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Abstract. The current Web of Data contains a large amount of interlinked data.
However, there is still a limited understanding about the quality of the links con-
necting entities of different and distributed data sets. Our goal is to provide a
collection of indicators that help assess existing interlinking. In this paper, we
present a framework for the intrinsic evaluation of RDF links, based on core prin-
ciples of Web data integration and foundations of Information Retrieval. We mea-
sure the extent to which links facilitate the discovery of an extended description
of entities, and the discovery of other entities in other data sets. We also measure
the use of different vocabularies. We analysed links extracted from a set of data
sets from the Linked Data Crawl 2014 using these measures.
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1 Introduction

Linked Data principles encourage data publishers to connect the resources in their data
sets to other resources “so that more things can be discovered”3. With the increasing
number of available data sets and links between them [8, 12], it becomes highly impor-
tant to observe the extent to which existing links have desirable properties, as we need to
ensure high quality to encourage the usage of Linked Data. Links should (i) follow the
recommendations that apply to high quality data [14] (i. e. links should be accessible,
syntactically valid, and semantically accurate), and (ii) links should enable the discov-
ery of “more things”, facilitating new insights from the data. Established data-driven
quality assurance methodologies [10, 14, 11] suggest that the key steps for improving
the status quo are: the definition of measures, the analysis of measurements and the sub-
sequent monitoring of updates. So, to be able to analyse the quality of links, we need
measures that help us assess all relevant quality aspects, including (i) and (ii).

Previous empirical studies on the adoption of Linked Data principles [12, 6] report
on the number of outgoing and incoming links of data sets, and the most frequently used
predicates in RDF links. Recently, Hu et al. [7] studied degree distributions, as well as
missing links in Bio2RDF based on symmetry and transitivity. Neto et al. [9] focused
on the analysis of dead links in schema and entity link triples published in the Web of

3 Berners-Lee, T. Linked Data Principles http://www.w3.org/DesignIssues/
LinkedData.html
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Data. While these studies, together with the findings provided by smaller evaluations of
other link assessment methods focusing on (i) (e. g. Guéret et al. [4] and other quality
dimensions like completeness [2] provide a characterization of existing links), they do
not allow for assessing how many new things might be made discoverable thanks to the
links (ii).

In this paper, we provide a framework for link analysis that takes into account prin-
ciples of data integration in the Web of Data, addressing (ii). We suggest measures that
focus on data quality dimensions inherent in the data, while extrinsic assessment would
take into account the needs a user has in his specific context (cf. [14]). More specifi-
cally, our measures examine the effect that links have on entities (and consequently on
data sets). We measure the extent to which links facilitate the discovery of an extended
description of entities, and the discovery of other entities in other data sets. We also
measure if they add different vocabularies (cf. Section 4.2) to the description of enti-
ties. Our measures are grounded on foundations of the field of Information Retrieval,
as we acknowledge redundancy when we measure the gain in description, connectivity
and number of used vocabularies. More precisely, the contributions of this paper are:

1. We identify a set of principles for data interlinking in the Web of Data (Section 3).
2. We define a set of measures to analyse available links in terms of these principles

(Section 4).
3. We demonstrate the feasibility of the proposed framework with the implementation

of the measures and carry out an empirical analysis of links extracted from the
Linked Open Data Crawl [12] ( Section 5).

2 Preliminaries

We introduce in this section the terminology and notation.

Definition 1. RDF Quadruple: Given U , a finite set of HTTP URIs, representing re-
sources, L a finite set of literal values, and a finite set of blank nodes B where
U ∩ L = U ∩ B = L ∩ B = ∅, a quadruple (s, p, o, c) is any element of the data
space Q = (U ∪ B)× U × (U ∪ L ∪ B)× U . s, p, o is a triple statement describing s,
while c is the context (denoted by a URI) in which the triple is defined.

Definition 2. RDF Data set: An RDF data set Dc is a set of quadruples grouped by
some context c Dc ⊆ {(s, p, o, c) ∈ Q}, where Q is the set of all quadruples.

Definition 3. Home: Given C the set of all contexts, and an entity (either a blank node
or URI), home : B ∪ U 7→ C is the function that maps the entity to the context c where
the entity is defined. Note that when x is a vocabulary term (e. g. a class or a property),
the c returned by home(x) is the identifier of the vocabulary where the term x was
defined.

