately on input instances
that fall into the considered NP fragment and on instances for which a rel-
atively low number of oracle calls is sufficient. CEGARTIX exploits current
state-of-the-art conflict-driven clause learning (CDCL) SAT-solver technol-
ogy as the underlying NP oracle. CEGARTIX employs the CDCL SAT-solver
Minisat (Eén and Sörensson, 2004). For more details about the NP decision
procedure, we refer the reader to (Dvorák et al., 2014).

Dungell

The Dungell solver (van Gijzel, 2015; van Gijzel and Nilsson, 2014) sup-
ports the computation of some and all grounded, complete, preferred and
stable extensions. The characterizing feature of Dungell consists in provid-
ing a solver that is as close to the mathematical definitions as possible. The
rationale behind this feature is to tackle the problem of implementing struc-
tured argumentation models and their translations by providing a framework
that allows implementation close to the mathematical specification and thus
facilitates checking and formal proof of properties. Dungell implements two
steps in the pipeline: first, it allows for the translation of a Carneades (Gor-
don et al., 2007) structured argumentation framework into an abstract one,
and second, it computes the extensions for the grounded, complete, preferred
and stable semantics. Given an AF, it is possible to verify whether a list of
arguments is conflict-free by checking that the list of attacks between those
arguments is empty. Acceptability of an argument with respect to a set of
arguments in an AF can be determined by verifying that all its attackers are
in turn attacked by an attacker in that set. This solver is one of the very few
ones using functional programming, specifically Haskell, for the implementa-
tion of structured and abstract models of argumentation.

ZJU-ARG

The ZJU-ARG solver (Guo and Liao, 2015; Liao, 2013) enumerates all
preferred extensions, and the grounded extension of an AF. It adopts a divide-
and-conquer strategy. As for the LabSATSolver, the grounded extension of
an AF is computed directly by following the algorithm proposed by (Modgil
and Caminada, 2009). The main feature of the ZJU-ARG solver is the ap-
plication of the notion of modularity to an argumentation framework, close
to the SCC concept, as for other solvers like ArgTools. To overcome the
fact that the efficiency of the SCC approach is highly limited by the maxi-
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mal SCC of an AF, the solver implements a solution by exploiting the most
skeptically rejected arguments of an AF. Roughly, given an AF, its grounded
labelling (Caminada, 2006a) is first generated. Then, the attacks between
the undecided arguments and the rejected arguments are removed. It turns
out that the modified AF has the same preferred labelling as the original AF,
but the maximal SCC in it could be much smaller than that of the orig-
inal AF. Since the ZJU-ARG solver adopts a divide-and-conquer strategy
without employing more efficient algorithms to compute the semantics of
each sub-framework, its efficiency highly depends on the topologies of the
argumentation frameworks in input.

ASPARTIX-V

The ASPARTIX-V solver (Answer Set Programming Argumentation Rea-
soning Tool – Vienna version) (Ronca et al., 2015; Egly et al., 2010) supports
the computation of skeptical acceptance under preferred semantics, returns a
single preferred extension, and enumerates all preferred extensions. Together
with an ASP encoding for preferred semantics, the answer-sets are in a 1-to-
1 correspondence with the preferred extensions of the given argumentation
framework AF. ASP solvers themselves offer enumeration of all answer-sets
and returning an arbitrary one. In ASPARTIX-V, a single program is used to
encode a particular argumentation semantics, while the instance of an argu-
mentation framework is given as an input database. ASPARTIX-V improves
the performances of its predecessor ASPARTIX11 as follows. While preferred
semantics is encoded as a disjunctive logic program making heavy use of
so-called loop constructs in ASP in the ASPARTIX system, ASPARTIX-V
is able to do without and uses conditional literals for enhancing the perfor-
mance. Intuitively, conditional literals allow to use, e. g., a dynamic head in
a disjunctive rule that contains a literal iff its condition is true. The loop
constructs can be avoided by alternative characterizations of preferred se-
mantics. ASPARTIX-V employs the so-called saturation technique: in the
encodings for preferred semantics, a first “guess” is made for a set of argu-
ments in the AF, and then the solver verifies if this set is admissible. To verify
if this set is also a subset-maximal admissible one, ASPARTIX-V performs
a second guess and verifies if this second guess is an admissible set that is

11http://www.dbai.tuwien.ac.at/research/project/argumentation/

systempage/
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a superset of the first guess. The idea is to keep this second guess small to
overcome computational overhead. Additional rules then verify if the witness
set represents an admissible set that may be combined with the first guess
to result in a larger admissible set. If this is the case, the first guess does
not represent a preferred extension. The underlying ASP solver is Clingo
4.4 (Gebser et al., 2014).

CoQuiAAS

The CoQuiAAS solver (Lagniez et al., 2015,a) solves all tasks of the com-
petition wrt. all semantics by exploiting constraint programming techniques.
More precisely, it takes advantage of the encodings proposed by (Besnard and
Doutre, 2004). CoQuiAAS deals with encodings in Negation Normal Form
(NNF) formulae, meaning some propositional formulae where the negation
operator is only applied on variables. As CoQuiAAS uses SAT solvers, which
are only able to tackle propositional formulae in CNF, a translation step from
NNF to CNF is required between the encodings which exist in the literature
and the ones that used in the system. An interesting question for SAT solvers
is to determine an interpretation which maximizes the number of satisfied
constraints: this problem is called Max-SAT. We can generalize this prob-
lem, giving a weight to each constraint (Weighted Max-SAT), and if some
constraints have an infinite weight (i.e., they have to be satisfied), then the
problems are said to be “partial” (Partial Max-SAT). CoQuiAAS uses CNF
formulae to solve problems from the first level of the polynomial hierarchy,
and some encodings in the Partial Max-SAT formalism for higher complexity
problems. Discovering an optimal solution of a Max-SAT instance allows to
determine a set of constraints from the initial formula which is consistent,
such that adding any other constraint from the initial problem makes this new
problem inconsistent: a set of constraints which has this property is called
a maximal satisfiable subset (MSS). The optimal solutions of the Max-SAT
problem are only a subset of all the MSS of a formula. The solver approaches
argumentation semantics exploiting SAT and MSS extraction. CoQuiAAS
incorporates the software coMSSExtractor (Grégoire et al., 2014) to perform
the constraint-based process.

ASPARTIX-D

The ASPARTIX-D solver (Answer Set Programming Argumentation Rea-
soning Tool – Dresden version) (Gaggl and Manthey, 2015) is a collection of
ASP encodings together with dedicated solvers to solve all tasks of the com-
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petition wrt. all semantics. The general approach of ASPARTIX-D is the
same the approach of ASPARTIX-V described above but differs in several
details. In particular, the ASP encodings used by ASPARTIX-D are those
described in (Egly et al., 2010) and the optimization applied has been pre-
sented in (Dvorák et al., 2011). The main aim of the solver is to find the
most suitable encodings and solver configuration. ASPARTIX-D exploits the
potassco ASP solvers12.

ConArg

The ConArg (Argumentation with Constraints) solver (version 2.0) (Bistarelli
et al., 2015, 2016) allows to enumerate all conflict-free, admissible, complete,
stable, grounded, preferred, semi-stable, ideal, and stage extensions, to re-
turn one extension given one of these semantics, to check the credulous and
skeptical acceptance for the conflict-free, admissible, complete, and stable
semantics. It is a constraint programming tool where the properties of the
semantics are encoded into constraints, and arguments are assigned to 1
(true) if they belong to a valid extension for that semantics, and 0 otherwise.
Searching for solutions takes advantage of classical techniques, such as local
consistency through constraint propagation, different heuristics for trying
to assign values to variables, and a complete search-tree with branch-and-
bound. To map an argumentation framework AF to a Constraint Satisfaction
Problem (CSP)13, which is defined by a set of constraints defined over the
a set of variables each with domain D, ConArg defines a variable for each
argument in the AF, and each of these arguments can be taken or not in an
extension, i. e., the domain of each variable is D = {1, 0}. As an example,
preferred extensions are found by assigning as more arguments as possible
to 1 while searching for complete extensions. The solver exploits a toolkit
called Gecode 4.4.014 defined for developing constraint-based systems and
applications.

GRIS

The GRIS (Gabbay-Rodrigues Iterative Solver) solver (Rodrigues, 2015,
2016) allows to produce one or all of the extensions of the argumentation

12http://potassco.sourceforge.net
13A CSP is a triple P = 〈V,D,C〉, where C is a set of constraints defined over the

variables in V , each with domain D.
14http://www.gecode.org
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framework under the grounded and preferred semantics, and given an argu-
ment a to decide whether it is accepted credulously or skeptically according
to one of these two semantics. The peculiarity of the GRIS solver is that
it works with numerical argumentation networks where arguments are given
initial values in the interval [0, 1] from which equilibrium values are calculated
iteratively yielding traditional extensions through the use of a characteriza-
tion result (Rodrigues, 2015). An argumentation framework is represented
in GRIS by means of a set of equations. As for ArgTools and the ZJU-ARG
solver, also GRIS exploits strongly connected components to compute the
extensions. More precisely, the solver starts by computing the strongly con-
nected components of the network and arranging them into layers that can
be used in successive computation steps, following the idea of (Liao, 2014).
Once the layers are computed, the solver can identify the deepest layer of
computation needed according to the layer depth of the input argument and
this can be used to terminate the computation of decision problems as early
as possible.

