
U N C E RTA I N T Y A N D I N C O N S I S T E N C Y I N
K N O W L E D G E R E P R E S E N TAT I O N

H A B I L I TAT I O N S S C H R I F T

FA C H B E R E I C H I N F O R M AT I K
U N I V E R S I TÄT K O B L E N Z - L A N D A U

Dr. Matthias Thimm

Universität Koblenz-Landau — Fachbereich Informatik — Koblenz, Germany — 2016





A B S T R A C T

This habilitation thesis collects works addressing several challenges on han-
dling uncertainty and inconsistency in knowledge representation. In par-
ticular, this thesis contains works which introduce quantitative uncertainty
based on probability theory into abstract argumentation frameworks. The
formal semantics of this extension is investigated and its application for
strategic argumentation in agent dialogues is discussed. Moreover, both
the computational as well as the meaningfulness of approaches to analyze
inconsistencies, both in classical logics as well as logics for uncertain rea-
soning is investigated. Finally, this thesis addresses the implementation
challenges for various kinds of knowledge representation formalisms em-
ploying any notion of inconsistency tolerance or uncertainty.
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I N T R O D U C T I O N

Knowledge Representation and Reasoning (KR) (Brachman and Levesque,
2004) is the subfield of Artificial Intelligence (AI) (Russell and Norvig, 2003)
that deals with the issues of logical formalizations of information and the
modelling of rational reasoning behaviour. The methods developed within
this field can be applied in all areas that benefit from automatic decision-
support such as medicine (Shortliffe and Buchanan, 1975), accounting
(Vasarhelyi et al., 2005), chemistry (Judson, 2009), and law (Popple, 1996).
A particularly important application area for knowledge representation
lies in the Semantic Web (Antoniou and van Harmelen, 2004). Already
today, there are many systems available that make use of semantically
represented data like the Google Knowledge Graph (Singhal, 2012) or the
Wikidata project1 which allows for a structured access to the contents of
Wikipedia2. Formal knowledge representation formalisms, that allow for a
uniform method to exchange information, lie at the core of the semantic
web. For those, research in the field of description logics (Baader et al.,
2003) and ontologies (Baader et al., 2005) is applied in technologies like
RDF (Resource Description Framework) and OWL (Web Ontology Language).

One of the main challenges in KR research is the handling of uncertain
and inconsistent information which is essential for real-world applications.
Unreliable sensor data, distorted communication channels, and other noisy
data sources demand an uncertain treatment of information in order to
produce reliable and robust results. The notion of uncertainty here refers
to the graded or just unknown assessment of being “true” of some piece
of information, from a subjective point of view of a decision-making agent
such as a human being. Most of the information any agent possesses is
not necessarily strictly true in the actual world and agents have to take into
account both uncertainty of factual beliefs—such as “John was supposedly
on vacation” and uncertainty on the applicability of rules when deriving
new information—such as “When going on vacation, John usually takes
his kids with him”—.

Furthermore, besides being uncertain, information may also be incon-
sistent. The notion of inconsistency refers (usually) to multiple pieces of
information and represents a conflict between those, i. e., they cannot hold
at the same time. The two statements “John is on vacation in California”
and “John is at home in New York” represent inconsistent information and
in order to draw meaningful conclusions from a knowledge base containing
these statements, this conflict has to be consolidated somehow. Moreover,
in real-world applications such as decision-support systems, a knowledge
base is usually compiled by merging the formalized knowledge of many

1 http://www.wikidata.org
2 http://www.wikipedia.org

1

http://www.wikidata.org
http://www.wikipedia.org
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different experts. It is unavoidable that different experts contradict each
other and that the merged knowledge base is inconsistent.

The notions of uncertainty and inconsistency are orthogonal to each other.
For example, a piece of information may be uncertain such as “Tomorrow
it will rain with probability 0.9”. If this is the only belief an agent possesses,
it is consistent (although vague). Multiple pieces of information may be in-
consistent such as “The bird Tweety flies and the bird Tweety does not fly”.
These two pieces of information are contradictory but each one represents
a certain statement. Moreover, multiple pieces of information can also be
both uncertain and inconsistent such as “Tomorrow it will rain with prob-
ability 0.9 and tomorrow it will rain with probability 0.6”. These beliefs
are individually uncertain and taken together also inconsistent, cf. (Muiño,
2011). Finally, multiple pieces of information can, of course, also be both
certain and consistent such as “The bird Tweety flies and the bird Opus
does not fly”.

The interplay of both uncertain and inconsistent beliefs is the central
theme of this thesis. In particular, we investigate how approaches that
allow for the treatment of inconsistent information can be extended by
introducing (quantitative) uncertainty, and how approaches that allow for
the treatment of uncertain information can be extended by introducing a
treatment of inconsistencies.

The remainder of this introductory chapter is organized as follows. In
Section 1 we give a short overview on formalisms for dealing with un-
certainty and inconsistency, in particular on abstract argumentation and
inconsistency measurement, which are the main approaches used in the
contributions of this thesis. Afterwards we give an overview of these con-
tributions and explain their relationships to each other in Section 2. We
conclude this introductory chapter with some final remarks in Section 3.

1 approaches in knowledge representation

In order to deal with the challenges imposed by uncertainty and incon-
sistency in knowledge representation, several formalisms have been devel-
oped that address one or both of these challenges.

For the challenge of representing and reasoning with uncertainty one
usually distinguishes between formalisms for qualitative uncertainty and for-
malisms for quantitative uncertainty. The former comprise the large class
of non-monotonic logics (Gabbay et al., 1994), i. e., logics that do not gen-
erally satisfy the property of monotonicity of classical logics, which is that
conclusions are preserved under the addition of new information. This
property is responsible for the inadequacy of classical logic for reasoning
under uncertainty as it basically demands that all derivations are strict and
can never be given up. In order to allow for uncertain reasoning, these for-
malisms usually introduce—in one form or the other—some kind of rules
that do not necessarily hold in all cases. The archetype of such a rule is the
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default rule from default logic (Reiter, 1980). A default rule represents basi-
cally a “rule of thumb” in commonsense reasoning, such as “birds usually
fly” or “if the grass is wet then it likely rained” that are true under usual
circumstances but can be ignored if more explicit information is available.
Some further examples of formalisms following this line are, e. g., answer
set programming (Gelfond and Leone, 2002), conditional logics (Nute and
Cross, 2002), defeasible logics (Nute, 1994), and computational models of
argumentation (see below). The outcome of these formalisms is usually a
set of plausible inferences, i. e., formulas that can jointly be accepted. Some
formalisms distinguish between strict inferences (conclusions that can be
drawn from a classic-logical part of a knowledge base) and defeasible in-
ferences (conclusions that are drawn by involving one or more non-strict
rules), but other than that, no further distinction in terms of quality of in-
ference is usually provided. This is different for approaches to quantitative
uncertainty which allow a finer-grained representation of uncertainty. For
example, in probabilistic logic (Paris, 1994; Kern-Isberner, 2001) classical
(propositional) formulas in a knowledge base can be annotated with proba-
bilities (or intervals of probabilities in e. g. (Lukasiewicz and Kern-Isberner,
1999)) and inferences can be drawn with annotated probabilities as well.
This addition of expressivity also increases the computational complexity
of these formalisms considerably and a lot of restrictions on probabilistic
logics and alternative formalisms have been devised. Popular examples of
formalisms that restrict the expressivity of probability theory are probabilis-
tic networks such as Bayesian networks and Markov nets (Pearl, 1988). In
these formalisms, certain (in-)dependence assumptions between probabilis-
tic statements are made explicit in order to allow for performant reasoning
capabilities. Alternative formalisms to probability theory such as fuzzy
logics (Cintula et al., 2011) and Dempster-Shafer theory (Shafer, 1976) also
provide knowledge representation approaches that do not suffer from the
computational complexity of probability theory.

For dealing with inconsistencies several approaches have been developed
as well and some of the previously mentioned ones, such as computational
models of argumentation, can also be regarded as instances of this class.
Other examples include paraconsistent logics (Béziau et al., 2007) which
are formalisms based on classical logic that allow reasoning with inconsis-
tent information by introducing new truth values for conflicting proposi-
tions. Approaches to inconsistency measurement (see below) can be used
to analyse the severity of inconsistencies and to provide help in consoli-
dating them. The fields of belief revision (Hansson, 2001) and belief merg-
ing (Cholvy and Hunter, 1997; Konieczny and Pérez, 1998) deal with the
particular case of inconsistencies in dynamic settings. Usually, when new
observations are made in a dynamic environment these observations can
contradict with previously held beliefs and old beliefs have to be forgotten.
While the fields of belief revision and belief merging are usually focusing
on classical logic there are also approaches for non-monotonic formalisms
such as answer set programming, cf. e. g. (Slota and Leite, 2012).
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In the following, we give a brief overview on the two most relevant fields
for this thesis: Computational Models of Argumentation and Inconsistency Mea-
surement.

Computational Models of Argumentation

Computational models of argumentation (Besnard and Hunter, 2008; Rah-
wan and Simari, 2009) are approaches that deal with the representation
and interaction of arguments and counterarguments. The seminal work of
Dung (Dung, 1995) introduces an abstract argumentation framework as a di-
rected graph AF = (Arg,→) where the vertices Arg model the arguments
and the edges → model a conflict relation between arguments. If for two
arguments A,B we have (A,B) ∈→—also denoted as A → B—then we say
that “A attacks B”. For example, the natural language argument “Tweety is
a penguin and, thus, does not fly” is an argument that attacks the argument
“Tweety is a bird and as birds typically fly, Tweety flies as well”. A central
notion in abstract argumentation frameworks is that of an extension, a sub-
set of the arguments that can collectively be accepted, given the attacks
between all arguments. In (Dung, 1995) the four most popular semantics
for defining such extensions have been introduced, the grounded, complete,
preferred, and stable semantics (for the formal definition see e. g. the con-
tribution “A Probabilistic Semantics for Abstract Argumentation” in this thesis).
Further semantics that address different points of view of natural argumen-
tation have been defined in later works, see (Baroni et al., 2011) for a survey.
Abstract argumentation is a very general and abstract approach to knowl-
edge representation and it could already been shown in (Dung, 1995) that
it subsumes many other common KR approaches such as default logic and
answer set programming. Further works that build on abstract argumen-
tation frameworks address issues such as normative values of arguments
(Bench-Capon, 2003), attacks on attacks (Modgil and Bench-Capon, 2011)
and supporting arguments (Amgoud et al., 2008), see also (Brewka et al.,
2014) for a recent survey.

Abstract argumentation frameworks are a very simple representation
approach for argumentation and are not always suitable to model natu-
ral argumentation in a logically sound way (Amgoud and Besnard, 2013).
Another area of research on computational models of argumentation ad-
dresses structured argumentation (Caminada and Amgoud, 2007; Besnard
and Hunter, 2008). While abstract argumentation uses arguments as atomic
entities, arguments have an inner structure in approaches to structured ar-
gumentation. For example, in the framework of deductive argumentation
(Besnard and Hunter, 2008) classical logic—propositional and first-order
logic—is used as the underlying knowledge representation formalism. Ar-
guments are built from classical formulæ by identifying a set of classical
formulæ as the premise and a single formula as the conclusion of an argu-
ment, such that the premise entails the conclusion. Therefore, arguments
correspond to minimal proofs in the classic logical sense. If a classical log-
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ical knowledge base is inconsistent, arguments and counterarguments for
different conclusions can be extracted from this knowledge base and put in
relation to each other. While (Besnard and Hunter, 2008) bases its frame-
work on classical logic other works such as ASPIC+ (Prakken, 2009) und
Defeasible Logic Programming (DeLP) (Garcia and Simari, 2004) are based
on non-classical formalisms that allow e. g. the use of default reasoning
techniques for the construction of arguments. A hybrid approach between
abstract and structured argumentation are Abstract Dialectical Frameworks
(ADFs) (Brewka et al., 2013) which are, like abstract argumentation frame-
works, based on graph-theoretic notions but allow more complex condi-
tions for accepting arguments. This framework is theoretically appealing
as it has been shown that it subsumes many existing computational models
of formal argumentation.

One of the most recent endeavors in research on argumentation is the
integration of quantitative uncertainty (Li et al., 2011; Rienstra, 2012; Grossi
and van der Hoek, 2012; Dunne et al., 2011; Thimm, 2012; Fazzinga et al.,
2013; Grossi and van der Hoek, 2013; Hunter, 2013; Hunter and Thimm,
2014d,a; Hunter, 2014; Gabbay, 2012; Verheij, 2014; Dondio, 2014; Baroni
et al., 2014; Polberg and Doder, 2014; Doder and Woltran, 2014) which is
also the focus of the first two contributions of this thesis, “A Probabilistic
Semantics for Abstract Argumentation” and “Opponent Models with Uncertainty
for Strategic Argumentation”.

Another focus of recent research is the computational complexity of ar-
gumentation (Dunne and Wooldridge, 2009) and the resulting algorithmic
challenges for reasoning with argumentation systems (Bistarelli et al., 2014).
This is further exemplified by the International Competition on Computational
Models of Argumentation3 which is being conducted for the first time in 2015.

Further challenges in research on computational models of argumen-
tation involve, among others, the dynamics of argumentation (Baumann,
2012; Coste-Marquis et al., 2014; Baroni et al., 2013) and the application of
argumentation and negotiation in agent dialogues (Amgoud et al., 2000;
Karunatillake et al., 2009; Black and Hunter, 2007; Rienstra et al., 2013;
Thimm, 2014b; Rahwan and Larson, 2009). The latter comprises of works
on protocols and frameworks for dialogues (Amgoud et al., 2000; Karunatil-
lake et al., 2009; Black and Hunter, 2007), as well as strategic aspects of
argument selection (Rienstra et al., 2013; Thimm, 2014b), and the relation-
ships to game theory (Rahwan and Larson, 2009).

Inconsistency Measurement

The field of Inconsistency Measurement (Hunter and Konieczny, 2004; Grant
and Hunter, 2006) is about quantitatively assessing the severity of incon-
sistency in knowledge bases. The main object of research are inconsistency
measures, i. e., functions that assign a non-negative real value to a knowl-
edge base with the informal meaning that larger values indicate a larger

3 http://argumentationcompetition.org

http://argumentationcompetition.org
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inconsistency. These kind of measures are useful for the tasks of analyz-
ing knowledge bases in general (Thimm, 2014a), identifying the culprits
of inconsistency (Hunter and Konieczny, 2010), as well as manual and au-
tomatic debugging of knowledge bases (Grant and Hunter, 2011; Potyka
and Thimm, 2014) and inconsistent-tolerant reasoning (Potyka and Thimm,
2015). The traditional setting for inconsistency measurement is that of clas-
sical propositional logic and a lot of proposals of inconsistency measures
have been made for this setting (Hunter and Konieczny, 2004, 2008, 2010;
Ma et al., 2009; Mu et al., 2011a; Xiao and Ma, 2012; Grant and Hunter, 2011,
2013; McAreavey et al., 2014; Jabbour et al., 2014b; Thimm, 2014c). One sim-
ple example is the MI-inconsistency measure IMI where IMI(K) is defined
as the number of minimal inconsistent subsets4 of a knowledge base K
of propositional formulæ. More elaborate inconsistency measures can be
found in the mentioned references.

Besides measures for propositional logic, there have also been proposals
for inconsistency measures for other logics, such as classical first-order
logic (Grant and Hunter, 2008), description logics (Ma et al., 2007; Zhou
et al., 2009), default logics (Doder et al., 2010), and probabilistic and other
weighted logics (Ma et al., 2012; Thimm, 2013b, 2014a; Potyka, 2014; Potyka
and Thimm, 2014, 2015; De Bona and Finger, 2015).

The development of inconsistency measures is based on the discussion
of what can be regarded as more inconsistent than something else. In clas-
sical logic, inconsistency is defined as an absolute term which does not
directly allow for an quantitative assessment, in contrast to information mea-
sures (Shannon, 1948; Lozinskii, 1994), i. e., measures that assess the amount
of information in a knowledge base. Inconsistency measures can, however,
be regarded as the logical counterpart to information measures, as “severe”
inconsistency can be interpreted as “too much” information. Research in in-
consistency measurement has therefore focused on formalizing “severity of
inconsistency” and brought forward a series of rationality postulates aimed
at addressing different aspects of inconsistency. One example of such a
rationality postulate is Monotony which requires that the value of inconsis-
tency cannot decrease when adding formulas to a knowledge base. The
rationality of many of these postulates is heavily disputed in the commu-
nity (Besnard, 2014) and, so far, no set of postulates has been generally
acknowledged to be desirable.

As the work on theoretical foundations of inconsistency measurement
lies still in the main focus of the community, the practical and algorithmic
challenges of inconsistency measurement have only very recently been ap-
proached in a few works (Ma et al., 2009; McAreavey et al., 2014; Thimm,
2014c).

4 M ⊆ K is a minimal inconsistent subset if it is classically inconsistent and there is no
M′ ⊂ M that is classically inconsistent as well.
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2 overview of contributions

This thesis contains six contributions addressing various aspects of uncer-
tainty and inconsistency in knowledge representation. The first two con-
tributions, A Probabilistic Semantics for Abstract Argumentation and Opponent
Models with Uncertainty for Strategic Argumentation deal with the introduc-
tion of probabilistic reasoning in computational models of argumentation.
The following contribution Coherence and Compatibility of Markov Logic Net-
works introduces a notion of inconsistency in Markov Logic Networks, an
approach for probabilistic reasoning with first-order logic. The contribu-
tions Stream-based Inconsistency Measurement and On the Expressivity of In-
consistency Measures deal with computational challenges and analyses of
measuring inconsistency, respectively. The final contribution Tweety: A Com-
prehensive Collection of Java Libraries for Logical Aspects of Artificial Intelligence
and Knowledge Representation provides a practical perspective on all previ-
ous contributions by discussing implementation issues. In the following,
we will provide a short summary of each contribution and describe their
relationships.

A Probabilistic Semantics for Abstract Argumentation

The traditional semantics for abstract argumentation frameworks is essen-
tially two-valued: an argument is either accepted, i. e., contained in an ex-
tension, or rejected, i. e., not contained in an extension. As an abstract
argumentation framework may possess multiple extensions wrt. some se-
mantics one usually takes either a skeptical perspective on reasoning with
argumentation frameworks, where an argument is skeptically accepted if it is
contained in all extensions and skeptically rejected when this is not the case,
or a credulous perspective, where an argument is credulously accepted if it is
contained in some extension and credulously rejected when this is not the case.
However, the binary classification of the acceptance status of an argument
is quite weak. The labeling-based semantics of Caminada (Caminada and
Gabbay, 2009) identifies another value for the acceptance status of an argu-
ment on the level of an individual extension, the value undecided. This value
is assigned to arguments that are neither contained in the extension nor
attacked by it and is, in terms of strength of acceptance, located between ac-
cepted and rejected arguments. In (Wu and Caminada, 2010) this approach
is extended by taking all extensions of a particular semantics into account,
yielding a justification status of arguments ranging from strong accept (an ar-
gument is contained in all extensions) to strong reject (an argument is not
contained in any extension). Between these two extreme statuses a lattice
of intermediate statuses can be identified such as the status weak accept (for
every extension the argument is either accepted or undecided).

The contribution A Probabilistic Semantics for Abstract Argumentation in
this thesis continues the refinement of acceptance statuses of arguments
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outlined above by taking a quantitative perspective and introducing proba-
bilistic assessments of the acceptance status of an argument. For that, the
classical properties demanded from extensions are carried over to proba-
bilistic interpretations. For example, the least disputable property of an
extension is its conflict-freeness. For an abstract argumentation framework
AF = (Arg,→), a set E ⊆ Arg is conflict-free, if there are no arguments
A,B ∈ E such that A → B. In other words, if an argument A is accepted,
all arguments attacked by A must not be accepted. Carrying this notion
over to a probabilistic setting and denoting by P(A), P(B) the probability
of A, B, respectively (or the degree of belief one has on accepting A, B,
respectively) we obtain the relationship P(B) ≤ 1− P(A) if A → B. That
is, the degree of belief in B is bounded by the inverse of the degree of belief
in A. In the extreme case, if A is completely acceptable, P(A) = 1, we
obtain P(B) = 0 with the meaning that B is completely rejected. Other
desirable properties of extensions can be phrased in a similar way, see the
contribution and its follow-ups (Hunter and Thimm, 2014c,b,d) for details.

By formalizing desirable properties on the acceptance status of argu-
ments in a probabilistic way, the classical notion of an extension becomes
that of a probability function. This allows comparing abstract argumenta-
tion with the field of probabilistic reasoning (Pearl, 1988; Paris, 1994) on a
technical level. One of the key insights gained in the contribution is that the
grounded semantics of abstract argumentation is equivalent to probabilis-
tic reasoning based on the principle of maximum entropy, the latter being
a prominent method for reasoning with probabilistic logics (Paris, 1994).
This result and others of the contribution bridge the gap between these
two fields of study and the general approach of a probabilistic semantics for
abstract argumentation shows the feasibility of incorporating quantitative
uncertainty into computational models of argumentation.

Opponent Models with Uncertainty for Strategic Argumentation

Using probability theory as a means to provide uncertain assessments of
the justification status of an argument allows a formal comparison of the
fields of uncertain reasoning and abstract argumentation, as outlined above
and presented in the contribution A Probabilistic Semantics for Abstract Argu-
mentation. Besides utilizing these results for monological argumentation
and, thus, decision-support systems, another application area are multia-
gent systems and negotiation processes. The contribution Opponent Models
with Uncertainty for Strategic Argumentation investigates the use of proba-
bilistic models of computational models of argumentation for the purpose
of strategic move selection in dialogical argumentation, see (Thimm, 2014b)
for a survey. Consider the following example, taken from (Thimm, 2014b),
with two agents Anna and Bob discussing whether or not the moon-landing
happened in 1969:
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Anna: The pictures supposedly taken during the moon-landing cannot be
authentic as several shadows are inconsistent. So the moon-landing
did not happen in 1969.

Bob: Due to reflected light from the Earth, shadows may appear inconsis-
tent but they are not.

Anna: But the American flag that was hissed by the astronauts, fluttered
despite the lack of wind.

Bob: The flag did not flutter. Ripples on the flag originating from folding
it made it seem to flutter on a picture.

The above dialogue exemplifies how an exchange of arguments can be used
to reach a common consensus. These kinds of dialogues offer opportunities
for strategic exploitation, in particular, when agents have knowledge about
their opponents’ skills and beliefs. For example, assume that Anna knows
that Bob is not an expert on astronomical phenomena. Then she could bring
forward the following argument:

Anna: The amount of Van Allen radiation the astronauts were exposed to
during the trip would have been lethal.

In real-world settings for argumentation, there is usually no time to process
all arguments to reach a consensus. In such a setting it would have a strate-
gic advantage for Anna to put forward the above argument first, instead of
the other ones. Then Bob may be convinced that Anna is right in claiming
that the moon-landing did not happen.

