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Abstract

We present a general scheme for inconsistency measurement that generalizes pre-
viously proposed approaches based on many-valued logics. We also develop novel
instantiations of this schema based on fuzzy logic and investigate their compliance
with several rationality postulates for inconsistency measurement, their expressiv-
ity, and their computational complexity.
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1. Introduction

A general challenge in knowledge representation and reasoning is the handling
of inconsistent information. A quantitative treatment of this challenge is provided
by the field of inconsistency measurement, see e. g. (Hunter and Konieczny, 2004;
Grant and Hunter, 2006) for some early surveys. In this field, the main object of
research is the inconsistency measure, i. e., a function that assigns a non-negative
real value to a knowledge base with the informal meaning that larger values in-
dicate a larger degree of inconsistency. These kind of measures are useful for the
tasks of identifying the culprits of inconsistency (Hunter and Konieczny, 2010), as
well as manual and automatic debugging of knowledge bases (Grant and Hunter,
2011; Potyka and Thimm, 2014) and inconsistent-tolerant reasoning (Potyka and
Thimm, 2015). The traditional setting for inconsistency measurement is that of
classical propositional logic and, beginning with Knight’s inconsistency measure
from (Knight, 2001), a lot of proposals of inconsistency measures have been made
for this setting, see e. g. (Grant and Hunter, 2016; McAreavey et al., 2014; Jabbour
et al., 2014, 2015; Ammoura et al., 2015; Thimm, 2016c) for some recent works.

As the magnitude and diversity of these different measures show, the prob-
lem of conceptualizing a quantitative notion of inconsistency is not a trivial one.
A common approach to categorize inconsistency measures is by differentiating
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whether they operate on the formula-level or on the language-level. The former
category is also called the syntactic approach while the latter is called the se-
mantic approach (Hunter and Konieczny, 2004). Measures belonging to the syn-
tactic approach usually make use of minimal inconsistent subsets, i. e., subsets
of the knowledge base that are inconsistent but removing any formula renders
them consistent. A simple approach for measuring inconsistency is then to simply
take the number of minimal inconsistent subsets of a knowledge base as the value
of inconsistency, cf. (Hunter and Konieczny, 2008). More recent measures also
take the relationships between minimal inconsistent subsets into account (Jabbour
and Sais, 2016). Other measures belonging to the syntactic approach may exploit
other notions such as maximal consistent subsets (Ammoura et al., 2015) but the
commonality of these approaches is that they focus on conflicts between formulas
of the knowledge base. On the other hand, measures belonging to the semantic
approach focus on conflicts between language components. More precisely, these
measures aim at identifying those atoms of the underlying language that are con-
flicting and they usually employ non-classical and many-valued logics as a tool for
that. While the class of syntactic measures, in particular those based on minimal
inconsistent subsets, has received a lot of attention in the recent literature (Am-
moura et al., 2015; Jabbour et al., 2016; Jabbour and Sais, 2016; Ammoura et al.,
2017), the class of semantic measures, in particular those based on many-valued
logics, is still in need for a deeper investigation and categorization.

In this paper, we are interested in approaches to inconsistency measurement
that—in one form or the other—employ many-valued logics. For example, the
contension measure from (Grant and Hunter, 2011) seeks three-valued interpret-
ations that minimize the use of the third non-classical truth value and uses this
number as the inconsistency value (note that similar versions of this measure ap-
pear in other papers). Another example (which is usually even not regarded a
semantic measure) is Knight’s inconsistency measure (Knight, 2001) which seeks
probability functions that maximize the probabilities of all formulas of the know-
ledge base and, basically, uses this value as the inconsistency value. We generalize
these measures by developing an abstract scheme based on evaluation functions
of arbitrary interpretations and an optimization problem, and show that previous
approaches based on many-valued logics are subsumed by this scheme. Further-
more, we develop novel instantiations of this scheme based on fuzzy logic (Hájek,
1998) that are parametrized by the use of different T-norms and T-conorms, i. e.,
fuzzy generalizations of classical conjunction and disjunction. More precisely, the
contributions of this paper are as follows:
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1. We propose a general scheme for inconsistency measurement that subsumes
many existing measures based on many-valued logics (Section 3) and ana-
lyse its general properties (Section 6).

2. We present a family of inconsistency measures based on fuzzy logic that
instantiates this general schema and investigate their properties (Section 4).
In particular:

(a) We evaluate the compliance of these measures wrt. 18 rationality pos-
tulates from (Hunter and Konieczny, 2006; Thimm, 2009; Hunter and
Konieczny, 2010; Mu et al., 2011a,b; Thimm, 2013; Besnard, 2014)
(Section 5.1).

(b) We evaluate the expressiveness of these measures and show that they
are maximally expressive (Section 5.2).

(c) We determine the computational complexity of common tasks involving
inconsistency measures and show that they reside on the first level of
the polynomial hierarchy (Section 5.3).

Furthermore, Section 2 recalls necessary preliminaries, Section 7 discusses related
works, and Section 8 concludes the paper with a summary. Proofs of technical
results can be found in Appendix A.

2. Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of
propositions, and let L be the corresponding propositional language constructed
using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L. Let K(At)
be the set of all knowledge bases, i. e., the power set of L.

We write K instead of K(At) when there is no ambiguity regarding the signa-
ture. If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X . Semantics to a propositional language is given by
interpretations and an interpretation ω on At is a function ω : At→ {true, false}.
Let Ω(At) denote the set of all interpretations for At. An interpretation ω satis-
fies (or is a model of) a proposition a ∈ At, denoted by ω |= a, if and only if
ω(a) = true. The satisfaction relation |= is extended to formulas as usual.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula
or set of formulas X . A formula or set of formulas X1 entails another formula
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or set of formulas X2, denoted by X1 |= X2, if Mod(X1) ⊆ Mod(X2). Two
formulas or sets of formulas X1, X2 are equivalent, denoted by X1 ≡ X2, if
Mod(X1) = Mod(X2). Furthermore, two sets of formulas X1, X2 are semi-
extensionally equivalent if there is a bijection s : X1 → X2 such that for all
α ∈ X1 we have α ≡ s(α) (Thimm, 2013). We denote this by X1 ≡s X2. If
Mod(X) = ∅ we also write X |=⊥ and say that X is inconsistent.

Let R∞≥0 be the set of non-negative real values including ∞. Inconsistency
measures are functions I : K → R∞≥0 that aim at assessing the severity of the in-
consistency in a knowledge base K. The basic idea is that the larger the inconsist-
ency in K the larger the value I(K), where an inconsistency value 0 characterizes
a consistent knowledge base, cf. (Hunter and Konieczny, 2006). Inconsistency is
a concept that is not easily quantified but there have been several proposals for
inconsistency measures so far, in particular for classical propositional logic, see
e. g. (Grant and Hunter, 2016; McAreavey et al., 2014; Jabbour et al., 2014, 2015;
Ammoura et al., 2015; Thimm, 2016c) for some recent works.

One of the first approaches to measure inconsistency is Knight’s measure Iη,
which is based on probability functions over the underlying propositional lan-
guage (Knight, 2001). A probability function P on L is a function P : Ω(At) →
[0, 1] with

∑
ω∈Ω(At) P (ω) = 1. We extend P to assign a probability to any for-

mula φ ∈ L(At) by defining

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions. The idea of (Knight, 2001)
is to seek a probability function that maximizes the probability of each formula of
a knowledge base K. Therefore, the smaller the maximal probability that can be
assigned to all formulas the more inconsistent the knowledge base.

Definition 2. The η-inconsistency measure Iη : K→ R∞≥0 is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

Note that we modified the definition of Iη slightly compared to the original
definition in order to ensure that consistent knowledge bases receive an inconsist-
ency value of zero. The original definition only consists of the term max{. . .} and
thus attained 1 for consistency and 0 for maximal inconsistency.
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The contension measure Ic (Grant and Hunter, 2011) utilizes three-valued in-
terpretations for propositional logic (Priest, 1979).1 A three-valued interpretation
υ on At is a function υ : At → {T, F,B} where the values T and F corres-
pond to the classical true and false, respectively. The additional truth value B
stands for both and is meant to represent a conflicting truth value for a proposi-
tion. Taking into account the truth order ≺ defined via F ≺ B ≺ T , an interpret-
ation υ is extended to arbitrary formulas via υ(φ1 ∧ φ2) = min≺(υ(φ1), υ(φ2)),
υ(φ1 ∨ φ2) = max≺(υ(φ1), υ(φ2)), and υ(¬T ) = F , υ(¬F ) = T , υ(¬B) = B.
Then, an interpretation υ satisfies a formula α, denoted by υ |=3 α if either
υ(α) = T or υ(α) = B. Then inconsistency can be measured by seeking an
interpretation υ that assigns B to a minimal number of propositions.

Definition 3. The contension inconsistency measure Ic : K→ R∞≥0 is defined as

Ic(K) = min{|υ−1(B)| | υ |=3 K}

for K ∈ K.

We conclude this section with a small example illustrating the measures intro-
duced above.

Example 1. Let K1 and K2 be given as

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Consider the probability function P1 ∈ P({a, b, c, d}) as defined in Table 1. Here
we have

P1(a) = P1(¬a ∧ ¬b) = 0.5, and
P1(b ∨ c) = P1(d) = 1,

and thus P1(φ) ≥ 0.5 for all φ ∈ K1. Furthermore, there can be no other P ′ that
assigns larger probability to all φ ∈ K1. Hence, we have Iη(K1) = 1− 0.5 = 0.5.
The function P1 can also be used to determine Iη(K2) = 0.5.

Furthermore, consider υ1 : {a, b, c, d} → {T, F,B} defined via

υ1(a) = B υ1(b) = F υ1(c) = υ1(d) = T

1Note that similar formalizations of this idea have been given in (Hunter and Konieczny, 2010;
Ma et al., 2007, 2011).
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ω ∈ Ω({a, b, c, d}) ω(a) ω(b) ω(c) ω(d) P1(ω)
ω1 false false false false 0
ω2 false false false true 0
ω3 false false true false 0
ω4 false false true true 0.5
ω5 false true false false 0
ω6 false true false true 0
ω7 false true true false 0
ω8 false true true true 0
ω9 true false false false 0
ω10 true false false true 0
ω11 true false true false 0
ω12 true false true true 0
ω13 true true false false 0
ω14 true true false true 0
ω15 true true true false 0
ω16 true true true true 0.5

Table 1: Probability function P1 from Example 1.
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Then υ1 |=3 φ for all φ ∈ K1 and there is no other υ′ that assigns B to fewer
propositions, yielding Ic(K1) = 1. For υ2 : {a, b} → {T, F,B} defined via

υ2(a) = υ2(b) = B

we have υ2 |=3 φ for all φ ∈ K2 and there is no other υ′ that assigns B to fewer
propositions, yielding Ic(K2) = 2.