ASGL

The ASGL solver (Sprotte, 2015) solves all tasks of the competition wrt.
all semantics. ASGL uses an extension-based encoding for solutions. As
for ConArg, also ASGL casts the argumentation framework as a CSP. Con-
straints are formalized in a so-called computation space and the algorithm
is based on propagation methods to reach a fixpoint. The task of comput-
ing some preferred extension is implemented in ASGL like a classical opti-
mization problem with branch-and-bound search (already part of standard
Gecode). As soon as one solution is found, all further solutions are con-
strained to be better than the current solution. If no more solution can be
found, the current solution is maximal. To efficiently enumerate all preferred
extensions, a filtering over all complete extensions for maximality is per-
formed. The ASGL solver, in one out of the two solvers participating to the
Competition, that were written using a functional langauge (Lisp). It also
features an interface to the Lingeling SAT Solver as an alternative solver
backend. Also ASGL, together with ConArg, exploits the Gecode generic
CSP solver library.

LamatzSolver

The LamatzSolver system (Lamatz, 2015) is a solver for computing the
grounded extension of argumentation frameworks based on a direct imple-
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mentation of the characteristic function (Dung, 1995). Sets like attacks are
implemented as a HashMap in Java. More precisely, the computation of the
grounded extension is addressed along with the following steps: it checks
if the HashMap typeZero (containing unattacked arguments) is empty. If
the answer is positive, than an empty HashMap called the grounded is re-
turned, otherwise the algorithm copies each argument of typeZero to the
HashMap grounded. The size of grounded is stored in a parameter prev and
for each argument the defended arguments will be determined and added to
the grounded. According to this process, the algorithm keeps track of the ar-
guments attacked by the arguments in grounded. These arguments are stored
in a HashMap out, and the attacks of these arguments are candidates for the
grounded extension. The algorithm checks if all attackers of a candidate are
defeated. These steps are repeated for the grounded until it does not grow
anymore. Finally, the grounded Hash Map is returned.

ProGraph

The ProGraph solver (Groza and Groza, 2015) allows to compute some
extension and decides whether an argument is credulously inferred, both with
respect to the stable semantics. The key feature of the ProGraph solver is
that of relying on bipartite graphs. More precisely, the set of arguments is
partitioned in two classes: in and out. The idea behind is that determining
an extension which attacks every argument which is not in that extension
can be reduced to a relaxed partitioning problem in which the initial set
of arguments is split in two partitions, with the arguments from the second
partition being free to attack each other. Arguments are sorted such that they
will be placed from the one who attacks the most to the one who attacks the
less arguments. The algorithm starts by picking a non-attacked argument and
adds it to the attackers extension, and then checks if any of the arguments
attacked by the selected one is in the first partition. If this is the case,
the algorithm starts backtracking. Otherwise, the arguments attacked by
the current argument are added to the second partition. These steps are
repeated until all arguments are partitioned or until all paths fail. If only
attacked arguments are left, the algorithm chooses one of them and supposes
it is not attacked. A verification step stops the algorithm if at some point
the attacker is to be placed in the second partition.
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DIAMOND

The DIAMOND solver (Ellmauthaler and Strass, 2015, 2014) solves all
tasks of the competition wrt. all semantics. DIAMOND employs the declar-
ative programming paradigm of ASP, and the knowledge representation lan-
guages implemented in the solver are Abstract Dialectical Frameworks (ADFs)
(Brewka et al., 2013), which are a generalization of AFs. In addition to the
computation of the semantics of an AF, DIAMOND can also compute the se-
mantics for (bipolar) ADFs in various different input formats, decide whether
a given ADF is bipolar, or transform an ADF from one representation into
another. The encodings for DIAMOND are built in a modular way. To com-
pute the models of an ADF with respect to a semantics, different modules
need to be grounded together to get the desired behavior. As for other solvers
described above, DIAMOND exploits the potassco ASP solvers15.

Carneades

The Carneades solver (Gordon, 2015; Gordon et al., 2007) solves all tasks
of the competition wrt. all semantics. Note that Carneades originally in-
cluded an implementation of a solver for Dung-like abstract argumentation
frameworks, using grounded semantics, despite the focus of the Carneades
project has not been abstract argumentation, but rather structured argu-
mentation. The implementation closely follows high-level specifications of
abstract argumentation frameworks, and has not been optimized with the
exception of the grounded semantics where the implementation keeps track
of whether a mutable labelling has changed, in its main loop, and exits the
loop when no changes are made, without having to explicitly test whether
two labelings are equivalent. The solver’s procedures are implemented for
finding the first subset of arguments which satisfy a given predicate and
for applying some procedure to each subset. Using functions implementing
predicates for complete and stable extensions, Carneades finds the first or all
complete extensions and filter the complete extensions to find one or more
which are also stable. Argument sets are represented as Hash tables, from
arguments to Boolean values.

prefMaxSAT

The prefMaxSAT solver (Vallati et al., 2015; Cerutti et al., 2014a) allows
to compute the extension enumeration problem for the preferred semantics.

15http://potassco.sourceforge.net
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It implements an encoding of preferred extensions search using unweighted
MaxSAT. The algorithm exploited in prefMaxSAT is based on the idea of
encoding the constraints corresponding to admissible labelings of an AF as a
MaxSAT problem, and then iteratively producing and solving modified ver-
sions of the initial problem. If at any one step a variable assignment that
maximally satisfies the formula is returned, the corresponding labelling is
saved in the list of found preferred extensions. Then a hard clause for elim-
inating the solution is added to the formula and the process is repeated. If
no further solution could be found, prefMaxSAT ends and provides the set of
found preferred extensions. Each step of the search process requires the solu-
tion of a MaxSAT problem. The AF is encoded in a CNF and is then provided
to the MaxSAT solver. If a variable assignment that maximally satisfies the
formula is returned, then i) the corresponding labelling is saved in the list of
found preferred extensions; ii) a clause for eliminating the solution is added
to the CNF; iii) a clause forcing to include different arguments is added to
the CNF, and finally, iv) the process is repeated. If the MaxSAT solver re-
turns that no variable assignment satisfies the constraints, prefMaxSAT ends
and provides the set of found preferred extensions. As for ArgSemSAT, also
prefMaxSAT exploits the Glucose solver (Audemard et al., 2013).

ASSA

TheASSA solver (Hadjisoteriou and Georgiou, 2015; Hadjisoteriou, 2015)
computes one or all extensions and decide whether an argument is credu-
lously or skeptically inferred with respect to the stable semantics. The solver
implements an approach based on mathematical matrix operations to solve
abstract argumentation problems. The system first creates a matrix repre-
sentation of an AF. Then, all possible instances of the selected arguments
are created and combined into another matrix S. Based on matrix oper-
ations, and more specifically, on left and right matrix multiplication, it is
possible to navigate inside the AF to find which arguments attack the other
arguments and which arguments are under attack. By constructing a matrix
multiplication, it is possible to determine whether a given set of arguments
is conflict-free. Using this method, all conflict-free sets are extracted, and
based on some comparison to the system output matrices and the matrix S,
the system is able to find all stable extensions.
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5. Results and Analysis

We now report on the results of the competition, which evaluated the
participating solvers from Section 4 using the methodology described in Sec-
tion 3.16 Tables 5–8 show the obtained rankings of all solvers per track. Each
table gives the rank of the solver per semantics, the number of instances where
the solver had a timeout (column “#TO”), the number of incorrectly clas-
sified instances (column “#−”), the number of correctly classified instances
(column “#+”), and the total runtime for all classified instances (column
“RT in ms”). The column “Significant” indicates whether the performance
of a solver is significantly superior to the solver ranked right after it, accord-
ing to a standard Student’s T-Test with significance level 95%, cf. (Bulmer,
1979). A “YES” indicates that the solver in the row is indeed significantly
superior than the next one, a “NO” indicates that is not the case, and a “-”
indicates that a significance test is not applicable—and not necessary—as
the next solver correctly solved strictly less instances. Solvers are grouped
by the number of correctly classified instances and ranked in each group by
runtime. Therefore, note that the column on runtime is not sorted across the
whole table, as solvers, which solved fewer instances within the time limit,
may have a smaller total runtime on the remaining instances as solvers which
solved more instances. Furthermore, solvers with identical number of solved
instances and identical runtime performance are ranked equally. Table 9
shows the aggregated ranking of solvers participating in all sixteen tracks,
where the column “Borda count” gives the sum of all ranks of the particular
solver in all tracks.