The home function is customisable. For example, it can be defined to match the notion
of data sets in the Linked Open Data literature [12], or it can be defined to match the
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graphs in data sets—the graphs in the SPARQL and N-Quads specifications. In this
paper, we stick to the LOD cloud diagram4 and analyse links on a data set basis.

For representing the relation between entities of different data sets, we define:

Definition 4. Link: A link of Dc is a quadruple (s, p, o, c) ∈ Dc such that s ∈ U , o ∈
U , home(s) = c, home(o) 6= c

Definition 5. Interlinking: The interlinking Ic of a data set Dc is the set of all links
going out from Dc to any other data set: Ic = {(s, p, o, c) ∈ Dc| home(s) =
c, home(o) 6= c}.

To formally define our measures, we use a relational algebra-like notation. For this
purpose we define selection σ, projection π and join ./ as follows:

Definition 6. Selection: Given X ⊆ Dc, a selection σh(X) is the quadruples from
X that satisfy a selection predicate h: σh(X) = {(s, p, o, c)|(s, p, o, c) ∈ X ∧
h(s, p, o, c) = true}

Example 1. : We can select the quadruples of the data set Dc that are owl:sameAs
links by σp=owl:sameAs(Dc) = {(s, p, o, c)|(s, p, o, c) ∈ Dc, p = owl : sameAs}

Definition 7. Projection: Given X ⊆ Dc, and Y a subset of the elements in the
quadruples in X , a projection πY (X) on attributes Y is the subset of X including the
elements Y : πY (X) = {(s, p, o, c)[Y ]|(s, p, o, c) ∈ X}

Example 2. : We can obtain the projection of all the entities appearing in the pred-
icate and object positions of the quadruples of the data set Dc by πp,o(Dc) =
{(p, o)|(s, p, o, c) ∈ Dc}

Definition 8. EquiJoin: Given X1 ⊆ D1 and X2 ⊆ D2, the Equi join
of the two sets is the set of elements such that: X1 ./X1.oθX2.s X2 =
{(X1.s,X1.p,X1.o,X2.s,X2.p,X2.o, c) | X1.o = X2.s}

Example 3. : In Table 1 case (I), the equijoin of the two quadruples on the name and
the link is the 7-tuple “d1:nn owl:sameAs d2:nn d2:nn rdfs:label “Natasha” d1 .”.

Now, we may re-state our task at hand as follows: Given a data set Dc containing
the interlinking Ic, our task is to compare Dc and Dc\Ic and analyse the value that
Ic gives to the data in terms of the principles for data interlinking in the Web of Data
described in the following section.

3 Principles for Data Interlinking in the Web of Data

The main reason to connect data sets is to enable their joint search, browsing or query-
ing. As in any information system, when a user queries Linked Data it is important that
she: (n1) finds all entities she is interested in (recall); (n2) finds only entities she is

4 http://lod-cloud.net
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Source data set Target data set(s)

Entity Description

d1:nn foaf:name "Natasha Noy" . d2:nn foaf:name "Natalya F. Noy"" .
d1:nn dbo:affiliation d1:stanford . d2:nn dbo:affiliation d1:googleinc .
d1:nn swrc:publication d1:p2012-1 . d2:nn swrc:publication d2:p2015-1 .(I

)

d1:nn owl:sameAs d2:nn .
d1:nn foaf:name "Natasha Noy" . d2:nn foaf:name "Natalya F. Noy" .
d1:nn owl:sameAs d2:nn . d2:nn cito:likes d2:sfo .(I

I)

d2:ms foaf:name "Mark Smith" d2:nn swc:holdsRole swc:Chair
d1:nn foaf:name "Natasha Noy" . d2:nn foaf:name "Natasha Noy" .

(I
II

)

d1:nn owl:sameAs d2:nn .
Entity Connectivity

d1:nn foaf:name "Natasha Noy" . d2:p1 foaf:name "Natasha Noy" .
d1:nn dbo:affiliation dbr:Stanford_University . d2:p1 dbo:affiliation dbr:Stanford_University .
d1:nn owl:sameAs d2:p1 . d3:p5 foaf:name "Natasha Noy" .
d1:nn owl:sameAs d3:p5 . d3:p5 dbo:affiliation dbr:Stanford_University .(I

V
)

d1:nn owl:sameAs d4:p1 . d4:p1 dbo:affiliation dbr:Stanford_University .
d1:nn foaf:name "Natasha Noy" . d2:p1 foaf:name "Natasha Noy" .
d1:nn dbo:affiliation dbr:Stanford_University . d2:p1 dbo:affiliation dbr:Stanford_University .
d1:nn owl:sameAs d2:p1 . d3:p5 foaf:name "Natasha Noy" .

