
Probabilities on Extensions in Abstract Argumentation

Matthias Thimm1, Pietro Baroni2, Massimiliano Giacomin2, and Paolo Vicig3

1Institute for Web Science and Technologies (WeST), University of Koblenz-Landau, Germany
2Dip. Ingegneria dell’Informazione, University of Brescia, Italy

3DEAMS, University of Trieste, Italy

Abstract. Combining computational models of argumentation with probability
theory has recently gained increasing attention, in particular with respect to ab-
stract argumentation frameworks. Approaches following this idea can be cate-
gorised into the constellations and the epistemic approach. While the former con-
siders probability functions on the subgraphs of abstract argumentation frame-
works, the latter uses probability theory to represent degrees of belief in argu-
ments, given a fixed framework. In this paper, we investigate the case where
probability functions are given on the extensions of abstract argumentation frame-
works. This generalises classical semantics in a straightforward fashion and we
show that our approach also complies with many postulates for epistemic proba-
bilistic argumentation.

1 Introduction

Computational models of argumentation are non-monotonic reasoning formalisms that
focus on the role of arguments, i. e., defeasible reasons supporting a certain claim, and
their relationships. In this context, the well-known formalism of abstract argumentation
frameworks [12] abstracts from the inner structure of arguments and only models con-
flict between them, thus representing argumentation scenarios as directed graphs where
arguments are vertices and an attack of one argument on another is modelled by a di-
rected edge. Still, this approach is quite expressive, subsumes many other approaches
to non-monotonic reasoning, and provides an active research field. Many research top-
ics have been spawned around these frameworks including, among others, semantical
issues [3], extensions on support [11], algorithms [9], and systems [31].

In their original form, abstract argumentation frameworks are a qualitative approach
to non-monotonic reasoning as their semantics is set-based (it amounts to identifying
sets of collectively acceptable arguments, called extensions) and inferences consist of
statements regarding the acceptance status of arguments, which can be binary (an ar-
gument is simply “accepted” or “rejected”) or three-valued (where a third option “un-
decided” is also possible). In recent years, many approaches have been developed that
incorporate some quantitative aspects into abstract argumentation frameworks. These
can be categorised into two families. In the first family, the syntactic representation
of argumentation frameworks is extended with quantities, in order to incorporate more
information explicitly. For example, in [26] arguments and attacks can be annotated
with probabilities that model user-supplied information about the likelihood that these
objects actually appear in the argumentation framework. This approach is also called



the constellations approach to probabilistic argumentation [20]. The main aim of these
works is then to generalise classical semantics and other notions to the extended ap-
proach. See also [13, 34] for some other examples from this family based on weights
and fuzzy logic, respectively. The other family is about bringing quantities into the se-
mantics of vanilla argumentation frameworks themselves. Here, the syntactic represen-
tation is not extended and the aim is to derive quantitative information which is implicit
in the topology of the graph. Concrete approaches within this family are, e. g., numeri-
cal ranking functions [1, 19, 7, 28] and the equational approach [17, 18]. The epistemic
approach to probabilistic argumentation [29, 5, 22, 23] considers the use of probability
functions to capture the degrees of belief of an agent in (sets of) arguments (see [22] for
a discussion). In this sense the epistemic approach shares some properties with both the
families introduced above: on the one hand, the probability values are user-supplied,
since they represent the belief of some agent, on the other hand, they can be put in rela-
tionship with the semantics of vanilla argumentation frameworks, since it is reasonable
to assume that the beliefs of an agent take into account (and/or are constrained by) the
topology of the graph.

In this paper, we contribute to the research trend on probabilistic argumentation by
considering a further option, which consists in adding a probabilistic layer on top of
classical semantics of abstract argumentation frameworks, i. e., we consider probability
functions on extensions. This investigation is motivated by the fact that given an argu-
mentation framework, capturing the attacks existing between arguments, each extension
prescribed by an argumentation semantics can be regarded as an alternative answer to
the question: “which arguments are able to survive the conflict together?”. Thus the set
of extensions can be regarded as a set of alternative reasonable options, each satisfying
the “survival criterion” encoded by the argumentation semantics, which however does
not provide any indication on which extension to select, in case the agents needs to fi-
nally choose one of them. This is required in particular in the case of practical reasoning
where arguments concern reasons about what to do and alternative extensions may be
put in correspondence with different available courses of action. In this context proba-
bilities on extensions may encode additional information, external to the argumentation
process, about which option is more likely to be selected by an agent. For instance
suppose that in the context of some reasoning activity involving a health problem, two
extensions emerge as reasonable, say one corresponding to undergoing surgery and the
other to assuming a drug for a long time. The final choice is uncertain and is in the
hands of the patient, whose (possibly non-rational) attitude towards the two options can
be modeled by a probability assignment on the two extensions, e. g. you may assign a
higher probability to the second extension if you know that the patient is particularly
worried about the scars caused by surgery. These probability values could be acquired
for instance using an approach to probabilistic user modeling, as proposed in [21].