Due to the results depicted in Table 9, the International Competition of
Computational Models of Argumentation awarded the following solvers with
first, second, and third place, respectively:

1. CoQuiAAS

2. ArgSemSAT

3. LabSATSolver

Furthermore, the solver Cegartix additionally received the award ”Honorable
mention” as it achieved the two first places and one second place in the three
tracks it participated in (SE-PR, EE-PR, DS-PR).

16The raw results and more detailed statistics can be found at http://

argumentationcompetition.org/2015/results.html
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σ Rank Solver #TO #− #+ RT in ms Significant

CO

1 CoQuiAAS 0 0 192 30170 YES
2 ASGL 0 0 192 302730 NO
3 ASPARTIX-D 0 0 192 411890 NO
4 ConArg 0 0 192 505960 NO
5 ArgSemSAT 0 0 192 552790 YES
6 ArgTools 0 0 192 1627070 -
7 LabSATSolver 2 1 189 406450 -
8 DIAMOND 13 28 151 15452520 -
9 Carneades 137 0 55 6300 YES
10 Dungell 137 0 55 37400 -

PR

1 Cegartix 0 0 192 859590 YES
2 ArgSemSAT 0 0 192 1265260 NO
3 LabSATSolver 0 0 192 1729840 -
4 ASPARTIX-V 1 0 191 7875480 -
5 CoQuiAAS 2 0 190 2454510 -
6 ASGL 12 0 180 4056110 -
7 ConArg 15 0 177 5360400 -
8 ASPARTIX-D 17 23 152 12379180 -
9 ArgTools 59 0 133 4157610 -
10 GRIS 17 103 72 28153000 -
11 DIAMOND 2 152 38 6455890 -
12 Carneades 192 0 0 0 NO

Dungell 192 0 0 0 -

GR

1 CoQuiAAS 0 0 192 28860 YES
2 Carneades 0 0 192 88490 YES
3 LabSATSolver 0 0 192 368110 YES
4 ArgSemSAT 0 0 192 710930 YES
5 ArgTools 0 0 192 1654720 YES
6 GRIS 0 0 192 4191400 -
7 ASGL 1 0 191 307480 -
8 ASPARTIX-D 18 13 161 7868920 -
9 ConArg 40 0 152 2365420 -
10 Dungell 72 0 120 213950 -
11 DIAMOND 0 177 15 13524760 -

ST

1 ASPARTIX-D 0 0 192 275270 YES
2 ArgSemSAT 0 0 192 739930 -
3 LabSATSolver 1 0 191 877000 -
4 CoQuiAAS 4 0 188 295160 -
5 ConArg 6 0 186 7235750 -
6 ASGL 7 1 184 3147420 -
7 DIAMOND 14 27 151 15748650 -
8 ArgTools 46 49 97 4461260 -
9 ProGraph 101 0 91 11562420 -
10 Carneades 192 0 0 0 NO

Dungell 192 0 0 0 -
ASSA 0 192 0 7024250 NO

Table 5: Results for the problem SE (“some extension”) per semantics (N = 192); “#TO”
is the number of timeouts, “#−” is the number of incorrectly classified instances, “#+”
is the number of correctly classified instances, “RT in ms” is the total runtime for all
classified instances, and “Significant” indicates whether the performance of a solver is
significantly better than the next solver (only applicable if both correctly solved the same
number of instances)
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σ Rank Solver #TO #− #+ RT in ms Significant

CO

1 ASPARTIX-D 5 1 186 1040810 -
2 ArgSemSAT 9 0 183 4518420 -
3 CoQuiAAS 10 0 182 1776270 NO
4 LabSATSolver 7 3 182 2631520 -
5 ASGL 30 0 162 7979820 -
6 ConArg 42 0 150 2459560 -
7 DIAMOND 22 36 134 20949590 -
8 ArgTools 71 0 121 2612080 -
9 Carneades 192 0 0 0 NO

Dungell 192 0 0 0 -

PR

1 Cegartix 1 0 191 1520400 -
2 ArgSemSAT 2 0 190 3563780 NO
3 CoQuiAAS 2 0 190 4896610 -
4 ASPARTIX-V 3 0 189 9926900 -
5 LabSATSolver 3 2 187 4775950 -
6 prefMaxSAT 27 0 165 6863850 -
7 ASGL 29 0 163 6116050 -
8 ASPARTIX-D 18 23 151 13381150 -
9 ConArg 46 0 146 2650920 -
10 ArgTools 65 0 127 3048350 -
11 ZJU-ARG 100 17 75 1131130 -
12 GRIS 16 104 72 28214730 -
13 DIAMOND 9 141 42 9497860 -
14 Carneades 192 0 0 0 NO

Dungell 192 0 0 0 -

GR

1 CoQuiAAS 0 0 192 30390 YES
2 Carneades 0 0 192 87000 YES
3 LamatzSolver 0 0 192 287020 NO
4 LabSATSolver 0 0 192 338540 YES
5 ArgSemSAT 0 0 192 691780 NO
6 ZJU-ARG 0 0 192 801200 YES
7 ArgTools 0 0 192 1660070 YES
8 GRIS 0 0 192 4184350 -
9 ASGL 1 0 191 304810 -
10 ASPARTIX-D 17 14 161 8572200 -
11 ConArg 40 0 152 2353550 -
12 Dungell 72 0 120 212280 -
13 DIAMOND 0 177 15 13597410 -

ST

1 ASPARTIX-D 1 0 191 575620 -
2 ArgSemSAT 2 0 190 1708400 -
3 CoQuiAAS 4 0 188 620350 -
4 ASGL 11 0 181 8147390 NO
5 ConArg 11 0 181 8321000 -
6 ArgTools 57 0 135 2371760 -
7 LabSATSolver 1 74 117 1530240 -
8 DIAMOND 14 104 74 19026710 -
9 Carneades 192 0 0 0 NO

Dungell 192 0 0 0 -
ASSA 0 192 0 6939650 NO

Table 6: Results for the problem EE (“enumerate extensions”) per semantics (N = 192);
“#TO” is the number of timeouts, “#−” is the number of incorrectly classified instances,
“#+” is the number of correctly classified instances, “RT in ms” is the total runtime for
all classified instances, and “Significant” indicates whether the performance of a solver is
significantly better than the next solver (only applicable if both correctly solved the same
number of instances) 34



σ Rank Solver #TO #− #+ RT in ms Significant

CO

1 ArgSemSAT 0 0 576 1018060 YES
2 ASPARTIX-D 0 0 576 2530280 -
3 LabSATSolver 1 0 575 1705780 -
4 CoQuiAAS 3 0 573 439500 -
5 ASGL 8 0 568 8495780 -
6 ConArg 21 0 555 13877500 -
7 DIAMOND 29 5 542 48188790 -
8 ArgTools 93 0 483 10278620 -
9 Carneades 576 0 0 0 -

PR

1 ArgSemSAT 0 0 576 884960 YES
2 LabSATSolver 0 0 576 1992860 -
3 CoQuiAAS 2 0 574 412620 -
4 ASGL 5 0 571 8841570 -
5 DIAMOND 2 12 562 66137810 -
6 GRIS 48 40 488 69419300 -
7 ArgTools 93 0 483 8939600 -
8 ASPARTIX-D 144 6 426 18318950 -
9 Carneades 576 0 0 0 -

GR

1 CoQuiAAS 0 0 576 92580 YES
2 Carneades 0 0 576 248430 YES
3 LabSATSolver 0 0 576 885950 NO
4 ASGL 0 0 576 967200 YES
5 ArgSemSAT 0 0 576 2140360 YES
6 ArgTools 0 0 576 5036130 YES
7 GRIS 0 0 576 13246200 -
8 DIAMOND 0 22 554 39350510 -
9 ASPARTIX-D 44 1 531 23996940 -

ST

1 ASPARTIX-D 0 0 576 513390 YES
2 ArgSemSAT 0 0 576 779820 -
3 LabSATSolver 1 0 575 1234520 -
4 CoQuiAAS 2 0 574 170390 -
5 ConArg 5 0 571 4658410 -
6 ASGL 7 0 569 4891350 -
7 DIAMOND 30 2 544 46999150 -
8 ASSA 0 46 530 20966220 -
9 ArgTools 89 0 487 9716900 -
10 ProGraph 246 18 312 37377190 -
11 Carneades 576 0 0 0 -

Table 7: Results for the problem DC (“decide credulous”) per semantics (N = 576);
“#TO” is the number of timeouts, “#−” is the number of incorrectly classified instances,
“#+” is the number of correctly classified instances, “RT in ms” is the total runtime for
all classified instances, and “Significant” indicates whether the performance of a solver is
significantly better than the next solver (only applicable if both correctly solved the same
number of instances)
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σ Rank Solver #TO #− #+ RT in ms Significant

