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Abstract

We survey recent approaches to inconsistency mea-
surement in propositional logic and provide a com-
parative analysis in terms of their expressivity. For
that, we introduce four different expressivity char-
acteristics that quantitatively assess the number of
different knowledge bases that a measure can dis-
tinguish. Our approach aims at complementing on-
going discussions on rationality postulates for in-
consistency measures by considering expressivity
as a desirable property. We evaluate a large se-
lection of measures on the proposed characteris-
tics and conclude that the distance-based measure
IΣ

dalal from [Grant and Hunter, 2013] has maximal
expressivity along all considered characteristics.

1 Introduction
Inconsistency measurement is about the quantitative assess-
ment of the severity of inconsistencies in knowledge bases.
Consider the following two knowledge bases K1 and K2 for-
malised in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1

we have {a,¬a ∧ ¬b} |=⊥ and for K2 we have, e. g.,
{a,¬a} |=⊥. These inconsistencies render the whole knowl-
edge bases useless for reasoning if one wants to use classical
reasoning techniques. In order to make the knowledge bases
useful again, one can either rely on non-monotonic/para-
consistent reasoning techniques [Makinson, 2005; Priest,
1979] or one revises the knowledge bases appropriately to
make them consistent [Hansson, 2001]. Looking at the
knowledge basesK1 andK2 one can observe that the severity
of their inconsistency is different. In K1, only two out of four
formulas (a and ¬a ∧ ¬b) are “participating” in making K1

inconsistent while for K2 all formulas contribute to its incon-
sistency. Furthermore, for K1 only two propositions (a and
b) are conflicting and using e. g. paraconsistent reasoning one
could still infer meaningful statements about c and d. For K2
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no such statement can be made. This leads to the assessment
that K2 should be regarded more inconsistent than K1.

Inconsistency measures can be used to analyse inconsis-
tencies and to provide insights on how to repair them. An
inconsistency measure I is a function on knowledge bases,
such that the larger the value I(K) the more severe the in-
consistency in K. A lot of different approaches of incon-
sistency measures have been proposed, mostly for classi-
cal propositional logic [Hunter and Konieczny, 2004; 2008;
2010; Ma et al., 2009; Mu et al., 2011; Xiao and Ma, 2012;
Grant and Hunter, 2011; 2013; McAreavey et al., 2014;
Jabbour et al., 2014], but also for classical first-order logic
[Grant and Hunter, 2008], description logics [Ma et al., 2007;
Zhou et al., 2009], default logics [Doder et al., 2010], and
probabilistic and other weighted logics [Ma et al., 2012;
Thimm, 2013; Potyka, 2014]. Due to this plethora of incon-
sistency measures it is hard to determine which measure to
use for an application and which measure is meaningful. Ra-
tionality postulates have been proposed that address the issue
of assessing the quality of a measure—see e. g. [Hunter and
Konieczny, 2006; Mu et al., 2011]—but many of these prop-
erties have been criticised to address only a specific point
of view, see [Besnard, 2014] for a recent discussion on this
topic.

In this paper, we take a different perspective on the eval-
uation of inconsistency measures by considering a quantita-
tive analysis of their expressivity, that is, we study how many
different (inconsistent) knowledge bases can be distinguished
by a given inconsistency measure. By the term expressiv-
ity we here refer to the property of a semantical concept—
here, an inconsistency measure—and its capability to distin-
guish syntactical constructs—here, knowledge bases—, sim-
ilarly as it has been done for the analysis of expressivity of
semantics for other logical languages, see e. g. skepticism
relations for formal argumentation [Baroni and Giacomin,
2008]. Our analysis is meant to complement the study on
rationality postulates and is, of course, not meaningful on its
own as the compliance of measures with the basic intuitions
behind inconsistency measures can only be assessed by ra-
tionality postulates. However, we introduce expressivity of
inconsistency measures as an additional method to evaluate
their quality. In particular, we propose four different expres-
sivity characteristics that quantify the relation between the
number of different values of an inconsistency measure wrt.



different notions of the size of the knowledge base, such as
number of formulas or number of propositions. We conduct
a thorough comparative analysis of different inconsistency
measures from the literature [Hunter and Konieczny, 2008;
2010; Grant and Hunter, 2011; Knight, 2002; Thimm, 2016b;
Grant and Hunter, 2013; Mu et al., 2011; Jabbour and Rad-
daoui, 2013; Xiao and Ma, 2012; Doder et al., 2010] and
classify these measures in a hierarchy of expressivity. In our
study, we made several interesting observations, such as the
relation between the measure IMI [Grant and Hunter, 2011]
and Sperner families [Sperner, 1928] and of the measure
IMIC [Grant and Hunter, 2011] with profiles of Boolean func-
tions. One of our results is that the distance-based measure
IΣ

dalal from [Grant and Hunter, 2013] has maximal expressiv-
ity along all considered characteristics.