Besides modelling the attitudes of a single agent, probabilities on extensions may be
used to model collective attitudes too. Consider the case where two or more politicians
argue about their government programmes and assume that their different positions are
acceptable from an argumentative point of view. Then a probability assignment on the
extensions corresponding to the positions of the candidates may reflect the outcomes of
an opinion poll among the voters (note that the use of votes in the context of argumenta-



tion frameworks to support an initial numerical assessment, though not of probabilistic
nature, has been considered in [25, 15]).

Probability assignments on extensions provide then the basis for further inferential
activities, for instance an argument can in general be included in different extensions
and it is interesting to consider the probability that a specific argument (or sets of ar-
guments) is selected. In the political example, different candidates, say all candidates,
may share the argument that “we should cut taxes since this will promote economical
growth”, then the probability that this argument is accepted and that tax cuts are in the
next government programme is 1, independently of the individual probabilities assigned
to the various extensions/candidates (provided that you trust that politicians keep faith
with their promises).

Altogether, the general idea is to provide a contribution to the investigation of inte-
grated uncertain reasoning models encompassing both qualitative (in our case, based on
abstract argumentation) and quantitative (in our case, probabilistic) evaluation aspects.

To provide a formal basis to this kind of modelling and reasoning activities, in this
paper we investigate probability functions on extensions, and in particular,

1. we introduce our approach to probability functions over extensions and we draw
some relationships with the maximum entropy principle and with imprecise proba-
bilities (Section 3);

2. we investigate the properties of this extension, in particular wrt. rationality postu-
lates usually considered for the epistemic approach (Section 4);

3. we investigate some computational issues of the approach (Section 5).

Necessary preliminaries are introduced in Section 2 and we conclude with a summary
in Section 6.

2 Preliminaries

Abstract argumentation frameworks [12] take a very simple view on argumentation as
they abstract away any detail about the internal structure of an argument, its origin
and nature and so on. Abstract argumentation frameworks only capture the conflicts
between arguments by means of a binary attack relation.

Definition 1. An abstract argumentation framework AF is a tuple AF = (Arg,→)
where Arg is a set of arguments and→ is a relation→⊆ Arg × Arg.

For the sake of simplicity, in this paper we assume that the set Arg is finite. For two
arguments A,B ∈ Arg the relation A → B means that argument A attacks argument
B. We abbreviate AttAF(A) = {B | B → A}. Abstract argumentation frameworks can
be concisely represented by directed graphs, where arguments are represented as nodes
and edges model the attack relation.

Example 1. Consider the abstract argumentation framework AF1 = (Arg1,→1) de-
picted in Figure 1. Here it is Arg1 = {A1,A2,A3,A4,A5} and →1= {(A1,A2),
(A2,A1), (A2,A3), (A3,A4), (A4,A5), (A5,A4), (A3,A5)}.
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Fig. 1. The argumentation framework AF1 from Example 1

An argumentation semantics is a formal criterion to determine the conflict out-
comes. Two main approaches to semantics definition are available in the literature,
namely the extension-based approach [12] and the labeling-based approach [35]. In
this paper we focus on the extension-based approach, the reader is referred to [3] for a
review and an analysis of the correspondence between the two approaches. An exten-
sion E of an argumentation framework AF = (Arg,→) is a set of arguments E ⊆ Arg
that corresponds to a coherent and tenable view in the argumentation process underly-
ing AF. Intuively an extension is a set of arguments which are “collectively acceptable”
or “can survive the conflict together”.

In the literature [12, 8, 3] a wide variety of different types of semantics has been
proposed. The definition of a semantics typically builds on some basic properties that
an extension should satisfy: arguably, conflict-freeness and admissibility are among the
most important extension properties.

Definition 2. An extensionE ⊆ Arg is conflict-free if for allA,B ∈ E it is not the case
that A → B. An extension E ⊆ Arg defends an argument A ∈ Arg if for all C ∈ Arg,
if C → A then there is B ∈ E with B → C. An extension E ⊆ Arg is admissible if it is
conflict-free and defends all its elements.

We abbreviate by cf(AF) the set of conflict-free extensions, by mcf(AF) the maximal
(wrt. set inclusion) conflict-free extensions, and by adm(AF) the set of admissible ex-
tensions. Dung’s traditional semantics are defined by imposing further constraints.

Definition 3. Let AF = (Arg,→) be an abstract argumentation framework and E an
admissible extension.

– E is complete if for all A ∈ Arg, if E defends A then A ∈ E.
– E is grounded if and only if E is minimal among complete extensions.
– E is preferred if and only if E is maximal among complete extensions.
– E is stable if and only if E is complete and attacks all other arguments.

All statements on minimality/maximality are meant to be with respect to set inclusion.