The contribution Opponent Models with Uncertainty for Strategic Argumen-
tation formalizes the scenarios of the form outlined above and presents dif-
ferent approaches to select the best argument to put forward in a dialogue
based on an opponent model. In the simplest case, see also (Oren and Nor-
man, 2009), an opponent model for an agent A consists of the arguments
and attacks that A thinks another agent B is aware of. This model can also
recursively be extended by also representing information A thinks that B
thinks that A is aware of, etc. It can then be used by A to strategically select
the next argument to put forward in order to persuade B of some opinion. It
is clear that an opponent model can only be an uncertain approximation of
what B actually knows and that it is subject to change when B puts forward
arguments himself, see also (Hadjinikolis et al., 2013). This can be modelled
by more complex opponent models, based on probabilistic assessments of
whether B knows certain arguments and attacks, and updating strategies
of these models. The contribution extends the simple opponent model of
(Oren and Norman, 2009) by incorporating these aspects and providing two
novel approaches for strategic move selection. These approaches have also
been empirically evaluated in the contribution, giving evidence that they
outperform the naive approach in terms of successful persuasion.
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Coherence and Compatibility of Markov Logic Networks

The knowledge representation formalism used in the contributions dis-
cussed so far was abstract argumentation, which has an explicit notion
of inconsistency of information, i. e., a conflict between attacking arguments.
Furthermore, the contributions extended this formalism by also introducing
(quantitative) uncertainty. For another knowledge representation formalism
this situation is reversed: Markov Logic Networks (Richardson and Domin-
gos, 2006; Domingos and Lowd, 2009). A Markov logic network (MLN) L is set
L = {(φ1, g1), . . . , (φn, gn)} with first-order formulas φi and weights gi ∈ R,
for i = 1, . . . , n. An MLN L induces a probability function P (the log-linear
model of L), based on the idea that formulas with larger weights receive a
larger probability. Markov Logic Networks are thus an approach to proba-
bilistic reasoning with first-order logic (Halpern, 1990; Jaeger, 1995), which
is closely related to the field of Statistical Relational Learning (Getoor and
Taskar, 2007; De Raedt, 2008). Interestingly, the approach of MLNs has no
notion of inconsistency. Every MLN L has a unique and well-defined log-
linear model5. However, it is not necessarily true that the log-linear model
is meaningful and adequately represents the information in the network.
For example, when representing weighted formulas such as (sunny, 5) and
(rain,−20) one would probably expect that at least P(sunny) > P(rain) for
the log-linear model P of the whole MLN. However, this is not guaranteed
as other formulas may interfere in the computation of the final probabili-
ties. Furthermore, consider the two weighted formulas (ψ, 10) and (¬ψ, 10).
The log-linear model P of only these two formulas is well-defined and has
P(ψ) = 0.5. It is questionable whether these probabilities are appropriate
and whether it would not be more appropriate to define this set of formu-
las as inconsistent. In particular, computing a log-linear model P′ of an
“empty” knowledge base yields P′(ψ) = 0.5 as well. Therefore, from the se-
mantical point of view, the difference between inconsistency (contradicting
formulas) and ignorance (no knowledge at all) cannot be recognized. This
also makes it hard to detect modeling errors, particularly in large knowl-
edge bases.

The contribution Coherence and Compatibility of Markov Logic Networks ad-
dresses the issue outlined above by developing a theory of coherence of
MLNs. Informally speaking, an MLN is coherent if each weight of a formula
in the MLN is adequately reflected in the log-linear model of the MLN. This
informal notion is implemented in the contribution by defining a family
of coherence measures that measure and aggregate the distances of each
weighted formula to its value in the actual log-linear model. The main
results of this contribution show that this family adequately represents a
notion of inconsistency for MLNs and satisfies several desirable properties,
such as monotonicity (adding formulas to the knowledge base can only de-
crease coherence). By utilizing the framework of coherence measurement

5 There is, however, a minor exception to this statement. If infinite weights are allowed in
the representation of an MLN the log-linear model may be undefined.
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for analyzing a given MLN the knowledge engineer is able to detect sev-
eral design flaws, in particular when observing an unintuitive reasoning
behavior and if future extensions of the MLN are envisaged:

1. If an MLN is coherent (i. e. has a comparatively large coherence value)
but exhibits unintuitive inferences, then probably some weights have
been chosen wrong (as there is only little interdependence between
formulas).

2. If an MLN is coherent and exhibits no unintuitive inferences, then
the MLN is a good representation of the given knowledge and it will
probably be easier to extend it.

3. If an MLN is incoherent (i. e. has a comparatively low coherence
value) and exhibits unintuitive inferences, then the knowledge engi-
neer should have a look into the structure of the knowledge base as
there may be unwanted interdependences amongst formulas.

4. If an MLN is incoherent but exhibits no unintuitive inferences, then
the MLN may not be an adequate representation of the knowledge
and further extensions might yield unintuitive results.

The coherence framework has also been applied to the problem of measur-
ing the compatibility between different MLNs. The problem of knowledge ag-
gregation (or information fusion) (Konieczny and Pérez, 1998; Cholvy and
Hunter, 1997; Everaere et al., 2015) is about combining knowledge bases
from different sources into a joint knowledge base. For classical logics, this
raises the issue of consistency-preservation if the joint knowledge base is
inconsistent. As there is no notion of inconsistency for MLNs, the coherence
framework can be used to judge the compatibility of different MLNs before
merging them. This is done in the contribution by comparing the coherence
of the individual MLNs with the coherence of the joint MLN and providing
a quantitative measure for this judgement.

Stream-based Inconsistency Measurement

The computational challenges in determining the coherence value of an
MLN are huge, see the contribution Coherence and Compatibility of Markov
Logic Networks for details. This is true for most approaches to inconsistency
measurement, included the coherence framework discussed above. Even
for classical propositional logic the problem of determining consistency
of a knowledge base is NP-complete (Papadimitriou, 1994). Measuring
inconsistency can become even harder, in particular for large knowledge
bases as they appear in, e. g., Semantic Web applications (Sacramento et al.,
2012).

The contribution Stream-based Inconsistency Measurement addresses the
computational problem of measuring inconsistency by considering scenar-
ios where the knowledge base can only be processed in a step-by-step
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fashion, i. e., in streams. The contribution develops a formal framework
for inconsistency measurement in streams and defines an abstract notion
for stream-based inconsistency measures. Classical approaches to inconsis-
tency measurement in knowledge bases are adapted to the streaming sce-
nario by providing window-based variants and their accuracy is formally
investigated. The contribution also introduces a completely novel incon-
sistency measure based on hitting sets (see the contribution for technical
details) and provides a stream-based approximation algorithm for it that
is shown to outperform the other stream-based variants in terms of both
accuracy and runtime performance.

The computational issues in measuring inconsistency are usually been
ignored in the mostly theoretical field of inconsistency handling, as far as
we know only the works (Ma et al., 2009; McAreavey et al., 2014) address
similar issues as well. The contribution Stream-based Inconsistency Measure-
ment therefore addresses this important need and shows that large-scale
inconsistency measurement is feasible.

On the Expressivity of Inconsistency Measures

The contribution Stream-based Inconsistency Measurement discussed above ad-
dresses the computational challenges in measuring inconsistency. However,
there is still the discussion on what a reasonable inconsistency measure
exactly is, see (Besnard, 2014) for a recent discussion on this topic. The
theory of inconsistency measurement is based on formal principles (pos-
tulates) that describe reasonable properties for inconsistency measurement,
such as monotonicity when adding new formulas. Many of these postu-
lates are disputed and there is still no consensus on how inconsistency
should be quantified (Besnard, 2014). While the contribution Stream-based
Inconsistency Measurement discusses computational complexity as another
important dimension for deciding whether an inconsistency measure is rea-
sonable, the contribution On the Expressivity of Inconsistency Measures intro-
duces yet another important dimension, namely the expressivity of inconsis-
tency measures. Informally speaking, an inconsistency measure I is more
expressive than another inconsistency measure I ′ if I can distinguish be-
tween more inconsistent knowledge bases—i. e., assigns different values of
inconsistency—than I ′. In the contribution this concept is formalized by
introducing four different expressivity characteristics, i. e., measures that as-
sign to any inconsistency measure the number of different values they can
produce on some class of knowledge bases. The contribution surveys 15

different inconsistency measures from the recent literature and provides a
thorough investigation of these measures wrt. the four proposed expressiv-
ity characteristics. As a result it could be shown that the measure IΣ

dalal
from (Grant and Hunter, 2013) and the measure IPm from (Jabbour and
Raddaoui, 2013) are maximally expressive wrt. all four characteristics.

Besides introducing and investigating expressivity as a desirable prop-
erty for inconsistency measures, the contribution On the Expressivity of In-
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consistency Measures also uncovers some interesting relationships between
the field of inconsistency measurement and several branches from mathe-
matics. For example, there is a strong relationship between inconsistency
measures based on the notion of minimal inconsistent sets and Sperner fam-
ilies6 (Sperner, 1928) from set theory. Roughly speaking, the set of minimal
inconsistent subsets of a knowledge base is also a Sperner family wrt. the
knowledge base and, moreover, every Sperner family can be represented
as the set of minimal inconsistent subsets of some knowledge base. From
this strong relationship, existing results on Sperner families can be used to
obtain interesting properties on measures based on minimal inconsistent
subsets, such as, e. g., their values wrt. the introduced expressivity charac-
teristics. Further interesting relationships discussed in On the Expressivity of
Inconsistency Measures concern profiles of monotone Boolean functions and
the Farey series7, see the contribution for details.

Tweety: A Comprehensive Collection of Java Libraries for Logical Aspects of Artifi-
cial Intelligence and Knowledge Representation

All the contributions discussed so far address the issues of uncertainty and
inconsistency in knowledge representation in a mostly theoretical and an-
alytical way, as it is common in the field of knowledge representation and
reasoning. However, all technical approaches of the contributions have also
been implemented and, if meaningful, the implementations have been prac-
tically evaluated as well. As the common framework for implementing
these approaches, the Tweety libraries for Knowledge Representation and Arti-
ficial Intelligence8 have been employed. The final contribution in this the-
sis, Tweety: A Comprehensive Collection of Java Libraries for Logical Aspects of
Artificial Intelligence and Knowledge Representation, presents this framework,
which provides a general basis for implementing various approaches to
knowledge representation and other formal approaches to artificial intel-
ligence. As of now, it contains 33 different Java libraries that implement
standard approaches such as propositional and first-order logic, a variety of
approaches to formal argumentation such as abstract argumentation (Dung,
1995), deductive argumentation (Besnard and Hunter, 2001), Defeasible Logic
Programming (Garcia and Simari, 2004), a general framework for belief revi-
sion (Hansson, 2001), answer set programming (Gelfond and Leone, 2002),
and others. It also contains tools for working with mathematical expres-
sions, linear programs, graphs, matrices, and provides bridges to third-
party programs such as SAT-solvers, optimization solvers, and others.

Tweety is an open source project and can therefore be used and extended
by everyone. In particular, instantiating the abstract Tweety classes for a

6 A Sperner family S wrt. some set X is a set of subsets of X where no subset is contained
in another.

7 See http://oeis.org/A005728
8 http://tweetyproject.org

http://oeis.org/A005728
http://tweetyproject.org
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particular formalism is simple. Although Tweety is implemented in a object-
oriented programming language it follows a strict declarative formal way
to define concepts from theoretical knowledge representation research. The
libraries of Tweety are under constant development with a current release
cycle of six months.

3 concluding remarks

The contributions collected in this thesis deal with different aspects related
to both uncertainty and inconsistency of information in knowledge repre-
sentation. Of course, there are other works with similar aims and we refer
the reader to the corresponding discussions on related works in the indi-
vidual contributions for detailed analyses. Recent works of the author that
address the same challenges but are not contained in this thesis can also
be found in (Thimm, 2013b; Potyka and Thimm, 2014, 2015; Hunter and
Thimm, 2014c,b,d,a; Thimm and Kern-Isberner, 2014).
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Abstract

Classical semantics for abstract argumentation frameworks are usually de-
fined in terms of extensions or, more recently, labelings. That is, an ar-
gument is either regarded as accepted with respect to a labeling or not.
In order to reason with a specific semantics one takes either a credulous
or skeptical approach, i. e. an argument is ultimately accepted, if it is ac-
cepted in one or all labelings, respectively. In this paper, we propose a
more general approach for a semantics that allows for a more fine-grained
differentiation between those two extreme views on reasoning. In partic-
ular, we propose a probabilistic semantics for abstract argumentation that
assigns probabilities or degrees of belief to individual arguments. We show
that our semantics generalizes the classical notions of semantics and we
point out interesting relationships between concepts from argumentation
and probabilistic reasoning. We illustrate the usefulness of our semantics
on an example from the medical domain.

1 introduction

The field of computational models of argumentation (Rahwan and Simari,
2009) is concerned with non-monotonic reasoning mechanisms that focus
on the role of arguments. An argument is an entity that represents some
grounds to believe in a certain statement and that can be in conflict with
arguments establishing contradictory claims. The most commonly used
framework to talk about general issues of argumentation is that of abstract
argumentation (Dung, 1995). In abstract argumentation, arguments are rep-
resented as atomic entities and the interrelationships between different ar-
guments are modeled using an attack relation. Abstract argumentation has
been thoroughly investigated in the past fifteen years and there is quite a
lot of work on, e. g. extending abstract argumentation frameworks (Janssen
et al., 2008; Li et al., 2011; Dunne et al., 2011) and, in particular, semanti-
cal issues (Baroni et al., 2005; Caminada, 2006; Baroni et al., 2010; Wu and
Caminada, 2010). Several different kinds of semantics for abstract argu-
mentation frameworks have been proposed that highlight different aspects
of argumentation. Usually, semantics are given to abstract argumentation

15
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frameworks in terms of extensions or, more recently, labelings. For a spe-
cific labeling an argument is either accepted, not accepted, or undecided.
In a fixed semantical context, there is usually a set of labelings that is con-
sistent with the semantical context. In order to reason with a semantics
one has to take either a credulous or skeptical perspective. That is, an ar-
gument is ultimately accepted wrt. a semantics if the argument is accepted
by at least one labeling consistent with that semantics (the credulous per-
spective) or if the argument is accepted by all labelings consistent with the
semantics (the skeptical perspective). This extreme points of views may re-
sult in undesired results as in extreme cases the set of credulously accepted
arguments may contain nearly the whole set of arguments and the set of
skeptically accepted set of arguments may be nearly empty.

In this paper we propose a new way to assign semantics to abstract argu-
mentation frameworks. More precisely, instead of using labelings we use
probability functions on subsets of arguments as interpretations and define
a probabilistic satisfaction relation that generalizes the notion of a complete
labeling. In contrast to other works that combine abstract argumentation
with quantitative uncertainty (Li et al., 2011; Janssen et al., 2008; Dung and
Thang, 2010; Dunne et al., 2011; Krause et al., 1995; Kohlas, 2003; Alsinet et
al., 2008) we do not extend the underlying notion of an abstract argumen-
tation framework but assess its inherent uncertainty using a more general
semantics. In order to reason with this semantics we adopt notions from
probabilistic reasoning for reasoning with sets of probability functions. We
show that probabilistic semantics allow for a more fine-grained view on the
relationships of arguments within an abstract argumentation framework.

On a more wider perspective, this paper also gives some first insights on
the relationships between two of the most important sub-fields of artificial
intelligence, namely argumentation and probabilistic reasoning (Pearl, 1998;
Paris, 1994). In particular, we show that the grounded labeling in abstract
argumentation corresponds to the maximum entropy model in probabilis-
tic reasoning (wrt. our probabilistic semantics for abstract argumentation
frameworks).

The rest of this paper is organized as follows. In Section 2 we give a brief
overview on abstract argumentation and exemplify the problems raised
above to motivate our approach. In Section 3 we introduce a probabilistic
semantics for abstract argumentation frameworks and discuss its properties.
We continue in Section 4 with a comparison of the probabilistic semantics
and classical semantics and show interesting relationships between notions
from argumentation and probabilistic reasoning. In Section 5 we illustrate
the usefulness of the approach with a short example and discuss related
work in Section 6. We conclude in Section 5 with a summary and discus-
sion.
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2 abstract argumentation

Abstract argumentation frameworks (Dung, 1995) take a very simple view on
argumentation as they do not presuppose any internal structure of an argu-
ment. Abstract argumentation frameworks only consider the interactions
of arguments by means of an attack relation between arguments.

Definition 1 (Abstract Argumentation Framework). An abstract argumenta-
tion framework AF is a tuple AF = (Arg,→) where Arg is a set of arguments
and→ is a relation→⊆ Arg×Arg.

For two arguments A,B ∈ Arg the relation A → B means that argument
A attacks argument B. Abstract argumentation frameworks can be con-
cisely represented by directed graphs, where arguments are represented as
nodes and edges model the attack relation.

Example 1. Consider the abstract argumentation framework
AF = (Arg,→) depicted in Fig. 1. Here it is Arg = {A1,A2,A3,A4,A5} and
→= {(A1,A2), (A2,A1), (A2,A3), (A3,A4), (A4,A5), (A5,A4), (A5,A3)}.

A1 A2 A3

A4

A5

Figure 1: A simple argumentation framework

Semantics are usually given to abstract argumentation frameworks by
means of extensions (Dung, 1995) or labelings (Wu and Caminada, 2010).
An extension E of an argumentation framework AF = (Arg,→) is a set of
arguments E ⊆ Arg that gives some coherent view on the argumentation
underlying AF. A labeling L is a function L : Arg → {in, out, undec} that
assigns to each argument A ∈ Arg either the value in, meaning that the
argument is accepted, out, meaning that the argument is not accepted, or
undec, meaning that the status of the argument is undecided. Let in(L) =
{A | L(A) = in} and out(L) resp. undec(L) be defined analogously. As
extensions can be characterized by the arguments that labeled in in some
labeling, we restrain our attention to labelings henceforth. In order to
distinguish extension- and labeling-based semantics to the probabilistic
semantics in the next section we denote the former classical semantics.

In the literature (Dung, 1995; Caminada, 2006) a wide variety of differ-
ent types of classical semantics has been proposed. Arguably, the most
important property of a semantics is its admissibility. A labeling L is called
admissible if and only if for all arguments A ∈ Arg
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1. if L(A) = out then there is B ∈ Arg with L(B) = in and B → A, and

2. if L(A) = in then L(B) = out for all B ∈ Arg with B → A,

and it is called complete if, additionally, it satisfies

3. if L(A) = undec then there is no B ∈ Arg with B → A and L(B) = in
and there is a B′ ∈ Arg with B′ → A and L(B′) 6= out.

The intuition behind admissibility is that an argument can only be accepted
if there are no attackers that are accepted and if an argument is not accepted
then there has to be some reasonable grounds. The idea behind the com-
pleteness property is that the status of argument is only undec if it cannot be
classified as in or out. Different types of classical semantics can be phrased
by imposing further constraints.

Definition 2. Let AF = (Arg,→) be an abstract argumentation framework
and L : Arg→ {in, out, undec} a complete labeling.

• L is grounded if and only if in(L) is minimal.

• L is preferred if and only if in(L) is maximal.

• L is stable if and only if undec(L) = ∅.

• L is semi-stable if and only if undec(L) is minimal.

All statements on minimality/maximality are meant to be with respect to
set inclusion.

Note that a grounded labeling is uniquely determined and always exists
(Dung, 1995). Besides the above mentioned types of classical semantics
there are a lot of further proposals such as CF2 semantics (Baroni et al., 2005).
However, in this paper we focus on complete, grounded, preferred, stable,
and semi-stable semantics.

Example 2. We continue Ex. 1. Consider the labeling L defined via

L(A1) = in L(A2) = out L(A3) = out

L(A4) = out L(A5) = in

Clearly, L is an admissible labeling as it satisfies properties 1.) and 2.) from
above. Additionally, it is complete and also preferred, stable, and semi-
stable. Furthermore, consider the labeling L′ defined via

L′(A1) = out L′(A2) = in L′(A3) = out

L′(A4) = in L′(A5) = out

The labeling L′ is also admissible, complete, preferred, stable, and semi-
stable. Note, that the grounded labeling Lg is defined via Lg(A1) =
Lg(A2) = Lg(A3) = Lg(A4) = Lg(A5) = undec.
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As one can see in the above example, most semantics are multi-
extension semantics. That is, there is not always a unique labeling
induced by the semantics. In order to reason with multi-extension
semantics, usually, one takes either a credulous or skeptical perspec-
tive. That is, an argument A is credulously inferred with semantics
S ∈ {complete, preferred, stable, semi-stable} if there is a S-labeling L
with L(A) = in. An argument A is skeptically inferred with semantics S if
for all S-labelings L it holds that L(A) = in. Taking either a credulous or
skeptical perspective is a crucial choice as the set of inferred arguments
might change drastically.

Example 3. We continue Ex. 2. Besides L and L′ there is also another
labeling L′′ that is admissible, complete, preferred, stable, and semi-stable:

L′′(A1) = out L′′(A2) = in L′′(A3) = out

L′′(A4) = out L′′(A5) = in

With respect to complete, preferred, stable, and semi-stable semantics, it
follows that no argument is skeptically inferred and all arguments but A3
are credulously inferred.

The example above shows that the difference of skeptical and credulous
inference may be huge. Consequently, it is hard to assess the quality or
strength of argument in an argumentation framework if only those types
of inference are considered, cf. (Matt and Toni, 2008). Imagine that the
arguments in Ex. 1 are interpreted within a decision-support system in
the medical domain. That is, the arguments A1, . . . ,A5 represent different
drugs for a specific disease and an attack means a negative “influence” of
one drug to another. In this system, a decision comprises a set of drugs
that are used for treatment and the question is how to select this set?
With credulous semantics the recommendation is to administer almost all
drugs and with skeptical semantics the recommendation is to administer no
drug. None of these recommendations seem appropriate in the example. In
particular, administering no drug at all may not be possible as some action
may be required to be performed. Another possible way to select the set of
drugs is to select the drugs from one specific labeling. But then the question
arises which labeling to chose?

3 probabilistic semantics

In order to get a more fine-grained view on the status of arguments we
propose a new semantics that generalizes classical semantics and is based
on a probabilistic interpretation of arguments. For that, we need some
further notation. Let P(X ) denote the power set of a set X .
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Definition 3. Let X be some finite set. A probability function P on X is a
function P : P(X )→ [0, 1] that satisfies

1. P(X ) = 1 and

2. P(X1 ∪ X2) = P(X1) + P(X2) for X1, X2 ⊆ X , X1 ∩ X2 = ∅.

For x ∈ X we write P(x) instead of P({x}). Here, a probability function
is a function on the set of subsets of some (finite) set with two characteristic
properties. First, the function must be normalized, i. e., the whole set must
have probability one (property 1 above). Second, the probability of the
union of two disjoint set is the sum of the probabilities of each set (property
2 above). These two properties are also called the Kolmogorov properties of
probability (Jaynes, 2003). The following observation is easy to see and the
proof can be found e. g. in (Paris, 1994).

Proposition 1. For X ⊆ X and a probability function P on X it holds

P(X) = ∑
x∈X

P(x)

Due to the above proposition a probability function can be defined just
by defining the probabilities for each x ∈ X .

A probability function is usually used to model statistical events. Then
X is the set of all possible atomic events and subset X of X represents the
disjunction of the events in X. Given that X contains all possible events,
property 1 above says that one event has to occur and property 2 states that
atomic events are mutually exclusive.

In this paper, we use another interpretation for probability, that of sub-
jective probability (Paris, 1994). There, a probability P(X) for some X ⊆ X
denotes the degree of belief we put into X. Then a probability function P
can be seen as an epistemic state of some agent that has uncertain beliefs
with respect to X . In probabilistic reasoning (Pearl, 1998; Paris, 1994), this
interpretation of probability is widely used to model uncertain knowledge
representation and reasoning.

In the following, we consider probability functions on sets of arguments
of an abstract argumentation frameworks. Let AF = (Arg,→) be some fixed
abstract argumentation framework and let E = P(Arg) be the set of all sets
of arguments. Let now PAF be the set of probability functions of the form
P : P(E) → [0, 1]. A probability function P ∈ PAF assigns to each set of
possible extensions of AF a probability, i. e., P(e) for e ∈ E is the probability
that e is an extension and P(E) for E ⊆ E is the probability that any of
the sets in E is an extension. In particular, note the difference between e. g.
P({A,B}) = P({{A,B}}) and P({{A}, {B}}) for arguments A,B. While
the former denotes the probability that {A,B} is an extension the latter
denotes the probability that {A} or {B} is an extension. In general, it
holds P({A,B}) 6= P({{A}, {B}}).
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For P ∈ PAF and A ∈ Arg we abbreviate

P(A) = ∑
A∈e⊆Arg

P(e) .