(V
)

d3:p5 dbo:affiliation dbr:Stanford_University .
Vocabularies Involved in the Description

d1:nn foaf:name "Natasha Noy" . d2:nn sioc:creator_of d2:post2 .
d2:nn rdf:type foaf:Person . d1:nn rdf:type proton:Human .

(V
I)

d1:nn owl:sameAs d2:nn . d2:nn vivo:teachingOverview "Natasha Noy
was a tutor in the SSSW08 summer school" .

d1:nn foaf:name "Natasha Noy" . d2:nn foaf:name "Natasha Noy" .
d1:nn owl:sameAs d2:nn . d2:nn foaf:currentProject d2:bioportal .

(V
II

)

d2:nn foaf:pastProject d2:protege .

Table 1: Examples of different interlinking cases.

interested in (precision); (n3) is able to understand the relationship between entities in
the Web; (n4) finds answers to all her questions no matter how heterogeneous in syntax,
structure and semantics the questions are.

The existence of high quality links between entities can contribute to a better ful-
filment of the aforementioned needs (n1-n4). In order to understand the way links can
help, let us consider various interlinking examples (from (I) to (VII)) shown in Table 1.
We analyse each of the examples, and derive from them desired properties for links (i. e.
principles P1-P3).

Entity Description In case (I) we see two entities linked via an owl:sameAs link.
The two connected entities have different names, but represent the same person (Na-
talya F. Noy, also known as Natasha Noy informally). The source data set contains the
publications that Natasha wrote when she worked at Stanford, and the target data set
contains publications she has written while working at Google Inc. If we search for the
publications written by Natasha and only consider the source data set, we exclusively
see her Stanford publications. If we consider the link connecting the two entities refer-
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ring to Natasha, we are able to also find her Google publications, giving us higher recall
(n1).

In case (II) the two entities are also connected via an owl:sameAs. The target
data set contains data about conferences and program committees, while the source
data set does not contain this kind of data. If we look for persons who have been chairs
of scientific events, and we only take into account the source data set, we are not able
to find any person because we lack the information about the chairs of the events. In
an Information Retrieval scenario, we would use query relaxation techniques, and the
search query would be reformulated as a search for persons. The result would include
the entities for Natasha Noy and Mark Smith (who is a student assistant and was never
a chair). Conversely, if we consider the link, we have relevant information for the query
and only Natasha is retrieved in the results. Therefore, in this case the link enables us
to have higher precision (n2).

Observation: These two cases, have something in common: the links (s, p, o, c)
extend the description of entities s. The description of an entity is the set of quadru-
ples with s as subject, and literals, URIs and blank nodes as objects (cf. Section 4.2).
When the linked data sets provide redundant information, links do not help in recall,
nor in precision. Example (III) is a clear example of a scenario where we have redun-
dant information and the description is not extended. Therefore, we formulate the first
principle as:

P1: Try to create an interlinking that extends the description of entities of the
source data set.

Entity Connectivity Case (IV) connects the entity referring to Natasha in d1 to the
corresponding entities representing Natasha in data sets d2, d3 and d4. While these
links do not extend description of the entity in d1 (i. e. they do not follow the Principle
P1), they help in understanding the relationship between the entities in the Web of Data
(n3). This understanding is necessary when for example, a change in the affiliation of
Natasha is materialised in d1 to update her affiliation. The descriptions in d2, d3 and d4
could be subsequently changed, in order to keep the data up-to-date.

Observation: In (IV), we can see the importance of creating multiple links from the
same entity to different external entities and data sets, increasing its connectivity (cf.
Section 4.2). In Case (V), which is similar to case (IV) but without the links to d3 and
d4, we see that if the links from d1:nn to the entities in d3 and d4 do not exist (as in case
(V)), it is harder to reach the entities in other data sets that would need to be updated.
This is similar in cases where the links are created to group entities, or to enable the
browsing of different types of entities. We formulate the second principle as:

P2: Try to create an interlinking that increases the number of entities and data
sets that source entities are connected to.