We denote by comp(AF), ground(AF), pref(AF), and st(AF) the sets of complete,
grounded, preferred, and stable extensions of AF, respectively. Note that a grounded
extension is uniquely determined and always exists [12], so we also abbreviate by
GE(AF) the unique grounded extension of AF, i. e., ground(AF) = {GE(AF)}. Fur-
thermore, we have the following relationships, cf. [3].



Proposition 1. Let AF = (Arg,→) be an abstract argumentation framework. Then

1. st(AF) ⊆ mcf(AF) ⊆ cf(AF),
2. st(AF) ⊆ pref(AF) ⊆ comp(AF) ⊆ adm(AF) ⊆ cf(AF), and
3. ground(AF) ⊆ comp(AF).

Besides the above mentioned four traditional semantics, a variety of further proposals
have been considered in the literature such as CF2 semantics [2], which is not based
on the admissibility property. However, in this paper we focus on complete, grounded,
preferred, and stable semantics.

Example 2. We continue Example 1. There, the sets E1, . . . , E6 given via

E1 = ∅ E2 = {A1} E3 = {A2}
E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}

are admissible. Furthermore,E1, E3, . . . , E6 are complete,E1 is grounded, andE4, E5,
E6 are both preferred and stable.

As shown by the above example, in general argumentation semantics are multi-
extension or multiple-status i. e. they may prescribe more than one extension for a given
argumentation framework. When a semantics prescribes exactly one extension for ev-
ery argumentation framework it is called single-extension or single-status. Among the
semantics considered in this paper, only grounded semantics is single-status.

The possible existence of multiple extensions gives rise to different notions of the
justification status of an argument. Given a semantics S , an argument A is credulously
justified if there is an S-extension E such that A ∈ E; A is skeptically justified if for
all S-extensions E it holds thatA ∈ E. Note that, unless the set of extensions is empty,
being skeptically justified implies being credulously justified and that the two notions
coincide for single-extension semantics.

Example 3. We continue Example 2. Here, no argument is skeptically justified wrt.
grounded, complete, preferred, and stable semantics. Furthermore, no argument is cred-
ulously justified wrt. grounded semantics and all arguments are credulously justified
wrt. the other semantics.

3 Probabilities on Extensions

Let AF = (Arg,→) be fixed. As in the epistemic approach to probabilistic argumen-
tation [29, 5, 22, 23], we consider probability functions on sets of arguments, namely
functions P : 2Arg → [0, 1] with ∑

E⊆Arg

P (E) = 1

the idea being that P (E) indicates the probability that the extension E is selected
as the final outcome of the semantics evaluation of AF. We denote as PAF the set of all
such probability functions. For P1, P2 ∈ PAF we define P1 = P2 iff P1(E) = P2(E)
for all E ⊆ Arg.

Central to our approach is the following definition



E1 = ∅ E2 = {A1} E3 = {A2} E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}
P1 0.2 0.1 0.3 0.2 0.1 0.1
P2 0 0.3 0.2 0.3 0.1 0.1
P3 0 0.2 0.2 0.2 0.2 0.2
P4 0 0 0 0.3 0.1 0.6
P5 0 0 0 1/3 1/3 1/3
P6 0 0 0 0.5 0.5 0.0
P7 1 0 0 0 0 0

Table 1. Definition of probability functions from Example 4; Pi(E) = 0 for all remaining E /∈
{E1, . . . , E6} for i = 1, . . . , 7

Definition 4. We say that P ∈ PAF is semantically based on a set E ⊆ 2Arg, if P (E) =
0 for all E /∈ E .

We denote as PEAF ⊆ PAF the set of all probability functions that are semantically
based on E . For example, Pmcf(AF)

AF is the set of all probability functions that are seman-
tically based on the maximal conflict-free subsets of AF. Note that in many cases one
can assume that the set E is known a priori, e.g. the set of extensions prescribed by a
given semantics for a given argumentation framework can be computed using one of
the available implemented systems for abstract argumentation [10, 32, 30]. In this case
one can of course easily ensure that a probability function is semantically based on E
by construction. The issue of studying computational procedures for indirectly enforc-
ing that a probability function is semantically based on a set E and for transforming an
arbitrary probability function into the “closest” one which is semantically based on a
given set E are interesting issues of future work.

Example 4. We continue Example 3 and consider the probability functions P1, . . . , P7

defined in Table 1. All these functions are semantically based on the admissible sets of
AF0, i. e., P1, . . . , P7 ∈ Padm(AF1)

AF1
. Furthermore, we have

– P4, . . . , P7 ∈ Pcomp(AF1)
AF1

,

– P4, P5, P6 ∈ P st(AF1)
AF1

= Ppref(AF1)
AF1

, and

– P7 ∈ Pground(AF1)
AF1

.

A first observation is that we obtain the same hierarchy of the probabilistic versions of
semantics as in Proposition 1.

