
Measuring Inconsistency in Answer Set Programs

Markus Ulbricht1, Matthias Thimm1,2, and Gerhard Brewka1

1 Department of Computer Science, Leipzig University, Germany
2 Institute for Web Science and Technologies (WeST), University of Koblenz-Landau, Germany

Abstract. We address the issue of quantitatively assessing the severity of incon-
sistencies in logic programs under the answer set semantics. While measuring
inconsistency in classical logics has been investigated for some time now, taking
the non-monotonicity of answer set semantics into account brings new challenges
that have to be addressed by reasonable accounts of inconsistency measures. We
investigate the behavior of inconsistency in logic programs by revisiting existing
rationality postulates for inconsistency measurement and developing novel ones
taking non-monotonicity into account. Further, we develop new measures for this
setting and investigate their properties.

Draft version

1 Introduction

Answer set programming (ASP, see [2] for an overview) is a popular non-monotonic
formalism for knowledge representation and reasoning. We consider a finite set L of
literals. An extended logic program P (over L) is a set of rules of the form

r : l0 ← l1, . . . , lk, not lk+1, . . . , not lm. (1)

with l0, . . . , lm ∈ L, 0 ≤ k ≤ m. Let P be the set of all extended logic programs. We
abbreviate head(r) = l0, pos(r) = {l1, . . . , lk} and neg(r) = {lk+1, . . . , lm}. For two
sets M and L of literals, we say M satisfies L (M � L) iff l ∈M for each l ∈ L . Now
let P be a classical program (without default negation not). For a rule r ∈ P , M � r iff
M � {head(r)} whenever M � pos(r) and M � P iff M � r for each rule r ∈ P . We
let Cl(P) be the unique M ⊆ L with M � P and M ′ 2 P for each set M ′ (M .

Definition 1. A set M of literals is called an answer set of a classical program P if
M = Cl(P). M is an answer set of an extended logic program P if M is the answer
set of PM , where PM = {head(r)← pos(r) | r ∈ P, neg(r) ∩M = ∅} is the reduct
of P with respect to M .

A set M of literals is called consistent if it does not contain both a and ¬a for an atom a.
A program P is called consistent if it has at least one consistent answer set, otherwise it
is called inconsistent. Let Ans(P) denote the set of all answer sets of P and AnsInc(P)
and AnsCon(P) the inconsistent and consistent ones, respectively. Note that, motivated
by the goals of this paper, our definition slightly differs from the original definition in
[3] which allows for a single inconsistent answer set only, namely L.

In the classical literature on inconsistency measurement—see e. g. [5, 4, 10]—in-
consistency measures are functions that aim at assessing the severity of the inconsis-
tency in knowledge bases formalized in propositional logic. Here, we are interested

in measuring inconsistency for (extended) logic programs and only consider measures
defined on those. Let R∞≥0 be the set of non-negative real values including∞.

Definition 2. An inconsistency measure I is a function I : P → R∞≥0.

The basic intuition behind an inconsistency measure I is that the larger the inconsis-
tency in P the larger the value I(P). However, even in the setting of propositional logic,
inconsistency is a concept that is not easily quantified and there have been a couple of
proposals for inconsistency measures in this setting, see [10] for a recent survey.

The issue of measuring inconsistency in logic programs is more challenging com-
pared to the classical setting due to the non-monotonicity of answer set semantics.
This becomes apparent when considering the monotonicity postulate which is usually
satisfied by classical inconsistency measures and demands I(P ′) ≥ I(P) whenever
P ⊆ P ′, i. e., the severity of inconsistency cannot be decreased by adding new infor-
mation. Consider now the two logic programs P1 and P2 given as follows:

P1 : b← not a. P2 : b← not a.
¬b← not a. ¬b← not a.

a.

We have P1 ⊆ P2 but P1 is inconsistent while P2 is not, so we would expect I(P2) <
I(P1) for any reasonable measure I. Therefore, simply taking classical inconsistency
measures and applying them to the setting of logic programs does not yield the desired
behavior.

Many rationality postulates such as monotonicity from above are already disputed in
the classical setting, cf. [1]. Taking non-monotonicity of the knowledge representation
formalism into account, a rational account of the severity of inconsistency calls for
a specific investigation, which we will undertake in the remainder of this paper. In
particular, we will discuss rationality postulates for inconsistency measures in logic
programs in Section 2 and propose some novel measures in Section 3. An extended
version of this paper can be found online3.

2 Rationality Postulates

Research in inconsistency measurement is driven by rationality postulates, i. e., desir-
able properties that should hold for concrete approaches. There is a growing number of
rationality postulates for inconsistency measurement but not every postulate is gener-
ally accepted, see [1] for a recent discussion on this topic. In the following, we revisit a
selection of the most popular postulates—see e. g. [6, 9]—and phrase them within our
context of logic programs. To do so, we need some further notation.