Heterogeneity of Descriptions Case (VI) shows an example where the entity repre-
senting Natasha is connected via an owl:sameAs link to its corresponding entity in
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d2. The entity in d2 is described with vocabularies that are different from d1’s vocab-
ularies. In contrast, in case (VII) the entity in d2 contains a description that adds new
information to the description of d1 (satisfies P1) but uses the same vocabulary as in d1
(i. e. FOAF).

Observation: in (VI), links help in answering a wider range of queries that might be
formulated in different application contexts (n4). Using different vocabularies we are
able to use and analyse entities from multiple perspectives. Hence, the third principle
is:

P3: Try to create an interlinking that makes the source entities have a descrip-
tion with a higher number of vocabularies in their description.

These principles are not independent from each other. Principles P2 (entity connec-
tivity) and P3 (vocabularies) are specializations of P1 (entity description). For some
types of links (non-identity links), creating links to new entities in new data sets (P2),
means that the description of the source entity is extended (P1). However, that does not
necessarily happen the other way round. Analogously, if one uses further vocabularies
in the links between entities (P3), the description of the source entity will be extended
(P1). Therefore, when we analyse data in terms of these principles, we consider them
as a three level test, in which having passed P1 is positive, but having passed P2 and
P3, too, is even more positive. We do not claim that these principles are complete, and
they may be extended.

4 Intrinsic Measures for Assessing the Quality of Links

The measures that we define do not provide an absolute assessment of the quality of
links. That is, a particular measurement is not good or bad. Instead, we provide mea-
sures for a comparative assessment: we acknowledge that one interlinking is better than
another in some dimension that we observe with regard to the principles in the previous
section. It is up to the person or application inspecting the measurements to interpret its
meaning, and make a decision based on it (e. g. a data publisher willing to improve her
interlinking and using our measurements as a guide to decide where to start from).

We distinguish between descriptive statistics that give an overview of the size and
the elements in Ic (see Section 4.1), and measures that assess the way the links in the
interlinking Ic of the data setDc follow the aforementioned principles (see Section 4.2).

4.1 Basic Descriptive Statistics

In order to describe basic properties of the interlinking of a data set, we use basic statis-
tics proposed by related work (e. g. Void Vocabulary5 and LOD Stats6), to compute the
volume of the interlinking (|Ic|), and the distribution of linksets ({(x, |σp=x(Ic)|)}).

5 https://www.w3.org/TR/void/
6 http://stats.lod2.eu/links
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4.2 Principles-based Measures

Since we would like to study the effect that links have on the entities of the source data
set, our measures analyse links grouped by source entities. Note that in our analysis we
focus on entities e ∈ Dc such that @ (e, rdf : type, rdfs : Class) ∈ Dc. So, we look
at the interlinking of individuals and not at vocabulary terms.

4.2.1 Two views of the quadruples about entities For each entity e, we distinguish
two views of the set of quadruples that state something about e: the description view
and the connectivity view of an entity.

Description view This view focuses on all the quadruples in X describing the entity e.
We define the description of an entity e in X ⊆ Dc as the projection that se-

lects the predicates and objects from the set of quadruples of X about e, and enti-
ties defined to be identical to e (usually defined via the predicates owl:sameAs or
skos:exactMatch).

desc(e,X) = π(p,o)(σs=e(X)) ∪ π(Q.p,Q.o)(σX.p=identity((X ./X.o=Q.s Q))) (1)

In order to have a more detailed view of the description, we differentiate between
the entity’s classification (i. e. the quadruples referring to the rdf:type of the entity):

classif(e,X) = σp=“rdf :type′′(desc(e,X)) (2)

and the rest of the description:

descm(e,X) = desc(e,X)\classif(e,X) (3)

Example 4. In Table 1(VI), classif(d1:nn,D1’= { (rdf:type, foaf:Person), (rdf:type, pro-
ton:Human)} and descm(d1:nn,D1’) = {(foaf:name, “Natasha Noy”), (owl:sameAS, d2:nn),
(foaf:name, “Natasha Noy”),(sioc:creator_of, d2:post2),(vivo:teachingOverview, ". . . ")}

Additionally, we make a specification of descm(e,X) and define descmp to project
only the predicates (instead of the predicates and values as in descm(e,X)).

descmp(e,X) = π(p)(descm(e,X)) (4)

To identify the vocabularies used in the description of an entity we define:

vocabd(e,X) = {home(p)|(p, o) ∈ desc(e,X)} (5)

Connectivity view This view focuses on the quadruples that state the connections be-
tween the entity e and other entities. Note that this view is a subview of the description
view. Here, we ignore the quadruples about e, with literal values and quadruples de-
scribing identical entities to e.