Proposition 2. If E ⊆ E ′ then PEAF ⊆ PE
′

AF. In particular

1. P st(AF)
AF ⊆ Pmcf(AF)

AF ⊆ Pcf(AF)
AF ,

2. P st(AF)
AF ⊆ Ppref(AF)

AF ⊆ Pcomp(AF)
AF ⊆ Padm(AF)

AF ⊆ Pcf(AF)
AF , and

3. Pground(AF)
AF ⊆ Pcomp(AF)

AF .

Proof. This follows directly from Definition 4 and Proposition 1. ut



Furthermore, as in the classical case we have that probabilistic reasoning wrt. grounded
semantics is uniquely defined.

Proposition 3. |Pground(AF)
AF | = 1.

Proof. As AF has a unique grounded extensionE, anyP semantically based on grounded
semantics must have P (E) = 1 and P (E′) = 0 for all other sets E′. Therefore, P is
uniquely determined. ut

Given a probability function P ∈ PAF representing uncertainty about which ex-
tension is selected, an agent may be focused on a single argument or, more generally
on a set of arguments, and be interested in the probability that this argument or sets of
arguments is included in the selected extension E. In other words the probability P can
be extended to the events of the kind (F ⊆ E) where F is a generic set of arguments
and E is the selected extension. For a set of arguments F , this extended probability will
be denoted as P⊆(E) and is derived from P as follows

P⊆(F ) =
∑

E∈2Arg,F⊆E

P (E) (1)

For individual arguments A ∈ Arg we introduce a special notation

P∈(A) , P⊆({A}) =
∑

E∈2Arg,A∈E

P (E) (2)

Example 5. Continuing Example 4, we have, e. g.

P∈2 (A2) = P2(E3) + P2(E5) + P2(E6) = 0.4

P∈4 (A5) = P4(E6) = 0.6

The following propositions report some basic observations.

Proposition 4. For P ∈ Pcf(AF)
AF , P∈(A) = 0 for all self-attacking arguments A.

Proof. If A is self-attacking then A is not member of any conflict-free set E of AF.
Therefore P∈(A) =

∑
A∈E∈cf(AF) P (E) = 0. ut

Proposition 5. For P ∈ Pcomp(AF)
AF , P⊆(GE(AF)) = 1 and P∈(A) = 1 for every

argument A ∈ GE(AF).

Proof. The statement follows from the fact that the grounded extension of AF is included
in every complete extension of AF. ut

While some basic results, as shown above, hold for every probability function P ,
provided that P is semantically based on a given set of extensions, more specific proper-
ties of the beliefs of an agent may depend on the actual probability function P adopted
by the agent within PEAF. In case an agent has no information or criteria to adopt a
specific P , the well-known maximum entropy principle [27, 24] states that the uniform
probability assignment is adopted. In our case, the assignment of uniform nonzero prob-
ability values is restricted to the prescribed set of extensions.



Definition 5. Let P ∈ PAF. We say that P is semantically uniform on E ⊆ 2Arg, if
P ∈ PEAF and for all E,E′ ∈ E we have P (E) = P (E′).

Of course semantical uniform probability functions are uniquely determined, given
AF and E and the value of P∈(A) for each argument A is easily characterised.

Proposition 6. Let E ⊆ 2Arg.

1. If P, P ′ ∈ PEAF are semantically uniform on E , then P = P ′, i.e. ∀E ∈ E P (E) =
P ′(E).

2. If P ∈ PEAF is semantically uniform on E , then for all A ∈ Arg

P∈(A) = |{E ∈ E | A ∈ E}|
|E|

Proof. This follows directly from Definition 5. ut

Also we are interested to characterise the case where the set of possible extensions is
restricted (e. g. from admissible extensions to complete extensions) while still applying
the maximum entropy principle.

Definition 6. P ∈ PAF is a semantical uniform restriction of P ′ ∈ PAF, if P is seman-
tically uniform on E , P ′ is semantically uniform on E ′, and E ⊆ E ′.

Example 6. We continue Example 4. While both P2 and P3 are semantically based on
E = {E2, . . . , E6}, only P3 is semantically uniform wrt. E . Furthermore, P4, P5, P6 are
semantically based on the stable/preferred extensions and P5 is also semantically uni-
form on those. P5 is also a semantical uniform restriction of P3 and P6 is a semantical
uniform restriction of P5.

The maximum entropy principle offers a simple criterion to select one represen-
tative element in the (usually uncountably large) set of probability functions that are
semantically based on some set of extensions. By construction, the information content
of this representative element is rather weak: in particular, as to individual arguments,
it boils down to counting how often an argument appears in extensions, cf. item 2 of
Proposition 6.

In general, given a set of probability functions, their lower envelope [33] can be
regarded as another synthetic representative of the set itself.

Definition 7. Given a set of probability functions P on a set E the lower envelope P of
P is defined for each E ∈ E as P (E) = infP∈P P (E).