We give necessary preliminaries in Section 2. In Section 3
we present four different expressivity characteristics and eval-
uate the considered inconsistency measures wrt. these charac-
teristics. We conclude in Section 4. All inconsistency mea-
sures discussed in this paper have been implemented and an
online interface to try out these measures is available1.

2 Preliminaries
Let At be some fixed propositional signature, i. e., a (possi-
bly infinite) set of propositions, and let L(At) be the corre-
sponding propositional language constructed using the usual
connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas
K ⊆ L(At). Let K be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to
denote the set of propositions appearing in X . Semantics to
a propositional language is given by interpretations and an
interpretation ω on At is a function ω : At → {true, false}.
Let Ω(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) a proposition a ∈
At, denoted by ω |= a, if and only if ω(a) = true. The
satisfaction relation |= is extended to formulas in the usual
way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |=
φ for every φ ∈ Φ. Define furthermore the set of models
Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula or set
of formulasX . If Mod(X) = ∅ we also writeX |=⊥ and say
that X is inconsistent.

Let R∞≥0 be the set of non-negative real values includ-
ing ∞. Inconsistency measures are functions I : K →
R∞≥0 that aim at assessing the severity of the inconsistency
in a knowledge base K, cf. [Grant and Hunter, 2011].
The basic idea is that the larger the inconsistency in K
the larger the value I(K) and I(K) = 0 if and only if
K is consistent. However, inconsistency is a concept that
is not easily quantified and there have been a couple of
proposals for inconsistency measures so far, in particular
for classical propositional logic, see e. g. [Besnard, 2014;
McAreavey et al., 2014; Jabbour et al., 2014; Hunter et al.,
2014] for some recent works. We selected 15 inconsistency

1http://tweetyproject.org/w/incmes/

measures from the literature in order to conduct our analy-
sis on expressivity, taken from [Hunter and Konieczny, 2008;
2010; Grant and Hunter, 2011; Knight, 2002; Thimm, 2016b;
Grant and Hunter, 2013; Mu et al., 2011; Xiao and Ma, 2012;
Doder et al., 2010]. We only give the formal definitions of
two of those, see [Thimm, 2016a] for the remaining defini-
tions.

The drastic measure Id is usually considered as a baseline
approach for inconsistency measurement.
Definition 2. The drastic inconsistency measure Id : K →
R∞≥0 is defined as

Id(K) =

{
1 if K |=⊥
0 otherwise

for K ∈ K.
A more fine-grained approach can be devised by taking

minimal inconsistent subsets into account. A set M ⊆ K
is called minimal inconsistent subset (MI) of K if M |=⊥ and
there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of
all MIs of K.
Definition 3. The MI-inconsistency measure IMI : K→ R∞≥0
is defined as

IMI(K) = |MI(K)|

for K ∈ K.
Example 4. Consider the knowledge bases K1 and K2 from
the introduction:

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Here we have

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Therefore we obtain IMI(K1) = 1 and IMI(K2) = 2.

3 Expressivity Characteristics
In the literature, inconsistency measures are usually analyti-
cally evaluated on a set of rationality postulates.2 Some basic
example postulates given in [Hunter and Konieczny, 2006]
are the following (let I be any inconsistency measure)
Consistency I(K) = 0 if and only if K is consistent
Monotony if K ⊆ K′ then I(K) ≤ I(K′)
Independence for all α ∈ K, if α /∈ M for every M ∈

MI(K) then I(K) = I(K \ {α})
Satisfaction of the property consistency ensures that all con-
sistent knowledge bases receive a minimal inconsistency
value and every inconsistent knowledge base receives a posi-
tive inconsistency value (we already implicitly required satis-
faction of this postulate in the definition of an inconsistency