We define the entity connectivity of an entity e in X ⊆ Dc as the set containing the
entities targeted from e:



8

econn(e,X) = πo(σs=e(X)) (6)

Analogously, we define the data set connectivity of an entity e in X ⊆ Dc as the set
containing the data sets targeted from e:

dconn(e,X) = {home(o)| o ∈ econn(e,X)} (7)

Example 5. In Table 1(V), econn(d1:nn,D1)={dbr:Google,d2:p1,d3:p5,d4:p1}, whereas
dconn(d1:nn,D1)={dbr,d2,d3,d4}

4.2.2 Measuring the principles at an entity and data set level Now that we have
defined the sets for the description and the connectivity views (Section 4.2, let us look
at the measures that are interesting to be applied on these sets, in order to state the
extent to which the links going out of entity e follow principles P1, P2 and P3. We use
the notation S to refer to any of the sets above.

Measure size Measuring the size of data is a standard way of characterizing data. We
measure the size of each of the sets above by calculating the cardinality of the
corresponding set (i. e. |S|).

Measure diversity When we observe if entities get their description (i. e.
classif(e,X) and descm(e,X)) extended when considering the links, we aim to
identify redundancy. Furthermore, when we analyse the targeted entities and data
sets, as well as the vocabularies used in the description and the links, we want to
measure diversity both without and with links. In these two situations, we may en-
counter repetitions in the classification, the description, the entity connectivity, the
data set connectivity, and the vocabularies used in the description. Therefore, we
extend the notion of our sets and model multisets (allowing repeated elements),
counting the number of times each element appears in the multiset: (S, n) where n
is n : S 7→ N≥1, a function that given an s ∈ S tells the number of times that s
appears in S.
Diversity is a measure that takes into account the number of different (and non
redundant) types of elements in a set, and at the same time takes into account how
equally distributed the elements of each type are present in the set. For these two
purposes, we use the Shannon Entropy [13], a standard measure used in Information
Theory to measure diversity.

H(ELS) = −
∑
s∈S

prob(ELS = s)× log prob(ELS = s) (8)

A low entropy value means that there is little diversity in the data. Note that
H(x) ≥ 0. In classif(e,X), and descm(e,X) repeated statements appear only
when we consider the quadruples of the target data sets, because in one data set
quadruples are supposed to be unique. Still, we calculate entropy to be able to sig-
nal redundancy when we compare the description with and without links.
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Compare measurements In order to accomplish our task of comparing measurements
considering the links vs. not considering the links, we differentiate between the
total set of quadruples in Dc, and the set of internal quadruples defined as:

Dinternal
c = Dc\Ic

We compare a measurement on Dc vs. the measurement on Dinternal
c by subtracting

the latter to the former.

Based on these three rationales, we define the following list of measures (cf. Table 2) to
analyse the way links follow the principles. To measure the extension in classification,
description, entity connectivity, data set connectivity and the increase in the number of
vocabularies employed, we use the difference in entropy. For example, to check if the
classification is extended, we define two random variables CS (in Dinternal

c ) and CS′ (in
Dc) and calculate H(CS′)−H(CS). The difference is zero when there is no informa-
tion gain, negative when redundant information is gained, and positive otherwise.

ID Principle/Description Vars. Definition

m11a P1 #classes - |classif(e,Dinternal
c )|, |classif(e,Dc)|

m11c P1 Classification
Extension (entropy)

CS, CS′ H(CS′)−H(CS)

m12a P1 #predicate-objects - |descm(e,Dinternal
c )|, |descm(e,Dc)|

m12c P1 Description Extension DE,DE′ H(DE′)−H(DE)

m13a P1 #predicates - |descmp(e,Dinternal
c )|, |descmp(e,Dc)|

m13c P1 Predicate Description
Extension

DEP ,DEP ′ H(DEP ′)−H(DEP )

m21a P2 #targeted entities - |econn(e,Dinternal
c )|, |econn(e,Dc)|

m21c P2 Entity connectivity
Extension

EC,EC′ H(EC′)−H(EC)

m22a P2 #targeted data sets - |dconn(e,Dinternal
c )|, |dconn(e,Dc)|

m22c P2 Data set connectivity
Extension

DC,DC′ H(DC′)−H(DC)

m31a P3 #Vocabularies in desc. - |vocabd(e,Dinternal
c )|, |vocabd(e,Dc)|

m31c P3 Increase #Vocabularies
Used (entropy)

V D, V D′ H(V D′)−H(V D)

Table 2: List of measures to analyse the fulfilment of data interlinking principles.
Columns show: the name of the measure, the principle the measure belongs to, the
random variables defined for the measure, and the formal definition of the measure.