The lower envelope of a set of probabilities has interesting formal properties since
it belongs to the family of imprecise probabilities and in particular is a coherent lower
probability [33] (see Theorem 1 below). In words, P (E) identifies the minimum degree
of belief in E given the set P . The function P can therefore be regarded as a sort of
cautious representation of the information content of P . Specialising this notion to our
context we get the following definition.



Definition 8. Given a set of probability functions P ⊆ PAF we define1

– P (E) = infP∈P P (E) for every E ∈ 2Arg

– P⊆(E) = infP∈P P
⊆(E) for every E ∈ 2Arg

– P∈(A) = infP∈P P
∈(A) for every A ∈ Arg

It is worth noting that each coherent lower probability P function has a conjugate
upper probability P which for each E is defined by the following conjugacy relation

P (E) = 1− P (¬E) (3)

Thus for instance the upper probability that a given extension E is selected is equal
to 1 minus the lower probability that E is not selected. Given the set of probability
functions P of which P is the lower envelope, P can be equivalently characterized as
the upper envelope of P , replacing inf with sup and making other obvious adjustments
in Definitions 7 and 8. In this sense, dually with respecty to P , the function P can be
regarded as a sort of optimistic representation of the information content of P .

In general, for an event E, the interval [P (E), P (E)] gives an account of the dis-
tance between a cautious and an optimistic reading of the set P with respect to E. In
particular if P (E) = P (E), the set P provides a precise information about the proba-
bility of E, while at the other extreme, if P (E) = 0 and P (E) = 1, the set P provides
no information at all about the probability of E.

The reader is referred to [33] for an extensive treatment of these concepts. In par-
ticular in [33] the values P (E) and P (E) were given a behavioral interpretation in an
idealized betting scheme on E.

To make this notion clearer, we recall that this interpretation is rooted in De Finetti’s
subjective probability theory [16], of which the theory of imprecise probabilities intro-
duced in [33] is a generalisation.

In De Finetti’s approach a (precise) probability assessment is a function P : E → R,
where E is an arbitrary (finite or infinite) set of events and R is the set of real numbers.
For each event E ∈ E , P (E) is the “fair” price of a (unitary) bet on E, i.e. P (E) is
the amount of money that an agent is ready to pay to an opponent in order to receive
the sum of 1 if E turns out to be true and 0 otherwise, and, indifferently, the sum
that the agent is ready to receive from an opponent as a payment for the commitment
to pay the sum of 1 if E turns out to be true and 0 otherwise. More formally, P (E)
is the price, according to the agent, of the indicator of E, denoted as I(E), namely the
random number which takes value 1 if E is true, and value 0 if E is false. It is
assumed that the agent is indifferently ready to buy or sell I(E) at price P (E). In the
case of buying, the random gain of the agent is I(E)−P (E), while it is P (E)− I(E)
in the case of selling. A not necessarily unitary bet is characterized by a real coefficient
(or stake) s ∈ R, so that the gain of the agent is given by s(I(E) − P (E)). A positive
(negative) value of s corresponds to a buying (selling) choice by the agent.

According to the betting interpretation, a probability assessment has to satisfy some
conditions ensuring that the bet makes sense for both participants. In particular, de
Finetti has established a property of coherence, called dF-coherence in the sequel.

1 Note that the definitional relation for P⊆(E) in (1) does not carry over to P⊆(E), i.e. in
general it does not hold that P⊆(E) =

∑
E′∈2Arg,E⊆E′ P (E′). An analogous consideration

applies to P∈(A).



Definition 9. Given an arbitrary set of events E , P : E → R is a dF-coherent proba-
bility if and only if ∀n ∈ N+, ∀s1, . . . , sn ∈ R, ∀E1, . . . En ∈ E , it holds that

max

[
n∑

i=1

si(I(Ei)− P (Ei))

]
≥ 0 (4)

where N+ is the set of positive integer numbers.

Intuitively dF-coherence states that for any finite combination of bets, the maximum
value of the random gain of the agent is non-negative, hence the agent avoids a sure
loss. It is well-known that dF-coherence implies several fundamental properties2 of
probability assessments, including in particular the fact that 0 ≤ P (E) ≤ 1 for every
event E and the following self-conjugacy relation:

P (E) = 1− P (¬E). (5)

Considering the same betting context, imprecise probabilities [33] can be introduced
by lifting the assumption that the agent has a precise price estimation, used indifferently
for buying or selling event indicators. Rather (as typical in real markets) the agent con-
siders, for each event E, two different prices, one for buying and one for selling I(E),
denoted respectively as P (E) and P (E). Clearly, P (E) ≤ P (E). Moreover, the agent
is of course ready to buy also at any price lesser than P (E), which hence represents the
supremum buying price for I(E). Similarly, P (E) is the infimum selling price for I(E).
Given that, for any event E, I(¬E) = 1 − I(E), it turns out that buying an event is
equivalent to selling its complement and vice versa. Hence, in the context of imprecise
probabilities, the following conjugacy relation replaces condition (5):

P (E) = 1− P (¬E) (6)

In virtue of the conjugacy relation, one can focus on lower or upper probabilities
only.