Definition 3. The dependency graph DP of a program P is a labeled directed graph
having all literals of the program as vertices and there is an edge (li, lj , s) iff P contains
a rule r such that head(r) = lj and li ∈ pos(r) ∪ neg(r). The label s ∈ {+,−}
indicates whether li ∈ pos(r) or li ∈ neg(r). For any literal l, let Path(P, l) be the set
of all literals l′ (including l itself) such that there is a path from l to l′ in DP .

3 http://www.mthimm.de/misc/utb_incasp.pdf

Definition 4. A set U of literals is called a splitting set [7] for P , if head(r) ∈ U
implies that all literals of atoms appearing in r are contained in U , for every rule r ∈ P .
For a splitting set U , let botU (P) be the set of all rules r ∈ P with head(r) ∈ U . This
set of rules is called the bottom part of P with respect to U .

Definition 5. A rule r∗ ∈ P is called safe with respect to P if the atom occurring in
the head of r∗ does not appear elsewhere in the program and pos(r∗) ∪ neg(r∗) is a
subset of the literals occurring in P \ {r∗}.

Now let I be an inconsistency measure. The postulate Consistency establishes that 0 is
the minimal inconsistency value and that it is reserved for consistent programs.

Consistency P is consistent iff I(P) = 0.

Satisfaction of Monotonicity is generally not desirable for ASP. However, as we still
wish to require some form of monotonicity in special cases, we consider the weaker
postulate CLP-Monotonicity (CLP stands for “classical logic program”). If a program
does not contain any default negation and we only add new information without de-
fault negation, we are in the classical setting and monotonicity should hold. A stronger
version of CLP-Monotonicity is I-Monotonicity which is applicable when the head of
a new rule is independent of the defaults in the program. Similarly, Split-Monotonicity
considers monotonicity with respect to the bottom part of splitting sets.

Monotonicity I(P) ≤ I(P ′) whenever P ⊆ P ′.
CLP-Monotonicity If P is a classical logic program and r∗ a classical rule, then
I(P) ≤ I(P ∪ {r∗}).

I-Monotonicity If r∗ is a rule with Path(P ∪ r∗, head(r∗)) ∩ neg(P ∪ r∗) = ∅, then
I(P) ≤ I(P ∪ {r∗}).

Split-Monotonicity If U is a splitting set of P , then I(botU (P)) ≤ I(P).

Finally, Safe-rule independence demands that the addition of safe rules does not change
the inconsistency value.

Safe-rule independence If P is a logic program and r∗ safe with respect to P , then
I(P) = I(P ∪ {r∗}).

3 Inconsistency Measures

We now propose concrete inconsistency measures for logic programs. Inconsistency of
programs can occur due to two different reasons, namely because the program has no
answer set at all or because all answer sets are inconsistent, cf. [8]. Different measures
should assess those reasons differently. Furthermore, to measure inconsistency of a pro-
gram, one could either take the program itself or the answer sets into account. We will
cover both approaches.

Our first measure I± aims at measuring the distance of the program to a consistent
one. More specifically, it quantifies the number of modifications in terms of deleting
and adding rules, necessary in order to restore consistency. Deleting certain rules can
surely be sufficient to prevent P from entailing contradictions, but as already pointed
out before, adding rules can also resolve inconsistency.

Definition 6. Define I± : P → R∞≥0 via

I±(P) = min{|A|+ |D| | A,D ∈ P such that (P ∪A) \D is consistent}

for all P ∈ P .

Example 1. Consider the program P3 defined via

P3 : a1 ← not b. a1 ← not c. a1 ← not d.
¬a1 ← not b. ¬a1 ← not c. ¬a1 ← not d.

and P4 given as follows.

P4 : a1 ← not b. a2 ← not b. a3 ← not b.
¬a1 ← not b. ¬a2 ← not b. ¬a3 ← not b.

Note that P3 contains three contradicting pairs of rules. Since one can delete one rule
in each of them (or make the rule inapplicable by adding the corresponding fact),
I±(P3) = 3. Even though P4 is similar, I±(P4) = 1 since P4 ∪ {b.} is consistent.

The measure I± performs a hypothetical modification of the original program P itself
to obtain consistency. Another approach is to relax the definition of answer sets and
consider modifications of the reduct PM instead.

Definition 7. A consistent set M of literals is called a k-l-model of a classical logic
program P if M is a model of (P ∪A) \D with A,D ∈ P and |A| ≤ k, |D| ≤ l. M is
called a k-l-answer set of an extended logic program P if M is a k-l-model of PM .