2Some few works also consider empirical evaluation on com-
putational performance and accuracy of algorithms approximat-
ing existing inconsistency measures, see e. g. [Ma et al., 2009;
McAreavey et al., 2014; Thimm, 2016b]



measure). The postulate monotony states that the value of in-
consistency can only increase when adding new information.
Independence states that removing “harmless” formulas from
a knowledge base does not change the value of inconsistency.
Besides these three postulates a series of other postulates have
been proposed in the literature, see [Thimm, 2016c] for a re-
cent survey. However, some of these postulates are disputed
as each of them usually covers only a single aspect of incon-
sistency, such as independence, which focuses on the role of
minimal inconsistent subsets. An excellent discussion on the
rationality of various postulates for inconsistency measures
can be found in [Besnard, 2014]. Besides Besnard, several
other authors have also criticised the rationality of individ-
ual postulates—discussions can be found in almost all papers
cited before—and so there is some disagreement on which
postulates are meaningful and which are not. One the one
hand this calls for more work on rationality postulates and,
on the other hand, it also suggests to investigate additional
means for comparison. In the following, we propose a novel
quantitative approach to evaluate and compare inconsistency
measures that aims at complementing the existing approach
of rationality postulates.

The drastic inconsistency measure Id is usually considered
as a very naive baseline approach for inconsistency measure-
ment. Surprisingly, this measure already satisfies many ra-
tionality postulates such as consistency, monotony, and inde-
pendence (the proofs are straightforward). What sets it apart
from other more sophisticated inconsistency measures is that
it cannot differentiate between different inconsistent knowl-
edge bases. However, this demand is exactly what inconsis-
tency measures are supposed to satisfy. While the qualitative
behaviour of inconsistency measures is being discussed quite
deeply using rationality postulates, their quantitative proper-
ties in terms of expressivity have been almost neglected so
far.3 With expressivity of inconsistency measures we here
mean the number of different values an inconsistency mea-
sure can attain. We investigate the expressivity of inconsis-
tency measures along four different dimensions of subclasses
of knowledge bases.

Definition 5. Let φ be a formula. The length l(φ) of φ is
recursively defined as

l(φ) =


1 if φ ∈ At
1 + l(φ′) if φ = ¬φ′
1 + l(φ1) + l(φ2) if φ = φ1 ∧ φ2

1 + l(φ1) + l(φ2) if φ = φ1 ∨ φ2

Definition 6. Define the following subclasses of the set of all
knowledge bases K:

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀φ ∈ K : l(φ) ≤ n}
Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| ≤ n}

3Some few rationality postulates such as Attenuation [Mu et al.,
2011] are addressing this issue only in some very limited form and
from a particular point of view.

In other words, Kv(n) is the set of all knowledge bases that
mention at most n different propositions, Kf (n) is the set of
all knowledge bases that contain at most n formulas, Kl(n)
is the set of all knowledge bases that contain only formulas
with maximal length n, and Kp(n) is the set of all knowl-
edge bases that contain only formulas that mention at most n
different propositions each. The motivation for considering
these particular subclasses of knowledge bases is that each of
them considers a different aspect of the size of a knowledge
base. As a syntactical object, a knowledge base is a set of
formulas, and both the number of formulas (considered by
the class Kf (n)) and the length of each formula (Kl(n)) are
the essential parameters that define its size. From a seman-
tical point of view, the number of propositions appearing in
each formula (Kp(n)) and in the complete knowledge base
(Kv(n)) define the scope of the knowledge. Larger numbers
for both of them also indicate larger scope and thus greater
size. Inconsistency measures should adhere to the size of the
knowledge base in terms of their expressivity. For example,
the number of possible inconsistency values of a particular
measure should not decrease when moving from a set Kv(n)
to set Kv(n′) with n′ > n, as knowledge bases with n′ formu-
las should provide a larger variety in terms of inconsistency
as knowledge bases of size n. Indeed, this property is true for
all considered measures as Kv(n) ⊆ Kv(n′) (the same holds
for all classes above).

The aim of our expressivity analysis is to investigate the
number of different values that a specific inconsistency mea-
sure can attain on different subclasses of knowledge bases.
We formalise this idea using expressivity characteristics as
follows.
Definition 7. Let I be an inconsistency measure and n > 0.
Let α ∈ {v, f, l, p}. The α-characteristic Cα(I, n) of I wrt.
n is defined as

Cα(I, n) = |{I(K) | K ∈ Kα(n)}|

In other words, Cα(I, n) is the number of different incon-
sistency values I assigns to knowledge bases from Kα(n).
Note that these characteristics are not always the same as the
maximal value of an inconsistency measure on a specific set
of knowledge bases, even if the codomain of the measure is
the natural numbers. Indeed, it can be the case that interme-
diate values cannot be attained.