Definition 10 provides the notion of coherence for lower probabilities [33].

Definition 10. Given an arbitrary set of events E , P : E → R is a coherent lower
probability if and only if ∀n ∈ N = N+ ∪ {0}, and for all real and non-negative
s0, . . . , sn, ∀E0, . . . En ∈ E , it holds that

max

[[
n∑

i=1

si(I(Ei)− P (Ei))

]
− s0(I(E0)− P (E0))

]
≥ 0 (7)

The coherence condition requires that the maximum of the gain of the agent is non
negative for every (including the empty) combination of buying bets with at most one
selling bet of a single (arbitrarily selected) event E0. In a sense Definition 10 allows
the agent to use its supremum buying price for any buying transaction but also forces
the agent to use the same price for (at most one) selling transaction. Intuitively, this

2 For finite sets of events, essentially all properties of “traditional” probability functions are
recovered.



ensures that the assessment P by the agent is not too unfair. Actually, it has been shown
in [33] that, in the context of imprecise probabilities, the property of coherence is a
strengthening of the property of avoiding sure loss.

As already mentioned, the lower envelope theorem, one of the main results of the
theory of imprecise probabilities developed in [33], provides a nice characterization of
coherent lower probabilities by relating them to sets of precise probabilities.

Theorem 1 ([33]). Given a set E , P is a coherent lower probability on E if and only
if there is a set P of (precise) dF-coherent probabilities on E such that P (E) =
infP∈P P (E) for every E ∈ E .

In words, a lower probability P is coherent if and only if it can be obtained as
the lower envelope of a set (P) of dF-coherent precise probabilities (P ). This result
provides both a constructive procedure for coherent lower probabilities and a motivation
for their existence: when a set of different probability assessments is given, coherent
lower probabilities arise by aggregating them in the least committed way.

Example 7. With reference to Table 1, let P = {P1, . . . , P6}, P be its lower envelope
and P its conjugate upper envelope. We have P (E1) = P (E2) = P (E3) = P (E6) =
0; P (E4) = 0.2; P (E5) = 0.1 and P (E1) = 0.2; P (E2) = P (E3) = 0.3; P (E4) =
P (E5) = 0.5; P (E6) = 0.6. Also, for instance, P∈(A2) = infP∈P{P (E3)+P (E5)+

P (E6)} = 0.4 and dually P
∈
(A2) = supP∈P{P (E3) + P (E5) + P (E6)} = 0.7. We

have also P∈(A1) = 0.3; P
∈
(A1) = 0.6; P∈(A3) = 0.2; P

∈
(A3) = 0.5; P∈(A4) =

0.1; P
∈
(A4) = 0.5; P∈(A5) = 0; P

∈
(A5) = 0.6.

When the set P coincides with the set PEAF of all probability functions that are
semantically based on E , then for each argument A the possible values of P (A) and
P (A) are limited, so that the provided information is either extremely precise (both
values are either 0 or 1) or completely vague (P (A) = 0 and P (A) = 1).

Proposition 7. Given the set of probability functions PEAF for some set of extensions
E , let P be its lower envelope and P its conjugate upper envelope. For each argument
A ∈ Arg it holds that:

– P∈(A) = 1 iff ∀E ∈ E A ∈ E; P∈(A) = 0 otherwise;
– P

∈
(A) = 1 iff ∃E ∈ E : A ∈ E; P

∈
(A) = 0 otherwise.

Proof. If ∀E ∈ E A ∈ E then ∀P ∈ PEAF it holds P∈(A) = 1 from which P∈(A) =
P
∈
(A) = 1. Otherwise if ∃E ∈ E : A /∈ E then the probability function given by

P (E) = 1 and P (E′) = 0 for every E′ 6= E belongs to PEAF from which P∈(A) = 0
and P∈(A) = 0. Analogously, if ∃E ∈ E : A ∈ E the probability function given by
P (E) = 1 and P (E′) = 0 for every E′ 6= E belongs to PEAF from which P∈(A) = 1

and P
∈
(A) = 1. Otherwise @E ∈ E : A ∈ E and then ∀P ∈ PEAF it holds P∈(A) = 0

from which P
∈
(A) = 0.

In general, the lower (or upper) envelope and the upper envelope of a set of precise
probabilities are not precise probabilities themselves. However in some special cases



some interesting correspondences between lower (or upper) values and precise proba-
bility assignments can be obtained. This is in particular the case when considering the
set PEAF of all probability functions that are semantically based on E : it can be seen that
for each argument A the lower probability value P∈(A) induced by the lower enve-
lope of PEAF coincides with the precise probability value P∈(A) induced by the precise
probability P ∈ PAF which gives probability 1 to the intersection of the elements of E .