Given some probability function P, the probability P(A) represents the
degree of belief that A is in an extension (according to P), i. e., P(A) is
the sum of the probabilities of all possible extensions that contain A. The
set PAF contains all possible views one can take on the arguments of an
abstract argumentation framework AF.

Example 4. We continue Ex. 1. Consider the function P ∈ PAF defined
via P({A1,A3,A5}) = 0.3, P({A1,A4}) = 0.45, P({A5,A2}) = 0.1,
P({A2,A4}) = 0.15, and P(e) = 0 for all remaining e ∈ E . Due to Prop. 1

the function P is well-defined as e. g.

P({{A5,A2}, {A2,A4}, {A3}})
= P({A5,A2}) + P({A2,A4}) + P({A3})
= 0.1 + 0.15 + 0 = 0.25

Therefore, P is a probability function according to Def. 3. According to
P the probabilities of each argument of AF compute to P(A1) = 0.75,
P(A2) = 0.25, P(A3) = 0.3, P(A4) = 0.6, and P(A5) = 0.4.

In the following, we are only interested in those probability functions of
PAF that agree with our intuition on the interrelationships of arguments
and attack. For example, if an argument A is not attacked we should
completely believe in its validity if no further information is available. We
propose the following notion of justifiability to describe this intuition.

Definition 4. A probability function P ∈ PAF is called p-justfiable wrt. AF,
denoted by P |=J AF, if it satisfies for all A ∈ Arg

1. P(A) ≤ 1− P(B) for all B,∈ Arg with B → A and

2. P(A) ≥ 1−∑B∈F P(B) where F = {B | B → A}.

Let P J
AF be the set of all p-justifiable probability functions wrt. AF.

The notion of p-justifiability generalizes the concept of complete seman-
tics to the probabilistic setting. Property 1.) says that the degree of belief
we assign to an argument A is bounded from above by the inverse degrees
of belief we put into the attackers of A. As a special case, note that if
we completely believe in an attacker of A, i. e. P(B) = 1 for some B with
B → A, then it follows P(A) = 0. This corresponds to property 1.) of a
complete labeling, see Section 2. Property 2.) of Def. 4 says that the degree
of belief we assign to an argument A is bounded from below by the inverse
of the sum of the degrees of belief we we put into the attacks of A. As a
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special case, note that if we completely disbelieve in all attackers of A, i. e.
P(B) = 0 for all B with B → A, then it follows P(A) = 1. This corre-
sponds to property 2.) of a complete labeling, see Section 2. The following
proposition establishes the probabilistic analogue of the third property of a
complete labeling.

Proposition 2. Let P be p-justifiable and A ∈ Arg. If P(A) ∈ (0, 1) then

1. there is no B ∈ Arg with B → A and P(B) = 1 and

2. there is a B′ ∈ Arg with B′ → A and P(B′) > 0.

Before we investigate the relationships between our probabilistic seman-
tics and classical argumentation semantics in more depth we analyze the
properties of probabilistic semantics by itself.

Example 5. We continue Ex. 4. There, the probability function P is p-
justifiable wrt. AF as e. g. P(A1) ≤ 1− P(A2) and P(A4) ≥ 1− P(A3)−
P(A5).

The set of p-justifiable probability functions contains all probability func-
tions that agree with our intuition of argumentation. This set has some nice
properties as shown below.

Proposition 3. The set P J
AF is non-empty and convex.

The above proposition states that for every argumentation framework AF
there is a p-justifiable probability function P wrt. AF. Furthermore, the set
of p-justifiable probability functions is closed wrt. to convex combination.
That is, given two p-justifiable probability function P1, P2 and some δ ∈
[0, 1] it follows that P3 defined via P3(e) = δP1(e) + (1− δ)P2(e) for each
e ∈ E is also p-justifiable.

In order to reason with a set of probability functions one can use model-
based inductive reasoning techniques (Paris, 1994), i. e., instead of reasoning
with the complete set one selects some appropriate representative and per-
forms reasoning solely based on this representative. A very important ap-
proach for that is reasoning based on the principle of maximum entropy (Paris,
1994). For a probability function P ∈ PAF the entropy H(P) of P is defined
as H(P) = −∑e∈E P(e) log P(e) with 0 log 0 = 0. The entropy measures
the amount of indeterminateness of a probability function P. A probability
function P1 that describes absolute certain knowledge, i. e. P1(e) = 1 for
some e ∈ E and P1(e′) = 0 for every other e′ ∈ E , yields minimal entropy
H(P1) = 0. The uniform probability function P0 with P0(e) = 1/|E | for every
e ∈ E yields maximal entropy H(P0) = − log 1/|E |.

Definition 5. Let P ⊆ PAF be a set of probability functions.
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• P∗ ∈ P is a maximum entropy model of P if H(P∗) is maximal in
{H(P) | P ∈ P}. Let MaxE(P) be the set of all maximum entropy
models of P .

• P∗ ∈ P is a minimum entropy model of P if H(P∗) is minimal in
{H(P) | P ∈ P}. Let MinE(P) be the set of all minimum entropy
models of P .

• Pc is the centroid of P if

Pc(e) =

∫
P P(e)dP(e)∫
P dP(e)

for all e ∈ E .

A maximum entropy model P ∈ MaxE(P) is as unbiased as possible
among the probability functions in P , i. e., it contains as less information
as possible. Reasoning based on the principle of maximum entropy is a
popular approach in probabilistic reasoning as it satisfies several nice prop-
erties (Paris, 1994). Here, we also consider minimum entropy models as
they correspond to stable labelings (see below) and the centroid as further
approaches for selecting specific models from a set of probability functions.

Proposition 4. If P is a non-empty convex set of probability functions then
|MaxE(P)| = 1, i. e. a maximum entropy model exists and is uniquely determined.

For the proof of the above proposition see e. g. (Paris, 1994). Taking
together Propositions 3 and 4 we obtain the following nice observation as a
simple corollary.

Corollary 1. The maximum entropy model P∗ of P J
AF exists and is uniquely

determined.

Note that the centroid Pc of P J
AF is, by definition, also uniquely deter-

mined9 but this is, in general, not true for minimum entropy models.

Example 6. We continue Ex. 4. While both the maximum entropy model
P∗ and the centroid Pc of P J

AF are uniquely determined there are three
minimum entropy models Pmin

1 , Pmin
2 , Pmin

3 of P J
AF. The degrees of beliefs

for the arguments of AF wrt. those models are given in Table 1, rounded
to two decimal places. The maximum entropy model is as unbiased as
possible, assigning a degree of belief of 0.5 to each argument, whereas the
minimum entropy models have maximum information and take extreme
values. The centroid Pc reflects the overall situation in AF. For example,
argument A3 is attacked by two arguments and receives a small degree of
belief. Furthermore, both A2 and A5 each attack two other arguments and
also defend themselves against attacks, therefore getting a relatively high
degree of belief of 0.57 and 0.64, respectively.

9 As P J
AF is convex it also holds that Pc ∈ P J

AF.
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P∗ Pc Pmin
1 Pmin

2 Pmin
3

A1 0.5 0.43 0 1 0
A2 0.5 0.57 1 0 1
A3 0.5 0.14 0 0 0
A4 0.5 0.36 1 0 0
A5 0.5 0.64 0 1 1

Table 1: Degrees of belief in Ex. 6

We take a closer look on the centroid of P J
AF in the next section.

4 comparison with classical semantics

In this section, we investigate the relationships between classical semantics
and probabilistic semantics in more depth.

A probability function P ∈ PAF is a generalization of a labeling. For
an argument A ∈ Arg, the probability P(A) = 1 is equivalent to stating
that the argument A is in and the probability P(A) = 0 is equivalent to
stating the A is out. A probability P(A) ∈ (0, 1) generalizes the status
undec while P(A) = 0.5 is the most “unbiased undec”. Labelings can be
linked to probability functions as follows. For a labeling L the characteristic
probability function PL of L is defined via

1. if undec(L) = ∅:

PL(in(L)) = 1

PL(e′) = 0 for all e′ ∈ E \ {in(L)}

2. if undec(L) 6= ∅:

PL(in(L)) = PL(in(L) ∪ undec(L)) = 0.5

PL(e′) = 0 for all e′ ∈ E \ {in(L), in(L) ∪ undec(L)}

Note that PL is well-defined due to Prop. 1. It is easy to see, that PL(A) = 1
if and only if L(A) = in, PL(A) = 0 if and only if L(A) = out, and
PL(A) = 0.5 if and only if L(A) = undec. Probability functions P1, P2
are argument-equivalent, denoted by P1 ≡ P2, if and only if P1(A) = P2(A)
for all A ∈ Arg.

Theorem 1. Let AF be some abstract argumentation framework and let L be some
labeling.

1. If L is complete then PL is p-justifiable.

2. L is grounded if and only if PL ≡ P∗ for {P∗} = MaxE(P J
AF).
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3. If stable labelings exist for AF then L is stable if and only if
PL ∈ MinE(P J

AF).

The above theorem establishes quite interesting relationships between
our probabilistic semantics and classical semantics. First, the concept
or p-justifiable generalizes complete semantics as every complete label-
ing induces a p-justifiable probability function. Second, the grounded
labeling of an argumentation framework corresponds to the maximum
entropy model of all p-justifiable probability functions (up to argument-
equivalence). Third, the set of stable labeling corresponds to the set of
minimum entropy models, provided that the former set is non-empty. The
final two observations link the information-theoretic concept of entropy to
classical argumentation semantics. The maximum entropy model of P J

AF
is the probability function which is as unbiased as possible whereas the
grounded labeling is the labeling which is as cautious as possible. Fur-
thermore, a minimum entropy model of P J

AF is a probability function that
maximizes information. Similarly, a stable labeling L has maximum infor-
mation as it assigns to each argument either in or out.

Note that the converse of 1.) in Th. 1 does not hold in general.

Example 7. Consider the abstract argumentation framework AF = (Arg,→
) with Arg = {A1,A2,A3} and → as depicted in Fig. 2. Let P be a
probability function defined as P({A1}) = P({A2}) = 0.5 and P(e) = 0
for all remaining e ∈ E . Hence P(A1) = P(A2) = 0.5 and P(A3) = 0. Note
that P is p-justifiable wrt. AF. However, there is no complete labeling L
with L(A1) = L(A2) = undec and L(A3) = out.

A1

A2

A3

Figure 2: Argumentation framework from Ex. 7

Due to Th. 1 and Ex. 7 we have established that probabilistic semantics
is a clear generalization of classical complete semantics. Therefore, we can
integrate probabilistic semantics into the hierarchy of classical semantics as
depicted in Fig. 3 (an arrow reads “is less general than”).

The converse of 3.) in Th. 1 does not hold in general as well as a minimum
entropy model even exists if AF has no stable labeling. However, the set
MinE(P J

AF) can be characterized as follows.
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complete semantics

grounded semanticspreferred semantics

semi-stable semantics

stable semantics

probabilistic semantics

Figure 3: Relationships between semantics

Proposition 5. Let AF be some abstract argumentation framework and let L be
some labeling. Then PL ∈ MinE(P J

AF) if and only if undec(L) is minimal wrt. set
cardinality.

Note that the above proposition does not establish that MinE(P J
AF) is

equivalent to the set of semi-stable labelings as a semi-stable labeling is
characterized by having a minimal undec(L) wrt. set inclusion. However, it
holds that L is a semi-stable labeling if PL ∈ MinE(P J

AF).

In the previous section, the centroid Pc of P J
AF has proven to be a good

candidate for representing the set P J
AF as a whole. We now turn to its

relationship with classical semantics.

Theorem 2. Let {L1, . . . , Lm} be the set of complete labelings wrt. AF. Then the
set P J

AF is a polytope where {PL1 , . . . , PLm} is the set of its extremal points.

The above theorem states that the set P J
AF is the convex hull of the

characteristic probability functions of all complete labelings. It also leads
to a very simple characterization of the centroid Pc of P J

AF.

Corollary 2. Let {L1, . . . , Lm} be the set of complete labelings wrt.
AF = (Arg,→) and let Pc be the centroid of P J

AF. Then

Pc(A) = ∑m
i=1 δ(Li,A)

m
for all A ∈ Arg

with δ(L,A) = 1 if L(A) = in, δ(L,A) = 0 if L(A) = out, and δ(L,A) = 0.5
otherwise.

In other words, the probability of an argument in the centroid of P J
AF is

its average probability with respect to all complete labelings.
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5 reasoning in critical domains

In order to illustrate the usefulness of our non-classical semantics we elab-
orate on an example from the medical domain. This example is inspired
by an example from (Modgil, 2009) and does not qualify for being medi-
cally accurate. Consider the argumentation framework AF = (Arg,→) with
Arg = {D1,D2, T1, T2, C,P1,P2} and → as depicted in Fig. 4. In AF, the ar-
guments D1 and D2 are arguments for treating a patient suffering from
blood clotting with aspirin and chlopidogrel, respectively. Both arguments
attack each other as only one drug may be selected for treatment. The argu-
ments T1 and T2 represent contradictory medical trials stating that aspirin
is more effective than chlopidogrel (T2) and that chlopidogrel is more ef-
fective than aspirin (T1). Argument C states that chlopidogrel is too costly
and should not be prescribed. Arguments P1 and P2 represent differing
views on the importance of the features “health” and “low expenses”: P1
states that the health of a patient if more important than expenses, therefore
attacking argument C. The argument P2 states that having low expenses
is more important than a patient’s health. It can easily be seen that the

D1 D2

T1 T2

C

P1 P2

Figure 4: Argumentation framework for the medical domain

grounded labeling of AF declares each argument as undec. Therefore, for
both credulous and skeptical inference no arguments can be established as
ultimately accepted. For complete, preferred, semi-stable, stable semantics
several labelings can be identified, some of the declaring D1 as in and some
declaring D2 as in. However, for all those classical semantics each argument
in AF can be credulously inferred and none can be skeptically inferred. The
centroid Pc assigns to each argument except D2 a degree of belief of 0.5. The
degree of belief of D2 is approximately 0.278. This assignment reflects the
overall situation in AF as D2 is more controversial than D1 due to the for-
mer’s cost. Although the degree of belief in D1 is not very high it is still
higher than D2 which makes D1 a better recommendation. Furthermore,
the centroid Pc also gives a concise overview on the uncertainty inherent
in AF which supports the user in assessing his confidence when selecting a
specific action.
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6 related work

The original definition of argumentation semantics by Dung (Dung, 1995)
relies on the concept of an extension with a clear understanding of the
status of an argument: an argument is either in an extension or not. Argu-
ment labelings (Wu and Caminada, 2010) generalize this view and make the
(already implicitly existent) third status of an argument explicit by distin-
guishing between arguments that are out and arguments that are undecided.
Our approach generalizes this idea even further by considering the whole
interval [0, 1] as the space for the status of an argument. As discussed
in Section 4 the classical notions of in and out can be identified with the
probabilities of 1 and 0, respectively, while the argument status undec corre-
sponds to the whole open interval (0, 1), with 0.5 being the most “unbiased”
notion of undec.

To the best of our knowledge, the work reported here is the first that
defines a probabilistic semantics for pure abstract argumentation frame-
works. However, there are some works that extend abstract argumentation
frameworks to incorporate some form of quantitative uncertainty, see e. g.
(Janssen et al., 2008; Dung and Thang, 2010; Li et al., 2011; Dunne et al., 2011).
For example, the work (Li et al., 2011) defines a probabilistic argumentation
framework PAF via PAF = (Arg, PArg,→, P→) where (Arg,→) is an abstract
argumentation framework, PArg is a probability function on Arg, and P→ is
a probability function on →. A probabilistic argumentation framework
PAF serves as a template for a set of abstract argumentation frameworks
AF1, . . . , AFn. Each AFi (i = 1, . . . , n) is a sub-framework of (Arg,→) and
has an associated probability P(AFi) of its “occurrence” which is deter-
mined by the probabilities of arguments and attacks. By fixing a specific
classical semantics, e. g. grounded semantics, in (Li et al., 2011) a probabilis-
tic interpretation P(A) for an argument A is computed by summing up the
probabilities of those AFi in which A is in the grounded extension. Simi-
larly, the work (Janssen et al., 2008) extends abstract argumentation frame-
works by allowing the attack relation → to be a fuzzy relation. Weighted
argument systems (Dunne et al., 2011) assign to each attack a positive real-
value to represent its strength. Reasoning in weighted argument systems
is performed by fixing some threshold β and focusing on those subsets of
a system that neglects attacks with weights that sum up to at most β. The
main difference between our approach and the approaches discussed so far
is that they introduce additional uncertainty into the knowledge represen-
tation formalism while we assess the inherent uncertainty within abstract
argumentation frameworks by a generalized semantics. A common ground
of our approach and the approaches above is the focus on abstract argu-
mentation frameworks and, therefore, the non-observance of uncertainty
within the structure of arguments. There are also a few works that consider
quantitative uncertainty within argument construction, see e. g. (Krause et
al., 1995; Kohlas, 2003; Alsinet et al., 2008). In those works additional uncer-
tainty is introduced by weighting formulas used for creating arguments.
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Similarly to our approach, the work (Matt and Toni, 2008) also assigns
degrees of strength to arguments of an abstract argumentation framework
solely based on the framework’s inherent uncertainty. In (Matt and Toni,
2008), an argumentation framework is interpreted within an argumenta-
tion dialogue and strengths indicate how defendable an argument is for a
participant. In contrast to our work, the degrees of acceptance in (Matt and
Toni, 2008) have no probabilistic interpretation and are computed in a pro-
priety way as to reflect the situation of a competitive argumentation game.
Furthermore, (Matt and Toni, 2008) is not concerned with semantical issues
of abstract argumentation frameworks.

7 summary and discussion

In this paper we proposed a new way for giving semantics to abstract ar-
gumentation frameworks. Instead of extensions or labelings we used prob-
ability functions to assign degrees of belief to arguments. We proposed a
generalization of complete semantics and showed several interesting rela-
tionships between probabilistic and classical semantics on the one hand and
abstract argumentation and probabilistic reasoning on the hand. In particu-
lar, we showed that the maximum entropy model of probabilistic reasoning
corresponds to the grounded labeling in abstract argumentation. We also
illustrated the usefulness of our approach in critical domains.

Probabilistic semantics generalizes the classical extension- and labeling-
based semantics for abstract argumentation and allows for a more fine-
grained differentiation of the status of arguments. For future work, we
intend to investigate the relationship of probabilistic semantics with the
notion of accrual (Prakken, 2005) which is concerned with effects of multiple
arguments attacking another argument. Roughly, it is rational to assume
that the more reasons there are against a single claim the less this claim is
believed to be true. In our framework, accrual of arguments is already
weakly adhered for by property 2.) of Def. 4 where, in particular, the
number of attacks on an argument influences the lower bound for the
degree of belief in that argument, see also Ex. 7. However, a deeper analysis
of this issue is left for future work.
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(IJCAI’13). Beijing, China, August 2013.

Abstract

This paper deals with the issue of strategic argumentation in the setting
of Dung-style abstract argumentation theory. Such reasoning takes place
through the use of opponent models—recursive representations of an
agent’s knowledge and beliefs regarding the opponent’s knowledge. Using
such models, we present three approaches to reasoning. The first directly
utilises the opponent model to identify the best move to advance in a
dialogue. The second extends our basic approach through the use of
quantitative uncertainty over the opponent’s model. The final extension
introduces virtual arguments into the opponent’s reasoning process. Such
arguments are unknown to the agent, but presumed to exist and interact
with known arguments. They are therefore used to add a primitive notion
of risk to the agent’s reasoning. We have implemented our models and
we have performed an empirical analysis that shows that this added
expressivity improves the performance of an agent in a dialogue.

1 introduction

Argumentation systems offer a natural, easily understood representation of
non-monotonic reasoning, and have been applied to a variety of problem
domains including planning and practical reasoning (Toniolo et al., 2011)
and legal reasoning (Grabmair and Ashley, 2010). Critically, many of these
domains are adversarial, requiring an agent to identify and advance some
set of arguments which are most likely to enable it to achieve its goals.
In order to do so, the agent employs a strategy, typically in the form of
a heuristic, which selects appropriate arguments given some contextual
knowledge.

We describe one such strategy, and examine some of its properties. Our
strategy assumes that an agent is not only aware of the arguments that
it is permitted to advance, as well as what has already been stated, but
that it also has a belief regarding its opponent’s knowledge, and that this
relationship is recursive unto some depth (i. e. an agent a believes some
arguments, and believes that b knows some arguments, as well as believing
that b believes that a knows some arguments, and so on). While (Oren and
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Norman, 2009) have previously examined such a strategy, we extend and
improve their work along several dimensions.

First, (Oren and Norman, 2009) assume that an agent holds only a single
opponent model. However, uncertainty plays a crucial role in strategies,
and we capture this uncertainty, associating different opponent models
with different likelihoods. Second, agents are often unaware of all argu-
ments in a domain, and we allow an agent to hold an opponent model
containing arguments it itself is not aware of through the introduction of
virtual arguments. Finally, we consider how an agent should update its
knowledge and beliefs while taking part in a dialogue.

In (Prakken and Sartor, 2002) an influential four layered view of an argu-
mentation system is described. The first two levels, consisting of the logical
and dialectic layers, specify the content of an argument, and how argu-
ments interact with each other. In our work, these layers are encapsulated
within an abstract argumentation framework (Dung, 1995), which we sum-
marise in Sec. 2. We encapsulate Prakken’s procedural layer, which specifies
how agents exchange arguments (via dialogue) via a general discourse model.
This discourse model, described in Sec. 3, assumes only that agents take al-
ternating turns in making moves, and further constrains the dialogue by
limiting what moves can be made through a legal moves function. Section 4

then describes the agent model, associating a utility with specific arguments,
and allowing for different types of belief states. This agent model captures
Prakken’s heuristic layer through the specification of agent strategy. We
present three instances of the agent model, starting from the one described
in (Oren and Norman, 2009), and repeatedly adding further layers of ex-
pressivity. Section 5 describes how an agent’s beliefs should be updated
as the dialogue progresses, following which we compare and empirically
evaluate the different models in Sec. 6. Section 7 discusses related work,
and we conclude in Sec. 8.

2 formal preliminaries

In abstract argumentation theory, knowledge is represented by an abstract
argumentation framework (or AF, in short), which is a set of arguments with
an attack relation, cf. (Dung, 1995).

Definition 1. An AF is a pair (A, R) where A is the set of arguments and
R ⊆ A× A is the attack relation.

The goal is to select sets of arguments, called extensions, that represent
rational points of view on the acceptability of the arguments of the AF.
The first condition for an extension to be rational is that it is conflict-free.
Furthermore, if an argument is a member of an extension, it is assumed
that it is defended by the extension. Formally:
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Definition 2. Given an AF F = (A, R), an extension is a set E ⊆ A. E is said
to be conflict-free iff @x, y ∈ E, (x, y) ∈ R. Given an argument x ∈ A, E is
said to defend x iff ∀y ∈ A s.t. (y, x) ∈ R, ∃z ∈ E s.t. (z, y) ∈ R. We define
D(A,R)(E) by D(A,R)(E) = {x ∈ A | E defends x}.

Using the notions of conflict-freeness and defense, we can define a num-
ber of argumentation semantics, each embodying a particular rationality
criterion.