Definition 8. Define I± : P → R∞≥0 via

I±(P) = min
M⊆L

{k + l |M is a k-l-answer set of P}

for all P ∈ P .

Interestingly, however, these two different points of view—considering the reduct or
the program itself—are equivalent.

Proposition 1. For any extended logic program P , I±(P) = I±(P).

While for any program P , one can find a set M of literals such that M is a model of
PM , one cannot always guarantee M being the minimal model of the reduct. Our next
measure minimizes the distance between M and Cl(PM). We only consider the number
of literals in the symmetric difference of two sets. Investigating other distances is left for
future work. Recall that the symmetric difference dsd of two sets M and M ′ is defined
via dsd(M,M ′) = |(M ∪M ′) \ (M ∩M ′)|.

Definition 9. Define Isd : P → R∞≥0 via

Isd(P) = min
M∈ConClP

dsd(M,Cl(PM))

with ConClP = {M ⊆ L |M,Cl(PM) is consistent} and min ∅ =∞.

Table 1. Compliance of inconsistency measures with respect to our rationality postulates

I± = I± Isd I#

Consistency 3 3 3

Monotonicity 7 7 7

CLP-Monotonicity 3 3 3

I-Monotonicity 3 3 3

Split-Monotonicity 3 3 3

Safe-rule independence 3 3 3

Example 2. If a program P contains two contradicting facts, Isd(P) =∞ since in this
case, Cl(PM) is inconsistent for any set M of literals. For the programs P3 and P4 from
Example 1, we have Isd(P3) = 3 and Isd(P4) = 1.

Our last measure I# takes the answer sets of a program into account rather than the
rules. For this purpose, we need the following notion.

Definition 10. A set M of literals is called k-inconsistent, k ∈ N ∪ {0}, if there are
exactly k atoms a such that a ∈M and ¬a ∈M .

Furthermore, programs might have no answer set at all, which is a special case for I#.

Definition 11. Define I# : P → R∞≥0 via

I#(P) = min
M∈Ans(P)

{k |M is k-inconsistent}

with min ∅ =∞.

Example 3. For I#, we obtain I#(P3) = 1 and I#(P4) = 3.

Table 1 gives an overview on the compliance of our measures with respect to the
rationality postulates from Section 2. Note that, naturally, none of our measures satisfies
the classical monotonicity postulate which is also not desired for ASP.

4 Summary

In this paper, we addressed the challenge of measuring inconsistency in ASP by criti-
cally reviewing the classical framework of inconsistency measurement and taking non-
monotonicity into account. We developed novel rationality postulates and measures that
are more apt for analyzing inconsistency in ASP than classical approaches. Intuitively,
some of our measures take the effort needed to restore the consistency of programs into
account (I±, I±), and our results show that it does not matter whether this is done on
the level of the original program or on the level of the reduct. Others measure incon-
sistency in terms of the quality of the produced output, e. g., I# which considers the
minimal number of inconsistencies in an answer set.

Acknowledgements
This work has been partially funded by the DFG Research Training Group 1763.

References

1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Proceedings of the 14th
European Conference on Logics in Artificial Intelligence (JELIA’14). pp. 383–396 (2014)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011), http://doi.acm.org/10.1145/2043174.
2043195

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991), http://dx.doi.org/10.1007/
BF03037169

4. Grant, J., Hunter, A.: Measuring Inconsistency in Knowledgebases. Journal of Intelligent
Information Systems 27, 159–184 (2006)

5. Hunter, A., Konieczny, S.: Approaches to Measuring Inconsistent Information. In: Incon-
sistency Tolerance, Lecture Notes in Computer Science, vol. 3300, pp. 189–234. Springer
International Publishing (2004)

6. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Arti-
ficial Intelligence 174(14), 1007–1026 (July 2010)

7. Lifschitz, V., Turner, H.: Splitting a logic program. In: Logic Programming, Proceedings of
the Eleventh International Conference on Logic Programming, Santa Marherita Ligure, Italy,
June 13-18, 1994. pp. 23–37 (1994)

8. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in logic pro-
grams. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Logic Programming and Non-
monotonic Reasoning: 13th International Conference, LPNMR 2015, Lexington, KY, USA,
September 27-30, 2015. Proceedings, pp. 467–479. Springer International Publishing, Cham
(2015)

9. Thimm, M.: Inconsistency Measures for Probabilistic Logics. Artificial Intelligence 197, 1–
24 (2013)

10. Thimm, M.: On the expressivity of inconsistency measures. Artificial Intelligence 234, 120–
151 (2016)