Proposition 8. Given the set of probability functions PEAF for some set of extensions E ,
let P be its lower envelope and let P ∈ PAF be defined as P (

⋂
E∈E E) = 1, P (E′) = 0

for every E′ 6=
⋂

E∈E E. For each argument A ∈ Arg it holds that P∈(A) = P∈(A).

Proof. By definition, P∈(A) = 1 if A ∈
⋂

E∈E E, P∈(A) = 0 otherwise. From
Proposition 7 we have P∈(A) = 1 if A ∈

⋂
E∈E E, P∈(A) = 0 otherwise, which

proves the statement.

A corollary of Proposition 8 concerns the setPcomp(AF)
AF of probabilities semantically

based on complete extensions. It follows from the fact that the grounded extension is the
least complete extension and coincides with the intersection of all complete extensions
and provides a nice counterpart of Proposition 5.

Corollary 1. Given the set of probability functions Pcomp(AF)
AF , let P be its lower enve-

lope and let P be the unique member of Pground(AF)
AF . For each argument A ∈ Arg it

holds that P∈(A) = P∈(A).

In general, similar considerations could be applied to strict subsets of PAF (e. g.
satisfying some constraints induced by the beliefs of the considered agent(s)) in order
to identify some representative and/or to analyse their information contents. This line
of development is left to future work.

4 Comparison to Epistemic Probabilistic Argumentation

In this section we analyze our approach to semantically based probabilities with respect
to some general properties considered in the literature for the epistemic approach [29,
5, 22, 23].

First, unattacked arguments play a special role as they are, in a sense, unquestioned.
The Foundation postulate from [22] requires that the probability of unattacked argu-
ments is 1. In our context this is guaranteed if a probability function is based on a
semantic notion at least as strong as completeness.

Proposition 9. If P ∈ Pcomp(AF)
AF then P∈(A) = 1 for all unattacked arguments A.

Proof. If A is not attacked in AF then A ∈ E for every complete extension E of AF.
Then P∈(A) =

∑
E∈comp(AF) P (E) = 1. ut

Furthermore, a central postulate in the above-mentioned approaches is Coherence,
which states that the sum of the probabilities of two conflicting arguments must be at
most one. In our context, conflict freeness is enough to guarantee this property.



Proposition 10. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B, P∈(B) ≤

1− P∈(A).
Proof. Let A,B ∈ Arg with A → B. Then for every E ∈ cf(AF) it cannot be the case
that both A ∈ E and B ∈ E. Therefore

P∈(A) + P∈(B) =
∑

A∈E⊆Arg

P (E) +
∑

B∈E⊆Arg

P (E)

=
∑

A∈E∈cf(AF)

P (E) +
∑

B∈E∈cf(AF)

P (E)

≤
∑

E∈cf(AF)

P (E) = 1

ut

The Rationality postulate [20] states that if an argument has a probability greater
than 0.5 then any conflicting argument should have a probability lesser than 0.5. Since
this property is implied by Coherence, we directly obtain the satisfaction of the Ratio-
nality postulate too.

Corollary 2. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B, if P∈(A) > 0.5

then P∈(B) ≤ 0.5.

The postulate Optimism has been used [29] to establish a certain correspondence to
traditional semantics. It states that the sum of the probability of an argument and the
probabilities of its attackers should be at least 1. In our context this holds under stable
semantics.

Proposition 11. If P ∈ P st(AF)
AF then for every E ∈ st(AF), A ∈ E, P∈(A) ≥ 1 −∑

B→A P
∈(B).

Proof. We have that P∈(A) = 1−
∑
A/∈E P (E). By definition every stable extension

S attacks all arguments not included in S. Then in particular every stable extension not
including A includes an attacker of A from which it follows that

∑
B→A P

∈(B) ≥∑
A/∈E P (E) from which P∈(A) ≥ 1−

∑
B→A P

∈(B).

Moreover two extreme cases have been considered in [22], namely maximal (re-
spectively, minimal) epistemic probabilities where the probability of every argument
is 1 (respectively 0). In our context they can be put in direct correspondence with special
topological cases. Assuming probabilities which are semantically based on conflict-free
sets, a maximal probability can be obtained only for argumentation frameworks with an
empty attack relation.

Proposition 12. If P ∈ Pcf(AF)
AF then P∈(A) = 1 for every argument A ∈ Arg only if

→= ∅.

Proof. From the fact that P∈(A) = 1 for every argument A ∈ Arg it follows that it
must be the case that P (Arg) = 1 and P (E) = 0 for every E such that E ( Arg. For
such a probability P to belong to Pcf(AF)

AF it must be the case that Arg is conflict-free,
i.e.→= ∅.



By the way when →= ∅, the whole set of arguments Arg is the unique extension
prescribed by all semantics considered in this paper but the conflict-free and the admis-
sible semantics. Thus the maximal probability is also the unique probability compatible
with those semantics when no attacks are present.

Conversely, it is clear thar a minimal probability is achieved only when the empty
set has probability 1.