Definition 3. Let F = (A, R) be and E ⊆ A conflict-free extension. E
qualifies as:

• admissible iff E ⊆ D(A,R)(E),

• complete iff E = D(A,R)(E),

• grounded iff E is minimal (w.r.t. set inclusion) among the set of
complete extensions of F.

For the intuition behind the different semantics we refer the reader
to (Dung, 1995).

3 the discourse model

The discourse model provides a way to specify the complete setting in which
two agents (proponent P and opponent O) engage in a certain type of dia-
logue. Recalling the four-layered model mentioned in the introduction, we
first need a logical and dialectical layer. Here we use abstract argumen-
tation theory, as presented in the previous section, and leave the logical
content of arguments unspecified. We assume that there is a universal AF
(A,R) which contains all arguments relevant to a particular discourse.

An agent Ag ∈ {P ,O} has limited knowledge and is aware only of some
subset BAg ⊆ A of arguments which she can put forward in a dialogue. We
assume that the attack relation is determined by the arguments, so that the
knowledge of an agent can be identified with the set BAg, inducing an AF
(BAg,R∩ (BAg × BAg)). In the remaining definitions, we assume (A,R) to
be given.

Next, we need to fill in the procedural layer. The main object with
which we are concerned here is a dialogue trace, which represents a dialogue
between P and O by a sequence of moves (i. e. sets of arguments M ⊆ A)
made by P and O alternately, with P making the first move. Formally:

Definition 4 (Dialogue trace). A dialogue trace is a finite sequence π =
(M1, . . . , Mn) s.t. M1, . . . , Mn ⊆ A. Every Mi is called a move. We define
Aπ = M1 ∪ . . . ∪Mn and nπ = |M1|+ ... + |Mn|. π[n] denotes the dialogue
trace consisting of the first n moves of π; π[0] is the empty sequence. The
set of all possible dialogue traces is denoted by S.
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The rules of the dialogue are captured by the legal move function
legalmoves : S → 22A which returns valid follow-up moves for a particular
dialogue trace. The heuristic, or strategic component is captured by an
agent model, one for P and one for O.

Definition 5 (Agent model). An abstract agent model ∆ is a triple ∆ =
(K, move, upd) where K is the belief state; move is a function mapping a
dialogue trace and belief state to a set of moves, called the move function;
and upd is a function mapping a belief state and a move to a new belief
state, called the update function.

A belief state K captures the agent’s knowledge, utility function and
opponent model. The function move returns the set of moves for the agent,
given her belief state and current dialogue trace and implements the agent’s
strategy. We assume that an agent’s move function returns only legal moves.
Note that an agent may be indifferent as to which move is best and can also
decide to end the dialogue, i. e., move may return multiple or zero moves.
Finally, the function upd takes a belief state K and the move made by the
opponent and yields a new belief state K′, the idea being that moves made
by the opponent may change the agent’s knowledge and beliefs.

Definition 6. A dialogue state is a pair (∆P , ∆O) where ∆P , ∆O are a pro-
ponent’s and opponent’s agent model. A dialogue trace π = (M1, . . . , Mn)
is called valid wrt. a legal move function legalmoves and a dialogue
state (∆P , ∆O) if and only if there exists a sequence of dialogue states
((∆0
P , ∆0

O), . . . , (∆n
P , ∆n

O)) with ∆i
Ag = (Ki

Ag, updAg, moveAg) such that
∆0
P = ∆P , ∆0

O = ∆O and, for i = 1, . . . , n:

1. Mi ∈ moveP (π[i− 1],Ki−1
P ) if i is odd,

2. Mi ∈ moveO(π[i− 1],Ki−1
O ) if i is even,

3. Ki
Ag = upd(Ki−1

Ag , Mi) for Ag ∈ {P ,O}.

No moves can be added to a dialogue trace if an agent decides to end the
dialogue. A dialogue trace is then complete:

Definition 7. Let π = (M1, . . . , Mn) be a valid dialogue trace with respect
to a legal move function legalmoves and a dialogue state (∆P , ∆O). We say π

is complete if and only if there is no dialogue trace π′ = (M1, . . . , Mn, Mn+1)
which is valid with respect to legalmoves and (∆P , ∆O).

Note that, because the move function may return more than one move,
there may be more than one valid and complete dialogue trace for a given
pair of initial agent models. Our discourse model is thus nondeterministic
with respect to how a dialogue evolves.
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In the following sections we present concrete instantiations of agent mod-
els. We demonstrate these models by fixing (A,R), specifying legalmoves,
and showing the resulting valid dialogue traces.

4 agent models for strategic argumentation

In this section we present three concrete instantiations of agent models. We
focus here on the belief state K and move function. Each model extends the
expressivity of the former. We show, by example, that these extensions are
necessary to properly model strategically important beliefs of an agent. In
each of the three agent models, the move function is based on a variant of
the M* search algorithm (Carmel and Markovitch, 1996). We postpone the
treatment of the third component of an agent model (K, move, upd), namely
the update function upd, returning to it in Section 5.

4.1 The simple agent model

The simple belief state of an agent (denoted by Ks) consists, first, of a set
B ⊆ A containing the arguments that the agent is aware of. The goals of
the agent are encoded by the utility function u, that returns the utility (a
real number) that the agent assigns to a particular dialogue trace π ∈ S (cf.
(Thimm and Garcia, 2010)). The agent’s beliefs about the knowledge and
goals of her opponent and about the beliefs about her opponent’s belief
about herself, etc., are modeled by simply nesting this structure, so that the
third component of the simple belief state is again a simple belief state.

Definition 8. A simple belief state Ks is a tuple (B, u, E) where:

• B ⊆ A is the set of arguments the agent is aware of,

• u : S→ R is the utility function,

• E = (B′, u′, E′) is a simple belief state called the opponent state, such
that B′ ⊆ B.

The intuition behind B′ ⊆ B in the above stems from the common sense
notion that an agent cannot have beliefs about whether or not her opponent
is aware of an argument that she herself is not aware of. In other words,
If an agent believes that her opponent knows argument a, then surely the
agent herself also knows a. We refer to this requirement as the awareness
restriction.

Except for this restriction, this model is the same as the one presented by
Oren and Norman (Oren and Norman, 2009). They also present a variation
of the maxmin algorithm (which is in turn a variation of the M* algorithm
(Carmel and Markovitch, 1996)) that determines, given a belief state Ks and
legalmoves function, the moves that yield the best expected outcome. We
can use the same approach to define our moves function. The algorithm
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that defines the moves function is shown in Algorithm 1. Note that the
actual algorithm only needs to return the set of best moves. To simplify the
algorithm, however, we define it to return both the set of best moves and
the expected utility of these moves.

Algorithm 1 moves(π, (B, u, E))
1: maxEU=u(π)
2: bestMoves=∅
3: for all M ∈ legalmoves(π) do
4: eu = 0
5: (oUtil, oMoves) = moves((π, M), E)
6: for all M′ ∈ oMoves do
7: (nUtil, nMoves) = moves((π, M, M′), (B, u, E))
8: eu = eu + nUtil ∗ 1

|oMoves|
9: if eu > maxEU then

10: bestMoves = ∅
11: if eu ≥ maxEU then
12: bestMoves = bestMoves∪ {M}
13: maxEU = eu
14: return (maxEU, bestMoves)

The algorithm works as follows. Initially the bestMoves is empty and
maxEU, acting as a lower bound on the expected utility to be improved
upon, is set to the utility of the current trace. For every legal move M the
set of best responses of the opponent is determined on line 5. Then, in lines
6 and 7 the expected utility of M is determined by again calling the move
function. On line 8 we divide the expected utility of M by the number of
opponent moves, taking into account all possible equally good moves the
opponent can make without double counting. Lines 9–13 keep track of the
moves, considered so far, that yield maximum expected utility. Note that,
if bestMoves is empty at the end, not moving yields highest expected utility.

Note that we assume that the nesting of the belief state is sufficiently deep
to run the algorithm. Alternatively, the algorithm can easily be adapted (as
shown in (Oren and Norman, 2009)) to deal with belief states of insufficient
depth, or to terminate at some fixed search depth.

In the rest of this text, we use a utility function to the effect that the dia-
logue is about grounded acceptance of an argument x ∈ A. This has been
called a grounded game in the literature (Modgil and Caminada, 2009). We
subtract arbitrary small values ε, for each move in the dialogue, capturing
the idea that shorter traces are preferred, effectively driving the agents to
put forward only relevant moves. Formally:
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Figure 1: An AF and belief state structure.

Definition 9 (Grounded game utility function). Let x ∈ A and Ag ∈
{P ,O}. The grounded game utility function, denoted by u(x,Ag)

g , evaluated
over a dialogue trace π, is defined by:

u(x,Ag)
g (π) =


v− nπε if x grounded in F
−v− nπε if x attacked by gr. extension of F
0 otherwise

where F = (Aπ ,R ∩ (Aπ × Aπ)), and v = 1, if Ag = P and v = −1, if
Ag = O.

Following (Modgil and Caminada, 2009), we may refer to x as in if it is
within the (uniquely determined) grounded extension, out if it is attacked
by an element from this extension, and undecided otherwise.

For simplicity, we assume that utility functions are fixed in all models,
i. e., both agents have correct beliefs about the opponent’s utility function.
Furthermore, the legalmoves function that we use simply forces moves to
consist of a single argument, and is defined by legalmoves1(π) = {{x} |
x ∈ A}.

Example 1. Let (A,R), and E, F, G be the AF and belief states as shown in
Figure 1. That is, E = (B, u(a,P)

g , F), F = (B′,−u(a,O)
g , G), G = (B′, u(a,P)

g , F)
with B = {a, b, c, d, e} and B′ = {a, b, c, d}. We define the agent models
Γ = (∆P , ∆O) by ∆P = (E, moves, upd) and ∆O = (F, moves, upd), where
upd is defined by upd(K, M) = K. In words, P is aware of all arguments
and (correctly) believes that O is aware of only a, b, c and d. There is
a single valid dialogue trace w.r.t. Γ, namely ({a}, {b}, {e}). The first
move is obvious, i. e., if P would not put forward the argument a under
consideration, she loses because the opponent can end the dialogue. The
second move b is made because O (not being aware of e) believes she can
counter the only possible countermove after b (i. e., c) by d, resulting in a
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win. As it turns out, P ’s quickest way to win is by moving e and not c.
This ends the dialogue, as O cannot increase utility by putting forward any
remaining argument. The utilities of the trace are 1− 3ε for P and −1− 3ε

for O.

4.2 The uncertain agent model

A limitation of the simple agent model is that it assumes certainty about the
opponent model. In the uncertain agent model, denoted Ku, we capture un-
certainty by assigning (non-zero) probabilities to possible opponent modes:

Definition 10. An uncertain belief state Ku is a tuple (B, u, E , P) where:

• B ⊆ A is the set of arguments,

• u : S→ R is the utility function,

• E is a set of uncertain belief states (opponent belief states) such that
∀(B′, u′, E ′, P′) ∈ E : B′ ⊆ B,

• P : E → (0, 1] is a probability function s.t. ∑E∈E E = 1.

The corresponding moveu function, defined by algorithm 2, is a straight-
forward generalization of moves, taking into account probabilities of possi-
ble opponent models.

Algorithm 2 moveu(π, (B, u, E , P))
1: maxEU = u(π)
2: bestMoves = ∅
3: for all M ∈ legalmoves(π) do
4: eu = 0
5: for all E ∈ E do
6: (oUtil, oMoves) = (moveu((π, M), E))
7: for all M′ ∈ oMoves do
8: (nUtil, nMoves) = moveu((π, M, M′), (B, u, E , P))
9: eu = eu + nUtil ∗ P(E′) ∗ 1

|oMoves|
10: if eu > maxEU then
11: bestMoves = ∅
12: if eu ≥ maxEU then
13: bestMoves = bestMoves∪ {M}
14: maxEU = eu
15: return (maxEU, bestMoves)

Example 2. Let (A,R), E, F1, F2, G1 and G2 be the AF and belief states as
shown in Figure 2. We define the agent models ∆P by ∆P = (E, moveu, upd)
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Figure 2: An AF (left) and belief state (right).

and ∆O = (F1, moveu, upd), where upd is defined by upd(K, M) = K. In
words, P is aware of all arguments and correctly believes O to be aware
of c, d, but is uncertain about whether O knows a (p = 0.3) or b (p = 0.7).
O in fact is aware of a and not of b. There is a single valid dialogue trace
w.r.t. Γ, namely ({d}, {c}, {b}, {a}). Again, P first moves the argument d
under consideration. O, believing that P does not know a, replies with c,
believing this will be successful. Now, P has to choose between putting
forward a or b. Putting forward a while O knows b (which O believes to
be more likely) will make d undecided. Thus O puts forward b. It turns
out that O was in fact aware of a, and thus puts this argument forward,
changing the status of d from out to undecided. The result is a ‘tie-break’,
i. e., both P and O assign a utility of 0 +/- 4ε to the trace in which d is
neither accepted nor rejected.

4.3 The extended agent model

The two models presented so far assume that an agent cannot have beliefs
about whether or not her opponent is aware of an argument that she herself
is not aware of. While this is a natural assumption, it limits the kind of
situations we can model. An agent can still believe that her opponent
knows some argument, even if she is not aware of this argument herself.
We model such arguments as virtual arguments. These are believed to exist
but cannot put it forward in a dialogue. For example, if one is engaged in a
dialogue with a physicist about the speed of light one may assume that the
physicist has an argument for the speed of light being larger than 50 kph.
However, if one is not expert in physics, the exact nature of this argument
might be unknown. Furthermore, we assume that if new argument is put
forward, an agent knows whether or not this argument corresponds to a
virtual argument she believed to exist. That is, she can recognize a new
argument, and map it to a virtual argument. To model this, we add a set G
of virtual arguments (such that G ∩ A = ∅), an attack relation R between
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Figure 3: An AF and belief state structure.

virtual arguments and regular arguments, and a recognition function rec to
the belief state. Formally:

Definition 11. Given a set of virtual arguments G, an extended belief state Ke
is a tuple (B, u, G, R, rec, E , P) where:

• B ⊆ A is the set of arguments,

• u : S→ R is the utility function,

• G ⊆ G is the set of virtual arguments believed to exist,

• R ⊆ G× A ∪ A× G ∪ G× G is the attack relation,

• rec : A → 2G is the recognition function,

• E is a set of extended belief states, called opponent belief states,
s.t. ∀(B′, u′, G′, R′, rec, E ′, P′) ∈ E : B′ ⊆ B,

• P : E → (0, 1] is a probability function s.t. ∑E∈E = 1.

Except for the added items, extended and uncertain belief states are sim-
ilar and the movee function is, except for having differently typed parame-
ters, is identical to moveu.

Example 3. Let (A,R), E, F1 and F2 be the AF and belief states shown in
Figure 3. We define the agent models ∆P by ∆P = (E, movee, upd), where
upd is defined by upd(K, M) = K. In words, P is aware of b, d, e and f and
believes O is also aware of these arguments. In addition, P believes O may
have counterarguments to b and d, with probability 0.3 and 0.7 respectively.
In the belief state of P , not being aware of b and d, they are modeled as
virtual arguments, i. e., x and y mapping to a and b respectively.
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A possible dialogue trace is ({ f }, {e}, {b}). Here, P puts forward f and
O counters with e, believing this may be successful. For P , the choice
of whether to put forward b or d depends on her beliefs about (virtual)
counterarguments. P believes it more likely (with p = 0.7) that O can
counter d and therefore b is P ’s best move.

5 updating opponent models

When an opponent puts forward a move, an opponent model needs to be
updated to take into account the knowledge conveyed by this move. We
propose a number of upd functions to model such updates. (Again, we
assume that utility functions are fixed and therefore do not change.)

Definition 12. Let Ks = (B, u, E) be a simple belief state and M ⊆ A a
move. The simple update function upds is defined by upds(Ks, M) = (B ∪
M, u, upds(E, M)).

Note that, if Ks satisfies the awareness restriction then upds(Ks, M) does,
too.

Definition 13. Let Ku = (B, u, E , P) be an uncertain belief state and M ⊆ A
a move. The uncertain update function updu is defined by updu(Ku, M) =
(B ∪M, u, E ′, P′) where

E ′ =
⋃

E∈E
updu(E, M) (2.1)

P′(E) = ∑
E′∈E ,updu(e,M)=E

P(E′) for E ∈ E ′ (2.2)

In the above definition o we assume that arguments are observed inde-
pendently of one another and, thus, probabilities stay robust in the light
of observing unexpected moves. However, consider what occurs if the pro-
ponent believes that the opponent is aware of only of b with p = 0.3 and
only of c with p = 0.7 how should those probabilities be adjusted when the
opponent moves with argument a?

The problem is that this observation is inconsistent with the two oppo-
nent models considered possible. two ways exist to deal with this. First,
we could switch to a uniform distribution, e. g. giving both states a proba-
bility of 0.5. Second, we could assume that the observations of arguments
are probabilistically independent events. Taking the latter approach, we
then add the observed move to every opponent model considered possible
before, cf. Equation (2.1). Furthermore, some opponent models may col-
lapse into one, so that we have to sum up probabilities for such states, cf.
Equation (2.2).
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Definition 14. Let Ke = (B, u, G, R, rec, E , P) be an extended belief state
and M ⊆ A a move. The extended update function upde is defined via
upde(Ke, M) = (B ∪M, u, G′, R′, rec, E ′, P′) where

G′ = G \
⋃

a∈M
rec(a) (2.3)

R′ = R ∩ (G′ × B ∪ B× G′ ∪ G′ × G′) (2.4)

E ′ =
⋃

E∈E
upd3(E, M) (2.5)

P′(E) = ∑
E′∈E ,upd3(E′,M)=E

P(E′) for all E ∈ E ′ (2.6)

The following proposition establishes a strict hierarchy of our three mod-
els w.r.t. expressivity. For example, our approaches for strategic argument
selection and update coincide when restricting to less expressive models.
For that, we say that a simple belief state E = (A, u, Ê) and an uncertain be-
lief state E′ = (A′, u′, E , P) are equivalent, denoted E ∼ E′, if A = A′, u = u′,
E = {Ê′}, P(Ê′) = 1, and Ê′ ∼ Ê recursively. In other words, E ∼ E′ if E′

does not provide any information beyond E. Similarly, we define equiva-
lence to an extended belief state E′′ if E′′ adds no virtual arguments.

Proposition 1. 1. If E = (A, u, E) is a simple belief state then

a) E′ = (A, u, E , P) with E = {E} and P(E) = 1 is an uncertain belief
state and

moves(π, E) = moveu(π, E′) for every π

upds(E, M) ∼ updu(E′, M) for every M

b) E′ = (A, u, G, R, rec, E , P) with G = R = ∅, rec(a) = ∅ for every
a ∈ A, E = {E} and P(E) = 1 is an extended belief state and

moves(π, E) = movee(π, E′) for every π

upds(E, M) ∼ upde(E′, M) for every M

2. If E = (A, u, E , P) is an uncertain belief state then E′ =
(A, u, G, R, rec, E , P) with G = R = ∅ and rec(a) = ∅ for every
a ∈ A is an extended belief state and

moveu(π, E) = movee(π, E′) for every π

updu(E, M) ∼ upde(E′, M) for every M

Proofs are omitted due to space restrictions.
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6 implementation and evaluation

We implemented the three different opponent models using Java in the
Tweety library for artificial intelligence1. Our AF allows for the automatic
generation of random abstract argumentation theories and simulates a di-
alogue between multiple agents. We used this AF to conduct experiments
with our models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random abstract argumen-
tation theory with 10 arguments, ensuring that the argument under con-
sideration is in its grounded extension, i. e. under perfect information the
proponent should win the dialogue. However, from these 10 arguments
only 50 % are known by the proponent but 90 % by the opponent. We used
a proponent without opponent model and generated an extended belief
state for the opponent (with maximum recursion depth 3). From this ex-
tended belief state we derived an uncertain belief state by simply removing
the virtual arguments. From this uncertain belief state we derived a sim-
ple belief state by sampling a nested opponent model from the probability
function in the uncertain belief state. For each belief state we simulated a
dialogue against the same opponent and counted the number of wins. We
repeated the experiment 5000 times, with Figure 1 showing our results. As
seen, increasing the complexity of the belief state yields better overall per-
formance. In particular, note that the difference between the performances
of the simple and uncertain belief states is larger than between uncertain
and extended belief states. However, this observation is highly depended
on the actual number of virtual arguments used (which was around 30 %
of all arguments in this experiment) and is different for larger values (due
to space restrictions we do not report on the results of those experiments).

7 related work

Recently, interest has arisen in combining probability with argumentation.
(Hunter, 2012) describes two systems which concern themselves with the
likelihood that an agent knows a specific argument, and we can view the
possible argument AFs that can be induced from these likelihoods as pos-
sible models of agent knowledge. (Thimm, 2012) investigates probabilistic
interpretations of abstract argumentation and relationships to approaches
for probabilistic reasoning. Furthermore, (Oren et al., 2012) investigated
strategies in such a probabilistic setting but concerned themselves with
monologues rather than dialogues.

Our work concerns itself with identifying the arguments an agent should
advance at any point in a dialogue. Other work in this vein includes (Oren
et al., 2006), which aims to minimise the cost of moves, with no concern to
the opponent’s knowledge, and without looking more than one step ahead
when reasoning. Such a strategy can easily be encoded by our approach. By

1 http://tinyurl.com/tweety-opp

http://tinyurl.com/tweety-opp
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Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with ar-
gumentation. [6] describes two systems which concern them-

1http://tinyurl.com/tweety-opp

selves with the likelihood that an agent knows a specific argu-
ment, and we can view the possible argument AFs that can be
induced from these likelihoods as possible models of agent
knowledge. [15] investigates probabilistic interpretations of
abstract argumentation and relationships to approaches for
probabilistic reasoning. Furthermore, [8] investigated strate-
gies in such a probabilistic setting but concerned themselves
with monologues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [10], which aims to minimise the cost
of moves, with no concern to the opponent’s knowledge, and
without looking more than one step ahead when reasoning.
Such a strategy can easily be encoded by our approach. By
assigning probabilities to arguments, [14] constructed a game
tree allowing dialogue participants to maximise the likelihood
of some argument being accepted or rejected. The probabili-
ties in that system arose from a priori knowledge, and no con-
sideration was given to the possibility of an opponent model.

[12; 13] consider a very different aspect of strategy, at-
tempting to identify situations which are strategy-proof, that
is, when full revelation of arguments is the best course of
action to follow. Similarly, [16] extends that work to struc-
tured AFs and also proposes some simple dominant strate-
gies for other specific situations. This can be contrasted with
our work, where e. g. withholding information can result in a
better outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work

We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [5] has high-
lighted the need for strategies when structured argumentation
is used. Since the work presented here can easily be extended
to this domain, we are in the process of adapting our algo-
rithms to deal with dialogues built on top of structured argu-
mentation.

Figure 4: Performance of the simple (T1), uncertain (T2), and extended (T3)
belief states in comparison (with Binomial proportion confidence
intervals)

assigning probabilities to arguments, (Roth et al., 2007) constructed a game
tree allowing dialogue participants to maximise the likelihood of some
argument being accepted or rejected. The probabilities in that system arose
from a priori knowledge, and no consideration was given to the possibility
of an opponent model.

(Rahwan and Larson, 2008; Rahwan et al., 2009) consider a very different
aspect of strategy, attempting to identify situations which are strategy-proof,
that is, when full revelation of arguments is the best course of action to
follow. Similarly, (Thimm and Garcia, 2010) extends that work to structured
AFs and also proposes some simple dominant strategies for other specific
situations. This can be contrasted with our work, where e. g. withholding
information can result in a better outcome for the agent than revealing all
its arguments.