5 Empirical Analysis

To demonstrate the feasibility of our approach for profiling the quality of links in the
Linked Open Data cloud, we have implemented the measures in the SeaStar framework,
which uses Java, the NxParser to parse N-Quads, and Jena for handling RDF data7.

7 Source code: https://github.com/criscod/SeaStar
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5.1 Data

We use data from the Linked Open Data Crawl8, as it has been recognised as a sound
snapshot of the LOD cloud in 2014 [12]. First we extracted the links from the crawled
data, by parsing the dump line by line, and identifying each quadruple containing a sub-
ject and an object with different graph provenance, and therefore a different home(x).
While parsing the dump file, we excluded all syntactically invalid quadruples to work
with clean data. Second, in order to analyse the links on a data set basis, we split the
data crawl into individual data sets, taking as contexts the data set identifiers provided
by Schmachtenberg et al.9. We selected a set of 35 data sets from the LOD2014 crawl
(from different domains and containing several types of links), analysing a total of 1+
million links.

5.2 Methodology

We computed each of the measures listed in Table 2 for each of the linked entities in the
data sets, for all types of links in the 35 data sets. Once we had all the results, we first
empirically validated the measures (Section 5.3). After that, we analysed the results on
a data set basis (Section 5.4). We have published our experimental data and sources10.

5.3 Measure validation

Following standard practices in the literature of quality measures [3], we validate our
measures by (i) checking that they do not provide the same measurement for all data
sets Di; and (ii) verifying that our measures are not all correlated with each other –
otherwise having multiple measures would be of limited utility.

Discriminative Measures We computed for each data set standard summary statistics
such as the mean, standard deviation and quartiles considering all types of links
simultaneously. As we see in the data files, the values for the measures vary across
data sets, except for the classification extension (m11c) – where all data sets show
a mean, standard deviation and quartiles of 0.0 for the difference in entropy. The
other measures are discriminative.

Independent Measures We computed the Spearman correlation of all the measure-
ments within each data set, putting all types of links together. Table 3 shows the
correlation values. The first row contains NaN values because the standard devi-
ation(s) are equal to zero. Measures m21 and m22 are highly correlated (0.96),
which makes sense, since m21 looks at the number of target entities and m22 at the
number of target data sets. In theory, one may link to many target entities within
a few data sets and viceversa; but the empirical analysis suggests that having both
might not particularly interesting. Having only m21 seems to be sufficient.

8 Linked Data Crawl http://goo.gl/lqxdgo
9 List of Data setshttp://data.dws.informatik.uni-mannheim.de/
lodcloud/2014/ISWC-RDB/tables/datasetsAndCategories.tsv

10 Experimental data: extracted links http://141.26.208.201/links/ Measurements
http://141.26.208.201/datameasures/ Python code and others https://
github.com/criscod/SeaStar/tree/master/data
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Measures m11 m12 m13 m21 m22 m31

m11 NaN NaN NaN NaN NaN NaN

m12 1.00 0.29 0.58 0.55 0.55

m13 1.00 -0.23 -0.22 0.76

m21 1.0 0.96 0.04

m22 1.0 0.02

m31 1.0

Table 3: Correlation between measures, for all data sets and all types of links.

Typelink I S R O C All
AEMET 0 0 96 0 57 153
BFS 1063 0 0 0 2862 3925
Bibbase 0 0 456 1401 0 1857
Bibsonomy 35646 0 2180 0 123080 160906
BNE 58 0 0 0 221 279
DNB 3577 0 8711 2278 55 14621
DWS Mannheim 71 0 296 39 926 1332
Eurostat 1182 0 2 0 1012 2196
Eye48 1 0 244 0 490 735
Fao 0 0 6 0 23 29
FigTrees 2 0 22 2 59 85
GeoVocab 11455 0 1759 113 7565 20892
GovWild 0 0 1998 0 0 1998
Harth 76 0 344 456 30 906
Icane 20 0 25 30 19 94
IMF 243 0 3 0 377 623
Korrekt 0 0 1174 0 7959 9133
L3S 1059 0 2478 1028 1089 5654