3. A General Scheme for Inconsistency Measurement

A common feature of the measures Iη and Ic is that they both employ a many-
valued logic for the task of measuring inconsistency. The measure Iη uses prob-
ability functions, which essentially map formulas to values in [0, 1], and Ic uses
3-valued interpretations, which map formulas to values in {T, F,B}. In the fol-
lowing, we generalized this idea to arbitrary many-valued logics. For that, we use
the following general definition for interpretations.

Definition 4. Let S be any set (the “truth” values). A function ω : L → S is
called an S-interpretation function.

This definition is general enough to subsume a wide variety of many-valued
interpretations, such as probability functions and three-valued interpretations.

Example 2. Let SU = [0, 1] and ωP : L → SU be any function satisfying the
following conditions:

1. ωP (>) = 1

2. ωP (α ∨ β) = ωP (α) + ωP (β) if α ∧ β |=⊥

Then ωP is equivalent to a probability function, i. e., there is Q ∈ P(At) with
ωP (α) = Q(α) for all α ∈ L. Let ΩP be the set of all such functions ωP .

Example 3. Let S3 = {F, T,B}. Let ω3 be any function satisfying the following
conditions (using again the order F ≺ B ≺ T ):

1. ω3(>) = T

2. ω3(α ∧ β) = min≺(ω3(α), ω3(β))

3. ω3(¬α) = T if ω3(α) = F , ω3(¬α) = F if ω3(α) = T , otherwise ω3(α) =
B

Then ω3 is equivalent to a three-valued interpretation of Priest’s logic (Priest,
1979). Let Ω3 be the set of all such interpretations.
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The next commonality of Iη and Ic is the numerical evaluation of an inter-
pretation wrt. the given knowledge baseK. For Iη, an interpretation (=probability
function) is evaluated by using the minimal probability among all formulas of K
(which is equivalent to the maximal value s. t. all formulas have at least this prob-
ability). For Ic, an interpretation is either dismissed (in case at least one formula
of K is assigned the value F ), or the number of atoms assigned the value B is
used as the evaluation. We generalize this using the following definition.

Definition 5. Let Ω be a set of S-interpretations. An S-evaluation function E is a
function E : K× Ω→ R∞≥0.

In other words, given a knowledge baseK and an S-interpretation ω, the value
E(K, ω) represents the evaluation of ω wrt. K.

Finally, the evaluations of all interpretations are compared and the optimal
value is chosen.

Definition 6. Let Ω be a set of S-interpretations, E an S-evaluation function, and
K ∈ K. Define IΩ,E : K→ R∞≥0 via

IΩ,E(K) = min{E(K, ω) | ω ∈ Ω}

The measure IΩ,E represents a general scheme for instantiating a multitude
of different inconsistency measures, based on the selection of Ω and E. Given
any set Ω of interpretations, the inconsistency value of a knowledge base K is
determined by the minimal evaluation of an interpretation in Ω wrt. E.

As special cases, this scheme subsumes the measures Iη and Ic. For that,
consider first the evaluation functionEmin defined for SU -interpretation functions.

Definition 7. Let ΩU be a set of SU -interpretation functions. Define Emin : K ×
ΩU → R∞≥0 via

Emin(K, ω) = 1−min{ω(α) | α ∈ K}

Using this evaluation function, we can show that our general scheme subsumes
Iη.

Proposition 1. IΩP ,Emin
= Iη.

Consider now the evaluation function E# defined for Ω3.
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Definition 8. Define E# : K× Ω3 → R∞≥0 via

E#(K, ω) =


|{a ∈ At | ω(a) = B}| if ω(α) ∈ {T,B}

for all α ∈ K
∞ otherwise

Proposition 2. IΩ3,E#
= Ic.

Propositions 1 and 2 show that Iη and Ic are special cases of our general
scheme IΩ,E . We will look at some further measures from the literature in Sec-
tion 7 and continue first with the presentation of a novel measure based on the
scheme IΩ,E .

4. Instantiations based on Fuzzy Logic

The measure IΩ,E allows the development of a broad class of novel incon-
sistency measures by appropriately instantiating Ω and E. The previous section
already showed that Iη and Ic give two meaningful instantiations of this scheme,
but it is also clear that not every instantiation necessarily leads to an inconsist-
ency measure. For example, consider again the set Ω3 of three-valued interpret-
ations but with the evaluation function E ′# defined via E ′#(K, ω) = |{α ∈ K |
ω(α) = B}|, which uses the number of formulas in K assigned the value B.
Then the measure IΩ3,E′

#
does not even satisfy the basic property of inconsistency

measures that only consistent knowledge bases receive an inconsistency value of
zero, as e. g. IΩ3,E′

#
({a,¬a}) = 0 (define ω via ω(a) = T , then ω(a) = T and

ω(¬a) = F ).2 However, in the remainder of this section we develop a more ap-
propriate novel instantiation—more precisely, a novel family of instantiations—of
the general scheme based on fuzzy logic (Hájek, 1998).

Similarly to probability theory, fuzzy logic can be seen as an extension of clas-
sical logic with many truth values, where formulas are assigned truth values in the
unit interval [0, 1] instead of the classical values true (= 1) and false (= 0). In
difference to probability theory, fuzzy logic does not utilize an intensional eval-
uation of truth values—by using normalized probability functions—but an exten-
sional evaluation using operators representing fuzzified extensions of the logical
connectors conjunction, disjunction, and negation.3

2In fact, every knowledge base has an inconsistency value 0 wrt. IΩ3,E′
#

.
3Put simply, an extensional evaluation refers to evaluations of compound formulas using their
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For the purpose of this paper we use the following definition of a T-norm,
which is the fuzzy version of the logical conjunction.

Definition 9. A function t : [0, 1]× [0, 1]→ [0, 1] is called a restricted T-norm if
it satisfies for every x, y, z ∈ [0, 1]

1. t(x, y) = t(y, x) (commutativity)
2. t(x, t(y, z)) = t(t(x, y), z) (associativity)
3. if x ≤ y then t(x, z) ≤ t(y, z) (monotony)
4. t(x, 1) = x (neutrality)
5. t(x, y) = 0 iff x = 0 or y = 0

Note that the usual definition of a T-norm only considers properties 1–4 from
above, cf. (Hájek, 1998). Commutativity and associativity represent the basic
property that the order of components in a conjunction is irrelevant. Monotony
states that increasing the truth value of one component cannot decrease the truth
value of the whole conjunction. Neutrality states that conjunctively combining
any truth value with 1 (= true) simplifies to this truth value. We also demand
property 5 to be satisfied in order to obtain well-behaved inconsistency measures
(see below). In fact, property 5 is the inverse of the property nil-potency which is
sometimes considered for T-norms and demands t(x, (t(x, . . . , t(x, x) . . .) = 0 for
every x ∈ (0, 1) and a finite application of t. Observe that any T-norm according
to Definition 9 properly extends classical conjunction as for the classical values 0
and 1 we have t(1, 1) = 1 and t(1, 0) = t(0, 1) = t(0, 0) = 0. For the remainder
of this paper we will call restricted T-norms simply T-norms but be reminded that
we always assume property 5 to hold as well.

As a T-norm t is commutative and associative the generalization to arbitrary
many arguments is well-defined. Therefore, we abbreviate for X = {x1, . . . , xn}
with x1, . . . , xn ∈ [0, 1]

t(X) = t(x1, . . . , xn) = t(x1, t(x2, . . . t(xn−1, xn) . . .))

Noteworthy examples of T-norms are the following

tmin(x, y) = min{x, y}
tprod(x, y) = xy

components; as e. g. the probability P (α ∧ β) cannot be represented as a combination of the
probabilities P (α) and P (β) (in general), probability theory cannot be phrased using extensional
evaluations, cf. (Hailparin, 1984).
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tmin is called the minimum-norm and tprod is the product-norm. Note that both
functions comply with the properties 1–5 from Definition 9. Another function
that is often used in the context of fuzzy logic is the Łukasiewicz-norm tŁ defined
via tŁ(x, y) = max{x + y − 1, 0}. Note that tŁ violates property 5 as e. g.
tŁ(0.5, 0.5) = 0 and is therefore not considered in the remainder of this paper.

The counterpart to T-norms are T-conorms (sometimes also called S-norms)
which generalize classical disjunction and are defined as follows.

Definition 10. A function s : [0, 1]× [0, 1]→ [0, 1] is called a restricted T-conorm
if it satisfies for every x, y, z ∈ [0, 1]

1. s(x, y) = s(y, x) (commutativity)
2. s(x, s(y, z)) = s(s(x, y), z) (associativity)
3. if x ≤ y then s(x, z) ≤ s(y, z) (monotony)
4. s(x, 0) = x (neutrality)
5. s(x, y) = 1 iff x = 1 or y = 1

Properties 1–5 are analogous to properties 1–5 of Definition 9 (note however
the different neutral element in item 4) and property 5 is again non-standard and
added to obtain well-behaved inconsistency measures (see below). Observe that
any T-conorm according to Definition 10 properly extends classical disjunction
as for the classical values 0 and 1 we have s(1, 1) = s(1, 0) = s(0, 1) = 1 and
s(0, 0) = 0. Again, for the remainder of this paper we will call restricted T-
conorms simply T-conorms but be reminded that we always assume property 5 to
hold as well.

Noteworthy examples of T-conorms are the following

smax(x, y) = max{x, y}
spsum(x, y) = x+ y − xy

smax is called the maximum-conorm and spsum is called the probabilistic sum. Note
that both functions comply with the properties 1–5 from Definition 10.

For negation we only consider the classical idempotent negation n defined via
n(x) = 1− x.

T-norms and T-conorms are related in a similar way as classical conjunction
and disjunction are related through the De Morgan rules. More precisely, a T-
conorm s is the dual of a T-norm t if s(x, y) = n(t(n(x), n(y))). Observe that
smax is the dual of tmin and that spsum is the dual of tprod.
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Definition 11. Let t be any T-norm and s any T-conorm. A fuzzy interpretation
ωt,s for t and s is an SU -interpretation function ωt,s : L → [0, 1] which satisfies

1. ωt,s(¬α) = n(ωt,s(α))

2. ωt,s(α ∧ β) = t(ωt,s(α), ωt,s(β))

3. ωt,s(α ∨ β) = s(ωt,s(α), ωt,s(β))

For a T-norm t and a T-conorm s let Ωt,s denote the set of fuzzy interpretations for
t and s. If s is the dual of t we simply write Ωt.

We now follow a similar approach as for the η-inconsistency measure to define
an inconsistency measure based on fuzzy evaluation functions.

Definition 12. Let t be any T-norm and s any T-conorm. Define the function
Efuz
t : K× Ωt,s → R∞≥0 via

Efuz
t (K, ω) = n(t({ω(α) | α ∈ K}))

Then the function I fuz
t,s = IΩt,s,Efuz

t
is called fuzzy inconsistency measure based on

t and s. We abbreviate I fuz
t,s by I fuz

t if s is the dual of t.

The basic idea of the definition above is as follows. Given some T-norm and
T-conorm, all fuzzy interpretations for the given propositional language are con-
sidered. Each fuzzy interpretation assigns a value in [0, 1] to each formula of the
given knowledge base and we use the chosen T-norm to combine these values
into a single value, which can be interpreted as the fuzzy truth value of the whole
knowledge base (wrt. the interpretation). For normalization purposes we invert
this value (using the fuzzy negation) so that larger values mean less truth. Finally,
we consider this evaluation for all fuzzy interpretations and select the minimum
as the final inconsistency value.