8 conclusions and future work

We proposed three structures for modeling an opponents belief in strategic
argumentation. Our simple model uses a recursive structure to hold the
beliefs an agent has on the other agent’s beliefs. We extended this model
to incorporate quantitative uncertainty on the actual opponent model and
qualitative uncertainty on the set of believed arguments. All our models
have been implemented and we tested their performance in a series of ex-
periments. As expected, increasing the complexity of the opponent mod-
elling structure resulted in improved outcomes for the agent.
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We consider several avenues of future work. First, agents using our strate-
gies attempt to maximise their outcome, with no consideration for risk. We
seek to extend our work to cater for this notion by introducing second order
probabilities into our system. We also intend to investigate whether virtual
arguments are equivalent to a simpler system wherein no attacks between
virtual arguments can exist. Furthermore, while it is difficult to obtain large
scale argument graphs obtained from real world domains, we hope to vali-
date our approach over such corpora. Finally, while our results (for clarity
of presentation) focus on abstract argument, (Hadjinikolis et al., 2012) has
highlighted the need for strategies when structured argumentation is used.
Since the work presented here can easily be extended to this domain, we
are in the process of adapting our algorithms to deal with dialogues built
on top of structured argumentation.
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Abstract

Markov logic is a robust approach for probabilistic relational knowledge
representation that uses a log-linear model of weighted first-order formulas
for probabilistic reasoning. This log-linear model always exists but may not
represent the knowledge engineer’s intentions adequately. In this paper, we
develop a general framework for measuring this coherence of Markov logic
networks by comparing the resulting probabilities in the model with the
weights given to the formulas. Our measure takes the interdependence of
different formulas into account and analyzes the degree of impact they have
on the probabilities of other formulas. This approach can be used by the
knowledge engineer in constructing a well-formed Markov logic network
if data for learning is not available. We also apply our approach to the
problem of assessing the compatibility of multiple Markov Logic networks,
i. e., to measure to what extent the merging of these networks results in a
change of probabilities.

1 introduction

Statistical relational learning (De Raedt and Kersting, 2008) is a research
area that deals with knowledge representation and learning in probabilistic
first-order logics. Therein, a particularly popular approach is Markov Logic
(Richardson and Domingos, 2006). A Markov logic network (MLN) is a set
of weighted first-order formulas where a larger weight means that the
formula is more likely to be true. The semantics of an MLN is given via
a log-linear model that takes the weights of formulas into account in order
to determine probabilities for classical first-order interpretations. Markov
logic networks have been used for e. g. diagnosis of bronchial carcinoma on
ion mobility spectrometry data (Finthammer et al., 2010) or social network
analysis (Domingos and Lowd, 2009).

In knowledge representation and reasoning consistency is a crucial issue
and in order to cope with inconsistency different formalisms use different
techniques. For example, most belief revision approaches (Hansson, 2001)
have to maintain consistency by altering the represented information, and
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default logics and the like (Reiter, 1980; Gelfond and Leone, 2002) use a non-
monotonic inference procedure that bypasses classical inconsistency. Still,
even a default theory can be inconsistent in a non-classical sense if there
are two complementary defaults present in the theory. In Markov logic,
inconsistency is not an issue as every MLN has a well-defined log-linear
model (ignoring MLNs that contain infinite weights on two contradictory
formulas). Therefore, every MLN is consistent by definition. However, it is
not necessarily true that the log-linear model is meaningful and adequately
represents the information in the network. For example, when representing
weighted formulas such as (sunny, 5) and (rain,−20) one would probably
expect that at least P(sunny) > P(rain) for the log-linear model P of the
whole MLN. However, this is not guaranteed as other formulas may inter-
fere in the computation of the final probabilities. Furthermore, consider the
two weighted formulas (ψ, 10) and (¬ψ, 10). The log-linear model P of only
these two formulas is well-defined and has P(ψ) = 0.5. It is questionable
whether these probabilities are appropriate and whether it would not be
more appropriate to define this set of formulas as inconsistent. In particu-
lar, computing a log-linear model P′ of an “empty” knowledge base yields
P′(ψ) = 0.5 as well. Therefore, from the semantical point of view, the dif-
ference between inconsistency (contradicting formulas) and ignorance (no
knowledge at all) cannot be recognized. This also makes it hard to detect
modeling errors, particularly in large knowledge bases.

In this paper, we introduce the notion of coherence for MLNs. Informally,
an MLN is coherent if it is “adequately” represented by its log-linear model.
We develop a general framework for coherence measurement that bases
on a notion of distance between the log-linear model and the weights of
the formulas of the MLN. This measure is able to identify the amount of
interference between different formulas of the MLN and thus gives an es-
timation of whether inference based on the log-linear model might result
in counterintuitive results. We discuss one particular application of our
framework for merging multiple MLNs into a single one. This is a typical
scenario when multiple (domain) experts have to share their knowledge in
order to solve a more general task. When merging multiple MLNs, the for-
mulas of one MLN might influence the probabilities previously determined
by another MLN which might give unintuitive results. By comparing the
coherence of the merged MLN with the coherence of the individual MLNs
we define a notion of compatibility for the merging scenario. In summary,
the contributions of this paper are as follows:

1. We introduce the notion of coherence as a measure for assessing the
adequateness of the log-linear model of an MLN (Section 3).

2. We show that our measure satisfies several desirable properties such
as monotonicity and independence of irrelevant information. We
also present a methodology for using the notion of coherence for
knowledge engineering (Section 4).
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3. We apply the notion of coherence to the problem of merging multiple
MLNs and show that our measure is able to identify incompatibilities
(Section 5).

4. We briefly describe our implementation of the coherence measure-
ment framework (Section 6).

Proofs of technical results can be found in the appendix.

2 markov logic networks

Markov logic (Richardson and Domingos, 2006) is a statistical relational
framework which combines Markov networks (Pearl, 1988) with aspects
of first-order logic. The Markov logic syntax complies with first-order logic
without functions where each formula is quantified by an additional weight.
Let Pred be a finite set of predicates, C a finite set of constants, V a set of
variables, and LC be the functor-free first-order language on Pred, C, and
V. For what remains we assume Pred and V to be fixed.

Definition 1. A Markov logic network (MLN) L on LC is a finite ordered set of
tuples L = 〈(φ1, g1), . . . , (φn, gn)〉 with φ1, . . . , φn ∈ LC and g1, . . . , gn ∈ R.

In contrast to the original literature on MLNs (Richardson and Domingos,
2006) we define an MLN to be an ordered set of tuples (φi, gi) (i = 1, . . . , n).
This order can be arbitrary and has no special meaning other than to
enumerate the elements of an MLN in an unambiguous manner. Any set
operation on an MLN is defined in the same way as without an explicit
order.

Note, that the weights of an MLN L have no obvious probabilistic inter-
pretation (Fisseler, 2008) and are interpreted relative to each other when
defining the joint probability function for L (see below).

Example 1. We adopt the standard example (Domingos and
Lowd, 2009) to illustrate the intuition behind MLNs. Define
Lsm = 〈(φ1, 0.7), (φ2, 2.3), (φ3, 1.5), (φ4, 1.1), (φ5, ∞)〉 via

φ1 = friends(X, Y) ∧ friends(Y, Z)⇒ friends(X, Z)

φ2 = ¬(∃Y : friends(X, Y))⇒ smokes(X)

φ3 = smokes(X)⇒ cancer(X)

φ4 = friends(X, Y)⇒ (smokes(X)⇔ smokes(Y))

φ5 = friends(X, Y)⇔ friends(Y, X)

The above MLN models uncertain relationships of smoking habits and peo-
ple. Formula φ1 means that being friends is a transitive relation, φ2 means
that people without friends usually smoke, φ3 that smoking causes cancer,
φ4 that friends have similar smoking habits, and φ5 that being friends is a
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symmetric relation. The formula φ5 has an infinite weight which results in
φ5 being a hard constraint that must be satisfied.

Semantics are given to an MLN L by grounding L appropriately in order
to build a Markov net and its corresponding log-linear model. Let Ω(C)
be the set of (Herbrand) interpretations for Pred and C. For φ ∈ LC let
gndC(φ) denote the set of ground instances of φ wrt. C. Let ω ∈ Ω(C) and
define nC

φ (ω) = |{φ′ ∈ gndC(φ) | ω |= φ′ }|. The term nC
φ (ω) denotes the

number of instances of φ that are satisfied in ω. Then a probability function
PL,C : Ω(C)→ [0, 1] can be defined as

PL,C(ω) =
1

ZC
exp

 ∑
(φ,g)∈L

nC
φ (ω)g

 (3.7)

with

ZC = ∑
ω∈Ω(C)

exp

 ∑
(φ,g)∈L

nC
φ (ω)g


being a normalization constant and exp(x) = ex is the exponential func-
tion with base e. By defining PL,C in this way, worlds that violate fewer
instances of formulas are more probable than worlds that violate more in-
stances (depending on the weights of the different formulas). Hence, the
fundamental idea for MLNs is that first-order formulas are not handled as
hard constraints. Instead, each formula is more or less softened depend-
ing on its weight. Hence, a possible world may violate a formula without
necessarily receiving a zero probability. A formula’s weight specifies how
strong the formula is, i. e., how much the formula influences the probability
of a satisfying world versus a violating world. This way, the weights of all
formulas influence the determination of a possible world’s probability in a
complex manner. One clear advantage of this approach is that MLNs can di-
rectly handle contradictions in a knowledge base, since the (contradictory)
formulas are weighted against each other.

The probability function PL,C can be extended to sentences (ground for-
mulas) of LC via

PL,C(φ) = ∑
ω|=φ

PL,C(ω) (3.8)

for ground φ ∈ LC.
Determining the probability of a sentence φ using Equations (3.7) and

(3.8) is merely manageable for very small sets of constants, but intractable
for domains of a more realistic size. While PL,C(φ) can be approximated
using Markov chain Monte-Carlo methods (MCMC methods) performance
might still be too slow in practice (Richardson and Domingos, 2006). There
are more sophisticated and efficient methods to perform approximated in-
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ference if φ is a conjunction of ground literals, cf. (Richardson and Domin-
gos, 2006). Also, approaches for lifted inference exploit symmetries in the
graph models which can speed up performance quite impressively, see e. g.
(Kersting, 2012) for an overview.

3 measuring coherence

Representing knowledge using Markov Logic requires defining the weights
for the qualitative parts of the knowledge. In (Richardson and Domingos,
2006) it is suggested that weights of formulas have to be learned from data.
Nonetheless, in (Domingos and Lowd, 2009) and (Fisseler, 2008) a heuristic
is discussed that determines weights of formulas from probabilities. There,
an interpretation of the weight g of a formula φ is provided as the log-odd
between a world where φ is true and a world where φ is false, other things
being equal, i. e., given some probability p ∈ [0, 1] and a formula φ the
corresponding Markov weight gp,φ of p is defined by

gp,φ = ln
p

1− p
rφ (3.9)

where ln x is the natural logarithm of x and rφ is the ratio of the number
of worlds not satisfying and the number of worlds satisfying some ground
instance of φ1, see also (Fisseler, 2008) for a discussion. The justification for
this heuristic comes from the general observation that for a ground formula
φ and an MLN L = 〈(φ, gp,φ)〉, one exactly obtains PL,C(φ) = p. Arguably,
it is easier for an expert to express uncertainty in the truth of a formula
in form of a probability instead of a weight on a logarithmic scale. When
defining an MLN L in this way one has to be aware of the fact that the
probabilistic model PL,C of L and a set of constants C may not completely
reproduce those intended probabilities.

Example 2. Consider the MLN L = 〈(A(X), 2), (A(c1),−5)〉 and C =
{c1, c2, c3}. Assume that the weights of the formulas of L have been defined
using the schema of Markov weights, i. e., the probability of A(X) is in-
tended to be approximately 0.881 (g0.881,A(X) ≈ 2) and of A(c1) it is approx-
imately 0.0067 (g0.0067,A(X) ≈ −5). However, we obtain PL,C(A(c1)) = 0.047
which matches neither probability.

In contrast to other probabilistic logics such as classical probabilistic logic
(Paris, 1994) or Bayes nets (Pearl, 1988), weights in Markov Logic are not
handled as constraints but as factors that influence the determination of
probabilities. By accepting this behavior the observation made in Exam-
ple 2 is understandable. However, due to this behavior it is hard to verify
whether some formalization is adequate for a representation problem and
whether it is robust with respect to extensions:

1 For example, it is rφ = 1 for a ground atom φ and rφ = 1/3, rφ = 3 for a disjunction resp.
conjunction of ground atoms.



52 contents

Example 3. Assume we want to model an MLN L such that its model
gives a probability 0.5 for each instance A(c1), A(c2), A(c3). This can be
achieved by modeling L = 〈(A(X),−10), (A(X), 10)〉 and C = {c1, c2, c3}.
Assume now we want to incorporate a new piece of information such that
PL,C(A(c1)) = 0.9 but still PL,C(A(c2)) = PL,C(A(c3)) = 0.5. In order to
realize this one has to add a new weighted formula (A(c1), g) to L with
some weight g. Due to the interference with the other formulas g cannot
easily be determined. This results from the inadequate modeling of the
initial knowledge via the MLN L. In this case, the empty MLN would have
been a better fit to represent the intended uniform probability distribution.
Also, the extended MLN L′ = 〈(A(c1), 2.2)〉 (2.2 ≈ ln(0.9/1− 0.9)) yields
PL,C(A(c1) ≈ 0.9 and PL,C(A(c2) = PL,C(A(c3) = 0.5.

In the rest of this section, we investigate the issue of assessing how well
the probabilistic model PL,C of an MLN L and a set of constants C reflects the
probabilities used for defining L. For that we employ the Markov weights
as a comparison criterion, i. e., we compare the probability of every formula
of L in the probabilistic model PL,C with the probability this formula would
have in the probabilistic model PL′,C of the MLN L′ that only consists of this
formula. Note that our approach could also be formulated using any other
(surjective) function g′p that assigns weights to probabilities.

Similarly as consistency is defined for classical logics we also define a
strict version of coherence. In particular, we say that L is perfectly coherent
wrt. C if PL,C assigns to each formula the same probability as prescribed by
the Markov weights. More formally:

Definition 2. Let L = 〈(φ1, g1), . . . , (φn, gn)〉 be an MLN. We say that L is
perfectly coherent if and only if for all i = 1, . . . , n and φ′ ∈ gndC(φi) it holds
PL,C(φ

′) = p and gi = gp,φi .

If g = gp,φ is a Markov weight observe that

p = pg,φ =
exp(g)

rφ + exp(g)

with pg,φ = 1 if g = ∞ and pg,φ = 0 if g = −∞. We also call pg,φ
a Markov probability. Following the spirit of inconsistency measures for
probabilistic logics (Thimm, 2013b) we take a more graded approach to
coherence analysis and, consequently, in the following we will consider the
problem of defining coherence values.

Before formalizing our coherence measurement framework we need
some further notation. Let C be a set of constants and φ ∈ LC. The ground
vector of φ with respect to C is defined via gnd→C (φ) = 〈φ1, . . . , φn〉 where
gndC(φ) = {φ1, . . . , φn} and φ1, . . . , φn is some arbitrary but fixed canonical
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ordering of gndC(φ). If 〈φ1, . . . , φn〉 ∈ Ln
C is a vector of formulas and P a

probability function then we write

P(〈φ1, . . . , φn〉) = 〈P(φ1), . . . , P(φn)〉

As a central tool for measuring coherence we use (weak) distance measures.

Definition 3. Let n ∈ N+. A function d : [0, 1]n × [0, 1]n → [0, ∞) is called
a weak distance measure if it satisfies 1.) d(~x,~y) = 0 if and only if ~x = ~y
(reflexivity) and 2.) d(~x,~y) = d(~y,~x) (symmetry), for all ~x,~y ∈ Rn.

Note that weak distance measures differ from standard distance
measures by not requiring the triangle inequality to hold. In the
following, we will refer to these measures as distance measures
anyway for reasons of brevity. In this work we consider the fol-
lowing measures (let ~x = 〈x1, . . . , xn〉,~y = 〈y1, . . . , yn〉 ∈ [0, 1]n,
p ∈ N+): 1.) dp(~x,~y) = p

√
|x1 − y1|p + . . . + |xn − yn|p (p-norm dis-

tance), 2.) dp,0(~x,~y) = p
√
|x1 − y1|p + . . . + |xn − yn|p/ p

√
n (normalized

p-norm distance), 3.) dmax(~x,~y) = max{|x1 − y1|, . . . , |xn − yn|} (max-
distance), 4.) dmin(~x,~y) = min{|x1 − y1|, . . . , |xn − yn|} (min-distance), and
5.) davg(~x,~y) = (|x1 − y1|+ . . . + |xn − yn|)/n (average distance).

In the following, we will use distance measures to measure the differ-
ences between vectors of probabilities that arise for each formula of an MLN
upon grounding and the corresponding expected probabilities. In order to
aggregate the distances of each formula we use aggregation functions.

Definition 4. A function θ : [0, 1]n → [0, 1] is called an aggregation function.

We consider the following aggregation functions (let ~x =
〈x1, . . . , xn〉 ∈ [0, 1]n): 1.) θmax(~x) = max{x1, . . . , xn} (maximum), 2.)
θmin(~x) = min{x1, . . . , xn} (minimum), and 3.) θavg(~x) = (x1 + . . . + xn)/n
(average).

Using distance measures and aggregation functions we define the coher-
ence of an MLN L as how well L reflects the probabilities that are intended
to be modeled by weights.

Definition 5. Let d be a distance measure, θ an aggregation function, L =
〈(φ1, g1), . . . , (φn, gn)〉 an MLN, and C a set of constants. Then the coherence
cohd,θ

C (L) of L wrt. C and given d, θ is defined via

cohd,θ
C (L) = 1− θ

(〈
d
(

PL,C(gnd→C (φi)), Π|gnd
→
C (φi)|

φi ,gi

)〉
i=1,...,n

)
(3.10)

with

Πn
φ,g = 〈pg,φ, . . . , pg,φ︸ ︷︷ ︸

n times

〉
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The intuition behind the above definition is as follows. Assume that
(φ(X), g) ∈ L and that {φ(c1), . . . , φ(cn)} are the groundings of φ(X). Then
PL,C assigns to each of this ground formulas a (potentially different) proba-
bility PL,C(φ(ci)) (i = 1, . . . , n). First, we compute the distance of the vector
〈PL,C(φ(c1), . . . , PL,C(φ(cn)〉 to the vector 〈pg,φ(X), . . . , pg,φ(X)〉 (the uniform
vector of the probability corresponding to the weight g). Finally, we ag-
gregate the distances of all these vectors for all formulas in L. Therefore,
cohd,θ

C (L) provides an aggregated assessment of how close the actual prob-
abilities match the weights.

As we are in a probabilistic framework, one might wonder why we
use ordinary distance measures and aggregation functions for defining a
measure of coherence. A seemingly better alternative should be e. g. the
Kullback-Leibler divergence (Kullback and Leibler, 1951) which has a well-
defined meaning when measuring the difference between two probability
functions. However, in our setting we compare a probability function PL,C
with a set of probabilities derived from the weights of the MLN L. In
particular, the latter is usually contradictory (unless L is perfectly coherent),
so the meaning of the Kullback-Leibler divergence in this context is not
clear. We leave this issue for future work and consider now the distance
measures defined so far.

4 analysis

To further illustrate the meaning of the Definition 5 let us consider the co-
herence measure cohdmax,θmax

C and an MLN L = 〈(φ1, g1), . . . (φn, gn)〉. Then
cohdmax,θmax

C (L) is one minus the maximum deviation of the probability of
some ground instance φi of L in PL,C to the probability pi estimated by its
weight gi, assumed that gi has been determined by setting gi = ln pi

1−pi
rφi .

Example 4. Consider the MLN L = 〈(A(X), 2)〉 and C = {c1, c2, c3}. Note
that the probability p intended to be modeled by the weight 2 is p =

p2,A(X) =
exp(2)

1+exp(2) ≈ 0.881 (note that rA(X) = 1). As there is only one
formula in L it also follows directly that PL,C(A(c1)) = PL,C(A(c2)) =

PL,C(A(c3)) ≈ 0.881 as well. It follows that cohdmax,θmax
C (L) = 1− 0 = 1.

Example 5. We continue Example 2 and consider the MLN
L = 〈(A(X), 2), (A(c1),−5)〉 and C = {c1, c2, c3}. Note that
the probability p1 intended to be modeled by the weight 2 is
p1 = p2,A(X) =

exp(2)
1+exp(2) ≈ 0.881 and for the weight −5 it

is p2 = p−1,A(c1)
=

exp(−5)
1+exp(−5) ≈ 0.0067. For PL,C we obtain
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PL,C(A(c1)) ≈ 0.041 and PL,C(A(c2)) = PL,C(A(c3)) ≈ 0.881. Then
cohdmax,θmax

C (L) computes to

cohdmax,θmax
C (L) = 1−max{|PL,C(A(c1))− p1|,

|PL,C(A(c2))− p1|, |PL,C(A(c3))− p1|,
|PL,C(A(c1))− p2|}
≈ 0.16

In the introduction we gave an example illustrating that MLNs are not
always capable of differentiating between (logical) inconsistency and igno-
rance. However, using our notion of coherence we are able to detect this
difference.

Example 6. Consider the MLN L = 〈(A,−10), (A, 10)〉 with a proposition
(a predicate without parameters) A and C = {c1, c2, c3}. The probabilities
p1, p2 intended to modeled by the weights −10, and 10 are (respectively)
p1 = p−10,A ≈ 0 and p2 = p10,A ≈ 1 and for PL,C we obtain PL,C(A) = 0.5.
Then we have

cohdmax,θmax
C (L) = 1−max{|PL,C(A)− p1|, |PL,C(A)− p2|}

= 0.5

Furthermore, for the empty MLN L′ = 〈〉 and an arbitrary C we
always have cohd,θ

C (L) = 1 for any d ∈ {dp, dp,0, dmax, dmin, davg} and
θ ∈ {θmax, θmin, θavg}.

We now turn to the formal properties of cohd,θ
C .

Proposition 1. For d ∈ {dp,0, dmax, dmin, davg} and θ ∈ {θmax, θmin, θavg} we
have cohd,θ

C (L) ∈ [0, 1] for every L and C.

The above proposition shows that many coherence measures are normal-
ized on [0, 1] and, therefore, different MLNs can be compared and catego-
rized by their coherence values. Note that the Proposition 1 does not hold
in general for dp.

Proposition 2. If d satisfies reflexivity and θ satisfies θ(x1, . . . , xn) = 0 iff
x1 = . . . = xn = 0 then cohd,θ

C (L) = 1 iff L is perfectly coherent wrt. C.

The above proposition states that our framework satisfies the basic prop-
erty of detecting whether an MLN is perfectly coherent, given some minimal
requirements of both distance measure and aggregation function.

Corollary 1. If d ∈ {dp, dp,0, dmax, davg} (p ∈ N+) and θ ∈ {θmax, θavg} then
cohd,θ

C (L) = 1 iff L is perfectly coherent wrt. C.
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Note that the above statement does not hold for dmin and θmin.
Next we look into the behavior of cohd,θ

C under changes of L and C.

Proposition 3. For any d it holds cohd,θmax
C (L) is monotonically decreasing in L,

i. e. cohd,θmax
C (L) ≥ cohd,θmax

C (L ∪ {(φ, g)}).