CO

1 ASGL 0 0 576 900660 NO
2 LabSATSolver 0 0 576 1005630 YES
3 ConArg 0 0 576 1479110 NO
4 ArgSemSAT 0 0 576 1700390 YES
5 ASPARTIX-D 0 0 576 3127750 YES
6 ArgTools 0 0 576 4852460 -
7 CoQuiAAS 1 0 575 91310 -
8 DIAMOND 44 5 527 62109540 -
9 Carneades 576 0 0 0 -

PR

1 ArgSemSAT 0 0 576 2005760 -
2 Cegartix 1 0 575 1979600 YES
3 LabSATSolver 1 0 575 5520220 -
4 ASPARTIX-V 4 0 572 23387890 -
5 CoQuiAAS 6 0 570 9580080 -
6 DIAMOND 25 36 515 808113010 -
7 GRIS 49 18 509 64506430 -
8 ASGL 69 0 507 20655510 -
9 ArgTools 111 0 465 6675920 -
10 ASPARTIX-D 155 3 418 23109590 -
11 Carneades 576 0 0 0 -

GR

1 CoQuiAAS 0 0 576 95130 YES
2 Carneades 0 0 576 252900 YES
3 ASGL 0 0 576 935140 NO
4 LabSATSolver 0 0 576 1005340 YES
5 ArgSemSAT 0 0 576 2134270 YES
6 ArgTools 0 0 576 4852170 YES
7 GRIS 0 0 576 11615450 -
8 ASPARTIX-D 39 2 535 24273490 -
9 DIAMOND 0 113 463 40100710 -

ST

1 ASPARTIX-D 0 0 576 863480 YES
2 LabSATSolver 0 0 576 2831570 -
3 CoQuiAAS 3 0 573 1237220 -
4 ConArg 19 0 557 20402070 -
5 ASGL 23 0 553 16240150 -
6 DIAMOND 31 7 538 53686090 -
7 ArgSemSAT 0 222 354 3009520 -
8 ASSA 0 254 322 20818370 -
9 ArgTools 122 172 282 10172600 -
10 Carneades 576 0 0 0 -

Table 8: Results for the problem DS (“decide skeptical”) per semantics (N = 576); “#TO”
is the number of timeouts, “#−” is the number of incorrectly classified instances, “#+”
is the number of correctly classified instances, “RT in ms” is the total runtime for all
classified instances, and “Significant” indicates whether the performance of a solver is
significantly better than the next solver (only applicable if both correctly solved the same
number of instances)
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Rank Solver Borda count

1 CoQuiAAS 49
2 ArgSemSAT 50
3 LabSATSolver 58
4 ASGL 82
5 ASPARTIX-D 84
6 ArgTools 119
7 Carneades 130
8 DIAMOND 134

Table 9: Aggregated ranking for solvers participating in all tracks

The statistics on timeouts and runtime performances given in Figures 5–8
show that there is a large diversity between solvers. For example, from the
results of the problem SE-PR (Table 5) one can see that there are solvers
without any timeout (places 1–3) and solvers not solving any instance within
the time limit (place 12). Moreover, the first place (Cegartix) for this track
achieved an average runtime of roughly 4,5 seconds on any instance, which
is way below the timeout of 10 minutes. Similar observations can be made
for the other tracks. Furthermore, many solvers performed quite differently
in different tracks, compared to other solvers. For example, solver no. 16
(Carneades) achieved second place for all tracks related to grounded seman-
tics, but only last place in all other tracks. This behavior stems from the fact
that some solvers have been developed for a specific semantics (grounded se-
mantics for Carneades), and have not been tailored towards other semantics.

All four tracks related to stable semantics have been won by ASPARTIX-
D, often with great lead to the second place. For example, for the problem
EE-ST it solved one more instance than the second place (ArgSemSAT) but
still needed only roughly a third of the total time, cf. Table 6. ASPARTIX-
D is based on reductions of abstract argumentation problems to answer set
programming—see also Section 4—and therefore exploits the equivalence of
stable semantics in abstract argumentation to answer set semantics in a di-
rect way. Note, that also the solver DIAMOND is based on an answer set
programming reduction. In contrast to ASPARTIX-D, its approach is, how-
ever, actually a two-level reduction. In a first step, abstract argumentation
problems are reduced to an equivalent formalization using Abstract Dialecti-
cal Frameworks (Brewka et al., 2013). In the second step, the latter is then
reduced to an answer set program. This overhead is a probable cause for the
lower ranking of this solver. In addition, DIAMOND shows the higher total
runtime for all incorrect classified instances, meaning that this two-level ap-
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proach has a serious impact on the performances of the solver. Notice that
the second solver for higher total runtime for all incorrect classified instances
is ASPARTIX-D, even if the impact on the overall performance of the solver
is less significant than for DIAMOND.

Despite the exception from above, it can be seen that solvers that rely on
a reduction to other established formalisms, such as SAT solving, constraint
satisfaction problems, or, as mentioned, answer set programming, performed
better than solvers implementing a direct algorithm for abstract argumenta-
tion. In fact, the first three places in Table 9 (CoQuiAAS, ArgSemSAT, and
LabSATSolver) and the honorable mention Cegartix rely on reductions to
(maximum) satisfiability problems and make use of mature SAT solvers for
solving argumentation problems, and all first places in all tracks use one of
the three reductions mentioned above. Solvers using direct algorithms—i. e.
solvers not using any other formalism than abstract argumentation—such as
ArgTools and Carneades usually performed below average.

Tables 10 and 11 show the performance of the solvers wrt. the different
test sets, accumulated over all tracks. For each solver, the column N in each
indicates the number of instances solved for each test set (be reminded that
each test set contains 24 benchmark graphs and that for DS and DC problems
each benchmark graph was tested three times). For each test set generated
by the generators A, B, and C the corresponding cells contain the number of
incorrectly classified instances and timeouts wrt. the given total number of
instances N . Table 10 gives several interesting insights into the behavior of
the solvers wrt. different characteristics. For example, considering solver no.
9 (ASPARTIX-D), it can be seen that it had a hard time solving instances
generated by the graph generator A (which featured large graphs with a large
grounded extension), but was significantly better in solving instances of graph
generators B and C (both generated smaller graphs but with a more complex
attack structure). However, other solvers such as no. 3 (ArgTools) and no. 10
(ConArg) featured quite the opposite behavior, solving instances of generator
A usually easier than instances of B and C. Furthermore, the average behavior
of solvers on the different test sets—indicated by the summed values in the
last row of the table—is quite homogenous, where data sets 4 and 5 (generator
B) are slightly harder on average. But the individual different behavior of the
solvers also justifies the decision to use different graph models and challenging
graph features for the competition, as otherwise some solvers would have been
at an advantage.

Table 12 reports on the percentage of correctly classified instances for each
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A B C
No. Solver N #1 #2 #3 #4 #5 #6 #7 #8

1 LabSATSolver 768 0 5 0 4 0 0 2 6
2 ArgSemSAT 768 0 0 0 3 0 1 3 6
3 ArgTools 768 3 9 24 221 366 0 78 105
4 Cegartix 120 0 0 0 0 1 0 0 1
5 Dungell 192 192 192 192 144 144 128 122 127
6 ZJU-ARG 48 0 0 0 23 24 14 21 18
7 ASPARTIX-V 120 0 1 6 0 0 0 0 1
8 CoQuiAAS 768 3 0 2 14 2 0 5 13
9 ASPARTIX-D 768 104 190 143 0 10 0 1 10
10 ConArg 480 0 0 0 61 118 0 40 26
11 GRIS 384 0 0 0 0 1 30 64 40
12 ASGL 768 1 0 7 30 86 0 41 38
13 LamatzSolver 24 0 0 0 0 0 0 0 0
14 ProGraph 96 29 23 27 72 72 51 34 39
15 DIAMOND 768 53 107 6 34 32 1 0 2
16 Carneades 768 576 576 576 576 576 560 554 559
17 prefMaxSAT 24 0 0 0 11 15 0 0 1
18 ASSA 192 0 0 0 0 0 0 0 0

Sum 7824 961 1103 983 1193 1447 785 965 992

Table 10: Number of timeouts per solver and test set, summed up over all tracks

A B C
No. Solver N #1 #2 #3 #4 #5 #6 #7 #8

1 LabSATSolver 768 2 1 0 7 6 24 22 18
2 ArgSemSAT 768 0 0 0 18 12 72 66 54
3 ArgTools 768 0 0 0 7 4 96 66 48
4 Cegartix 120 0 0 0 0 0 0 0 0
5 Dungell 192 0 0 0 0 0 0 0 0
6 ZJU-ARG 48 0 0 0 1 0 10 1 4
7 ASPARTIX-V 120 0 0 0 0 0 0 0 0
8 CoQuiAAS 768 0 0 0 0 0 0 0 0
9 ASPARTIX-D 768 2 7 76 0 0 0 2 0
10 ConArg 480 0 0 0 0 0 0 0 0
11 GRIS 384 0 0 0 68 67 42 34 49
12 ASGL 768 0 0 0 0 0 0 0 1
13 LamatzSolver 24 0 0 0 0 0 0 0 0
14 ProGraph 96 2 1 0 7 5 0 1 2
15 DIAMOND 768 120 146 217 65 137 113 127 119
16 Carneades 768 0 0 0 0 0 0 0 0
17 prefMaxSAT 24 0 0 0 0 0 0 0 0
18 ASSA 192 62 63 51 85 79 120 116 108