Example 4. We continue Example 1 and consider K1 and K2 given as

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Consider the T-norm tprod and the fuzzy interpretation ω ∈ Ωtprod defined via (note
that we use the dual spsum of tprod as T-conorm)

ω(a) = 0.3 ω(b) = 0.7 ω(c) = 0.5 ω(d) = 1
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and ω(α) for arbitrary formulas α ∈ L is defined as prescribed in Definition 11.
For the formulas in K1 we obtain

ω(a) = 0.3

ω(b ∨ c) = spsum(ω(b), ω(c)) = spsum(0.7, 0.5)

= 0.7 + 0.5− 0.7 · 0.5 = 0.85

ω(¬a ∧ ¬b) = tprod(n(ω(a)), n(ω(b)))

= (1− 0.3)(1− 0.7) = 0.21

ω(d) = 1

and therefore

Efuz
tprod

(K1, ω) = n(tprod({0.3, 0.85, 0.21, 1}))
= 1− (0.3 · 0.85 · 0.21 · 1) = 0.94645

However, note that I fuz
tprod

(K1) = 0.75 by considering ω′ ∈ Ωtprod with ω′(a) = 0.5,
ω′(c) = ω′(d) = 1 and ω′(b) = 0. Furthermore, we obtain I fuz

tprod
(K2) = 0.9375.

Definition 12 gives rise to a variety of inconsistency measures, depending on
the chosen T-norm and T-conorm. Observe that using tmin is not so interesting
after all:

Proposition 3.

I fuz
tmin

(K) =

{
1/2 if K |=⊥
0 otherwise

So I fuz
tmin

is equivalent to a SAT test and (up to normalization) to the drastic
inconsistency measure Id (Hunter and Konieczny, 2006) which uses 1 as the value
for inconsistent knowledge bases. Note that Proposition 3 is not true for arbitrary
T-norms and T-conorms as shown in Example 4.

Our general scheme for inconsistency measures from the previous section al-
lows the definition of a multitude of variants of I fuz

t,s . As an example, we also
consider one other instantiation as follows.

Definition 13. Let t be any T-norm and s any T-conorm. Define the function
Efuz

Σ : K× Ωt,s → R∞≥0 via

Efuz
Σ (K, ω) =

∑
α∈K

n(ω(α))
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Then the function I fuz,Σ
t,s = IΩt,s,Efuz

Σ
is called Σ-fuzzy inconsistency measure based

on t and s. We abbreviate I fuz,Σ
t,s by I fuz,Σ

t if s is the dual of t.

In difference to I fuz
t,s the measure I fuz,Σ

t,s aggregates the (negated) fuzzy values
of the formulas by summation rather then by using fuzzy negation and the T-norm.

Example 5. We continue Example 4 and consider again K1 and K2 given as

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

For ω as defined in Example 4 via

ω(a) = 0.3 ω(b) = 0.7 ω(c) = 0.5 ω(d) = 1

and again using tprod and spsum we obtain

Efuz
Σ (K1, ω) = n(ω(a)) + n(ω(b ∨ c)) + n(ω(¬a ∧ ¬b)) + n(ω(d))

= (1− 0.3) + (1− 0.85) + (1− 0.21) + (1− 1)

= 1.64

However, note that I fuz,Σ
tprod

(K1) = 1 by considering ω′ ∈ Ωtprod with ω′(a) = 0.5,
ω′(c) = ω′(d) = 1 and ω′(b) = 0. Furthermore, we obtain I fuz,Σ

tprod
(K2) = 2.

5. Analysis

In this section, we analyze the measures I fuz
t,s and I fuz,Σ

t,s by investigating their
compliance with rationality postulates (Section 5.1), their expressivity (Section 5.2),
and their computational complexity (Section 5.3).

5.1. Rationality Postulates
In the literature, inconsistency measures are usually analytically evaluated us-

ing rationality postulates. Starting with (Hunter and Konieczny, 2006) a series of
other papers have proposed rationality postulates and argued about their appropri-
ateness, cf. (Besnard, 2014) for a recent discussion.

In order to state the rationality postulates we need some notation. A set M ⊆
K is called minimal inconsistent subset (MI) of K if M |=⊥ and there is no M ′ ⊂
M with M ′ |=⊥. Let MI(K) be the set of all MIs of K.

Definition 14. A formula α ∈ K is called free formula if α /∈
⋃

MI(K). Let
Free(K) be the set of all free formulas of K.
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In other words, a free formula is basically a formula that is not directly par-
ticipating in any derivation of a contradiction. Using this definition and the con-
cepts already introduced before, the first five rationality postulates of (Hunter and
Konieczny, 2006) can be stated as follows. Let I be any inconsistency measure,
K,K′ ∈ K, and α, β ∈ L(At).

Consistency (CO) I(K) = 0 if and only if K is consistent

Normalization (NO) 0 ≤ I(K) ≤ 1

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)

Free-formula independence (IN) If α ∈ Free(K) then I(K) = I(K \ {α})

Dominance (DO) If α 6|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β})

The first postulate, CO, requires that consistent knowledge bases receive the min-
imal inconsistency value zero and every inconsistent knowledge base has a strictly
positive inconsistency value. This postulate is actually the only generally accep-
ted postulate and describes the minimal requirement for an inconsistency meas-
ure. An inconsistency measure I that satisfies CO does not distinguish between
consistent knowledge bases and can, at least, distinguish inconsistent knowledge
bases from consistent ones.

The postulate NO states that the inconsistency value is always in the unit in-
terval, thus allowing inconsistency values to be comparable even if knowledge
bases are of different sizes. In later works, this postulate is usually regarded as an
optional feature.

MO requires that adding formulas to the knowledge base cannot decrease the
inconsistency value. Besides CO this is the least disputed postulate and most
inconsistency measures do satisfy it.

IN states that removing free formulas from the knowledge base should not
change the inconsistency value. The motivation here is that free formulas do not
participate in inconsistencies and should not contribute to having a certain incon-
sistency value.

DO says that substituting a consistent formula α by a weaker formula β should
not increase the inconsistency value. Here, as β carries less information than α
there should be less opportunities for inconsistencies to occur.

The set of postulates was extended in (Thimm, 2009) for the case of inconsist-
ency measurement in probabilistic logics. However, we can state these postulates
also for propositional logic.
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Definition 15. A formula α ∈ K is called safe formula if it is consistent and
At(α) ∩ At(K \ {α}) = ∅. Let Safe(K) be the set of all safe formulas of K.

A formula is safe, if its signature is disjoint from the signature of the rest of
the knowledge base, cf. the concept of language splitting in belief revision (Parikh,
1999; Kourousias and Makinson, 2007). Every safe formula is also a free formula
(Thimm, 2009).

Safe-formula independence (SI) If α ∈ Safe(K) then I(K) = I(K \ {α})

Super-Additivity (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)

Penalty (PY) If α /∈ Free(K) then I(K) > I(K \ {α})

The postulate SI requires that removing isolated formulas from a knowledge base
cannot change the inconsistency value. This postulate is a weakening of IN, i. e.,
if a measure I satisfies IN it also satisfies SI, cf. (Thimm, 2009) and Theorem 1
below.

SA is a strengthening of MO (Thimm, 2009) and requires that the sum of
the inconsistency values of two disjoint knowledge bases is not larger than the
inconsistency value of the joint knowledge base.

PY is the complementary postulate to IN and states that adding a formula
participating in inconsistency must have a positive impact on the inconsistency
value.

The following two postulates have been first used in (Hunter and Konieczny,
2010):

MI-separability (MI) If MI(K1∪K2) = MI(K1)∪MI(K2) and MI(K1)∩MI(K2) =
∅ then I(K1 ∪ K2) = I(K1) + I(K2)

MI-normalization (MN) If M ∈ MI(K) then I(M) = 1

MI focuses particularly on the role of minimal inconsistent subsets in the determ-
ination of the inconsistency value. It states that the sum of the inconsistency values
of two knowledge bases that have “non-interfering” sets of minimal inconsistent
subsets should be the same as the inconsistency value of their union.

MN demands that a minimal inconsistent subset is the atomic unit for measur-
ing inconsistency by requiring that the inconsistency value of any minimal incon-
sistent subset is one.

The following postulates have been proposed in (Mu et al., 2011a) to further
define the role of minimal inconsistent subsets in measuring inconsistency:
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Attenuation (AT) M,M ′ ∈ MI(K) and I(M) < I(M ′) implies |M | > |M ′|

Equal Conflict (EC) M,M ′ ∈ MI(K) and I(M) = I(M ′) implies |M | = |M ′|

Almost Consistency (AC) Let M1,M2, . . . be a sequence of minimal inconsistent
sets Mi with limi→∞ |Mi| =∞, then limi→∞ I(Mi) = 0

The postulate AT states that minimal inconsistent sets of smaller size should have
a larger inconsistency value. The motivation of this postulate stems from the
lottery paradox (Kyburg, 1961): Consider a lottery of n tickets and let ai be the
proposition that ticket i, i = 1, . . . , n will win. It is known that exactly one ticket
will win (a1 ∨ . . . ∨ an) but each ticket owner assumes that his ticket will not
win (¬ai, i = 1, . . . , n). For n = 1000 it is reasonable for each ticket owner to
believe that he will not win but for e. g., n = 2 it is not. Therefore larger minimal
inconsistent subsets can be regarded less inconsistent than smaller ones.

The postulate EC is the counterpart of AT and requires minimal inconsistent
subsets having the same inconsistency value also to have the same size.

AC considers the inconsistency values on arbitrarily large minimal inconsist-
ent subsets in the limit and requires this to be zero.

The following postulates are from (Mu et al., 2011b).

Contradiction (CD) I(K) = 1 if and only if for all ∅ 6= K′ ⊆ K, K′ |=⊥

Free Formula Dilution (FD) If α ∈ Free(K) then I(K) ≥ I(K \ {α})

CD is meant as an extension of NO and states that a knowledge base is maximally
inconsistent if all non-empty subsets are inconsistent. Note that CD only makes
sense if NO is satisfied as well. FD has been introduced in (Mu et al., 2011b)
to serve as a weaker version of IN for normalised measures, i. e., measures satis-
fying NO. For those, it may be the case that adding free formulas decreases the
inconsistency value as they measure a “relative” amount of inconsistency.

The following property is from (Thimm, 2013):

Irrelevance of Syntax (SY) If K1 ≡s K2 then I(K1) = I(K2)

SY states that knowledge bases with pairwise equivalent formulas should receive
the same inconsistency value.

In (Besnard, 2014) a series of further postulates have been discussed. For our
current study, we only consider the following two:

Exchange (EX) If K′ 6|=⊥ and K′ ≡ K′′ then I(K ∪ K′) = I(K ∪ K′′)
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Adjunction Invariance (AI) I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

EX is similar in spirit to SY and demands that exchanging consistent parts of the
knowledge base with equivalent ones should not change the inconsistency value.