Typelink I S R O C All
LinkedGeoData 634 0 12 0 254 900
LOD2 26 0 282 50 180 538
NDLJP 1 0 178 60 267 506
Ontologi 0 0 5686 0 736 6422
Openei 6 0 323 0 203 532
Reegle 327 0 432 0 135 894
Revyu 1402 0 2145 1806 39772 45125
RodEionet 9 0 981 0 0 990
SemanticWeb 161 0 783 0 576295 577239
Sheffield 121 0 2189 1 27064 29375
Simia 6691 0 25113 0 38069 69873
Soton 50 0 352 0 160 562
SWCompany 2023 0 13473 421 43136 59053
TomHeath 7 0 34 4 6 51
Torrez 0 0 266 0 493 759
TWRPI 2 0 12 0 65 79
UKPostCodes 1 0 7 0 1 9

Table 4: Different types of links in the 35 data sets that we analysed.

5.4 Results

Let us first look at the types of links that exist in the data sets and second, at the adoption
of the 3 core principles. We focus on identity links (e. g. owl:sameAs), relationship
links (e. g. wgs84:location), classification links (e. g. rdf:type), similarity links
(e. g. skos:closeMatch), and other more general links (e. g. rdfs:seeAlso).

Basic Descriptive Statistics When we look at the type of links that is used the most in
each of the data sets, in 17/35 data sets the type used at most is classification links (c),
in 12/35 data sets it is relationship links (r), in 3/35 it is identity links (i) and in 3/35 it is
other links (o). None of the data sets has similarity links (s). Table 4 shows the number
of each type of link for each data set.

Principle-based Measurements Since our user is a data publisher willing to improve
the interlinking, for each measure we analyse the inequalities among entities of the same
data set. For that, we generate multiple box plots (one per entropy-based measure and
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type of link)11. If a box plot suggests that there are entities that get their description less
extended than other entities in the data set, the data publisher could think of generating
further links from those entities to new target data sets. The important features of these
plots are the medians (in red), the range and interquartile range—which can show big
differences among the measurements of different entities when they are big—and the
outliers, which in our case are relevant as they can be one of the weak spots to be
improved.

Classification: for all data sets and all types of links, the difference in cardinality
(m11a) and entropy (m11c) has a median of 0.0 and the range of boxes is [0.0,0.0].
That means that there are no cases in the data where entities have been classified with
classes defined in the source data set and the classification is inherited via identity links.
However, given the number of links of type c, we see that data publishers do classify
their entities with external classes.

Description: according to the m12a measurements, in all but two data sets the me-
dian of (p, o)-s gained is equal or below 2; the remaining two data sets show a median
of 4 and 20. The median of new o-s gained instead (m13a) is 1 for 32 of the data sets
(the other three have a median of 0). Observing the m12c measurements in the first row
of box plots (Figure 2), we notice that in links of type c the medians of the difference in
entropy stay between 0 and 1, while in links of type i the medians vary among data sets
and go up to 8. Also, in identity links there are way more outliers than in classification
links (see the case of Bibsonomy). It makes sense that entities are not described ho-
mogeneously, and often publishers do not have the resources to review each generated
identity link. Both things motivate that SeaStar shows the user source entities and other
data sets as more positive references. In the case of m13c measurements, and for all
types of links, we find data sets that have negative values for the difference in entropy.
That means that the links add some redundancy by adding statements with predicates
that were already in the source entity. However, the positive thing is that only a few
data sets have the box in the negative area, and that happens for links of type relation-
ship (r) and others (o). For example, that occurs when the data publisher adds multiple
rdfs:seeAlso internal and external links. The medians are between -0.4 and 0.7.
Comparing the box plots for identity links (type i) of the m12 and m13 measurements,
we notice that in the former the range of the boxes is larger than the boxes in m13 mea-
surements; in m12 the distance between the min and max is around 4 where as in m13
is around 0.2.