Sum 7824 188 218 344 258 310 477 435 403

Table 11: Number of incorrectly classified instances per solver and test set, summed up
over all tracks
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solver for each of the tracks it participated in. We report with 0% when the
solver participated in the track but without providing any correct answer, and
we leave the cell empty when the solver did not participate in that specific
track. From this view on the results of the competition it emerges that
systems employing SAT-solvers perform better wrt. instance classifications
than those employing ASP. Only few systems have participated in tasks where
they were unable to provide correct answers, i. e., Carneades, Dungell, and
ASSA. It must be noted that the common point of these three systems is of
being ad-hoc implementations of abstract argumentation frameworks. These
negative results are explained by the fact that these systems take too much
time to compute the extensions, and thus they time out before returning any
answer, e. g., Carneades is optimized for grounded semantics only.



No. Solver SE EE DC DS
CO PR GR ST CO PR GR ST CO PR GR ST CO PR GR ST

1 LabSATSolver 98% 100% 100% 99% 94% 97% 100% 60% 99% 100% 100% 99% 100% 99% 100% 100%
2 ArgSemSAT 100% 100% 100% 100% 95% 98% 100% 98% 100% 100% 100% 100% 100% 100% 100% 61%
3 ArgTools 100% 69% 100% 50% 63% 66% 100% 50% 83% 83% 100% 84% 100% 80% 100% 48%
4 Cegartix 100% 99% 99%
5 Dungell 28% 0% 62% 0% 0% 0% 62% 0%
6 ZJU-ARG 39% 100%
7 ASPARTIX-V 99% 98% 99%
8 CoQuiAAS 100% 98% 100% 97% 94% 98% 100% 97% 99% 99% 100% 99% 99% 98% 100% 99%
9 ASPARTIX-D 100% 79% 83% 100% 96% 78% 83% 99% 100% 73% 92% 100% 100% 72% 92% 100%
10 ConArg 100% 92% 79% 96% 78% 76% 79% 94% 96% 99% 100% 96%
11 GRIS 37% 100% 37% 100% 84% 100% 88% 100%
12 ASGL 100% 93% 99% 95% 84% 84% 99% 94% 98% 99% 100% 98% 100% 88% 100% 96%
13 LamatzSolver 100%
14 ProGraph 47% 54%
15 DIAMOND 78% 19% 7% 78% 69% 21% 7% 38% 94% 97% 96% 94% 91% 89% 80% 93%
16 Carneades 9% 0% 100% 0% 0% 0% 100% 0% 0% 0% 100% 0% 0% 0% 100% 0%
17 prefMaxSAT 95%
18 ASSA 0% 0% 92% 55%

Table 12: Percentage of correctly classified instances for each track supported by the participating solvers. Empty cells
represent tracks not supported by the related solver.



6. Lessons Learned

The competition has substantially contributed to the advancement of the
state-of-the-art of abstract argumentation solvers, but also made apparent
where optimisations and new developments may take root. The best solvers
of ICCMA’15 were based on reductions to other formalisms and thus used
general multi-purpose tools. Although these solvers benefit from the matu-
rity of e. g., current SAT solvers, the approach of reduction still adds some
overhead. For one, translating a possibly huge abstract argumentation prob-
lem into an equivalent SAT instance and calling a SAT solver using a specific
syntax may be time-consuming, despite the fact that the translation is poly-
nomial from the perspective of computational complexity. Furthermore, the
strategies of SAT solvers to solve SAT instances are tailored towards general
or “typical” problems expressed in SAT instances. It is not apparent that
SAT instances compiled from abstract argumentation problems are included
in these sets of problems. To give an analogy, consider the problem of finding
shortest paths in a graph. It is possible to phrase this problem as a combina-
torial optimization problem and use general-purpose methods such as simu-
lated annealing (Lawrence, 1987). However, domain-specific algorithms such
as Dijkstra’s algorithm (Dijkstra, 1959) clearly outperform these general-
purpose methods in their domain.17 Still, in the competition, the introduced
overhead of reduction-based approaches did not significantly outweigh the
maturity of the utilized tools. This fact indicates that focused research and
development of domain-specific approaches to abstract argumentation may
outperform reduction-based approaches in the future. Whilst on the one
side, we expect the next generation of solvers to outperform the general pur-
pose SAT-solvers exploited by the systems participating in the competition,
on the other side, we should question about the actual necessity of doing
so. Applications of such abstract argumentation solvers to concrete usage
scenarios are hard to find, and recent results in the argument mining com-
munity (Cabrio and Villata, 2015) show that existing graphs extracted from
real natural language argumentation interactions, e. g., online dialogues in
blogs, do not (almost) present cycles among the arguments. Moreover, such
dialogues end up with pretty small graphs (e. g., 40 nodes for an online debate

17Note that in the given analogy, the complexity classes actually differ as general com-
binatorial optimization is not polynomial while shortest paths problems are; however, the
argument is similar for reductions between problems of the same complexity.
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about a specific topic). These observations seem to suggest that the actual
need of the community is not to outperform SAT-based solvers. However, it
must be noticed that the results provided by the argument mining commu-
nity are still preliminary, and there is actually a potential in mining for huge
argumentation graphs reporting the views of hundreds of users about a cer-
tain topic widely discussed on the Web (e. g., including the opinions reported
on blogs, social networks, online debate platforms). In conclusion, even if the
fact of outperforming existing solvers does not answer a present need in the
community, it will in the near future in combination with argument mining
techniques.

Concerning the semantics, being ICCMA’15 the first edition of such a
competition, it was decided to focus on the four standard semantics (Dung,
1995). Given the results, this appears to be a reasonable choice, as many of
the solvers were unable to tackle the whole range of tracks. It would have
been useless to provide even more semantics, as it would affected only very
few solvers. The next ICCMA competition scheduled for 2017 will consider
also ideal, semi-stable and stage semantics, in addition to the four standard
semantics.

Concerning the input graphs, we believe that we covered a sufficient range
of graph structures in order to avoid penalizing some implementations over
others. In general, we conclude that one of the main insights of the compe-
tition is that there is still great potential for developing new sophisticated
algorithmic approaches to abstract argumentation problems.

Finally, the ASPARTIX format has emerged as the standard format for
the input data, and almost all participants have adapted their solvers to
accept such an input format. This is in line with other well-known competi-
tions like for instance the SAT solver competition, where the standard input
format is the DIMACS CNF format.

7. Conclusions

This paper gave an overview on the First International Competition of
Computational Models of Argumentation (ICCMA’15). We described the
computational tasks of the competition, its technical setups, and presented
the participants. Furthermore, we reported on its results and provided some
analysis and interpretation. Being the first instance of ICCMA, the orga-
nizers were very satisfied with the engagement of the community and its 18
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submitted solvers. The competition provided a common background to com-
pare different solvers developed in the last years in the computational models
of argumentation community with the adoption, on the one side of novel al-
gorithms, and on the other side, of SAT- and ASP-based standard solutions,
to address heterogeneous goals. Thanks to the results the competition pub-
licly made available, informed decisions about the choice of the right solver
to adopt with respect to the computational task to be performed are now
possible. The results show unsurprisingly that SAT-based and ASP-based
solvers outperform ad-hoc algorithms, but there is still great potential for
developing new sophisticated algorithmic approaches to abstract argumenta-
tion problems.

The competition has also highlighted new needs that the ICCMA steering
committee is evaluating in order to propose new tracks for the upcoming edi-
tions of the competition. First of all, a track about structured argumentation
frameworks has been envisioned, and it is currently under discussion. The
main issue is that there is no structured formalism with a sufficient number
of competing solvers, and addressing a comparison of systems implementing
different formalisms is extremely laborious. The lack of existing benchmarks
for such a task is another issue in this direction. Second, a track about nat-
ural language argumentation is envisaged as well. The idea is to include an
argument mining tack where tasks such as arguments detection and relations
prediction are proposed to the systems. Also in this case, the main issue is
the lack of a common annotation schema, and as a consequence, of a common
annotated benchmark to compare all the existing approaches.