Proposition 13. For P ∈ PAF then P∈(A) = 0 for every argument A ∈ Arg if and
only if P (∅) = 1 and P (E) = 0 for every E such that ∅ ( E ⊆ Arg.

Then, the minimal probability can be semantically based only if the empty set be-
longs to the set of extensions. In particular, the following proposition is directly de-
rived from basic properties of the grounded and complete semantics (and is related with
Proposition 5).

Proposition 14. Let P∅ ∈ PAF be defined as P∅(∅) = 1 and P∅(E) = 0 for every E
such that ∅ 6= E ⊆ Arg. P∅ ∈ P

comp(AF)
AF iff GE(AF) = ∅ iff ∀A ∈ Arg ∃B ∈ Arg :

B → A.

Proof. P∅ ∈ P
comp(AF)
AF holds if and only if the empty set is a complete extension, which

in turn holds if and only if GE(AF) = ∅, given that the grounded extension GE(AF) is
the minimal complete extension. By well-known properties of the grounded semantics
[12] GE(AF) = ∅ holds if and only if every argument has at least an attacker (since
every unattacked argument belongs to GE(AF)).

5 Computational Issues

We now discuss some computational issues of our approach, in particular, we make
some straightforward comments on computational complexity.

Our approach is about probabilistic reasoning [27] with abstract argumentation
frameworks. In general, bringing quantities into a qualitative reasoning problem also
adds computational complexity. When reasoning with infinite sets such as PEAF several
properties of this set ensure that this can be done effectively. The next result shows that
the set PEAFis well-behaved wrt. important properties.

Proposition 15. For every E ⊆ 2Arg, PEAF is a connected, closed, and convex set.

Proof. Let P1, P2 ∈ PEAF, δ ∈ (0, 1), and define the δ-convex combination P3 ∈ PAF of
P1 and P2 via

P3(E) = δP1(E) + (1− δ)P2(E)

for all E ⊆ 2Arg. Then for E′ /∈ E we have

P3(E
′) = δP1(E

′) + (1− δ)P2(E
′) = 0

and therefore P3 ∈ PEAF showing thatPEAF is convex. Every convex set is also connected.



To show closure, let P1, P2, . . . be a sequence of probability functions in PEAF such
that limi→∞ Pi(E) exists for all E ⊆ 2Arg and define P ∈ PAF via

P (E) = lim
i→∞

Pi(E)

Note that it is straightforward to see that indeed P ∈ PAF. Then for E′ /∈ E we have

P (E′) = lim
i→∞

Pi(E
′) = lim

i→∞
0 = 0

and therefore P ∈ PEAF showing that PEAF is closed. ut

Note that due to the above result pertaining the closure of sets PEAF, we can substitute
“infimum” by “minimum” in Definition 8. Due to connectedness and convexity, minima
and maxima can be effectively computed by convex optimisation techniques3. We are
currently investigating how to exploit this for algorithmic issues.

Regarding computational complexity, the following result immediately follows from
well-known complexity results for abstract argumentation, see e. g. [14].

Proposition 16. Let AF be an abstract argumentation framework and P ∈ PEAF se-
mantically uniform.

1. Deciding whether P (A) > 0 for some A ∈ Arg is
(a) NP-complete for E = comp(AF),
(b) NP-complete for E = pref(AF),
(c) NP-complete for E = st(AF), and
(d) in P for E = ground(AF).

2. Deciding whether P (A) = 1 for some A ∈ Arg is
(a) in P for E = comp(AF),
(b) ΠP

2 -complete for E = pref(AF),
(c) coNP-complete for E = st(AF), and
(d) in P for E = ground(AF).

Proof. Observe that P (A) > 0 is equivalent to asking whether A is credulously in-
ferred. Correspondingly, P (A) = 1 is equivalent to asking whether A is skeptically
inferred. For the complexity of these problems see e. g. [14]. ut

6 Summary

We proposed a novel perspective to combine probability theory with abstract argumen-
tation. In our approach, we combine classical extension-based semantics with quantita-
tive uncertainty by considering probability functions on extensions and analysing some
relevant reasoning tasks. We did some preliminary investigation and showed that our

3 The size of the optimization problem depends of course on the size of the set E which might
be large in some cases. The reader may refer to [4, 6] for studies on the size of the set of
extensions prescribed by a given semantics.



proposal faithfully generalises classical semantics and is compatible with some postu-
lates considered in the epistemic approach to probabilistic argumentation. Some rela-
tionships with imprecise probability theory were also pointed out and finally, we made
some observations regarding computational complexity.

The work reported in this paper is preliminary and a deeper investigation of the
proposed formalism and of its potential applications is called for. In particular, the de-
velopment of algorithmic approaches for using our framework is part of ongoing work.
Finally, concerning the issue of where do the probability values come from, we suggest
that an interesting direction of investigation is learning or estimating the probabilities
of extensions or of arguments from the past choices of an agent or of a community of
agents (e. g. an electoral body) in similar decision contexts.
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