This property states that cohd,θmax
C (L) cannot get more coherent under

addition of formulas. This corresponds to the classical concept of incon-
sistency insofar that an inconsistent knowledge base of classical logical for-
mulas cannot get consistent when adding new information. Note that the
above property does not hold in general for θmin and θavg. For a special
case of a new formula we make the following observation.

Proposition 4. For any d, if a consistent φ shares no predicate with L then
cohd,θmax

C (L) = cohd,θmax
C (L ∪ {(φ, g)}) for every g ∈ R.

In other words, if we add totally unrelated (but consistent) information
to an MLN this does not change its coherence.

Proposition 5. For θ ∈ {θmax, θmin, θavg} it holds that cohdmin,θ
C (L) is monoton-

ically increasing in C, i. e. cohdmin,θ
C (L) ≤ cohdmin,θ

C∪{c}(L).

This result states that considering more individuals increases the coher-
ence of the MLN wrt. dmin. The rationality of satisfying this property is
evident as by taking more individuals into account exceptions to formulas
become negligible. Consider the MLN L of Example 5 which specifies a
general rule (A(X) has to hold in general) and an exception (c1 does not
satisfy A(X)). However, the general rule dominates the coherence value the
more individuals actually satisfy it.

Example 7. We continue Example 5 but consider varying sizes of the do-
main. So let L = 〈(A(X), 2), (A(c1),−5)〉 and Ci = {c1, . . . , ci} for i ∈ N.
Figure 1 shows the behavior of four different coherence measures when the
domain increases in size.

The framework proposed so far can be utilized by a knowledge engineer
when debugging MLNs. In particular, a coherence measure can be used
to evaluate whether the semantics of an MLN adequately represents its
intended meaning if no data for learning is available. Note that this tool can
be applied even if the heuristic for defining weights from probabilities may
not seem adequate as the tool uses these only for assessing the influence
one formula has on another.

Example 7 showed that, in particular, distance measures based on the
p-norm may give a more fine-grained view on the evolution of coherence
values (however, note that these distance measures do not satisfy mono-
tonicity wrt. the domain in general). Independently of the actually chosen
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Figure 1: Coherence values for Example 7

combination of distance measure and aggregation function, by utilizing
the framework of coherence measurement for analyzing a given MLN the
knowledge engineer is already able to detect several design flaws:

1. If an MLN is coherent (i. e. has a comparatively large coherence value)
but exhibits unintuitive inferences, then probably some weights have
been chosen wrong (as there is only little interdependence between
formulas).

2. If an MLN is coherent and exhibits no unintuitive inferences, then
the MLN is a good representation of the given knowledge and it will
probably be easier to extend it.

3. If an MLN is incoherent (i. e. has a comparatively low coherence
value) and exhibits unintuitive inferences, then the knowledge engi-
neer should have a look into the structure of the knowledge base as
there may be unwanted interdependences amongst formulas.

4. If an MLN is incoherent but exhibits no unintuitive inferences, then
the MLN may not be an adequate representation of the knowledge
and further extensions might yield unintuitive results.

As a final remark, observe that our notion of coherence is also compatible
with the usual notion of probabilistic consistency. In particular, starting
from a consistent probabilistic view in form of a probability function, we
can always find a perfectly coherent MLN representing this probability
function.

Proposition 6. Let P : Ω(C) → [0, 1] be any probability function. Then there
is a perfectly coherent MLN L on LC with PL,C = P. In particular, it holds
cohd,θ

C (L) = 1 for any d ∈ {dp, dp,0, dmax, dmin, davg} and θ ∈ {θmax, θmin, θavg}.
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As for every MLN L the probability function PL,C is always well-defined
the above observation can also be used to transform an incoherent MLN L
into a coherent MLN L′ that weighs formulas more adequately. However,
note that the formulas in L′ need not necessarily to be the same as in L.

5 application : compatibility of mlns

A particular use case for applying our framework arises when considering
a knowledge merging scenario. Consider the case of multiple experts merg-
ing their knowledge in order to obtain a broader picture on some problem
domain. Then, the individual pieces of information of each expert con-
tribute to the overall probabilities obtained from the log-linear model of
the merged MLN. Given that the experts have contradictory views on some
parts of the modeled knowledge the merged MLN might not adequately
reflect the joined knowledge. In order to analyze whether the merging of
MLNs gives rise to a potentially meaningless joint MLN we employ our
framework of coherence measurement as follows.

Definition 6. Let d be a distance measure, θ an aggregation function,
L1, . . . , Lm MLNs, and C1, . . . , Cm sets of constants. The compatibility
compd,θ

C1,...,Cm
(L1, . . . , Lm) of L1, . . . , Lm wrt. C1, . . . , Cm given d, θ is defined

via

compd,θ
C1,...,Cm

(L1, . . . , Lm)

=
1
2

(
1 + cohd,θ

C1∪...∪Cm
(L1 ∪ . . . ∪ Lm)−

1
m

m

∑
i=1

cohd,θ
Ci
(Li)

)

The value compd,θ
C1,...,Cm

(L1, . . . , Lm) describes how well the MLNs
L1, . . . , Ln can be merged. In essence, it measures how much the coherence
of the joint MLN differs from the average coherence of all input MLNs.
Intuitively, the larger the value of compd,θ

C1,...,Cm
(L1, . . . , Lm) the more

compatible the MLNs should be. The exact form of the compatibility
measure has been chosen like this to satisfy the normalization property, see
Proposition 8 below.

Example 8. Consider the three MLNs L1 = 〈(φ1, 1.85), (φ2, 1.85)〉, L2 =
〈(φ3, ∞)〉, L3 = 〈(φ4, 1.1), (φ5, ∞)〉 defined via

φ1 = quaker(X)⇒ pacifist(X)

φ2 = republican(X)⇒ ¬pacifist(X)

φ3 = republican(nixon) ∧ quaker(nixon) ∧ president(nixon)

φ4 = president(X)⇒ ¬actor(X)

φ5 = president(reagan) ∧ actor(reagan)
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which model an extended version of the Nixon diamond. Using cohdmax,θmax
C

we obtain

cohdmax,θmax
{d} (L1) ≈ 0.982

cohdmax,θmax
{nixon} (L2) = 1

cohdmax,θmax
{reagan} (L3) = 0.9

and for the merged MLN L = L1 ∪ L2 ∪ L3 we obtain

cohdmax,θmax
{d,nixon,reagan}(L) ≈ 0.55

This leads to

compdmax,θmax
{d},{nixon},{reagan}(L1, L2, L3) ≈ 0.295

Furthermore, note that cohdmax,θmax
{d,nixon}(L1 ∪ L2) = 0.55 and cohdmax,θmax

{nixon,reagan}
(L2 ∪ L3) = 0.85 and, therefore, L2 and L3 are more compatible than L1
and L2:

compdmax,θmax
{d},{nixon}(L1, L2) ≈ 0.2795

compdmax,θmax
{nixon},{reagan}(L2, L3) = 0.45

Our compatibility measure gives meaningful results in the above exam-
ple. We now investigate how it behaves in the general case.

Proposition 7. It holds compd,θmax
C1,...,Cm

(L1, . . . , Lm) ∈ [0, 1] for every
d ∈ {dp,0, dmax, dmin, davg},

The statement above says that the compatibility measure is normalized
and therefore comparable.

Proposition 8. For every d ∈ {dp,0, dmax, dmin, davg} it is compd,θmax
C1,...,Cm

(L1, . . . , Lm) = 0 if and only if cohd,θmax
C1∪...∪Cm

(L1 ∪ . . . ∪ Lm) = 0 and

cohd,θmax
Ci

(Li) = 1 for all i = 1, . . . , m.

The above proposition states that a set of MLNs is completely incompati-
ble if and only if each individual MLN is perfectly coherent and the merged
MLN is completely incoherent.

6 implementation

The framework for measuring coherence of MLNs has been implemented
in the Tweety library for artificial intelligence2. The framework contains imple-

2 http://tinyurl.com/MLNCoherence2

http://tinyurl.com/MLNCoherence2
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mentations for all distance measures and aggregation functions discussed
above and we provided both a naive and complete MLN reasoner and a
wrapper for using the Alchemy3 MLN reasoner. While the naive MLN rea-
soner implements Equations (3.7) and (3.8) in a straightforward way by
simply computing the probabilities PL,C(ω) for all ω ∈ Ω(C), the Alchemy
MLN reasoner supports different approximate methods such as Markov
chain Monte-Carlo. Computing the coherence value cohd,θ

C (L) is computa-
tionally quite expensive as it involves calls to the MLN reasoner for every
ground instance of a formula in L. Therefore, using the naive MLN rea-
soner is only feasible for small examples. However, in its current version
the Alchemy MLN reasoner does not support querying the probabilities of
arbitrary ground formulas but only for ground atoms. In order to obtain
the probability of an arbitrary ground formula φ using Alchemy it has to be
incorporated into the MLN via adding a strict formula φ ⇔ a with some
new ground atom a. Then the probability of a can be queried which is,
in theory, the same as the probability of φ. However, during our exper-
iments we discovered that internal optimization mechanisms of Alchemy
might change the probabilities of other formulas when adding the strict
formula φ ⇔ a. This observation also raises the need for the development
of an MLN reasoner that supports querying for arbitrary ground formulas.
Recent developments such as (Niepert, 2013) are gaining to close this gap.

7 discussion and conclusion

We introduced coherence as an indicator of how the weighted formulas of
an MLN interact with each other. We used distance measures and aggre-
gation functions to measure coherence by comparing the observed proba-
bilities with the ones stemming from a naive probabilistic interpretation of
the weights. By doing so, we came up with a meaningful assessment tool
that satisfies several desirable properties. As an application for our frame-
work we investigated the issue of merging and developed an indicator for
quantifying the compatibility of different MLNs.

The approach presented in this paper can be used by a knowledge engi-
neer to determine suitable weights for formulas, thus complementing the
work of Pápai et al. (Pápai et al., 2012) where MLNs are constructed by
taking subjective probabilities of an expert into account. In particular, (Pá-
pai et al., 2012) already discusses the issue of consistent and inconsistent
input probabilities and that in the latter case, parameters for the probabil-
ity distribution have to be averaged, thus also resulting in an incoherent
MLN in the sense of our work. By assessing the representation quality of
MLNs using our approach experts can be guided to carefully choose correct
weights/probabilities or re-structure the knowledge base.

To the best of our knowledge this work is the first that deals with quan-
tifying the representation quality of an MLN by investigating the interrela-

3 http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu
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tionships of its formulas. The work presented is inspired by works on mea-
suring the inconsistency in probabilistic conditional logic (Thimm, 2013b).
The work (Thimm, 2013b) defines an inconsistency measure by measuring
the distance of an inconsistent knowledge base to the next consistent one.
In this aspect, our framework uses similar methods. But as the concept of
consistency is not applicable for MLNs we used a probabilistic interpreta-
tion of weights as a reference for assessing the coherence of an MLN. The
term coherence has also been used before to describe “appropriateness” of a
knowledge base or a model in other contexts. For example, in (Meijs, 2005)
a set of propositional formulas is said to be coherent with respect to a prob-
ability function if the probability of each single formula increases when
conditioning on the other formulas (there are also other similar notions
considered).

Although MLNs are quite a mature framework for dealing with first-order
probabilistic information, the lack of powerful and flexible MLN reasoner
became evident in our experiments. Besides Alchemy we also looked at
other available reasoning systems for MLNs such as thebeast4 and Tuffy5

but all lacked the crucial feature of computing the probabilities of arbitrary
ground formulas. For future work, we consider to approach this problem
and develop an MLN reasoner that can specifically be used for measuring
coherence. Another direction for future work is the problem of deciding
whether a coherent MLN can be learned from data and how to do this.

appendix : proofs of technical results

Proposition 1. For d ∈ {dp,0, dmax, dmin, davg} and θ ∈ {θmax, θmin, θavg} we
have cohd,θ

C (L) ∈ [0, 1] for every L and C.

Proof Sketch. Consider Equation (4) and observe that both PL,C(gnd→C (φi))

and Π|gnd
→
C (φi)|

φi ,gi
are vectors in [0, 1]|gnd

→
C (φi)|, for all i = 1, . . . , n. For ~x,~y ∈

[0, 1]n observe that d(~x,~y) ∈ [0, 1] as well for d ∈ {dp,0, dmax, dmin, davg}.
Finally, if ~x ∈ [0, 1]m we also have that θ(~x) ∈ [0, 1] for θ ∈ {θmax, θmin, θavg}.
It follows that cohd,θ

C (L) ∈ [0, 1].

Proposition 2. If d satisfies reflexivity and θ satisfies θ(x1, . . . , xn) = 0 iff
x1 = . . . = xn = 0 then cohd,θ

C (L) = 1 iff L is perfectly coherent wrt. C.

Proof Sketch. Let d satisfy reflexivity, let θ satisfy θ(x1, . . . , xn) = 0 iff x1 =

. . . = xn = 0, and consider Equation (4). Let now cohd,θ
C (L) = 1 which is

equivalent to

θ

(〈
d
(

PL,C(gnd→C (φi)), Π|gnd
→
C (φi)|

φi ,gi

)〉
i=1,...,n

)
= 0

4 http://code.google.com/p/thebeast/
5 http://hazy.cs.wisc.edu/hazy/tuffy/

http://code.google.com/p/thebeast/
http://hazy.cs.wisc.edu/hazy/tuffy/
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Due to θ(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0 the above is only valid iff

d
(

PL,C(gnd→C (φi)), Π|gnd
→
C (φi)|

φi ,gi

)
= 0

for i = 1, . . . , n. As d satisfies reflexivity the above is only valid iff

PL,C(gnd→C (φi)) = Π|gnd
→
C (φi)|

φi ,gi

which is equivalent to stating that L is perfectly coherent wrt. C.

Proposition 3. For any d it holds cohd,θmax
C (L) is monotonically decreasing in L,

i. e. cohd,θmax
C (L) ≥ cohd,θmax

C (L ∪ {(φ, g)}).
Proof Sketch. This follows from the fact that max{a1, . . . , an} ≤
max{a1, . . . , an+1} for any a1, . . . , an+1 ∈ R.

Proposition 4. For any d, if a consistent φ shares no predicate with L then
cohd,θmax

C (L) = cohd,θmax
C (L ∪ {(φ, g)}) for every g ∈ R.

Proof Sketch. Let Pred be the set of predicates and PredL, Predφ ⊆ Pred with
PredL ∩ Predφ and w.l.o.g. PredL ∪ Predφ = Pred the sets of predicates
appearing in L and φ, respectively. For ω ∈ Ω(C) let ωL, ωφ denote the
projection of ω on PredL and Predφ, respectively. Let Ω(C)L and Ω(C)φ

denote the corresponding sets of projected interpretations. If φ is consistent
and shares no predicates with L, it can be shown that PL∪{(φ,g)},C (defined as
a probability function on Ω(C)) factorizes into the two probability functions
PL,C, P{(φ,g)},C (defined on Ω(C)L and Ω(C)φ, respectively) such that

PL∪{(φ,g)},C(ω) = PL,C(ωL)P{(φ,g)},C(ωφ)

As φ is consistent we have that {(φ, g)} is perfectly coherent wrt. C (there
is nothing to contradict φ). It follows that the coherence of PL∪{(φ,g)},C
depends only on PL,C(ωL). Note that the probability of every formula ψ,
which does not contain predicates from φ, can be determined by PL,C(ωL)
alone:

PL∪{(φ,g)},C(ψ) = ∑
ω∈Ω(C),ω|=ψ

PL∪{(φ,g)},C(ω)

= ∑
ω∈Ω(C),ω|=ψ

PL,C(ωL)P{(φ,g)},C(ωφ)

= ∑
ωL∈Ω(C)L,ωφ∈Ω(C)φ,ωL|=ψ

PL,C(ωL)P{(φ,g)},C(ωφ)

= ∑
ωL∈Ω(C)L,ωL|=ψ

PL,C(ωL) ∑
ωφ∈Ω(C)φ

P{(φ,g)},C(ωφ)

= ∑
ωL∈Ω(C)L,ωL|=ψ

PL,C(ωL)

= PL,C(ψ)
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Therefore, we obtain cohd,θmax
C (L) = cohd,θmax

C (L ∪ {(φ, g)}).

Proposition 5. For θ ∈ {θmax, θmin, θavg} it holds that cohdmin,θ
C (L) is monoton-

ically increasing in C, i. e. cohdmin,θ
C (L) ≤ cohdmin,θ

C∪{c}(L).

Proof Sketch. First note that gndC(φ) ⊆ gndC∪{c}(φ) for every formula φ.
Therefore, the vectors in Equation (4) given to the distance function dmin
also increase in size. Furthermore, note that

dmin(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) ≥
dmin(〈x1, . . . , xn+1〉, 〈y1, . . . , yn+1〉)

Finally, note that for z1, . . . , zm, z′1, . . . , z′m with zi ≥ z′i (for i = 1, . . . , m) we
have that

θ(z1, . . . , zm) ≥ θ(z′1, . . . , z′m)

for θ ∈ {θmax, θmin, θavg}. It follows cohdmin,θ
C (L) ≤ cohdmin,θ

C∪{c}(L).

Proposition 6. Let P : Ω(C) → [0, 1] be any probability function. Then
there is a perfectly coherent MLN L on LC with PL,C = P. In particular, it holds
cohd,θ

C (L) = 1 for any d ∈ {dp, dp,0, dmax, dmin, davg} and θ ∈ {θmax, θmin, θavg}.

Proof Sketch. Let P : Ω(C) → [0, 1] and for each ω ∈ Ω(C) let φω be a
formula that characterizes ω, i. e., ω |= φω and there is not ω′ ∈ Ω(C) with
ω′ 6= ω and ω′ |= φω (if ω is an Herbrand interpretation ωφ can be the
conjunction of all literals appearing in ω and the negation of all literals not
appearing in ω). Consider the MLN L given by

L =

{(
φω, ln

(
P(ω)

1− P(ω)
rφω

)) ∣∣ ω ∈ Ω(C)
}

In other words, L is constructed by assigning each world the weight corre-
sponding to its probability. By construction we obtain P = PL,C and L is
perfectly coherent wrt. C.

Proposition 7. It holds compd,θmax
C1,...,Cm

(L1, . . . , Lm) ∈ [0, 1] for every d ∈
{dp,0, dmax, dmin, davg},

Proof. By Proposition 1 we obtain

compd,θ
C1,...,Cm

(L1, . . . , Lm)

= 1/2

(
1 + cohd,θ

C1∪...∪Cm
(L1 ∪ . . . ∪ Lm)−

1
m

m

∑
i=1

cohd,θ
Ci
(Li)

)

≥ 1/2

(
1 + 0− 1

m

m

∑
i=1

1

)
= 0
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and

compd,θ
C1,...,Cm

(L1, . . . , Lm)

= 1/2

(
1 + cohd,θ

C1∪...∪Cm
(L1 ∪ . . . ∪ Lm)−

1
m

m

∑
i=1

cohd,θ
Ci
(Li)

)

≤ 1/2

(
1 + 1− 1

m

m

∑
i=1

0

)
= 1

Proposition 8. For every d ∈ {dp,0, dmax, dmin, davg} it is compd,θmax
C1,...,Cm

(L1, . . . , Lm) = 0 if and only if cohd,θmax
C1∪...∪Cm

(L1 ∪ . . . ∪ Lm) = 0 and

cohd,θmax
Ci

(Li) = 1 for all i = 1, . . . , m.

Proof. This is a straightforward corollary from the proof of Proposition 7.
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Abstract

Inconsistency measures have been proposed to assess the severity of incon-
sistencies in knowledge bases of classical logic in a quantitative way. In
general, computing the value of inconsistency is a computationally hard
task as it is based on the satisfiability problem which is itself NP-complete.
In this work, we address the problem of measuring inconsistency in knowl-
edge bases that are accessed in a stream of propositional formulæ. That is,
the formulæ of a knowledge base cannot be accessed directly but only once
through processing of the stream. This work is a first step towards prac-
ticable inconsistency measurement for applications such as Linked Open
Data, where huge amounts of information is distributed across the web
and a direct assessment of the quality or inconsistency of this information
is infeasible due to its size. Here we discuss the problem of stream-based in-
consistency measurement on classical logic, in order to make use of existing
measures for classical logic. However, it turns out that inconsistency mea-
sures defined on the notion of minimal inconsistent subsets are usually not
apt to be used in the streaming scenario. In order to address this issue, we
adapt measures defined on paraconsistent logics and also present a novel
inconsistency measure based on the notion of a hitting set. We conduct an
extensive empirical analysis on the behavior of these different inconsistency
measures in the streaming scenario, in terms of runtime, accuracy, and scal-
ability. We conclude that for two of these measures, the stream-based vari-
ant of the new inconsistency measure and the stream-based variant of the
contension inconsistency measure, large-scale inconsistency measurement in
streaming scenarios is feasible.

1 introduction

Inconsistency measurement is a subfield of Knowledge Representation and
Reasoning (KR) that is concerned with the quantitative assessment of the
severity of inconsistencies in knowledge bases. Consider the following two
knowledge bases K1 and K2 formalized in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

65



66 contents

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a∧
¬b} |=⊥ and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies ren-
der the knowledge bases useless for reasoning if one wants to use classi-
cal reasoning techniques. In order to make the knowledge bases useful
again, one can either use non-monotonic/paraconsistent reasoning tech-
niques (Makinson, 2005; Priest, 1979) or one revises the knowledge bases
appropriately to make them consistent (Hansson, 2001). Looking at the
knowledge bases K1 and K2 one can observe that the severity of their incon-
sistency is different. In K1, only two out of four formulæ (a and ¬a ∧ ¬b)
are participating in making K1 inconsistent while for K2 all formulæ con-
tribute to its inconsistency. Furthermore, for K1 only two propositions (a
and b) are conflicting and using e. g. paraconsistent reasoning one could
still infer meaningful statements about c and d. For K2 no such statement
can be made. This leads to the assessment that K2 should be regarded more
inconsistent than K1. Inconsistency measures can be used to quantitatively
assess the inconsistency of knowledge bases and to provide a guide for how
to repair them. Moreover, they can be used as an analytical tool to assess
the quality of knowledge representation. For example, one simple inconsis-
tency measure, see e. g. (Grant and Hunter, 2011), is to take the number of
minimal inconsistent subsets (MIs) as an indicator for the inconsistency: the
more MIs a knowledge base contains, the more inconsistent it is. For K1
we have then 1 as its inconsistency value and for K2 we have 2. A lot of
different approaches of inconsistency measures and postulates for incon-
sistency measures have been proposed, mostly for classical propositional
logic (Knight, 2001; Hunter, 2002; Hunter and Konieczny, 2004, 2008, 2010;
Ma et al., 2009; Mu et al., 2011a,b; Xiao and Ma, 2012; Grant and Hunter,
2011, 2013; Besnard, 2014; McAreavey et al., 2014; Jabbour et al., 2014b), but
also for classical first-order logic (Grant and Hunter, 2006, 2008), descrip-
tion logics (Ma et al., 2007; Deng et al., 2007; Qi and Hunter, 2007; Zhou
et al., 2009), default logics (Doder et al., 2010), and probabilistic and other
weighted logics (Daniel, 2009; Muiño, 2011; Ma et al., 2012; Thimm, 2013b,
2014a; Potyka, 2014; Mu et al., 2014).