The competition was the first in an upcoming series of competitions, the
next instance is planned for 201718.
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Algorithm 1 A GroundedGenerator

Require: maxA (maximal number of arguments)
Require: p (probability of attack)
1: A = random integer in {1,. . . ,maxA}
2: G = (V,E), V = {a1, . . . , aA}, E = ∅
3: unconnected = {a1, . . . , aA}
4: for all i = 1, . . . , A do
5: for all j = 1, . . . , i− 1 do
6: if random number in [0, 1] is smaller p then
7: E = E ∪ (ai, aj)
8: unconnected = unconnected \ {ai}
9: for all b ∈ unconnected do

10: k = random integer in {1,. . . ,A}
11: if coin flip shows heads then
12: E = E ∪ {(b, ak)}
13: else
14: E = E ∪ {(ak, b)}
15: return G

Appendix A. Algorithms of Benchmark Generators

We now provide pseudo code for the algorithms used to generate the
benchmark graphs of the competition. Algorithm 1 shows the code for
GroundedGenerator (Generator A), Algorithm 2 shows the code for StableGenerator
(Generator B), and Algorithm 3 shows the code for SccGenerator (Genera-
tor C).

Appendix B. Statistics on Benchmark Graphs

Tables B.13–B.16 give a detailed overview on the structure and properties
of the benchmark graphs considered for ICCMA’15. In particular, the table
show for each graph of each test set the number of arguments and number of
attacks, the average in-degree (=number of attackers), the (global) clustering
coefficient CC, the number of strongly connected components (SCCs), its
density, the number of complete, preferred, and stable extensions, the size
of the grounded extension, and the average size of its complete, preferred,
and stable extensions. For an argumentation framework AF = (Arg,→), the
global clustering coefficient (Luce and Perry, 1949) is defined as (let A
 B
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Algorithm 2 B: StableGenerator
Require: maxA (maximal number of arguments)
Require: minNumExtensions (approx. minimal number of stable extensions)
Require: maxNumExtensions (approx. maximal number of stable extensions)
Require: minSizeOfExtensions (approx. minimal size of a stable extension)
Require: maxSizeOfExtensions (approx. maximal size of a stable extension)
Require: minSizeOfGrounded (approx. minimal size of grounded extension)
Require: maxSizeOfGrounded (approx. maximal size of grounded extension)
Require: p (probability of attack)
1: A = random integer in {1,. . . ,maxA}
2: X = random integer in {minNumExtensions,. . . ,maxNumExtensions}
3: S = random integer in {minSizeOfExtensions,. . . ,maxSizeOfExtensions}
4: R = random integer in {minSizeOfGrounded,. . . ,maxSizeOfGrounded}
5: G = (V,E), V = {a1, . . . , aA}, E = ∅
6: grounded = {a1, . . . , aR}
7: for all i = 1, . . . ,R do
8: for all k = 0, . . . , i− 1 do
9: if random number in [0, 1] is smaller p then

10: E = E ∪ (ai, ak)

11: for all j=1,. . . ,X do
12: Let M be a random set of S arguments in V
13: for all i = R + 1, . . . , A do
14: if ai /∈M then
15: Let ak be a random argument in M
16: E = E ∪ (ak, ai)

17: return G

denote “A → B or B → A” for any A,B ∈ Arg):

CC(AF) =
|{{A1,A2,A3} ⊆ Arg | A1 
 A2,A2 
 A3,A3 
 A1}|

|{{A1,A2,A3} ⊆ Arg | A1 
 A2,A2 
 A3}|

In other words, CC(AF) is the ratio of the number of undirected triangles
in AF and the number of connected triples of arguments and is thus a value
in [0, 1]. Large values indicate a high clustering of the arguments. For an
argumentation framework AF = (Arg,→), its density is defined as

D(AF) =
| → |

|Arg|(|Arg| − 1)
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ID #Arg #Att in cc dens. #sccs #CO #PR #ST |GR| |CO| |PR| |ST|

1 1909 3668 19.21 0.01 0.01 245 1 1 1 183 183.0 183.0 183.0

2 1880 3555 18.91 0.01 0.01 302 1 1 1 184 184.0 184.0 184.0

3 2223 4956 22.3 0.01 0.01 350 1 1 1 189 189.0 189.0 189.0

4 2511 6277 25.0 0.01 0.01 472 1 1 1 193 193.0 193.0 193.0

5 4166 17289 41.5 0.01 0.01 658 1 1 1 217 217.0 217.0 217.0

6 2033 4143 0.38 0.01 0.01 285 1 1 1 183 183.0 183.0 183.0

7 2636 6886 26.12 0.01 0.01 393 1 1 1 199 199.0 199.0 199.0

8 2696 7280 27.0 0.01 0.01 739 1 1 1 199 199.0 199.0 199.0

9 2743 7508 27.37 0.01 0.01 246 1 1 1 199 199.0 199.0 199.0

10 2943 8663 29.44 0.01 0.01 389 1 1 1 200 200.0 200.0 200.0

11 2631 6893 26.2 0.01 0.01 310 1 1 1 198 198.0 198.0 198.0

12 2846 8153 28.65 0.01 0.01 340 1 1 1 197 197.0 197.0 197.0

13 1224 1484 12.13 0.01 0.01 254 1 1 1 154 154.0 154.0 154.0

14 1315 1730 13.16 0.01 0.01 331 1 1 1 160 160.0 160.0 160.0

15 1278 1633 12.78 0.01 0.01 231 1 1 1 166 166.0 166.0 166.0

16 1624 2659 16.37 0.01 0.01 256 1 1 1 183 183.0 183.0 183.0

17 1866 3504 18.78 0.01 0.01 465 1 1 1 186 186.0 186.0 186.0

18 3144 9886 31.45 0.01 0.01 577 1 1 1 208 208.0 208.0 208.0

19 2797 7855 28.08 0.01 0.01 190 1 1 1 200 200.0 200.0 200.0

20 3740 14045 37.56 0.01 0.01 537 1 1 1 215 215.0 215.0 215.0

21 3600 12957 35.99 0.01 0.01 239 1 1 1 216 216.0 216.0 216.0

22 3589 12931 36.03 0.01 0.01 317 1 1 1 208 208.0 208.0 208.0

23 3737 14018 37.51 0.01 0.01 386 1 1 1 214 214.0 214.0 214.0

24 3713 13856 37.32 0.01 0.01 355 1 1 1 213 213.0 213.0 213.0

25 2219 4936 22.25 0.01 0.01 497 1 1 1 187 187.0 187.0 187.0

26 2838 8042 28.34 0.01 0.01 390 1 1 1 196 196.0 196.0 196.0

27 3896 15163 38.92 0.01 0.01 568 1 1 1 216 216.0 216.0 216.0

28 4459 19886 44.6 0.01 0.01 387 1 1 1 219 219.0 219.0 219.0

29 4827 23222 48.11 0.01 0.01 560 1 1 1 231 231.0 231.0 231.0

30 4685 21863 46.67 0.01 0.01 548 1 1 1 224 224.0 224.0 224.0

31 2450 6010 24.53 0.01 0.01 343 1 1 1 191 191.0 191.0 191.0

32 3005 9059 30.15 0.01 0.01 276 1 1 1 208 208.0 208.0 208.0

33 2684 7233 26.95 0.01 0.01 424 1 1 1 197 197.0 197.0 197.0

34 4959 24612 49.63 0.01 0.01 729 1 1 1 228 228.0 228.0 228.0

35 3478 12141 34.91 0.01 0.01 657 1 1 1 206 206.0 206.0 206.0

36 5900 34720 58.85 0.01 0.01 438 1 1 1 237 237.0 237.0 237.0

37 4470 20063 44.88 0.01 0.01 375 1 1 1 227 227.0 227.0 227.0

38 6017 36208 60.18 0.01 0.01 572 1 1 1 240 240.0 240.0 240.0

39 6546 42923 65.57 0.01 0.01 275 1 1 1 242 242.0 242.0 242.0

40 3955 15584 39.41 0.01 0.01 228 1 1 1 229 229.0 229.0 229.0

41 1945 3797 19.53 0.01 0.01 302 1 1 1 185 185.0 185.0 185.0

42 5257 27616 52.53 0.01 0.01 238 1 1 1 231 231.0 231.0 231.0

43 1937 3770 19.47 0.01 0.01 245 1 1 1 182 182.0 182.0 182.0

44 3994 15976 40.0 0.01 0.01 190 1 1 1 222 222.0 222.0 222.0

45 1152 1346 11.69 0.01 0.01 260 1 1 1 152 152.0 152.0 152.0

46 3954 15641 39.56 0.01 0.01 588 1 1 1 217 217.0 217.0 217.0

47 3168 10029 31.66 0.01 0.01 247 1 1 1 206 206.0 206.0 206.0

48 2085 4348 20.86 0.01 0.01 263 1 1 1 193 193.0 193.0 193.0

Table B.13: Statistics on the benchmark graphs of test sets 1 (graphs 1–24) and 2
(graphs 25–48); #Arg=number of arguments, #Att=number of attacks, in=average in-
degree, cc=clustering coefficient, dens.=density, #sccs=number of strongly connected
components, #CO=number of complete extensions, #PR=number of preferred exten-
sions, #ST=number of stable extensions, |GR|=size of grounded extension, |CO|=average
size of complete extensions,|PR|=average size of preferred extensions, |ST|=average size
of stable extensions
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ID #Arg #Att in cc dens. #sccs #CO #PR #ST |GR| |CO| |PR| |ST|