AI demands that the set notation of knowledge bases should be equivalent to
the conjunction of its formulas in terms of inconsistency values. In difference to
EX note that AI has no precondition on the consistency of the considered formulas.

Note that not all postulates are independent and that some are incompatible.
Some relationships are summarised in the following theorem, see (Thimm, 2016a)
for the proof. In the theorem, a statement “A implies B” is meant to be read as “if a
measure satisfies A then it satisfies B”; a statement “A1, . . . , An are incompatible”
means “there is no measure satisfying A1, . . . , An at the same time”.

Theorem 1.

1. IN implies SI
2. IN implies FD
3. SA implies MO
4. MN and AC are incompatible
5. MN and CD are incompatible
6. MO implies FD
7. MN, MI, and NO are incompatible
8. MN, SA, and NO are incompatible

We obtain the following results regarding compliance of our measures to the
introduced rationality postulates.

Theorem 2. Let t be any T-norm and s any T-conorm. I fuz
t,s satisfies CO, NO, MO,

SI, FD, and AI. In general, I fuz
t,s does not satisfy IN, DO, SA, PY, MI, MN, AT,

EC, AC, CD, SY, and EX.

Theorem 3. Let t be any T-norm and s any T-conorm. I fuz,Σ
t,s satisfies CO, MO,

SI, SA, and FD. I fuz,Σ
t,s does not satisfy NO, IN, DO, PY, MI, MN, AT, EC, AC,

CD, SY, EX, and AI.

The above theorems apply to every pair of T-norm t and T-conorm s. So
for specific norms, more postulates may be satisfied. In particular, as I fuz

tmin
is

equivalent to the drastic inconsistency measure (see Proposition 3) we directly
obtain the following result (for proofs see e. g. (Thimm, 2016a)).
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I fuz
t,s I fuz,Σ

t,s I fuz
tmin

I fuz
tprod

I fuz,Σ
tmin

I fuz,Σ
tprod

Iη Ic
CO 3 3 3 3 3 3 3 3

NO 3 3 3 3

MO 3 3 3 3 3 3 3 3

IN 3 3 3

DO 3 3 3 3

SI 3 3 3 3 3 3 3 3

SA 3 3 3

PY
MI
MN 3

AT 3 3

EC 3

AC 3

CD
FD 3 3 3 3 3 3 3 3

SY 3 3 3

EX 3 3

AI 3 3 3 3

Table 2: Compliance of the discussed inconsistency measures wrt. rationality postulates

Theorem 4. I fuz
tmin

satisfies CO, NO, MO, IN, DO, SI, MN, AT, FD, SY, EX, and
AI. I fuz

tmin
does not satisfy SA, PY, MI, EC, AC, and CD.

For I fuz
tprod

we have the same result as for the general measure I fuz
t,s .

Theorem 5. I fuz
tprod

satisfies CO, NO, MO, SI, FD, and AI. I fuz
tprod

does not satisfy
IN, DO, SA, PY, MI, MN, AT, EC, AC, CD, SY, and EX.

For the two instantiations I fuz,Σ
tmin

and I fuz,Σ
tprod

we obtain the following.

Theorem 6. I fuz,Σ
tmin

satisfies CO, MO, DO, SI, SA, FD and SY. I fuz,Σ
tmin

does not
satisfy NO, IN, PY, MI, MN, AT, EC, AC, CD, EX, and AI.

Theorem 7. I fuz,Σ
tprod

satisfies CO, MO, SI, SA, and FD. I fuz,Σ
tprod

does not satisfy NO,
IN, DO, PY, MI, MN, AT, EC, AC, CD, SY, EX, and AI.

Table 2 gives an overview on the compliance of rationality postulates where
3 indicates satisfaction of a postulate. The table also shows the compliance of the
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measures Iη and Ic for comparison, see (Thimm, 2016a) for the corresponding
proofs.

Although it seems that our novel measures satisfy a rather little number of pos-
tulates, it should be noted that is a usual behavior as there is still no general agree-
ment on what postulates should be satisfied at all (Thimm, 2016a; Besnard, 2014).
In fact, comparing our results with the recent survey from (Thimm, 2016a), there
is no other measure I (among those investigated in (Thimm, 2016a)) that satisfies
exactly the same or a superset of postulates as the measures from the family I fuz

t,s —
with the exception of I fuz

tmin
of course which is equivalent to the drastic measure Id

also investigated in (Thimm, 2016a)—. While for the family I fuz,Σ
t,s there is also

no measure in (Thimm, 2016a) that satisfies exactly the same set of postulates,
there are measures that satisfy a strict superset of postulates. More precisely, for
the general measure I fuz,Σ

t,s and the instantiation I fuz,Σ
tprod

, the measures Inc, Ihit
d , IΣ

d ,
Ip, IMIC , and IMI satisfy a strict superset of postulates.4 The same is true for our
measure I fuz,Σ

tmin
and the measures Inc, Ihit

d , and IΣ
d .5 However, it should be noted

that all our measures—with the exception of I fuz
tmin

again—are indeed novel and
different in behavior to existing measures.

5.2. Expressivity
Besides rationality postulates, another (complementary) dimension of evaluat-

ing an inconsistency measure is its expressivity (Thimm, 2016b), that is, the num-
ber of different inconsistency values a measure can attain on some certain sets of
knowledge bases. This evaluation measure has been proposed in (Thimm, 2016b)
in order to be able to distinguish trivial measures such as Id—which still satisfies
a reasonable number of rationality postulates—from more “fine-grained” assess-
ments of inconsistency. In (Thimm, 2016b), four different expressivity character-
istics are proposed to evaluate the expressivity of inconsistency measures. We will
now recall these characteristics and evaluate our measures wrt. those afterwards.

Before defining expressivity characteristics we need some further notation.

4Note that (Thimm, 2016a) also reported IPm
to satisfy a strict superset of these postulates;

however, the original publication (Jabbour and Raddaoui, 2013)—which was cited in (Thimm,
2016a) for this result—falsely claimed that IPm

satisfies CO. However, IPm
does not comply

with this basic property as e. g. for inconsistent KPm = {a,¬(a ∧ a)}, IPm(KPm) = 0, cf.
Definition 2, Proposition 2, and Section 3 in (Jabbour and Raddaoui, 2013).

5For Ihit
d and IΣ

d please refer to Section 7 for the definitions of those measures and links to the
original publications; for the other measures please see (Thimm, 2016a).
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Definition 16. Let φ be a formula. The length l(φ) of φ is recursively defined as

l(φ) =


1 if φ ∈ At
1 + l(φ′) if φ = ¬φ′
1 + l(φ1) + l(φ2) if φ = φ1 ∧ φ2

1 + l(φ1) + l(φ2) if φ = φ1 ∨ φ2

Definition 17. Define the following subclasses of the set of all knowledge bases
K:

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀φ ∈ K : l(φ) ≤ n}
Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| ≤ n}

Informally speaking, Kv(n) is the set of all knowledge bases that mention at
most n different propositions, Kf (n) is the set of all knowledge bases that contain
at most n formulas, Kl(n) is the set of all knowledge bases that contain only
formulas with maximal length n, and Kp(n) is the set of all knowledge bases that
contain only formulas that mention at most n different propositions each.

Definition 18. Let I be an inconsistency measure and n > 0. Let α ∈ {v, f, l, p}.
The α-characteristic Cα(I, n) of I wrt. n is defined as

Cα(I, n) = |{I(K) | K ∈ Kα(n)}|

In other words, Cα(I, n) is the number of different inconsistency values I
assigns to knowledge bases from Kα(n).

Example 6. We recall a result (Thimm, 2016b) regarding the measure Ic (let
n > 0):

Cv(Ic, n) = n+ 1

Cf (Ic, n) =∞
Cl(Ic, n) =∞
Cp(Ic, n) =∞

In particular, Cv(Ic, n) = n + 1 means that there are only n + 1 different incon-
sistency values of Ic on knowledge bases which mention at most n propositions
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(which follows from the fact that Ic is defined as the number of propositions that
are assigned the truth value B by some three-valued interpretation; as there are
n propositions we have 0, . . . , n as possible inconsistency values). Furthermore,
Cf (Ic, n) = ∞ basically says that even knowledge bases with only one formula
can have an arbitrary inconsistency value wrt. Ic. So, Ic is maximally express-
ive wrt. the characteristic Cf (note that Ic is not maximally expressive wrt. the
characteristic Cv). Note also that Cl(Ic, n) = ∞ is only true for n > 1 as every
K ∈ Kl(1) is trivially consistent (all formulas have length 1, so there is no neg-
ation) and Cl(Ic, 1) trivializes to Cl(Ic, 1) = 1 (this is true for every measure
satisfying the postulate CO).

The next two results show that both our measures I fuz
tprod

and I fuz,Σ
tprod

are maxim-
ally expressive wrt. all four expressivity characteristics.

Theorem 8. For all n > 0, Cv(I fuz
tprod
, n) = Cf (I fuz

tprod
, n) = Cp(I fuz

tprod
, n) = ∞. For

all n > 1, Cl(I fuz
tprod
, n) =∞.

Theorem 9. For all n > 0, Cv(I fuz,Σ
tprod

, n) = Cf (I fuz,Σ
tprod

, n) = Cp(I fuz,Σ
tprod

, n) = ∞.
For all n > 1, Cl(I fuz,Σ

tprod
, n) =∞.

As I fuz
tmin

is equivalent to the drastic inconsistency measure, its expressivity
is 2 for all characteristics, cf. (Thimm, 2016b). For I fuz,Σ

tmin
we observe maximal

expressivity wrt. all characteristics except Cf .

Theorem 10. For all n > 0, Cv(I fuz,Σ
tmin

, n) = ∞, Cf (I fuz,Σ
tmin

, n) = n + 1, and
Cp(I fuz,Σ

tmin
, n) =∞. For all n > 1, Cl(I fuz,Σ

tmin
, n) =∞.

The above results, in particular Theorems 8 and 9, show that our measures be-
have very well wrt. expressivity. It should be noted that only one measure invest-
igated in (Thimm, 2016b) is also maximally expressive wrt. all four expressivity
characteristics, namely IΣ

d , cf. the discussion in Section 5.1.6 Table 3 summarises
the results of this section.