Inconsistencies arise easily when many experts share their knowledge in
order to construct a joint knowledge base, particularly for large knowledge
bases as they appear in, e. g., Semantic Web applications (Sacramento et
al., 2012). So far, the field of inconsistency measurement is focused on the
problem on what a reasonable inconsistency measure is and what properties
it should satisfy. In this paper, we consider the computational problems of
inconsistency measurement, particularly with respect scenarios where the
knowledge base can only be processed in a step-by-step fashion, i. e., in
streams. More precisely, we consider a scenario where, instead of a knowl-
edge base K we are faced with a stream S that for any point in time i ∈ N

gives us a propositional formula φ = S(i). The measures we are interested
in update for every time step i the currently computed inconsistency value
and therefore approximate the actual inconsistency value of

⋃i
j=1{S(j)}

with the limiting case i→ ∞.
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To address the issue of stream-based inconsistency measurement,
we present a novel inconsistency measure Ihs that is inspired by the
η-inconsistency measure of (Knight, 2002) and is particularly apt to be
applied to the streaming scenario. This measure bases on the notion of a
hitting set which (in our context) is a minimal set of classical interpretations
such that every formula of a knowledge base is satisfied by at least
one element of the set. We then formalize the problem of stream-based
inconsistency measurement, describe desirable properties of stream-based
inconsistency measures by relating the problem to the classical setting
of inconsistency measurement, and propose specific instantiations for
stream-based inconsistency measures. We investigate the properties and
the behavior of our new measures both analytically and empirically. For
the latter, we conduct an extensive empirical evaluation on artificial data.
Our findings show that the stream-based variant of our novel measure,
as well as a measure based on paraconsistent logics are suitable in terms
of runtime, accuracy, and scalability for the stream-based scenario. In
summary, the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting sets
and show how this measure relates to other measures (Section 3).

2. We formalize a theory of inconsistency measurement in streams and
relate it to the classical setting of inconsistency measurement (Sec-
tion 4).

3. We provide a window-based approach for applying classical inconsis-
tency measures to the streaming case and develop specific approaches
for some concrete classical measures (Section 5).

4. We conduct an extensive empirical study on the behavior of those
inconsistency measures in terms of runtime, accuracy, and scalabil-
ity. In particular, we show that the stream variants of Ihs and of the
contension measure Ic are effective and accurate for measuring incon-
sistency in the streaming scenario (Section 6).

Additionally, we give necessary preliminaries for propositional logic in
Section 2, provide some review of related work in Section 7 and conclude
the paper in Section 5. Proofs of technical results can be found in the
appendix. This paper extends and revises the previously published paper
(Thimm, 2014c) by correcting and extending technical results, providing
proofs, and adding further discussion.

2 preliminaries

Let At be a propositional signature, i. e., a (finite) set of propositions (also
called atoms), and let L(At) the corresponding propositional language con-
structed using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).
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Definition 1. A knowledge base K is a finite set of formulæ K ⊆ L(At).
Let K(At) be the set of all knowledge bases.

We write K instead of K(At) when there is no ambiguity regarding the
signature. If X is a formula or a set of formulaæ we write At(X) to de-
note the set of propositions appearing in X. Semantics to a propositional
language L(At) is given by interpretations and an interpretation ω on Atis
a function ω : At → {true, false}. Let Int(At) denote the set of all inter-
pretations for At. An interpretation ω satisfies (or is a model of) an atom
a ∈ At, denoted by ω |= a, if and only if ω(a) = true. For ω ∈ Int(At) and
φ, φ′ ∈ L(At) we define

• ω |= ¬φ if and only if ω 6|= φ

• ω |= φ ∧ φ′ if and only if ω |= φ and ω |= φ′

• ω |= φ ∨ φ′ if and only if ω |= φ or ω |= φ′

As an abbreviation we sometimes identify an interpretation ω with its
complete conjunction, i. e., if a1, . . . , an ∈ At are those propositions that are
assigned true by ω and an+1, . . . , am ∈ At are those propositions that are
assigned false by ω we identify ω by a1 . . . anan+1 . . . am (or any permutation
of this). For example, the interpretation ω1 on {a, b, c} with ω(a) = ω(c) =
true and ω(b) = false is abbreviated by abc.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈
Φ. Define furthermore the set of models Mod(X) = {ω ∈ Int(At) | ω |= X}
for every formula or set of formulæ X. Two formulæ or sets of formulæ X
and Y are equivalent, denoted by X ≡ Y, if and only if Mod(X) = Mod(Y).
Furthermore, two knowledge bases K, K′ are semi-extensionally equivalent
(K ≡σ K′) if there is a bijection σ : K → K′ such that for all α ∈ K we have
α ≡ σ(α) (Thimm, 2013b). If Mod(X) = ∅ we also write X |=⊥ and say that
X is inconsistent. Note that checking X 6|=⊥ is an NP-complete problem as
it is equivalent to the satisfiability problem SAT (Cook, 1971).

Let R+
0 be the set of non-negative real numbers. Inconsistency measures

are functions I : K → R+
0 ∪ {∞} that aim at assessing the severity of the

inconsistency in a knowledge base K, cf. (Grant and Hunter, 2011). The
basic idea is that the larger the inconsistency in K the larger the value
I(K). However, inconsistency is a concept that is not easily quantified and
there have been a couple of proposals for inconsistency measures so far, in
particular for classical propositional logic, see e. g. (Knight, 2001; Hunter,
2002; Hunter and Konieczny, 2004, 2008, 2010; Ma et al., 2009; Mu et al.,
2011a,b; Xiao and Ma, 2012; Grant and Hunter, 2011, 2013; Besnard, 2014;
McAreavey et al., 2014; Jabbour et al., 2014b). Below we recall some popular
measures but we first introduce some necessary notations. Let K ∈ K be
some knowledge base.

Definition 2. A set M ⊆ K is called minimal inconsistent subset (MI) of K if
M |=⊥ and there is no M′ ⊂ M with M′ |=⊥. Let MI(K) be the set of all
MIs of K.
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Definition 3. A formula α ∈ K is called free formula of K if there is no
M ∈ MI(K) with α ∈ M. Let Free(K) denote the set of all free formulæ of
K.

We adopt the following definition of a (basic) inconsistency measure from
(Grant and Hunter, 2011).

Definition 4. A basic inconsistency measure is a function I : K→ R+
0 ∪ {∞}

that satisfies the following three conditions:

1. I(K) = 0 if and only if K is consistent,

2. if K ⊆ K′ then I(K) ≤ I(K′), and

3. for all α ∈ Free(K) we have I(K) = I(K \ {α}).

The first property (also called consistency) of a basic inconsistency mea-
sure ensures that all consistent knowledge bases receive a minimal incon-
sistency value and every inconsistent knowledge base receives a positive
inconsistency value. The second property (also called monotony) states that
the value of inconsistency cannot decrease when adding new information.
The third property (also called free formula independence) states that remov-
ing harmless formulæ from a knowledge base—i. e., formulæ that do not
contribute to the inconsistency—does not change the value of inconsistency.
If I is a basic inconsistency measure and K ∈ K is a knowledge base we
say that I(K) is the inconsistency value of K wrt. I . In the following we will
drop the “basic” and refer to measures satisfying the above three condi-
tions simply as inconsistency measures. For the remainder of this paper we
consider the following selection of inconsistency measures: the MI measure
IMI, the MIc measure IMIc , the contension measure Ic, and the η-measure
Iη , which will be defined below, cf. (Grant and Hunter, 2011; Knight, 2002).

In order to define the contension measure Ic we need to consider three-
valued interpretations for propositional logic (Priest, 1979). A three-valued
interpretation υ on At is a function υ : At → {T, F, B} where the values T
and F correspond to the classical truth values true and false, respectively.
The additional truth value B stands for both and is meant to represent a
conflicting truth value for a proposition. The function υ is extended to
arbitrary formulæ as shown in Table 2. Then, an interpretation υ satisfies a
formula α, denoted by υ |=3 α if either υ(α) = T or υ(α) = B.

For defining the η-inconsistency measure (Knight, 2002) we need to
consider probability functions P of the form P : Int(At) → [0, 1] with
∑ω∈Int(At) P(ω) = 1. Let P(At) be the set of all those probability func-
tions and for a given probability function P ∈ P(At) define the probability
of an arbitrary formula α via P(α) = ∑ω|=α P(ω).
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1: Truth tables for propositional three-valued logic (Priest, 1979).

Definition 5. Let IMI, IMIc , Ic, and Iη be defined via

IMI(K) = |MI(K)|

IMIc(K) = ∑
M∈MI(K)

1
|M|

Ic(K) = min{|υ−1(B)| | υ |=3 K}
Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P(α) ≥ ξ}

The measure IMI takes the number of minimal inconsistent subsets of a
knowledge base as an indicator for the amount of inconsistency: the more
minimal inconsistent subsets the more severe the inconsistency. The mea-
sure IMIc refines this idea by also taking the size of the minimal inconsis-
tent subsets into account. Here the idea is that larger minimal inconsistent
subsets are less severe than smaller minimal inconsistent subsets (the less
formulæ are needed to produce an inconsistency the more “obvious” the
inconsistency). The measure Ic considers the set of three-valued models
of a knowledge base (which is always non-empty) and uses the minimal
number of propositions with conflicting truth value as an indicator for in-
consistency. Finally, the measure Iη (which always assigns an inconsistency
value between 0 and 1) looks for the maximal probability one can assign to
every formula of a knowledge base1. All these measures are basic inconsis-
tency measures as defined in Definition 4.

Example 1. For the knowledge bases K1 = {a, b ∨ c,¬a ∧ ¬b, d} and K2 =
{a,¬a, b, ¬b} from the introduction we obtain the following inconsistency
values.

The knowledge base K1 contains one minimal inconsistent subset
{a,¬a∧¬b}, i. e. MI(K1) = {{a,¬a∧¬b}}, while K2 contains two minimal
inconsistent subsets {a,¬a} and {b,¬b}, i. e. MI(K2) = {{a,¬a}, {b,¬b}.
This results in IMI(K1) = 1 and IMI(K2) = 2.

1 Note that we modified the definition of Iη slightly compared to the original definition in
order to fit our framework.
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As the size of the only minimal inconsistent subset of K1 is 2 we have
IMIc(K1) = 1/2. For K2 we have two minimal inconsistent subsets each of
size 2, resulting in IMIc(K2) = 1/2 + 1/2 = 1.

For the propositional signature At1 = {a, b, c, d} consider the three-
valued interpretation υ1 defined via

υ1(a) = B υ1(b) = F υ1(c) = T υ1(d) = T

and observe υ1 |=3 K1. Note that |υ−1(B)| = 1 and that there cannot be
another υ which assigns to fewer propositions the value B. So we have
Ic(K1) = 1. For the propositional signature At2 = {a, b} consider the three-
valued interpretation υ2 defined via

υ2(a) = B υ2(b) = B

and observe υ2 |=3 K2. Note that |υ−1(B)| = 2 and that there cannot be
another υ which assigns to fewer propositions the value B. So we have
Ic(K2) = 2.

For At1 consider the probability function P1 : Int(At1) → [0, 1] defined
via P1(abcd) = 1/2, P1(abcd) = 1/2 and P1(ω) = 0 for all remaining
ω ∈ Int(At1). Then we have

P1(a) = P1(abcd) = 0.5

P1(b ∨ c) = P1(abcd) + P1(abcd) = 0.5 + 0.5 = 1

P1(¬a ∧ ¬b) = P1(abcd) = 0.5

P1(d) = P1(abcd) + P1(abcd) = 0.5 + 0.5 = 1

and therefore for all α ∈ K1 it is P1(α) ≥ 1/2. Observe that there cannot
be another P which assigns larger probability to all formulas, so we have
Iη(K1) = 1− 1/2 = 1/2. For At2 consider the probability function P2 :
Int(At2) → [0, 1] defined via P2(ab) = 1/2, P2(ab) = 1/2 and P2(ω) = 0
for all remaining ω ∈ Int(At2). Then we have P2(a) = P2(b) and also
Iη(K2) = 1− 1/2 = 1/2.

In summary, these are the inconsistency values obtained for the discussed
inconsistent measures:

IMI(K1) = 1 IMIc(K1) = 1/2 Ic(K1) = 1 Iη(K1) = 1/2

IMI(K2) = 2 IMIc(K2) = 1 Ic(K2) = 2 Iη(K2) = 1/2

Example 2. In the previous example, all considered inconsistency measures
agreed that K1 is not more inconsistent than K2. While e. g. Iη is indifferent
about K1 and K2 the measure IMIc evaluates K1 to be less inconsistent than
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K2. It can also be the case that inconsistency measures behave completely
incomparable. Consider the knowledge bases K3 and K4 defined via

K3 = {a, b, c, d,¬(a ∨ b ∨ c ∨ d), e, f , g, h,¬(e ∨ f ∨ g ∨ h)}
K4 = {a,¬a}

Observe that MI(K3) = {m1, m2} with m1 = {a, b, c, d,¬(a ∨ b ∨ c ∨ d)} and
m2 = {e, f , g, h,¬(e ∨ f ∨ g ∨ h)}, and MI(K4) = {m3} with m3 = {a,¬a}.
Then we have

IMI(K3) = |MI(K3)| = 2

IMI(K4) = |MI(K4)| = 1

but

IMIc(K3) =
1
|m1|

+
1
|m2|

=
2
5

IMIc(K4) =
1
|m3|

=
1
2

So IMI and IMIc completely disagree on the order of K3 and K4.

For a more detailed introduction to inconsistency measures see e. g.
(Grant and Hunter, 2006) and for some recent developments see e. g.
(Besnard, 2014; Jabbour et al., 2014a; Mu et al., 2014; McAreavey et al., 2014;
Jabbour et al., 2014b).

3 an inconsistency measure based on hitting sets

The basic idea of our novel inconsistency measure Ihs is inspired by the
measure Iη which seeks a probability function that maximizes the proba-
bility of all formulæ of a knowledge base. Basically, the measure Iη looks
for a minimal number of models of parts of the knowledge base and maxi-
mizes their probability in order to maximize the probability of the formulæ.
By just considering this basic idea we arrive at the notion of a hitting set for
inconsistent knowledge bases.

Definition 6. A subset H ⊆ Int(At) is called a hitting set of K if for every
α ∈ K there is ω ∈ H with ω |= α.

Some observations on hitting sets are as follows.

Proposition 1. Let K be a knowledge base. The following two statements are
equivalent:

1. there is no φ ∈ K with φ |=⊥

2. there exists a hitting set H of K
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Proposition 2. Let K be a knowledge base.

1. If H is a hitting set of K then every H′ with H ⊆ H′ is a hitting set of K.

2. H = ∅ is a hitting set of K if and only if K = ∅.

3. K is consistent if and only if there is a hitting set H of K with |H| = 1.

4. If H is a hitting set of K then H is a hitting set of every K′ with K′ ⊆ K.

We then define the measure Ihs as the minimal cardinality of a hitting set
of the knowledge base minus one.

Definition 7. The function Ihs : K→ R+
0 ∪ {∞} is defined via

Ihs(K) = min{|H| | H is a hitting set of K}− 1

with min ∅ = ∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

Note that, following Proposition 1, we have Ihs(K) = ∞ if and only if
K contains a contradictory formula (e. g. a ∧ ¬a). Observe also that we
need a case differentiation for K = ∅ as ∅ has also the hitting set ∅, see
Proposition 2.

Example 3. We continue Example 1 and consider K1 = {a, b∨ c,¬a∧¬b, d}
and K2 = {a,¬a, b, ¬b}. Let H1 ⊆ Int(At) be defined via H1 = {abcd, abcd}.
Observe that for both K1 and K2 we have that H1 is a hitting set, i. e., every
formula of the knowledge base is satisfied by at least one interpretation
of H1. Furthermore, H1 is also a minimal hitting set (with respect to set
cardinality) as, e. g., for K2 the two formulas a and ¬a require at least
two different interpretations to be satisfied. Therefore we have Ihs(K1) =
Ihs(K2) = 1.

Example 4. Consider the knowledge base K5 defined via

K5 = {a ∨ d, a ∧ b ∧ c, b,¬b ∨ ¬a, a ∧ b ∧ ¬c, a ∧ ¬b ∧ c}

Then H2 = {abcd, abcd, abcd} ⊆ Int(At) is a minimal hitting set for K5 and
therefore Ihs(K5) = 2.

As the following result shows, Ihs is indeed a suitable inconsistency
measure.

Proposition 3. The function Ihs is a (basic) inconsistency measure.

The result below shows that Ihs also behaves well with some more prop-
erties mentioned in the literature (Hunter and Konieczny, 2010; Thimm,
2013b).

Proposition 4. The measure Ihs satisfies the following properties:
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• If α ∈ K is such that At(α) ∩ At(K \ {α}) = ∅ then Ihs(K) = Ihs(K \
{α}) (safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).

• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

However, Ihs is incompatible with some other properties such as super-
additivity and MinInc-separability (Hunter and Konieczny, 2010).

Example 5. A measure I satisfies super-additivity if for K∩K′ = ∅ we have
I(K ∪ K′) ≥ I(K) + I(K′). A measure I satisfies MinInc-separability if
MI(K ∪ K′) = MI(K) ∪MI(K′) and MI(K) ∩MI(K′) = ∅ implies I(K ∪
K′) = I(K) + I(K′). Consider

K4 = {a,¬a}
K6 = {b,¬b}

Then we have Ihs(K4) = Ihs(K6) = 1. However, we also have
Ihs(K4 ∪ K6) = 1 as {ab, ab} is a hitting set of K4 ∪ K6. It follows that
Ihs violates super-additivity. Furthermore, observe that MI(K4) = {K4}
and MI(K6) = {K6} and therefore MI(K4 ∪ K6) = MI(K4) ∪MI(K6) and
MI(K4) ∩MI(K6) = ∅. It follows that Ihs also violates MinInc-separability.

The measure Ihs can also be nicely characterized by a consistent partition-
ing of a knowledge base.

Definition 8. A set Φ = {Φ1, . . . , Φn} with Φ1 ∪ . . . ∪ Φn = K and Φi ∩
Φj = ∅ for i, j = 1, . . . , n, i 6= j, is called a partitioning of K. A partitioning
Φ = {Φ1, . . . , Φn} is consistent if Φi 6|=⊥ for i = 1, . . . , n.

Proposition 5. For every knowledge base K

Ihs(K) = min{|Φ| | Φ is a consistent partitioning of K}− 1

with min ∅ = ∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

As Ihs is inspired by Iη we go on by comparing these two measures.

Proposition 6. Let K be a knowledge base. If ∞ > Ihs(K) > 0 then

Iη(K) ≤ 1− 1
Ihs(K) + 1

Note that for Ihs(K) = 0 we always have Iη(K) = 0 as well, as both are
basic inconsistency measures. Furthermore, Ihs(K) = ∞ is equivalent to
the existence of a φ ∈ K with φ |=⊥, cf. Proposition 1, which is equivalent
to Iη(K) = 1 (Knight, 2002). Although Proposition 6 describes a loose
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relationship between Iη and Ihs both measures are in general different as
we will see below.

We say that an inconsistency measure I1 is subsumed by an inconsistency
measure I2, denoted by I1 v I2, if the order on knowledge bases imposed
by I1 is a subset of the order imposed by I2. More formally, I1 v I2 if
and only if I1(K) < I1(K′) implies I2(K) < I2(K′) for all K,K′ ∈ K. Two
inconsistency measures I1 and I2 are equivalent, denoted by I1 ' I2, if and
only if I1 v I2 and I2 v I1.

It turns out that Ihs is neither equivalent nor is subsumed by any of the
previously discussed inconsistency measures2.

Proposition 7. There is no subsumption relation between Ihs and any I ∈
{IMI, IMIc , Ic, Iη}.

Corollary 1. Ihs 6' IMI, Ihs 6' IMIc , Ihs 6' Ic, and Ihs 6' Iη .

Example 6. Consider the knowledge bases K7 and K8 given as

K7 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}
K8 = {a ∧ b,¬a ∧ b, a ∧ ¬b}

Then we have e. g. Ihs(K7) = 2 < 3 = Ihs(K8) but Ic(K7) = 3 > 2 =
Ic(K8).

4 inconsistency measurement in streams

In the following, we introduce and formalize the problem of inconsistency
measurement in streams of propositional formulaæ. The goal of this formal-
ization is to obtain stream-based inconsistency measures that approximate
given inconsistency measures when the latter would have been applied to
the knowledge base as a whole. We first formalize this setting and, after-
wards, provide concrete approaches for some inconsistency measures.

We use a very simple formalization of a stream that is sufficient for our
needs.

Definition 9. A propositional stream S is a function S : N → L(At). Let S

be the set of all propositional streams.

A propositional stream models a sequence of propositional formulæ. On
a wider scope, a propositional stream can also be interpreted as a very
general abstraction of the output of a linked open data crawler (such as
LDSpider (Isele et al., 2010)) that crawls knowledge formalized as RDF
(Resource Description Framework) from the web, possibly enriched with OWL
semantics to have a well-defined notion of consistency. For notational

2 Note that this result corrects Corollary 1 from (Thimm, 2014c) where Ihs v Iη was claimed.
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convenience, we write a propositional stream S with S(0) = φ0, S(1) = φ1,
S(2) = φ2,. . . also as a tuple S = 〈φ0, φ1, φ2, . . .〉

Using the abstraction of a propositional stream, we can also model large
knowledge bases by propositional streams that indefinitely repeat the for-
mulæ of the knowledge base. For that, we assume for a knowledge base
K = {φ1, . . . , φn} the existence of a canonical enumeration Kc = 〈φ1, . . . , φn〉
of the elements of K. This enumeration can be arbitrary and has no specific
meaning other than to enumerate the elements in an unambiguous way.

Definition 10. Let K be a knowledge base and Kc = 〈φ1, . . . , φn〉 its canon-
ical enumeration. The K-stream SK is defined as SK(i) = φ(imod n)+1 for all
i ∈N.

Using K-streams we can formalize the desired behavior of stream-based
inconsistency measures as follows. Given a K-stream SK and an incon-
sistency measure I we aim at defining a measure JI that processes the
elements of SK one by one and approximates (or converges to) I(K).

Definition 11. A stream-based inconsistency measure J is a function J :
S×N→ R+

0 ∪ {∞}.

Definition 12. Let I be an inconsistency measure and J a stream-based
inconsistency measure. Then J approximates (or is an approximation of ) I if
for all K ∈ K we have limi→∞ J (SK, i) = I(K).

A stream-based inconsistency measure J is supposed to maintain some
state information (which is hidden in the formal definition) that is updated
when processing the i-th element of a propositional stream. For i ∈ N we
say that J (S , i) is the inconsistency value of S wrt. J at time point i. We
also require that J is not able to process formulas from the future, i. e., the
value J (S , i) is independent of every value S(j) for j > i. More formally:

Definition 13. A stream-based inconsistency measure J is future-ignorant
if and only if for all S ,S ′ ∈ S, if S(i) = S ′(i) for all i = 0, . . . , n then
J (S , n) = J (S ′, n).

In the following, we only consider future-ignorant stream-based inconsis-
tency measures.

5 stream-based inconsistency measures

In this section we develop concrete approaches for adopting classical in-
consistency measures, including the Ihs measure developed above, to the
streaming scenario. First, we present an approach based on considering
a window on the stream at any time point i ∈ N. Second, we provide
approximation algorithms for both Ihs and Ic that use concepts of the pro-
gramming paradigms of simulated annealing and evolutionary algorithms.
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5.1 A Window-based Approach for Stream-based Inconsistency Measures

The simplest form of implementing a stream-based variant of any algorithm
or function is to use a window-based approach, i. e., to consider at any time
point a specific excerpt from the stream and apply the original algorithm
or function on this excerpt, cf. (Beck et al., 2015). This approach gives us for
each time point i ∈N the inconsistency value of the considered excerpt. In
order to not dismiss the inconsistency value determined at time point i in
time point i + 1, we aggregate the newly determined inconsistency value at
time point i + 1 with the one from the previous step using an aggregation
function.