49 7191 51655 71.83 0.01 0.01 305 1 1 1 245 245.0 245.0 245.0

50 6142 37683 61.35 0.01 0.01 394 1 1 1 238 238.0 238.0 238.0

51 6961 48482 69.65 0.01 0.01 469 1 1 1 244 244.0 244.0 244.0

52 4872 23657 48.56 0.01 0.01 341 1 1 1 239 239.0 239.0 239.0

53 7861 61863 78.7 0.01 0.01 367 1 1 1 255 255.0 255.0 255.0

54 6977 48531 69.56 0.01 0.01 443 1 1 1 251 251.0 251.0 251.0

55 7242 52543 72.55 0.01 0.01 410 1 1 1 245 245.0 245.0 245.0

56 8402 70560 83.98 0.01 0.01 463 1 1 1 257 257.0 257.0 257.0

57 7521 56661 75.34 0.01 0.01 573 1 1 1 251 251.0 251.0 251.0

58 7833 61518 78.54 0.01 0.01 754 1 1 1 249 249.0 249.0 249.0

59 8366 69910 83.57 0.01 0.01 503 1 1 1 258 258.0 258.0 258.0

60 7318 53649 73.31 0.01 0.01 881 1 1 1 243 243.0 243.0 243.0

61 5593 31399 56.14 0.01 0.01 1267 1 1 1 234 234.0 234.0 234.0

62 7746 60078 77.56 0.01 0.01 1722 1 1 1 253 253.0 253.0 253.0

63 5774 33330 57.73 0.01 0.01 423 1 1 1 231 231.0 231.0 231.0

64 8393 70558 84.07 0.01 0.01 347 1 1 1 263 263.0 263.0 263.0

65 9473 89713 94.7 0.01 0.01 436 1 1 1 262 262.0 262.0 262.0

66 6499 42252 65.01 0.01 0.01 290 1 1 1 246 246.0 246.0 246.0

67 9360 87622 93.61 0.01 0.01 519 1 1 1 261 261.0 261.0 261.0

68 6958 48439 69.62 0.01 0.01 365 1 1 1 252 252.0 252.0 252.0

69 6518 42442 65.12 0.01 0.01 433 1 1 1 238 238.0 238.0 238.0

70 8548 73157 85.58 0.01 0.01 592 1 1 1 258 258.0 258.0 258.0

71 6219 38707 62.24 0.01 0.01 562 1 1 1 236 236.0 236.0 236.0

72 5013 25121 50.11 0.01 0.01 370 1 1 1 238 238.0 238.0 238.0

73 141 38 2.74 0.02 0.02 105 360 40 32 19 34.71 43.2 44.06

74 299 424 14.21 0.03 0.05 6 4 3 3 4 29.5 38.0 38.0

75 289 416 14.4 0.03 0.05 6 3 2 2 3 27.33 39.5 39.5

76 277 399 14.43 0.04 0.05 6 1 1 0 3 3.0 3.0 –

77 202 50 2.51 0.02 0.01 91 159 12 12 15 49.12 68.83 68.83

78 286 280 9.81 0.02 0.03 4 1 1 0 3 3.0 3.0 –

79 280 367 13.11 0.03 0.05 24 16 8 8 12 33.88 38.13 38.13

80 276 261 9.49 0.02 0.03 6 3 2 2 3 30.33 44.0 44.0

81 291 414 14.23 0.03 0.05 6 2 1 1 3 20.0 37.0 37.0

82 232 333 14.38 0.04 0.06 6 6 4 4 3 25.17 29.75 29.75

83 258 250 9.72 0.03 0.04 6 9 6 5 4 37.11 41.5 41.8

84 197 271 13.79 0.05 0.07 6 13 10 10 3 23.38 25.5 25.5

85 280 399 14.28 0.03 0.05 6 14 7 7 3 33.71 36.43 36.43

86 300 287 9.57 0.02 0.03 6 1 1 0 3 3.0 3.0 –

87 193 46 2.42 0.01 0.01 79 70 11 0 16 40.31 52.0 –

88 262 376 14.37 0.04 0.06 6 1 1 0 5 5.0 5.0 –

89 292 284 9.73 0.02 0.03 6 5 3 3 3 40.4 50.0 50.0

90 246 354 14.39 0.04 0.06 6 1 1 0 3 3.0 3.0 –

91 259 246 9.53 0.02 0.04 6 11 7 7 3 37.27 41.43 41.43

92 300 290 9.69 0.02 0.03 6 15 9 9 3 45.73 49.44 49.44

93 162 218 13.48 0.06 0.08 6 3 2 2 3 15.33 21.5 21.5

94 290 416 14.36 0.03 0.05 6 5 4 4 2 29.8 36.75 36.75

95 293 427 14.58 0.03 0.05 5 2 1 1 3 21.5 40.0 40.0

96 287 412 14.36 0.03 0.05 6 4 2 2 3 25.0 33.0 33.0

Table B.14: Statistics on the benchmark graphs of test sets 3 (graphs 49–72) and 4
(graphs 73–96); #Arg=number of arguments, #Att=number of attacks, in=average in-
degree, cc=clustering coefficient, dens.=density, #sccs=number of strongly connected
components, #CO=number of complete extensions, #PR=number of preferred exten-
sions, #ST=number of stable extensions, |GR|=size of grounded extension, |CO|=average
size of complete extensions,|PR|=average size of preferred extensions, |ST|=average size
of stable extensions