5.3. Computational Complexity
Before discussing the computational complexity of our approaches, we briefly

recall some background on complexity theory needed for our results, cf. (Papadi-
mitriou, 1994). P is the class of decision problems decidable by a deterministic

6Note that also the measure IPm
has maximal expressivity but is omitted above as it does not

comply with the basic property CO, cf. Footnote 4.
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Cv(I, n) Cf (I, n) Cl(I, n) Cp(I, n)
I fuz
tprod

∞ ∞ ∞∗ ∞
I fuz,Σ
tprod

∞ ∞ ∞∗ ∞
I fuz
tmin

2 2 2∗ 2

I fuz,Σ
tmin

∞ n+ 1 ∞∗ ∞

Table 3: Characteristics of inconsistency measures (n ≥ 1); ∗only for n > 1

Turing machine in time polynomial wrt. the length of the instance. NP is the class
of decision problems decidable by a non-deterministic Turing machine in polyno-
mial time, i. e., those decision problems where a proof of a positive instance can
be verified in polynomial time. The class coNP is the set of problems D where
the complement D is in NP (the complement D of a problem D is the same as D
with positive and negative instances reversed). For two decision problems D,D′,
the conjunction D∧D′ is the decision problem with positive instances being pairs
(x, x′) where x is a positive instance ofD and x′ is a positive instance ofD′. Then
DP

1 is the set of all conjunctions D ∧D′ with D ∈ NP and D′ ∈ coNP. Finally, a
problem D is complete for a complexity class C if every problem D′ ∈ C can be
reduced to D with only polynomial overhead.

Let I be any inconsistency measure. We consider the following three decision
problems for our study of the computational complexity of our measures, taken
from (Thimm and Wallner, 2016):

EXACTI Input: K ∈ K, x ∈ R∞≥0

Output: TRUE iff I(K) = x

UPPERI Input: K ∈ K, x ∈ R∞≥0 \ {∞}
Output: TRUE iff I(K) ≤ x

LOWERI Input: K ∈ K, x ∈ R∞≥0 \ {0}
Output: TRUE iff I(K) ≥ x

For these problems we obtain the following results.

Theorem 11. UPPERI is NP-complete for I ∈ {I fuz
tprod
, I fuz,Σ

tprod
, I fuz

tmin
, I fuz,Σ

tmin
}.

Corollary 1. For I ∈ {I fuz
tprod
, I fuz,Σ

tprod
, I fuz

tmin
, I fuz,Σ

tmin
} the problem LOWERI is coNP-

complete and EXACTI is in DP
1 .
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EXACTI UPPERI LOWERI

I fuz
tprod

DP
1 NP-c coNP-c

I fuz,Σ
tprod

DP
1 NP-c coNP-c

I fuz
tmin

DP
1 NP-c coNP-c

I fuz,Σ
tmin

DP
1 NP-c coNP-c

Table 4: Computational complexity of the considered inconsistency measures (all statements are
membership statements, an additionally attached “-c” also indicates completeness for the class)

In other words, the results above state that computational problems related to
our measures reside on the first level of the polynomial hierarchy and thus are not
harder than a classical SAT test, which is only able to differentiate consistency
from inconsistency (in particular, UPPERI for I ∈ {I fuz

tprod
, I fuz,Σ

tprod
, I fuz

tmin
, I fuz,Σ

tmin
} is

complexity-wise equivalent to a SAT test). In fact, according to the classification
hierarchy of (Thimm and Wallner, 2016), our measures belong therefore to the
“easiest” class of inconsistency measures (wrt. computational complexity).

6. Revisiting the General Scheme

In the previous section we investigated properties of the specific instances I fuz
t

and I fuz,Σ
t of the general scheme IΩ,E . It could be observed that the individual

measures I fuz
t and I fuz,Σ

t behaved similarly in some cases (e. g. wrt. computational
complexity) and differently in others (e. g. wrt. the rationality postulate AI). A
question that arises now is if we can establish some general properties of the
general scheme IΩ,E , i. e., whether certain properties always hold. In the uncon-
strained general case this is, of course, not the case.

Example 7. Let S be an arbitrary set of truth values and let Ω be an arbitrary set
of S-interpretations. Define E1(K, ω) = 1 for all K ∈ K and ω ∈ Ω. Then IΩ,E1

is the constant function 1, which cannot be regarded a meaningful inconsistency
measures as it, e. g., does not satisfy CO.

However, if we impose certain constraints on the set of interpretations Ω and
the evaluation function E, we can ensure that the measure IΩ,E has certain char-
acteristics. Consider the following condition.

Definition 19. Let Ω be a set of S-interpretations and E an S-evaluation function.
Then E is called supra-classical wrt. Ω if it satisfies: K ∈ K is consistent iff there
is ω ∈ Ω with E(K, ω) = 0.
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In other words, E is supra-classical wrt. Ω if, for consistent K, we can al-
ways find an interpretation that represents a classical model of K, i. e., one which
is evaluated to zero. The following observation follows immediately from this
definition.

Proposition 4. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion. E is supra-classical wrt. Ω if and only if IΩ,E satisfies CO.

Note that the evaluation function in Example 7 is indeed not supra-classical
wrt. any set Ω.

So when developing new instances of the general scheme one should focus
on supra-classical evaluation functions as only those guarantee that the induced
measure satisfies the CO postulate which is the minimal requirement for any in-
consistency measure. In a similar vain, we can define further conditions as fol-
lows.

Definition 20. Let Ω be a set of S-interpretations and E an S-evaluation function.
Then E is called

1. normalized if 0 ≤ E(K, ω) ≤ 1 for all K ∈ K, ω ∈ Ω,
2. monotonic if E(K, ω) ≤ E(K ∪ {α}, ω) for all K ∈ K, α ∈ L, ω ∈ Ω,
3. independent if E(K, ω) = E(K \ {α}, ω) for all K ∈ K, α ∈ Free(K),
ω ∈ Ω,

4. dominant if E(K ∪ {α}, ω) ≤ E(K ∪ {β}, ω) for all K ∈ K, α, β ∈ L,
α 6|=⊥, α |= β, ω ∈ Ω.

Proposition 5. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion.

1. If E is normalized then IΩ,E satisfies NO.
2. If E is monotonic then IΩ,E satisfies MO.
3. If E is independent then IΩ,E satisfies IN.
4. If E is dominant then IΩ,E satisfies DO.

We leave a deeper discussion of this issue for future work and conclude this
discussion with a final note regarding computational complexity.

Proposition 6. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion. If Ω is finite and E(K, ω) can be evaluated in polynomial time for every
K ∈ K and ω ∈ Ω then UPPERIΩ,E

is in NP. If additionally E is supra-classical
wrt. Ω then UPPERIΩ,E

is NP-complete.
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7. Related Works

The works (Hunter and Konieczny, 2010; Ma et al., 2007, 2011) also present
inconsistency measures based on many-valued logics, either based on Priest’s
three-valued logic as Ic or four-valued logics which add another truth value for
“undefined” that can be seen as the complement of the truth value “both true and
false” (B). Also these measures, basically, count the number of propositions—or
first-order atoms in (Ma et al., 2007, 2011)—receiving a non-classical truth value
and furthermore differ from Ic by an additional normalization, e. g., in the case of
(Hunter and Konieczny, 2010) by dividing the inconsistency value by the number
of propositions appearing in the knowledge base. Similar reductions to our gen-
eral scheme from Section 3 can be given for these approaches in a straightforward
manner.

Furthermore, Grant and Hunter (2016) proposed three families of inconsist-
ency measures based on distance functions for classical (two-valued) interpreta-
tions. For example, the Dalal distance dd is defined as dd(ω, ω

′) = |{a ∈ At |
ω(a) 6= ω′(a)}| for all ω, ω′ ∈ Ω(At). The central notion of (Grant and Hunter,
2016) is that of a k-dilation Mk

d (α) of a formula α, i. e., the set of interpretations
that have a distance at most k from the models of φ, defined via

Mk
d (α) = {ω ∈ Ω(At) | ∃ω′ ∈ Mod(α), d(ω, ω′) ≤ k}

Define furthermore Pd({α1, . . . , αn}) = {(k1, . . . , kn) |Mk1
d (α1)∩. . .∩Mkn

d (αn) 6=
∅}. We consider the inconsistency measures IΣ

d , Imax
d , and Ihit

d from (Grant and
Hunter, 2016) defined via (let d be a distance function on classical interpretations)

IΣ
d (K) = min{k1 + . . .+ kn | (k1, . . . , kn) ∈ Pd(K)}

Imax
d (K) = min{max{k1, . . . , kn} | (k1, . . . , kn) ∈ Pd(K)}
Ihit
d (K) = min{hit(k1, . . . , kn) | (k1, . . . , kn) ∈ Pd(K)}

where hit(k1, . . . , kn) =
∑n

i=1 z(ki) and z(ki) = 1 if ki > 0 and z(ki) = 0 if
ki = 0, cf. (Grant and Hunter, 2016) for details. Although Grant and Hunter do
not use many-valued logics, our scheme IΩ,E is general enough to also subsume
these measures as well. If X ⊆ Ω(At) is a set of interpretations and d a distance
measure on classical interpretations, we define d(X,ω) = minω′∈X d(ω′, ω) (if
X = ∅ we define dd(X,ω) = ∞). Consider now the following {true, false}-
evaluation functions (let K ∈ K, ω ∈ Ω(At) and let d be a distance function on
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classical interpretations)

E
∑
d (K, ω) =

∑
α∈K

d(Mod(α), ω)

Emax
d (K, ω) = max

α∈K
d(Mod(α), ω)

Ehit
d (K, ω) = |{α ∈ K | d(Mod(α), ω) > 0}|

Using these functions we can characterize the measures from (Grant and Hunter,
2016) using our scheme as follows.

Proposition 7. I
Ω(At),E

∑
d

= IΣ
d , IΩ(At),Emax

d
= Imax

d , IΩ(At),Ehit
d

= Ihit
d .

8. Summary and Conclusion

We presented a general scheme for developing inconsistency measures based
on many-valued logics, showed that several inconsistency measures from the lit-
erature are subsumed by this scheme and analysed its general properties. We also
developed two novel families of inconsistency measures following this scheme
based on fuzzy logic and parametrized by the choice of the used T-norms and
T-conorms. We investigated the properties of these families by analyzing their
compliance with rationality postulates, their expressivity, and their computational
complexity. All measures developed in this paper have been implemented us-
ing the Tweety libraries for Knowledge Representation and Artificial Intelligence
(Thimm, 2014) and the source code is available online.7

Current and future work comprises, among others, of continue investigating
constraints for evaluation functions E as discussed in Section 6. Furthermore, we
are investigating instantiations using other approaches to uncertain reasoning such
as Dempster-Shafer theory (Shafer, 1976).

Acknowledgements. I thank the anonymous reviewers for their valuable com-
ments to improve previous versions of this paper.
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Appendix A. Proofs of Technical Results

Proposition 1. IΩP ,Emin
= Iη.

Proof. Let K ∈ K and Iη(K) = x. Then there is a probability function P ∈
P(At) with P (α) ≥ 1 − x for all α ∈ K. Let ωP ∈ ΩP with P (φ) = ωP (φ) for
all φ ∈ L. Then Emin(K, ωP ) ≤ 1 − x and therefore IΩP ,Emin

(K) ≤ Iη(K). The
proof of IΩP ,Emin

(K) ≥ Iη(K) is analogous.

Proposition 2. IΩ3,E#
= Ic.

Proof. Let K ∈ K and Ic(K) = x. Then there is a three-valued interpretation υ
with υ |=3 K and x = |υ−1(B)|. Let ω3 ∈ Ω3 be the corresponding interpretation
with υ(φ) = ω3(φ) for all φ ∈ L. Then E#(ω3) = x and therefore IΩ3,E#

(K) ≤
Ic(K). The proof of IΩ3,E#

(K) ≥ Ic(K) is analogous.