We now come to the main contribution of [Thimm, 2016a],
which is a thorough study of the considered inconsistency
measures in terms of our four proposed expressivity charac-
teristics.
Theorem 8. The α-characteristics Cα(I, n) (α ∈
{f, v, l, p}) for the inconsistency measures Id, IMI, IMIC , Iη ,
Ic, ILPm , Imc, Ip, Ihs, IΣ

dalal, Imax
dalal , Ihit

dalal, IDf
, Imv , and

Inc are as shown in Table 1.
The complete proof of the above theorem can be found in

[Thimm, 2016a].
Table 1 shows that the measure IΣ

dalal has maximal ex-
pressivity wrt. all four expressivity characteristics (among
the considered inconsistency measures) and, as expected, the
drastic inconsistency measure Id is the least expressive one.
One can also observe that for many measures the values of



Cv(I,n) Cf (I,n) Cl(I,n) Cp(I,n)
Id 2 2 2∗ 2
IMI ∞

(
n
bn/2c

)
+ 1 ∞∗ ∞

IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(

(
n
bn/2c

)
)† ∞∗∗ ∞∗

Ic n+ 1 ∞ ∞∗ ∞
ILPm

Φ(n) ∞ ∞∗ ∞
Imc ∞

(
n
bn/2c

)∗∗ ∞∗ ∞
Ip ∞ n+ 1 ∞∗ ∞
Ihs 2n + 1 n+ 1 ∞∗∗ ∞∗
IΣ

dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n+ 2 ∞∗ b(n+ 7)/3c∗∗ n+ 2
Ihit

dalal ∞ n+ 1 ∞∗ ∞
IDf

∞ ≤ Ψ(n)‡ ∞∗ ∞
Imv n+ 1 ∞∗ ∞∗ ∞
Inc ∞ n+ 1 ∞∗ ∞

Table 1: Characteristics of inconsistency measures (n ≥ 1)
∗only for n > 1
∗∗only for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and can be defined as Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|,
see e. g. http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of n variables, see e. g. http://oeis.org/A220880

Cv(I, n) and Cf (I, n) are complementary, i. e., if a mea-
sure has a high value in Cf it has small value in Cv (con-
sider e. g. Ic and Ip). This is due to the fact that many
measures measure only a specific aspect of inconsistency and
usually belong either to the MI-based family of inconsistency
measures—which focus on using minimal inconsistent sub-
sets for measuring—or the variable-based family—which fo-
cus on conflicting propositions—, cf. [Hunter and Konieczny,
2008]. Therefore, they are constrained in their expressivity if
one of these dimensions is limited. For example, if the num-
ber of formulas in a knowledge base is restricted, so is the
number of minimal inconsistent subsets.

Remark 9. Note that [Thimm, 2016a] also considered the
measure IPm

[Jabbour and Raddaoui, 2013] and reported it
to have maximal expressivity. However, the original publica-
tion [Jabbour and Raddaoui, 2013] falsely claimed that IPm

satisfies the consistency postulate, which is usually deemed
a necessary requirement for inconsistency measures. How-
ever, IPm

does not comply with this basic property as e. g.
for inconsistent KPm = {a,¬(a ∧ a)}, IPm

(KPm) = 0,
cf. Definition 2, Proposition 2, and Section 3 in [Jabbour and
Raddaoui, 2013]. Therefore, we omit discussing IPm in this
paper.

4 Summary and Conclusion
We conducted a focused but extensive comparative analysis
of inconsistency measures from the recent literature in terms
of their expressivity. For that, we introduced 4 different ex-
pressivity characteristics and conducted an analytical evalua-
tion of the considered measures wrt. these expressivity char-
acteristics. Our findings also revealed some interesting rela-
tionships of inconsistency measures to, e. g., set theory and

monotone Boolean functions, see [Thimm, 2016a] for a dis-
cussion. Finally, the measure IΣ

dalal [Grant and Hunter, 2013]
has been proven to be maximally expressive wrt. all our char-
acteristics.

Expressivity characteristics provide a novel evaluation
method for assessing the quality of inconsistency measures.
It has to be noted, however, that high expressivity alone is not
a sufficient criterion for doing this. It is straightforward to
construct measures that exhibit maximal expressivity along
all discussed dimensions, but fail to comply with the intu-
itions one expects from inconsistency measures. The use of
rationality postulates—such as the ones presented and dis-
cussed in [Hunter and Konieczny, 2006; Mu et al., 2011;
Besnard, 2014]—must still serve as first-level evaluation cri-
terion. If measures satisfy the same (or a similar set of) ra-
tionality postulates, expressivity can be used to make further
quality assessments.

To the best of our knowledge, our work is the most exten-
sive comparative analysis of inconsistency measures so far.
All inconsistency measures discussed in this paper have been
implemented and an online interface to try out these measures
is available4.

4http://tweetyproject.org/w/incmes/
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