Connectivity: the medians for the number of new entities targeted (m21a) for three
data sets are 3,4, and 11, and for the rest these are all equal or below 2 new entities
targeted. In the difference of entropy (m21c), the box plots do not show redundancy,
which would only be possible if we compared Dc with a basis of previously generated
links and new links were added over the same target entity. This would be a positive
thing, if those links managed to extend the description (P1). M21 measurements show
medians between 0 and 8 as for links of type i, between 0.0 and 2.0 for links of type
r and o, and between 0.0 and 1.0 for links of type c. The box plot with links of type i,
shows a more skewed box (either to the left or to the right) than m12 measurements of
the same type of links.

11 https://github.com/criscod/SeaStar/tree/master/data/plots
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Fig. 1: Box plots showing m12c and m13c measurements for all data sets (m12c type c,
m12c type, m13c type i, m13c type r).

Heterogeneity: measurements m31a show that 27 data sets gain 1 vocabulary in
their description, while the rest do not gain any new. The difference in entropy (m31c)
is in several data sets negative (in outliers and in the interquartile range). For links of
type c the medians in measurements m31c are between 0.0 and 1.0, while for links of
type r medians are between -0.1 and 1.0.

Fig. 2: Boxplots showing m21c measurements (links type i and type c) and box plots
showing m31c measurements (links type r and type c).
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6 Related Work

With the growth of Linked Data, there has been an increasing interest in assessing and
monitoring the quality of available data [14].

Status of the Linked Data Web: while there were previous studies about the con-
formance of the Linked Data principles [6, ?], the work by Schmachtenberg et al. [12]
is the most recent study on the current adoption of Linked Data best practices. With
regard to the linking principle, their analysis on data crawled from 1041 distinct data
sets) showed descriptive statistics about the in- and out-degree of data sets (defined by
the number of data sets pointing to / targeted by the data sets), and the most frequently
used predicates.

Link Analysis: there are studies focusing exclusively on links. Halpin et al. [5] an-
alyzed the usage of the owl:sameAs predicate in the links of the Linked Data space.
They observed that sometimes the predicate was used with a meaning different from its
original definition, and suggested to improve the quality of such links by using alterna-
tive and more suitable predicates (e. g. skos:closeMatch when not all properties of
the target entity apply to the source entity; foaf:primaryTopicOf when the tar-
get entity represents but is not the same as the source entity). Hu et al. [7] empirically
studied term and entity links in Biomedical Linked Data. Their findings include link
and degree distributions, the analysis of symmetry and transitivity, and the evaluation
of entity matching approaches over the links. Neto et al. [9] analysed the Linked Data
crawl by Schmachtenberg et al., together with the set of Linked Open Vocabularies12.
They examined the number of valid and dead links (i. e. in their work, links with an o
that cannot be described in the target distribution), as well as the number of namespaces
in link distributions and data sets. Albertoni et al. [2, 1] analysed the completeness of
the interlinking of pairs of data sets and the extent to which data sets become more
multilingual thanks to the links. These methods fail in stating the extent to which links
add value to the source data set in terms of the principles that we mention in this paper.

Methods for Assessing Accuracy of Links: several methods have been developed
to assess the semantic accuracy of links (e. g. to decide whether ch:koblenz
owl:sameAs de:koblenz holds or not). Guéret et al. [4] defined a framework
including three measures from the area of network theory: degree, clustering coeffi-
cient and betweeness centrality of the entities in links; as well as two measures that the
authors define: number of unclosed same as chains and description enrichment defined
as the raw number of new statements gained by the source entity. While Guéret’s et al.
notion of description enrichment is related to ours, the main differences are that we are
able to observe further dimensions (e. g. how the classification of entities and the con-
nectivity is extended by the links), our approach is not only restricted to owl:sameAs
links (as it applies to any link) and we are able to signal redundancy.

7 Conclusions and Future Work

We have presented a collection of measures whose goal is to help in gaining insights
into the quality of existing links, and understanding the effect that links produce in the
12 LOV http://lov.okfn.org/dataset/lov/
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source data set. After analysing 35 data sets of the LOD cloud with these measures
our findings show that source entities are not classified with internal classes, but with
external classes via links, and identity links do not contribute to inheriting new classes.
We also observed that there is certain redundancy in the properties and vocabularies
used as for extending the description. The differences between entities and data sets
shown in the boxplots justify the need for our framework, which is able to pinpoint
reference interlinked entities and data sets to data publishers.

As future work, we plan to extend our approach including mappings between classes
and properties. We expect this add-on to help in identifying redundancy more precisely.
Furthermore, we consider evaluating the usefulness of the measures with domain ex-
perts and observing the actions they take in data sets in response to the measurements.
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