Proposition 3.

I fuz
tmin

(K) =

{
1/2 if K |=⊥
0 otherwise
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Proof. Let K be consistent. Then there is ω ∈ Ω(At) with ω |= K. Consider
the fuzzy interpretation ω′ ∈ Ωtmin

defined via ω′(a) = 1 for all a ∈ At with
ω(a) = true, ω′(a) = 0 for all a ∈ At with ω(a) = false, and ω′(α) defined as
prescribed by Definition 11 for all other α ∈ L. Then ω′(φ) = 1 for all φ ∈ K
and Efuz

tmin
(K, ω′) = 0. Then I fuz

tmin
(K) = 0.

Assume now that K is inconsistent. Define ω′ ∈ Ωtmin
via ω′(α) = 1/2 for all

α ∈ L (observe that ω′ is indeed a fuzzy interpretation according to Definition 11
for t = min and s = max). Then Efuz

tmin
(K, ω′) = 1/2 and I fuz

tmin
(K) ≤ 1/2.

Assume that I fuz
tmin

(K) = x < 1/2. Then there is ω′′ ∈ Ωtmin
with Efuz

tmin
(K, ω′′) =

x. Then we have

Efuz
tmin

(K, ω′′) = x = n(tmin({ω′′(α) | α ∈ K}))
= 1−min{ω′′(α) | α ∈ K}

Therefore, for all α ∈ K we have ω′′(α) ≥ 1− x > 1/2. Define now ω ∈ Ω(At)
via ω(a) = true for all a ∈ At with ω′′(a) > 1/2 and ω(a) = false for all a ∈ At
with ω′′(a) ≤ 1/2. We show now by structural induction on arbitrary α ∈ L that
ω′′(α) > 1/2 if and only if ω |= α:

• α = a ∈ At: ω′′(α) > 1/2 if and only if ω(α) = true (equivalent to ω |= α)
by definition.

• α = α1 ∧ α2: If ω′′(α) > 1/2 then ω′′(α1) > 1/2 and ω′′(α2) > 1/2 as
ω′′(α) = min{ω′′(α1), ω′′(α2)}. By inductive assumption it follows ω |=
α1 and ω |= α2, therefore ω |= α. The other direction is analogous.

• α = α1 ∨ α2: If ω′′(α) > 1/2 then ω′′(αi) > 1/2 for some i ∈ {1, 2}
as ω′′(α) = max{ω′′(α1), ω′′(α2)}. By inductive assumption it follows
ω |= αi, therefore ω |= α. The other direction is analogous.

• α = ¬α1: If ω′′(α) > 1/2 then ω′′(α1) < 1/2 as ω′′(α) = 1 − ω′′(α1).
By inductive assumption it follows ω 6|= α1, therefore ω |= α. The other
direction is analogous.

Therefore ω |= K andK is consistent, contrary to the assumption. Hence, I fuz
tmin

(K) ≥
1/2 and therefore I fuz

tmin
(K) = 1/2.

Theorem 2. Let t be any T-norm and s any T-conorm. I fuz
t,s satisfies CO, NO,

MO, SI, FD, and AI. In general, I fuz
t,s does not satisfy IN, DO, SA, PY, MI, MN,

AT, EC, AC, CD, SY, and EX.
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Proof. In the following, we denote by +X a proof that shows that property X is
satisfied and by −X a proof that shows that property X is violated.

+CO Assume K is consistent. There there is ω ∈ Ω(At) with ω |= K. Define a
fuzzy interpretation function ωF via

1. for all a ∈ At, ωF (a) = 1 iff ω(a) = true and ωF (a) = 0 iff ω(a) =
false

2. ωF (¬α) = n(ωF (α))

3. ωF (α ∧ β) = t(ωF (α), ωF (β))

4. ωF (α ∨ β) = s(ωF (α), ωF (β))

Note that ωF is indeed a fuzzy interpretation function according to Defin-
ition 11. As t is a T-norm according to Definition 9 and s is a T-conorm
according to Definition 10, due to ω |= α for all α ∈ K we have ωF (α) = 1
for all α ∈ K and (due to neutrality of t, Efuz

t (K, ωF ) = 0. It follows
I fuz
t,s (K) = 0.

Assume now I fuz
t,s (K) = 0 and let K = {α1, . . . , αn}. Then there is ωF ∈

Ωt,s with t({ω(α1), . . . , ω(αn)} = 1. By neutrality of t it follows ω(α1) =
. . . = ω(αn) = 1. Due to properties 4 and 5 of Definitions 9 and 10,
respectively, it follows ωF (a) ∈ {0, 1} for all a ∈ At. In analogy to above,
we can construct ω ∈ Ω(At) with ω |= K. Therefore, K is consistent.

+NO It is I fuz
t,s (K) = Efuz

t (K, ω) = n(t({ω(α) | α ∈ K})) for some ω ∈ Ωt,s. As
the range of t is [0, 1] by definition, the claim follows.

+MO Note that for S, S ′ ⊆ [0, 1] with S ⊆ S ′ we have t(S) ≥ t(S ′) for any T-
norm t. Therefore Efuz

t (K, ω) ≤ Efuz
t (K′, ω) for every ω ∈ Ωt,s and K ⊆ K′

and therefore I fuz
t,s (K) ≤ I fuz

t,s (K′).

+SI Let α ∈ Safe(K). As α 6|=⊥ there is ω ∈ Ω(At) with ω |= α. Similarly to
the proof of CO, let ωF be a fuzzy interpretation on the propositions of α
such that ωF (α) = 1. Let ω′F be a fuzzy interpretation on the propositions
ofK\{α} such that I fuz

t,s (K\{α}) = Efuz
t (K\{α}, ω′F ). As the domains of

ωF and ω′F are disjoint, define ω′′F via ω′′F (a) = ωF (a) for all propositions
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in α, ω′′F (a) = ω′F (a) for all propositions in K \ {α}. Then

I fuz
t,s (K) ≤ Efuz

t (K, ω′′F )

= n(t({ω′′F (φ) | φ ∈ K \ {α}} ∪ {ω′′F (α)}))
= n(t({ω′′F (φ) | φ ∈ K \ {α}} ∪ {1}))
= n(t({ω′′F (φ) | φ ∈ K \ {α}}))
= I fuz

t,s (K \ {α})

I fuz
t,s (K) ≥ I fuz

t,s (K \ {α}) follows from MO.

+FD This follows directly from MO.

+AI This follows directly from the associativity of t and ω(α∧β) = t(ω(α), ω(β)) =
t({ω(α), ω(β)}).

−IN Consider K1 = {a,¬a} and observe I fuz
tprod

(K1) = 0.75, but a ∨ ¬a ∈
Free(K1 ∪ {a ∨ ¬a}) and I fuz

tprod
(K1 ∪ {a ∨ ¬a}) = 0.8125.

−DO Consider K1 = {a,¬a} and observe I fuz
tprod

(K1) = 0.75, but a 6|=⊥, a |=
a ∧ a, and I fuz

tprod
({a ∧ a,¬a}) = 23/27 > 0.75 (the value is derived for

ωF (a) = 2/3).

−SA Consider K1 = {a,¬a} and observe I fuz
tprod

(K1) = 0.75. Analogously,
I fuz
tprod

({b,¬b}) = 0.75. By SA it would follow I fuz
tprod

(K1 ∪ {b,¬b}) ≥ 1.5,
violating NO.

−PY Consider K1 = {a,¬a} and observe I fuz
tmin

(K1) = 0.5 and I fuz
tmin

(K1 ∪ {a ∧
a}) = 0.5, although a ∧ a /∈ Free(K1 ∪ {a ∧ a}).

−MI See the counterexample of SA.

−MN Consider K1 = {a,¬a} and observe I fuz
tprod

(K1) = 0.75, but K1 ∈ MI(K1).

−AT Consider K1 = {a,¬a}, K2 = {a∧a,¬a∧¬a} (both minimally inconsist-
ent) and observe I fuz

tprod
(K1) = 0.75, I fuz

tprod
(K2) = 0.9375, but |K1| = |K2|.

−EC Consider K1 = {a,¬a}, K3 = {a∧¬a} (both minimally inconsistent) and
observe I fuz

tprod
(K1) = I fuz

tprod
(K3) = 0.75, but |K1| > |K3|.
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−AC Consider K4,i = {a1, . . . , ai,¬a1 ∨ . . . ∨ ¬ai} for i ∈ N and observe
limi→∞ |K4,i

i | = ∞ and each K4,i is minimally inconsistent. However,
I fuz
tmin

(K4,i) = 0.5 for all i ∈ N.

−CD Consider K3 = {a ∧ ¬a} and observe that every non-empty subset of K3

is inconsistent, but I fuz
tprod

(K3) = 0.75.

−SY Due to a ≡ a ∧ a the same counterexample as for DO can be used.

−EX Due to a ≡ a ∧ a the same counterexample as for DO can be used.

Theorem 3. Let t be any T-norm and s any T-conorm. I fuz,Σ
t,s satisfies CO, MO,

SI, SA, and FD. I fuz,Σ
t,s does not satisfy NO, IN, DO, PY, MI, MN, AT, EC, AC,

CD, SY, EX, and AI.

Proof. In the following, we denote by +X a proof that shows that property X is
satisfied and by −X a proof that shows that property X is violated.

+CO Analogous to the corresponding proof for I fuz
t,s (see Theorem 2). Addition-

ally observe, if ωF (α) = 1 for all α ∈ K it follows directly I fuz,Σ
t,s (K) = 0;

and if I fuz,Σ
t,s (K) = 0 it also implies ω(α) = 1 for some ω ∈ Ωt,s and all

α ∈ K.

+MO Let K ⊆ K′ and observe

Efuz
Σ (K, ω) =

∑
α∈K

n(ω(α))

≤
∑
α∈K

n(ω(α)) +
∑

α∈K′\K

n(ω(α))

= Efuz
Σ (K′, ω)

for every ω ∈ Ωs,t. It follows I fuz,Σ
t,s (K) ≤ I fuz,Σ

t,s (K′).

+SI Analogous to the corresponding proof for I fuz
t,s (see Theorem 2).

+SA Let K1,K2, K1 ∩ K2 = ∅, and K = K1 ∪ K2. Let ω ∈ Ωt,s such that
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I fuz,Σ
t,s (K) = Efuz

Σ (K, ω). Then

I fuz,Σ
t,s (K) = Efuz

Σ (K, ω)

=
∑
α∈K

n(ω(α))

=
∑
α∈K1

n(ω(α)) +
∑
α∈K2

n(ω(α))

= Efuz
Σ (K1, ω) + Efuz

Σ (K2, ω)

≥ I fuz,Σ
t,s (K1) + I fuz,Σ

t,s (K2)

+FD This follows directly from MO.

−NO Consider K5 = {a,¬a, b,¬b} and observe I fuz,Σ
tmin

(K5) = 2.