48



ID #Arg #Att in cc dens. #sccs #CO #PR #ST |GR| |CO| |PR| |ST|

97 400 379 9.5 0.02 0.02 31 3 2 1 8 44.67 63.0 63.0

98 400 383 9.59 0.02 0.02 20 2 1 1 8 36.5 65.0 65.0

99 400 539 13.49 0.02 0.03 41 4 2 2 9 39.5 51.5 51.5

100 400 541 13.55 0.02 0.03 32 7 5 5 11 46.29 52.4 52.4

101 400 541 13.53 0.02 0.03 19 7 5 5 10 48.43 55.0 55.0

102 400 383 9.59 0.02 0.02 29 1 1 0 7 7.0 7.0 –

103 400 562 14.05 0.02 0.04 21 1 1 0 9 9.0 9.0 –

104 400 563 14.09 0.02 0.04 23 1 1 0 7 7.0 7.0 –

105 400 545 13.63 0.02 0.03 41 2 1 1 12 34.0 56.0 56.0

106 400 556 13.92 0.02 0.03 31 1 1 0 8 8.0 8.0 –

107 400 550 13.77 0.02 0.03 32 7 4 2 10 44.86 51.0 52.0

108 400 374 9.37 0.02 0.02 40 8 6 6 8 58.75 66.67 66.67

109 400 378 9.45 0.02 0.02 22 3 2 2 8 49.33 70.0 70.0

110 400 375 9.39 0.02 0.02 20 6 4 4 8 58.5 69.0 69.0

111 400 559 13.98 0.02 0.04 21 3 2 2 9 38.67 53.5 53.5

112 400 377 9.45 0.02 0.02 32 6 3 3 8 52.17 63.0 63.0

113 400 546 13.65 0.02 0.03 40 5 4 3 9 42.8 51.25 51.67

114 400 384 9.6 0.02 0.02 21 3 2 2 6 43.0 61.5 61.5

115 400 374 9.37 0.02 0.02 21 6 4 4 5 55.67 66.75 66.75

116 400 374 9.37 0.02 0.02 29 2 1 1 8 36.0 64.0 64.0

117 400 575 4.39 0.03 0.04 21 3 2 2 8 35.33 49.0 49.0

118 400 376 9.42 0.02 0.02 31 5 4 3 9 52.6 63.5 65.0

119 400 379 9.48 0.02 0.02 20 3 2 2 10 47.33 66.0 66.0

120 400 558 13.97 0.02 0.04 30 5 3 3 7 43.0 52.0 52.0

121 283 214 7.59 0.09 0.03 61 288 2 0 4 8.83 13.0 –

122 319 250 7.86 0.07 0.02 75 152 3 0 1 5.84 10.0 –

123 334 329 9.87 0.09 0.03 37 162 7 0 0 4.28 7.0 –

124 189 98 5.2 0.05 0.03 100 800 1 0 3 13.86 24.0 –

125 397 401 10.11 0.05 0.03 76 14 1 0 2 4.64 7.0 –

126 242 143 5.95 0.06 0.02 98 496 4 0 4 13.5 19.0 –

127 260 187 7.22 0.08 0.03 52 28 6 0 0 3.43 4.83 –

128 217 166 7.66 0.1 0.04 52 48 4 0 0 5.0 8.5 –

129 308 984 31.98 0.23 0.1 6 1 1 0 0 0.0 0.0 –

130 332 1451 43.71 0.42 0.13 4 1 1 0 0 0.0 0.0 –

131 318 335 10.56 0.1 0.03 28 4 1 0 0 2.0 4.0 –

132 379 935 24.67 0.3 0.07 9 4 2 0 0 3.25 4.5 –

133 330 362 10.99 0.09 0.03 28 2 1 0 0 1.0 2.0 –

134 332 443 13.36 0.14 0.04 20 51 3 0 0 6.69 10.67 –

135 306 223 7.31 0.06 0.02 89 4 1 0 3 4.0 5.0 –

136 379 379 10.02 0.06 0.03 68 768 8 0 0 6.9 13.0 –

137 360 533 14.81 0.12 0.04 22 4 2 0 0 2.5 3.5 –

138 285 301 10.56 0.12 0.04 21 180 4 0 0 6.13 11.5 –

139 360 529 14.72 0.12 0.04 21 8 2 0 0 3.0 5.5 –

140 185 87 4.73 0.05 0.03 93 200 2 0 11 20.27 27.0 –

141 291 215 7.39 0.06 0.03 89 30 1 0 2 7.33 12.0 –

142 374 499 13.36 0.13 0.04 23 10 1 0 0 3.9 8.0 –

143 381 558 14.65 0.11 0.04 23 2 1 0 0 1.0 2.0 –

144 366 456 12.48 0.11 0.03 28 28 3 0 0 4.43 7.33 –

Table B.15: Statistics on the benchmark graphs of test sets 5 (graphs 97–120) and 6
(graphs 121–144); #Arg=number of arguments, #Att=number of attacks, in=average
in-degree, cc=clustering coefficient, dens.=density, #sccs=number of strongly connected
components, #CO=number of complete extensions, #PR=number of preferred extensions,
#ST=number of stable extensions, |GR|=size of grounded extension, |CO|=average size of
complete extensions,|PR|=average size of preferred extensions, |ST|=average size of stable
extensions
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ID #Arg #Att in cc dens. #sccs #CO #PR #ST |GR| |CO| |PR| |ST|

145 826 5044 61.07 0.27 0.07 8 4 1 0 0 4.5 9.0 –

146 777 1179 15.18 0.28 0.02 18 9 4 0 0 5.0 7.5 –

147 754 1711 22.7 0.08 0.03 34 2 1 0 0 0.5 1.0 –

148 311 284 9.14 0.06 0.03 65 3916 5 0 0 10.27 18.0 –

149 780 2567 32.92 0.12 0.04 20 2 1 0 0 1.5 3.0 –

150 500 1211 24.23 0.2 0.05 14 1 1 0 0 0.0 0.0 –

151 315 2735 86.83 0.35 0.28 2 4 2 2 0 5.5 9.0 9.0

152 393 407 10.36 0.06 0.03 63 44 2 0 2 7.0 10.5 –

153 499 1180 23.66 0.15 0.05 16 18 4 0 0 7.17 11.5 –

154 442 563 12.75 0.08 0.03 39 6 2 0 0 1.5 2.5 –

155 243 2936 120.85 0.5 0.5 1 1 1 0 0 0.0 0.0 –

156 455 2839 62.41 0.36 0.14 4 3 1 0 0 4.0 8.0 –

157 636 1186 18.66 0.1 0.03 34 20 3 0 0 6.15 9.33 –

158 417 467 11.2 0.06 0.03 50 1011 3 0 0 10.84 19.0 –

159 679 2609 38.43 0.19 0.06 12 4 1 0 0 4.0 8.0 –

160 649 1410 21.74 0.1 0.03 27 1 1 0 0 0.0 0.0 –

161 458 594 12.98 0.09 0.03 39 1297 8 0 0 10.8 18.5 –

162 652 2534 38.88 0.15 0.06 13 2 1 0 0 2.0 4.0 –

163 490 6622 135.15 0.35 0.28 2 1 1 0 0 0.0 0.0 –

164 351 6119 174.36 0.5 0.5 1 1 1 0 0 0.0 0.0 –

165 696 73 1.06 0.0 0.0 686 27 8 8 349 356.67 360.5 360.5

166 733 1904 25.99 0.12 0.04 24 9 2 0 0 5.0 9.0 –

167 703 1670 23.76 0.1 0.03 28 2 1 0 0 1.0 2.0 –

168 757 2903 38.36 0.17 0.05 14 1 1 0 0 0.0 0.0 –

169 461 136 2.95 0.01 0.01 395 324 24 24 123 130.5 134.67 134.67

170 457 112 2.46 0.02 0.01 345 222 20 0 119 137.34 142.9 –

171 755 1538 20.38 0.06 0.03 46 12 3 0 0 4.83 7.33 –

172 671 278 4.15 0.01 0.01 617 18 4 4 136 140.5 143.0 143.0

173 795 1707 21.48 0.07 0.03 42 7 2 0 0 3.43 5.5 –

174 769 1484 19.3 0.06 0.03 48 190 4 0 0 9.17 14.0 –

175 778 1565 20.12 0.06 0.03 49 6 1 0 0 1.5 3.0 –

176 595 277 4.66 0.02 0.01 301 5274 192 192 34 125.65 152.5 152.5

177 507 410 8.09 0.01 0.02 416 90 16 16 48 58.97 66.0 66.0

178 837 1925 23.01 0.08 0.03 38 3 1 0 0 1.33 3.0 –

179 374 152 4.08 0.02 0.01 290 495 44 44 36 64.88 83.95 83.95

180 868 2094 24.13 0.07 0.03 42 6 2 0 0 3.5 6.0 –

181 853 3393 39.79 0.12 0.05 18 1 1 0 0 0.0 0.0 –

182 847 1793 21.17 0.07 0.03 47 1 1 0 0 0.0 0.0 –

183 940 3027 32.21 0.11 0.03 26 1 1 0 0 0.0 0.0 –

184 960 2297 23.93 0.08 0.02 42 2 1 0 0 1.0 2.0 –

185 996 3264 32.78 0.12 0.03 26 1 1 0 0 0.0 0.0 –

186 481 11551 240.16 0.5 0.5 1 1 1 0 0 0.0 0.0 –

187 935 10939 116.99 0.23 0.13 5 1 1 0 0 0.0 0.0 –

188 939 2711 28.87 0.1 0.03 31 2 1 0 0 1.0 2.0 –

189 489 11955 244.49 0.5 0.5 1 1 1 0 0 0.0 0.0 –

190 992 18650 188.01 0.32 0.19 3 2 1 0 0 3.0 6.0 –

191 964 440 4.57 0.01 0.0 852 54 8 8 152 162.33 171.5 171.5

192 583 17018 291.92 0.5 0.5 1 1 1 0 0 0.0 0.0 –

Table B.16: Statistics on the benchmark graphs of test sets 7 (graphs 145–168) and 8
(graphs 169–192); #Arg=number of arguments, #Att=number of attacks, in=average
in-degree, cc=clustering coefficient, dens.=density, #sccs=number of strongly connected
components, #CO=number of complete extensions, #PR=number of preferred extensions,
#ST=number of stable extensions, |GR|=size of grounded extension, |CO|=average size of
complete extensions,|PR|=average size of preferred extensions, |ST|=average size of stable
extensions
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Algorithm 3 SccGenerator

Require: maxA (maximal number of arguments)
Require: maxNumSccs (approx. maximal number of SCCs)
Require: pinner (probability of attack in SCCs)
Require: pouter (probability of attack between SCCs)
Require: pscc (probability to connect two SCCs)
1: A = random integer in {1,. . . ,maxA}
2: N = random integer in {1,. . . ,maxNumSccs}
3: G = (V,E), V = {a1, . . . , aA}, E = ∅
4: C[1] = ∅, . . . , C[N] = ∅
5: for all i = 1, . . . ,A do
6: k = random integer in {1, . . . , N}
7: C[k] = C[k] ∪ {ai}
8: for all i = 1, . . . ,N do
9: for all arg1 ∈ C[i] do

10: for all arg2 ∈ C[i] do
11: if random number in [0, 1] is smaller than pinner then
12: E = E ∪ {(arg1,arg2)}
13: for all i = 1, . . . ,N-1 do
14: for all j = i + 1, . . . ,N do
15: if random number in [0, 1] is smaller than pscc then
16: for all arg1 ∈ C[i] do
17: for all arg2 ∈ C[j] do
18: if random number in [0, 1] is smaller than pouter then
19: E = E ∪ {(arg1,arg2)}
20: return G
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