−IN Consider

I fuz,Σ
tprod

({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a}) = 1.6875

I fuz,Σ
tprod

({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, a}) = 2

and note a ∈ Free({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, a}).

−DO Consider K7 defined via

K7 = {a ∧ ¬a,¬¬(a ∧ ¬a),¬¬¬¬(a ∧ ¬a),

¬¬¬¬¬¬(a ∧ ¬a),¬¬¬¬¬¬¬¬(a ∧ ¬a)}

and observe

I fuz,Σ
tprod

(K7 ∪ {a}) = 4.2

Observe now a 6|=⊥, a |= a ∧ a, and

I fuz,Σ
tprod

(K7 ∪ {a ∧ a}) = 4.4375

violating DO.

−PY Consider K1 = {a,¬a} and observe I fuz,Σ
tprod

(K1) = 1 and I fuz,Σ
tprod

(K1 ∪ {a ∧
a}) = 1, although a ∧ a /∈ Free(K1 ∪ {a ∧ a}).

−MI I fuz,Σ
t,s cannot satisfy MI as this would imply IN.
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−MN ConsiderK3 = {a∧¬a} and observe I fuz,Σ
tprod

(K3) = 0.75, butK3 ∈ MI(K3).

−AT Consider K3 = {a ∧ ¬a} with I fuz,Σ
tprod

(K3) = 0.75 and K1 = {a,¬a} with
I fuz,Σ
tprod

(K1) = 1.

−EC ConsiderK1 = {a,¬a} and observe I fuz,Σ
tprod

(K1) = 1. Furthermore, we have
for K6 = {a, b,¬a ∨ ¬b}, I fuz,Σ

tprod
(K6) = 1 as well, but |K1| < |K6|.

−AC Consider K4,i = {a1, . . . , ai,¬a1 ∨ . . . ∨ ¬ai} for i ∈ N and observe
limi→∞ |K4,i

i | = ∞ and each K4,i is minimally inconsistent. However,
I fuz,Σ
tprod

(K4,i) = 1 for all i ∈ N.

−CD Consider K3 = {a ∧ ¬a} and observe that every non-empty subset of K3

is inconsistent, but I fuz,Σ
tprod

(K3) = 0.75.

−SY Consider

I fuz,Σ
tprod

({a ∧ ¬a, b ∧ ¬b}) = 1.5

I fuz,Σ
tprod

({a ∧ ¬a, b ∧ ¬b ∧ a ∧ ¬a}) = 1.6875

and note b ∧ ¬b ≡ b ∧ ¬b ∧ a ∧ ¬a.

−EX Consider

I fuz,Σ
tprod

({a,¬a, b,¬b}) = 2

I fuz,Σ
tprod

({a,¬a ∧ b,¬b}) = 1

but {¬a, b} 6|=⊥ and {¬a, b} ≡ {¬a ∧ b}.

−AI Consider I fuz,Σ
tprod

({a,¬a}) = 1 but I fuz,Σ
tprod

({a ∧ ¬a}) = 0.75.

Theorem 5. I fuz
tprod

satisfies CO, NO, MO, SI, FD, and AI. I fuz
tprod

does not satisfy
IN, DO, SA, PY, MI, MN, AT, EC, AC, CD, SY, and EX.

Proof. As I fuz
tprod

is an instance of I fuz
t,s , satisfaction of CO, NO, MO, SI, FD, and

AI follows directly from Theorem 2. Violation of IN, DO, SA, MI, MN, AT, EC,
CD, SY, and EX is also due to the proof of Theorem 2 as there I fuz

tprod
was used as

a counterexample. It remains to show that I fuz
tprod

does not satisfy PY and AC.
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−PY Consider K8,2 = {a1, a2,¬(a1 ∧ a2)} and I fuz
tprod

(K8,2) = 0.75 (using ω with
ω(a1) = 1 and ω(a2) = 0.5, see above). Then I fuz

tprod
(K8,2∪{a1∧a1}) = 0.75

as well (using the very same ω as before), violating PY as a1∧a1 is not free
in K8,2 ∪ {a1 ∧ a1}.

−AC Consider now K8,i = {a1, . . . , ai,¬(a1 ∧ . . . ∧ ai)} for i ∈ N and ob-
serve limi→∞ |K8,i

i | = ∞ and each K4,i is minimally inconsistent. Now
I fuz
tprod

(K8,i) can be written as

I fuz
tprod

(K8,i) = min
x1,...,xi∈[0,1]

(1− (x1 · . . . · xi(1− x1 · . . . · xi)))

= 1− max
x1,...,xi∈[0,1]

(x1 · . . . · xi︸ ︷︷ ︸
X

(1− x1 · . . . · xi︸ ︷︷ ︸
X

))

= 1− max
X∈[0,1]

X(1−X)

= 1− 0.5(1− 0.5) = 0.75

with 0.5 = X = x1 · . . . · xi, e. g., x1 = . . . = xi−1 = 1 and xi = 0.5. This
shows that I fuz

tprod
(K8,i) violates AC.

Theorem 6. I fuz,Σ
tmin

satisfies CO, MO, DO, SI, SA, FD and SY. I fuz,Σ
tmin

does not
satisfy NO, IN, PY, MI, MN, AT, EC, AC, CD, EX, and AI.

Proof. As I fuz,Σ
tmin

is an instance of I fuz,Σ
t,s , satisfaction of CO, MO, SI, SA, and FD

follows directly from Theorem 3. Violation of NO is also due to the proof of
Theorem 3 as there I fuz,Σ

tmin
was used as a counterexample.

In the following, we denote by +X a proof that shows that property X is
satisfied and by −X a proof that shows that property X is violated.

+DO Let α, β be formulas with α 6|=⊥ and α |= β. Then for any ω ∈ Ωtmin
we

have ω(α) ≤ ω(β), cf. (Hájek, 1998). Let now K be any knowledge base
and ω such that

I fuz,Σ
tmin

(K ∪ {α}) = Efuz
Σ (K ∪ {α}, ω)
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Then (recall that n(x) = 1− x)

Efuz
Σ (K ∪ {α}, ω) =

∑
γ∈K∪{α}

n(ω(γ))

=
∑
γ∈K

n(ω(γ)) + n(ω(α))

≥
∑
γ∈K

n(ω(γ)) + n(ω(β))

= Efuz
Σ (K ∪ {β}, ω)

≥ I fuz,Σ
tmin

(K ∪ {β})

showing DO.

−IN Consider

I fuz,Σ
tmin

({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a}) = 1

I fuz,Σ
tmin

({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, a}) = 1.5

and note a ∈ Free({a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, a}).

−PY Consider K1 = {a,¬a} and observe I fuz,Σ
tmin

(K1) = 1 and I fuz,Σ
tmin

(K1 ∪ {a ∧
a}) = 1, although a ∧ a /∈ Free(K1 ∪ {a ∧ a}).

−MI I fuz,Σ
tmin

cannot satisfy MI as this would imply IN.

−MN Consider K3 = {a∧¬a} and observe I fuz,Σ
tmin

(K3) = 0.5, but K3 ∈ MI(K3).

−AT Consider K3 = {a ∧ ¬a} with I fuz,Σ
tmin

(K3) = 0.5 and K1 = {a,¬a} with
I fuz,Σ
tmin

(K1) = 1.

−EC ConsiderK1 = {a,¬a} and observe I fuz,Σ
tmin

(K1) = 1. Furthermore, we have
for K6 = {a, b,¬a ∨ ¬b}, I fuz,Σ

tmin
(K6) = 1 as well, but |K1| < |K6|.

−AC Consider K4,i = {a1, . . . , ai,¬a1 ∨ . . . ∨ ¬ai} for i ∈ N and observe
limi→∞ |K4,i

i | = ∞ and each K4,i is minimally inconsistent. However,
I fuz,Σ
tmin

(K4,i) = 1 for all i ∈ N.

−CD Consider K3 = {a ∧ ¬a} and observe that every non-empty subset of K3

is inconsistent, but I fuz,Σ
tmin

(K3) = 0.5.
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−SY Let K1 = {α1, . . . , αn} and K2 = {β1, . . . , βn} with αi ≡ βi for all i =
1, . . . , n. It follows K1 ≡s K2. For any ω ∈ Ωtmin

, we have ω(αi) = ω(βi),
cf. (Hájek, 1998). The claim follows directly.

−EX Consider

I fuz,Σ
tmin

({a,¬a, b,¬b}) = 2

I fuz,Σ
tmin

({a,¬a ∧ b,¬b}) = 1

but {¬a, b} 6|=⊥ and {¬a, b} ≡ {¬a ∧ b}.

−AI Consider I fuz,Σ
tmin

({a,¬a}) = 1 but I fuz,Σ
tmin

({a ∧ ¬a}) = 0.5.

Theorem 7. I fuz,Σ
tprod

satisfies CO, MO, SI, SA, and FD. I fuz,Σ
tprod

does not satisfy NO,
IN, DO, PY, MI, MN, AT, EC, AC, CD, SY, EX, and AI.

Proof. As I fuz,Σ
tprod

is an instance of I fuz,Σ
t,s , satisfaction of CO, MO, SI, SA, and FD

follows directly from Theorem 3. Violation of the other postulates (except NO) is
also due to the proof of Theorem 3 as there I fuz,Σ

tprod
was used as a counterexample.

I fuz,Σ
tprod

also violates NO as, e. g., I fuz,Σ
tprod

({a,¬a, b,¬b}) = 2.

Theorem 8. For all n > 0, Cv(I fuz
tprod
, n) = Cf (I fuz

tprod
, n) = Cp(I fuz

tprod
, n) = ∞. For

all n > 1, Cl(I fuz
tprod
, n) =∞.

Proof. Consider the family K̂1,i of knowledge bases defined via

K̂1,i = {¬a ∧ a ∧ . . . ∧ a︸ ︷︷ ︸
i times

}

for i ∈ N. Then for every ω ∈ Ωtprod

Efuz
tprod

(K̂1,i, ω) = n(tprod({ω(¬α), ω(α), . . . , ω(α)︸ ︷︷ ︸
i times

}))

= n(n(ω(α)))ω(α)i

and therefore

I fuz
tprod

(K̂1,i) = min
x∈[0,1]

n(n(x))xi

= 1− max
x∈[0,1]

n(x)xi
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Note that the function f(x) = n(x)xi is maximal for x = i/(i + 1) and therefore
I fuz
tprod

(K̂1,i) = n(i/(i+ 1)) = 1/(i+ 1). As At(K̂1,i) = 1, I fuz
tprod

and |K̂1,i| = 1 can
attain infinitely many values for knowledge bases with at least 1 proposition and
1 formula, therefore Cv(I fuz

tprod
, n) =∞ and Cf (I fuz

tprod
, n) =∞.

Consider now K̂2,i defined via

K̂2,i = {a1, . . . , ai,¬a1, . . . ,¬ai}

Then I fuz
tprod

(K̂2,i) = n(1/22i) showing Cl(I fuz
tprod
, n) = Cp(I fuz

tprod
, n) =∞.

Theorem 9. For all n > 0, Cv(I fuz,Σ
tprod

, n) = Cf (I fuz,Σ
tprod

, n) = Cp(I fuz,Σ
tprod

, n) = ∞.
For all n > 1, Cl(I fuz,Σ

tprod
, n) =∞.

Proof. The proof is analogous to the proof of Theorem 8. Indeed, note that
I fuz
tprod

(K) = I fuz,Σ
tprod

(K) for every K with |K| = 1, so K̂1,i can also be used to
show Cv(I fuz,Σ

tprod
, n) = Cf (I fuz,Σ

tprod
, n) = ∞. Observe also I fuz,Σ

tprod
(K̂2,i) = i showing

Cl(I fuz,Σ
tprod

, n) = Cp(I fuz,Σ
tprod

, n) =∞

Theorem 10. For all n > 0, Cv(I fuz,Σ
tmin

, n) = ∞, Cf (I fuz,Σ
tmin

, n) = n + 1, and
Cp(I fuz,Σ

tmin
, n) =∞. For all n > 1, Cl(I fuz,Σ

tmin
, n) =∞.

Proof. Consider the family K̂3,i of knowledge bases defined via

K̂3,i = {¬a, a, a ∧ a,¬a ∧ ¬a, . . . , a ∧ . . . ∧ a︸ ︷︷ ︸
i times

,¬a ∧ . . . ∧ ¬a︸ ︷︷ ︸
i times

}

for i ∈ N. Then for every ω ∈ Ωtmin
we can simply write (note that e. g. ω(a) =

ω(a ∧ a) for ω ∈ Ωtmin
)

Efuz
Σ (K̂1,i, ω) =

i∑
j=1

(n(ω(a)) + n(ω(¬a)))

=
i∑

j=1

((1− ω(a)) + (1− (1− ω(a)))

= i

and therefore I fuz,Σ
tmin

(K̂3,i) = i, showing Cv(I fuz,Σ
tmin

, n) =∞.
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As for Cf (I fuz,Σ
tmin

, n), note first that I fuz,Σ
tmin

(K) ≤ n/2 for any K with |K| ≤
n as ω̂ ∈ Ωtmin

defined via ω(a) = 1/2 for all a ∈ At yields ω(α) ≥ 1/2
for all α ∈ K and thus I fuz,Σ

tmin
(K) ≤ n/2. More concretely, we claim that the

range of I fuz,Σ
tmin

on knowledge bases with at most n formulas is the set Rn =

{0, 1/2, 1, 3/2, . . . , n/2}. To see this, consider the family K̂4,i of knowledge bases
defined via

K̂4,i = {¬a1 ∧ a1, . . . ,¬ai ∧ ai}

for i ∈ N with I fuz,Σ
tmin

(K̂4,i) = i/2, effectively showing that the range is at least a
superset of Rn (note that for i = 0, K̂4,i = ∅ with I fuz,Σ

tmin
(K̂4,i) = 0). To show that

Rn is indeed exactly the range, we can use a similar argumentation line as in the
proof of Proposition 3 (which showed that I fuz

tmin
only attains the values 0 and 1/2).

In particular, if ω0 ∈ Ωtmin
is such that I fuz,Σ

tmin
(K) = Efuz

Σ (K, ω) then it follows
ω(α) ∈ {0, 1/2, 1} for all α ∈ K. Together with the observation I fuz,Σ

tmin
(K) ≤ n/2

from above, it follows that Rn is indeed the range of I fuz,Σ
tmin

on knowledge bases
with at most n formulas and thus Cf (I fuz,Σ

tmin
, n) = n+ 1.

As for Cp(I fuz,Σ
tmin

, n), note that K̂4,i mentions only one proposition in each for-
mula and due to I fuz,Σ

tmin
(K̂4,i) = i/2 it follows that Cp(I fuz,Σ

tmin
, n) =∞ for n > 0.

Consider finally the family K̂5,i of knowledge bases defined via

K̂5,i = {¬a1, a1, . . . ,¬ai, ai}

for i ∈ N and note that all formulas have length at most 2. As I fuz,Σ
tmin

(K̂5,i) = i it
follows Cl(I fuz,Σ

tmin
, n) =∞ for n > 1.

Theorem 11. UPPERI is NP-complete for I ∈ {I fuz
tprod
, I fuz,Σ

tprod
, I fuz

tmin
, I fuz,Σ

tmin
}.

Proof. We only consider I fuz
tprod

, the proofs for the other measures are analogous.
We first show NP-membership. Let (K, x) be an instance of UPPERIfuz

tprod
and let

{a1, . . . , an} be the propositions appearing in K. In order to continue we need the
following observation.

Lemma 1. If I fuz
tprod

(K) ≤ x then there is ω ∈ Ωtprod with E fuz
tprod

(K, ω) ≤ x such that
the length of the binary encoding of each ω(ai) is smaller or equal to the length
of the binary encoding of x.
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The proof of Lemma 1 follows from simple arithmetics. Note thatEfuz
tprod

(K, ω) ∈
[0, 1] and thatEfuz

tprod
(K, ω) is a function on ω(a1), . . . , ω(an) ∈ [0, 1] and composed

of functions tprod(x, y) = xy and n(x) = 1 − x. Observe that the length of the
binary encoding of n(x) is the same as for x and that the length of the binary
encoding of tprod(x, y) is at least as long as the maximum length of the encodings
of x and y.

We return to the proof of Theorem 11 and define a non-deterministic algorithm
for UPPERIfuz

tprod
. First, non-deterministically guess y1, . . . , yn ∈ [0, 1] such that the

length of the binary encoding of each yi is smaller or equal to the length of the
binary encoding of x—note that through this restriction the guessing action is in
polynomial time—and define ω ∈ Ωtprod through ω(ai) = yi. Then verify (in
polynomial time) that Efuz

tprod
(K, ω) ≤ x and therefore I fuz

tprod
(K) ≤ x. Note that due

to Lemma 1 it is sufficient to guess the yi from the given finite set.
NP-completeness follows from the fact that we can reduce SAT to UPPERIfuz

tprod

with x = 0. More precisely, let φ be an instance of SAT—i. e. the solution to this
problem is “yes” iff φ is consistent—, then ({φ}, 0) is an instance of UPPERIfuz

tprod

and as I fuz
tprod

satisfies CO, ({φ}, 0) is indeed a positive instance iff φ is consistent.
As SAT is NP-hard, so is UPPERIfuz

tprod
.

Corollary 1. For I ∈ {I fuz
tprod
, I fuz,Σ

tprod
, I fuz

tmin
, I fuz,Σ

tmin
} the problem LOWERI is coNP-

complete and EXACTI is in DP
1 .

Proof. Let nK be the size of K defined via

nK =
∑
α∈K

|α|

where |α| is the number of connectives ¬, ∧, and ∨ appearing in the formula α.
As the number of knowledge bases K of size n or less is finite, so is the number
of different inconsistency values on these knowledge bases. Let εn be the minimal
distance of two consecutive inconsistency values, i. e., |I(K1) − I(K2)| ≥ εn
for all K1,K2 of maximal size n. Observe that, (K, x) is a positive instance of
UPPERI if and only if (K, x+εnK) is a negative instance of LOWERI , showing that
LOWERI is coNP-complete, due to Theorem 11. As EXACTI is the combination
of the NP-complete problem UPPERI and the coNP-complete problem LOWERI ,
it is in DP

1 .

43



Proposition 4. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion. E is supra-classical wrt. Ω if and only if IΩ,E satisfies CO.

Proof. Let E be supra-classical wrt. Ω. If K is consistent then IΩ,E(K) = 0 as
there is ω ∈ Ω with E(K, ω) = 0 and IΩ,E(K) = min{E(K, ω) | ω ∈ Ω}. If
K is consistent then IΩ,E(K) > 0 as there is no ω ∈ Ω with E(K, ω) = 0. IΩ,E

satisfies CO.
IΩ,E satisfy CO. IfK is consistent then from IΩ,E(K) = 0 it follows min{E(K, ω) |

ω ∈ Ω} = 0 so there is ω ∈ Ω with E(K, ω) = 0. If K is inconsistent then from
IΩ,E(K) > 0 it follows that there cannot be a ω ∈ Ω with E(K, ω) = 0. So E is
supra-classical wrt. Ω.

Proposition 5. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion.

1. If E is normalized then IΩ,E satisfies NO.
2. If E is monotonic then IΩ,E satisfies MO.
3. If E is independent then IΩ,E satisfies IN.
4. If E is dominant then IΩ,E satisfies DO.

Proof. Let E be normalized. Then we have IΩ,E = min{E(K, ω) | ω ∈ Ω} ∈
[0, 1], so IΩ,E satisfies NO. The other proofs are analogous.

Proposition 6. Let Ω be a set of S-interpretations and E an S-evaluation func-
tion. If Ω is finite and E(K, ω) can be evaluated in polynomial time for every
K ∈ K and ω ∈ Ω then UPPERIΩ,E

is in NP. If additionally E is supra-classical
wrt. Ω then UPPERIΩ,E

is NP-complete.

Proof. To show NP membership we sketch a non-deterministic polynomial al-
gorithm. Given an instance (K, x) we first guess an interpretation ω ∈ Ω (as Ω
is finite and its length is a constant wrt. the input, this guess needs only constant
time) and then verify in polynomial time E(K, ω) ≤ x, proving IΩ,E(K) ≤ x.

For hardness, observe that IΩ,E(K) = 0 iff K is consistent, so we can directly
reduce SAT to UPPERIΩ,E

.

Proposition 7. I
Ω(At),E

∑
d

= IΣ
d , IΩ(At),Emax

d
= Imax

d , IΩ(At),Ehit
d

= Ihit
d .

Proof. We only show I
Ω(At),E

∑
d

= IΣ
d , the other proofs are analogous.

Let K = {α1, . . . , αn} and IΣ
d (K) = x. Then there is (k1, . . . , kn) ∈ Pd(K)

with x = k1 + . . .+kn. Furthermore, there is ω ∈Mk1
d (α1)∩ . . .∩Mkn

d (αn) with
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d(ω, ω′) ≤ ki for some ω′ ∈ Mod(αi) and all i = 1, . . . , n. As k1 + . . . + kn is
minimal each ki, i = 1, . . . , n, is minimal as well and we have d(ω, ω′) = ki for
some ω′ ∈ Mod(αi) and all i = 1, . . . , n. In other words, d(Mod(αi), ω) = ki and

x = k1 + . . .+ kn

= d(Mod(α1), ω) + . . .+ d(Mod(αn), ω)

= E
∑

(K, ω)

showing IΣ
d (K) ≥ I

Ω(At),E
∑
d

(K).

Let now I
Ω(At),E

∑
d

(K) = x. Then there is ω ∈ Ω(At) with E
∑
d (K, ω) = x =

d(Mod(α1), ω)+. . .+d(Mod(αn), ω). Therefore, (d(Mod(α1), ω), . . . , d(Mod(αn), ω)) ∈
Pd(K) and IΣ

d (K) ≤ I
Ω(At),E

∑
d

(K).
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