Definition 14. An aggregation function g is a function g : (R+
0 ∪ {∞}) ×

(R+
0 ∪ {∞})→ R+

0 ∪ {∞} with

1. g(x, y) ∈ [min{x, y}, max{x, y}] for all x, y ∈ R+
0 ,

2. g(x, ∞) ≥ x for all x ∈ R+
0 ,

3. g(∞, y) ≥ y for all y ∈ R+
0 , and

4. g(∞, ∞) = ∞.

Possible aggregation functions are, e. g., the maximum function max or a
smoothing function gα(x, y) = αx + (1− α)y for some α ∈ [0, 1] (for every
x, y ∈ R+

0 ∪ {∞}).3
For any propositional stream S let S i,j (for i ≤ j) be the knowledge base

obtained by taking the formulæ from S between positions i and j, i. e.,
S i,j = {S(i), . . . ,S(j)}.

Definition 15. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g
an aggregation function. We define the window-based inconsistency measure
J w,g
I : S×N→ R+

0 ∪ {∞} via

J w,g
I (S , i) =

{ I({S(0)}) if i = 0
g(I(Smax{0,i−w+1},i),J w,g

I (S , i− 1)) otherwise

for every S and i ∈N.4

The intuition behind the window-based inconsistency measure J w,g
I is as

follows. At a specific time point i the current inconsistency value J w,g
I (S , i)

is determined by, first, determining the inconsistency value of the knowl-
edge base obtained from joining the previously encountered w ∈N formu-
las, and then aggregating this value with the previously determined value
J w,g
I (S , i− 1). If w = ∞, the value J w,g

I (S , i) is determined by aggregating

3 With max(x, ∞) = max(∞, x) = max(∞, ∞) = ∞, gα(x, ∞) = gα(∞, x) = gα(∞, ∞) = ∞
for x ∈ R+

0 .
4 For w = ∞ we define max{0,−∞} = 0
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the inconsistency value of the union of all but the last encountered for-
mula with the inconsistency value of the union of all encountered formulas.
Observe that J w,g

I is indeed a future-ignorant stream-based inconsistency
measure.

Example 7. Consider the propositional stream S1 given via

S1 = 〈a ∧ b,¬a,¬b, a ∨ b,¬b ∧ ¬a, . . .〉

All further elements of S1 are unimportant for this example. Consider fur-
ther the inconsistency measure IMI, the aggregation function g0.7 (smooth-
ing function for α = 0.7), and the window size 3. We consider the first four
timepoints in the evaluation of J 3,g0.7

IMI
.

• At timepoint i = 0 we obtain

J 3,g0.7
IMI

(S1, 0) = IMI({S1(0)}) = IMI({a ∧ b}) = 0

• For i = 1 note that Smax{0,i−w+1},i = Smax{0,−1},1 = S0,1 = {a∧ b,¬a}
and we have

J 3,g0.7
IMI

(S1, 1) = g0.7(IMI(Smax{0,1−w},1
1 ),J 3,g0.7

IMI
(S1, 0))

= g0.7(IMI({a ∧ b,¬a}), 0)

= 0.7 · 1 + (1− 0.7) · 0 = 0.7

• For i = 2 we have

J 3,g0.7
IMI

(S1, 2) = g0.7(IMI(Smax{0,2−w},2
1 ),J 3,g0.7

IMI
(S1, 1))

= g0.7(IMI({a ∧ b,¬a,¬b}), 0.7)

= 0.7 · 2 + (1− 0.7) · 0.7 = 1.61

• For i = 3 we have

J 3,g0.7
IMI

(S1, 3) = g0.7(IMI(Smax{0,3−w+1},3
1 ),J 3,g0.7

IMI
(S1, 2))

= g0.7(IMI({¬a,¬b, a ∨ b}), 1.61)

= 0.7 · 1 + (1− 0.7) · 1.61 = 1.183

Some observations on the properties of J w,g
I are as follows.

Proposition 8. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g an
aggregation function.

1. If w is finite then J w,g
I is not an approximation of I .

2. If w = ∞ and g(x, y) ≥ (x + y)/2 then J w,g
I is an approximation of I .
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3. J w,g
I (SK, i) ≤ I(K) for every K ∈ K and i ∈N.

As can be seen from Example 7 and item 1. of Proposition 8, the
main issue with the window-based approach to measuring inconsistency
in streams is that only local information (wrt. the current window) can be
used to determine the inconsistency value. If, for example, there is a min-
imal inconsistent subset not covered by any window—as {S1(0),S1(4)} =
{a ∧ b,¬b ∧ ¬a} in Example 7—the inconsistency value obtained by the
window-based approach will always be an underestimation of the actual
inconsistency value, cf. item 2 of Proposition 8.

5.2 Stream-based Approximation Algorithms for Ihs and Ic

The approximation algorithms for Ihs and Ic that are presented in this
subsection are using concepts of the programming paradigms of simulated
annealing and evolutionary algorithms, which are both approaches to solve
non-convex optimization problems (Lawrence, 1987). Let f : X → R be
some function that has to be maximized. The basic idea of evolutionary
algorithms is to maintain a population of domain elements Xp ⊆ X. In each
iteration step a subset of Xp with maximal values wrt. f is selected and the
rest discarded. From the selected set, new domain elements are generated
by crossover (combing two or more of the selected domain elements) and
mutation (random alteration of a selected domain element). This process is
repeated until some convergence criterium is satisfied. In the best case the
population converges to the global maximum of f . Simulated annealing
works roughly as follows. In the beginning, a single domain element x ∈ X
is selected at random. In each iteration a random choice is made whether to
locally improve x (select an x′ ∈ X in the vicinity that has larger value wrt.
f than x) or to “jump” to a different part in X. The probability of jumping
decreases with the number of iterations (this feature is also called cooling)
and the algorithm stops in some local maximum, which is, in the best case,
also the global maximum.

The basic idea for the stream-based approximation of Ihs is as follows.
At any processing step we maintain a candidate set C ∈ 2Int(At) (initialized
with the empty set) that approximates a hitting set of the underlying knowl-
edge base. At the beginning of a processing step we make a random choice
(with decreasing probability the more formulæ we already encountered)
whether to remove some element of C. This action ensures that C does
not contain superfluous elements and mirrors the cooling step in simulated
annealing. Afterwards we check whether there is still an interpretation in
C that satisfies the currently encountered formula. If this is not the case
we add some random model of the formula to C (as in the mutation step
of evolutionary algorithms). Finally, we update the previously computed
inconsistency value with |C| − 1, taking also some aggregation function g
(as for the window-based approach) into account. In order to increase the
probability of successfully finding a minimal hitting set we do not maintain
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Algorithm 1 hs-streamm,g, f (S , i)
1: currentValue = 0
2: Cand = {∅, . . . , ∅}
3: N = 0
4: for all j = 0, . . . , i do
5: currentValue = update

m,g, f
hs (S(j))

6: return currentValue

Algorithm 2 update
m,g, f
hs ( f orm)

1: N = N + 1
2: if f orm ≡⊥ then
3: currentValue = ∞
4: if currentValue = ∞ then
5: return currentValue
6: newValue = ∞
7: for all C ∈ Cand do
8: rand ∈ [0, 1]
9: if rand < f (N) then

10: Remove some random ω from C
11: if ¬∃ω ∈ C : ω |= f orm then
12: Add random ω ∈ Mod( f orm) to C
13: newValue = min(newValue, (|C| − 1))
14: currentValue = g(newValue, currentValue)
15: return currentValue

a single candidate set C but a (multi-)set Cand = {C1, . . . , Cm} (as in evo-
lutionary algorithms) for some previously specified parameter m ∈ N and
use the minimum size of these candidate hitting sets.

We call a function f : N→ [0, 1] null-bound if there is k > 0 such that f is
strictly decreasing on {0, . . . , k} and f (i) = 0 for all i > k.

Definition 16. Let m ∈ N, g an aggregation function, and f : N → [0, 1]
null-bound. We define the approximation algorithm J m,g, f

hs via5

J m,g, f
hs (S , i) = hs-streamm,g, f (S , i)

for every S and i ∈ N. The algorithm hs-streamm,g, f (S , i) is given in
Algorithm 1 and its subroutine update

m,g, f
hs is depicted in Algorithm 2.

At the first call of the algorithm hs-streamm,g, f the value of currentValue
(which contains the currently estimated inconsistency value) is initialized to
0, the (multi-)set Cand ⊆ 2Int(At) (which contains a population of candidate

5 Note that J m,g, f
hs is not strictly a stream-based inconsistency measure (as a mathematical

function) according to Definition 11 as it is a randomized algorithm.
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hitting sets) is initialized with m empty sets, and N is initialized with 0. The
function f can be any null-bound function and ensures that every candidate
C reaches some stable result eventually. The parameter m increases the
probability that at least one of the candidate hitting sets attains the global
optimum of a minimal hitting set. The algorithm hs-streamm,g, f then
repeatedly calls the subroutine update

m,g, f
hs that updates the inconsistency

value with each formula in the stream, up to the i-th formula.
In order to address the special case of contradictory formulas, lines 2–5

of updatem,g, f
hs ensure that currentValue and thus the inconsistency value is

set to ∞.

Example 8. We continue Example 7 and consider again the propositional
stream S1 given via

S1 = 〈a ∧ b,¬a,¬b, a ∨ b,¬b ∧ ¬a, . . .〉

We consider m = 1 (only one candidate hitting set is maintained) and use
the maximum function max as our aggregation function (g = max). Let
f = f0 be defined as f0(n) = 1/(n+ 1) for n ∈ {0, . . . , 10} and f0(n) = 0 for
n > 10. We consider the first four timepoints in the evaluation of J 1,max, f1

hs .

• For i = 0, we first initialize currentValue = 0, Cand = {∅}, and N = 0
in Algorithm 1, and then set N = 1 in line 1 of Algorithm 2. Lines
2–5 in Algorithm 2 are skipped as we do not have any contradictory
formulas in S1. In line 6 we set newValue = ∞. In line 7 we select
C1 = ∅. Suppose in line 8 we determine rand = 0.7. As f0(1) = 1/2
we do not execute line 10. As there is no ω ∈ C1 that satisfies
f orm = S1(0) = a ∧ b we add some model, e. g., ab, to C1 in line
12. We set newValue = 0 in line 13 and currentValue = max(0, 0) = 0
in line 14.

• For i = 1, suppose in line 8 of Algorithm 2 we determine rand = 0.4.
As f0(2) = 1/3 we do not execute line 10. As there is no ω ∈ C1 =
{ab} that satisfies f orm = S1(1) = ¬a we add some model, e. g., ab,
to C1 in line 12 (now we have C1 = {ab, ab}). We set newValue = 1 in
line 13 and currentValue = max(1, 0) = 1 in line 14.

• For i = 2, suppose in line 8 of Algorithm 2 we determine rand = 0.5.
As f0(3) = 1/4 we do not execute line 10. Note that there is ω ∈ C1
with ω |= f orm = S1(2) = ¬b (ω = ab). Therefore we skip line 12

and set newValue = 1 in line 13 and currentValue = max(1, 1) = 1 in
line 14.

• For i = 3, suppose in line 8 of Algorithm 2 we determine rand = 0.1.
As f0(3) = 1/5 > rand we execute line 10 and remove ab from C1. As
there is no ω ∈ C1 that satisfies f orm = S1(3) = a ∨ b we add some
model, e. g., ab, to C1 in line 12. We set newValue = 1 in line 13 and
currentValue = max(1, 1) = 1 in line 14.
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Algorithm 3 c-streamm,g, f (S , i)
1: currentValue = 0
2: Cand = {υ1, . . . , υm}
3: N = 0
4: for all j = 0, . . . , i do
5: currentValue = update

m,g, f
c (S(j))

6: return currentValue

As J m,g, f
hs is a random process we cannot show that J m,g, f

hs is an approx-
imation of Ihs in the general case. However, we can give the following
result.

Proposition 9. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, andK ∈ K there is m ∈N such
that with probability greater or equal p it is the case that limi→∞ J m,g, f

hs (SK, i) =
Ihs(K).

This result states that J m,g, f
hs indeed approximates Ihs if we choose the

number of populations large enough. In the next section we will provide
some empirical evidence that even for small values of m results are satis-
factory. As for the runtime, note that in lines 2 and 11 of Algorithm 2 an
FNP-complete problem is solved (determining some model of a proposi-
tional formula). However, under the reasonable assumption that formulas
are usually quite small compared to the size of the whole knowledge base
the impact of this step is negligible.

Both Definition 16 and Algorithms 1 and 2 can be modified slightly in
order to approximate Ic instead of Ihs, yielding a new measure J m,g, f

c .

Definition 17. Let m ∈ N, g an aggregation function, and f : N → [0, 1]
some null-bound function. We define the approximation algorithm J m,g, f

c
via6

J m,g, f
c (S , i) = c-streamm,g, f (S , i)

for every S and i ∈ N. The algorithm c-streamm,g, f (S , i) is given in
Algorithm 3 and its subroutine update

m,g, f
c is depicted in Algorithm 4.

In c-streamm,g, f (S , i) and update
m,g, f
c , the set of candidates Cand con-

tains three-valued interpretations instead of sets of classical interpretations
(initialized with randomly chosen interpretations υ1, . . . , υm with υ−1

i (B) =

∅ for i = 1, . . . , m). In line 6 of updatem,g, f
c , we flip some arbitrary proposi-

tion from B to T or F. Similarly, in lines 8–13 of updatem,g, f
c we flip some

6 Note that J m,g, f
c is not strictly a stream-based inconsistency measure (as a mathematical

function) according to Definition 11 as it is a randomized algorithm.
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Algorithm 4 update
m,g, f
c ( f orm)

1: N = N + 1
2: newValue = ∞
3: for all υ ∈ Cand do
4: rand ∈ [0, 1]
5: if rand < f (N) and υ−1(B) 6= ∅ then
6: Set random proposition in υ from B to T or F
7: if υ 6|=3 f orm then
8: Select random ω ∈ Mod( f orm)
9: for all p ∈ At do

10: if ω |= p and υ(p) = F then
11: υ(p) = B
12: if ω 6|= p and υ(p) = T then
13: υ(p) = B
14: newValue = min(newValue, |υ−1(B)|)
15: currentValue = g(newValue, currentValue)
16: return currentValue

propositions to B in order to satisfy the new formula. Finally, the inconsis-
tency value is determined by taking the number of B-valued propositions
(the minimum of all candidates in Cand).

With respect to the accuracy of J m,g, f
c , we can make a similar statement

as for J m,g, f
hs .

Proposition 10. For every p ∈ [0, 1), g some aggregation function with
g(x, y) ≥ (x + y)/2, f : N → [0, 1] a null-bound function, and K ∈ K

there is m ∈ N such that with probability greater or equal p it is the case that
limi→∞ J m,g, f

c (SK, i) = Ic(K).

In order to evaluate the accuracy and performance of these stream-based
inconsistency measures in more detail, we perform some empirical experi-
ments in the following section.

6 empirical evaluation

In this section we describe our empirical experiments on runtime, accuracy,
and scalability of the discussed stream-based inconsistency measures. Our
Java implementations7 have been added to the Tweety Libraries for Knowledge
Representation (Thimm, 2014d).

7 IMI, IMIc , Iη , J w,g
I : http://mthimm.de/r?r=tweety-inc-commons

Ic, Ihs: http://mthimm.de/r?r=tweety-inc-pl
J m,g, f

hs : http://mthimm.de/r?r=tweety-stream-hs

J m,g, f
c : http://mthimm.de/r?r=tweety-stream-c

Evaluation framework: http://mthimm.de/r?r=tweety-stream-eval

http://mthimm.de/r?r=tweety-inc-commons
http://mthimm.de/r?r=tweety-inc-pl
http://mthimm.de/r?r=tweety-stream-hs
http://mthimm.de/r?r=tweety-stream-c
http://mthimm.de/r?r=tweety-stream-eval
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6.1 Evaluated Approaches

For our evaluation, we considered the inconsistency measures IMI, IMIc ,
Iη , Ic, and Ihs. We used the SAT solver lingeling8 for the sub-problems of
determining consistency and to compute a model of a formula.

For enumerating the set of MIs of a knowledge base (as required by IMI

and IMIc ) we used MARCO9, a tool for computing all minimal unsatisfi-
able sets of clauses from a knowledge base given in conjunctive normal
form (CNF). In order to apply MARCO to our general non-CNF knowl-
edge bases, we used the following approach. First, a general knowledge
base K is converted to CNF, i. e., each formula of K is converted to a set of
clauses. In doing so, we retain a mapping from each original formula to its
set of clauses (note that clauses may appear multiple times in the resulting
knowledge base, if they originate from different formulas). On the knowl-
edge base in CNF we apply MARCO, which returns the set of all minimal
sets of unsatisfiable clauses. Using the mapping to the original formulas,
from each minimal set of unsatisfiable clauses a set of formulas is derived.
By construction, the resulting set of formulas is inconsistent, but not nec-
essarily minimally inconsistent. Therefore, after all these sets have been
computed, a final minimality check is performed and all non-minimal sets
are filtered out. This approach is similar to the one employed by MIMUS
(McAreavey et al., 2014), a tool which also determines MIs from a general
knowledge base and is based on CAMUS10. We decided to use MARCO
with the above preprocessing step instead of MIMUS directly, as initial ex-
periments suggested that the former one is usually faster if the knowledge
base contains at least one minimal inconsistent subset (which is the stan-
dard case in our evaluation). This observation is consistent with the obser-
vations made by (Liffiton and Malik, 2013), where CAMUS is criticized to
be slower than MARCO for determining many minimal unsatisfiable sets.
While CAMUS is a multi-purpose tool that also computes minimal correc-
tion sets, MARCO is optimized for computing minimal unsatisfiable sets of
clauses fast.

The measure Iη was implemented using the linear optimization solver
lp_solve11.

The measures IMI, IMIc , and Iη were used to define three different ver-
sions of the window-based measure J w,g

I (with w = 500, 1000, 2000 and
g = max). For the measures Ic and Ihs we tested each three versions of
their streaming variants J m,g0.75, f1

c and J m,g0.75, f1
hs (with m = 10, 100, 500)

with f1 : N→ [0, 1] defined via f1(i) = 1/(i + 1) for all i ∈ N with i ≤ 232

and f1(i) = 0 otherwise. Furthermore, g0.75 is the smoothing function for
α = 0.75 as defined in the previous section.

8 http://fmv.jku.at/lingeling/
9 http://sun.iwu.edu/~mliffito/marco/

10 http://sun.iwu.edu/~mliffito/camus/
11 http://lpsolve.sourceforge.net

http://fmv.jku.at/lingeling/
http://sun.iwu.edu/~mliffito/marco/
http://sun.iwu.edu/~mliffito/camus/
http://lpsolve.sourceforge.net
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6.2 Experiment Setup

For measuring the runtime of the different approaches we generated 100

random knowledge bases in CNF with each 5000 formulæ and 30 propo-
sitions.12 A knowledge base was generated by randomly determining the
propositions appearing in a clause (uniformly distributed and up to a max-
imum of 4) and randomly negating some of these propositions (uniformly
for each proposition). For each generated knowledge base K we consid-
ered its K-stream and processing of the stream was aborted after 40000

iterations. We fed the K-stream to each of the evaluated stream-based in-
consistency measures and measured the average runtime per iteration and
the total runtime. For each iteration, we set a time-out of 2 minutes and
aborted processing of the stream completely if a time-out occurred.

In order to measure accuracy, for each of the considered approaches we
generated another 100 random knowledge bases (not necessarily in CNF)
with specifically set inconsistency values, used otherwise the same settings
as above, and measured the returned inconsistency values.

To evaluate the scalability of our stream-based approach of Ihs we con-
ducted a third experiment13 where we fixed the number of propositions
(60) and the specifically set inconsistency value (200) and varied the size of
the knowledge bases from 5000 to 50000 (with steps of 5000 formulæ). We
measured the total runtime up to the point when the inconsistency value
was within a tolerance of ±1 of the expected inconsistency value.

The experiments were conducted on a server with two Intel Xeon X5550

QuadCore (2.67 GHz) processors with 8 GB RAM running SUSE Linux 2.6.

6.3 Results

Our first observation concerns the inconsistency measure Iη which proved
to be not suitable to work on large knowledge bases. Computing the value
Iη(K) for some knowledge base K includes solving a linear optimization
problem over a number of variables which is (in the worst-case) exponential
in the number of propositions of the signature. In our setting with |At| = 30
the generated optimization problem contained therefore 230 = 1073741824
variables. Hence, even the optimization problem itself could not be con-
structed within the timeout of 2 minutes for every step. In the following,
we will therefore not report on further results for Iη .

As for the runtime of the window-based approaches of IMI and IMIc and
our stream-based approaches for Ic and Ihs see Table 2. There one can see
that J w,g

IMI
and J w,g

IMIc
on the one hand, and J m,g, f

c and J m,g, f
hs on the other

hand, have comparable runtimes, respectively. The former two have almost
identical runtimes, which is obvious as the determination of the MIs is the

12 All sampling algorithms can be found at
http://mthimm.de/r?r=tweety-sampler

13 We did the same experiment with our stream-based approach of Ic but do not report the
results due to the similarity to Ihs.

http://mthimm.de/r?r=tweety-sampler
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Measure RT (iteration) RT (total) Measure RT (iteration) RT (total)

J 500,max
IMI

198ms 133m J 10,g0.75, f1
c 0.16ms 6.406s

J 1000,max
IMI

359ms 240m J 100,g0.75, f1
c 1.1ms 43.632s

J 2000,max
IMI

14703ms 9812m J 500,g0.75, f1
c 5.21ms 208.422s

J 500,max
IMIc

198ms 134m J 10,g0.75, f1
hs 0.07ms 2.788s

J 1000,max
IMIc

361ms 241m J 100,g0.75, f1
hs 0.24ms 9.679s

J 2000,max
IMIc

14812ms 9874m J 500,g0.75, f1
hs 1.02ms 40.614s

Table 2: Runtimes for the evaluated measures; each value is averaged over
100 random knowledge bases of 5000 formulæ; the total runtime is
after 40000 iterations

main problem in both their computations. Clearly, J m,g, f
c and J m,g, f

hs are
significantly faster per iteration (and in total) than J w,g

IMI
and J w,g

IMIc
, only

very few milliseconds for the latter and several hundreds and thousands
of milliseconds for the former (for all variants of m and w). The impact of
increasing m for J m,g, f

c and J m,g, f
hs is expectedly linear while the impact of

increasing the window size w for J w,g
IMI

and J w,g
IMIc

is exponential (this is also
clear as both solve an FNP-hard problem).

As for the accuracy of the different approaches see Figure 1. There one
can see that both J m,g, f

hs and J m,g, f
c (Figures 1a and 1b) converge quite

quickly (almost right after the knowledge base has been processed once)
into a [−1, 1] interval of the actual inconsistency value, where J m,g, f

hs is
even closer to it. The window-based approaches (Figures 1c and 1d) have
a comparable bad performance (this is clear as those approaches cannot see
all MIs at any iteration due to the limited window size). Surprisingly, the
impact of larger values of m for J m,g, f

hs and J m,g, f
c is rather small in terms of

accuracy which suggests that the random process of our algorithm is quite
robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of J m,g0.75, f1
hs see Figure 2. There one can observe a

linear increase in the runtime of all variants wrt. the size of the knowledge
base. Furthermore, the difference between the variants is also linear in
the parameter m (which is also clear as each population is an independent
random process). It is noteworthy, that the average runtime for J 10,g0.75, f1

hs
is about 66.1 seconds for knowledge bases with 50000 formulæ. As the
significance of the parameter m for the accuracy is also only marginal,
the measure J 10,g0.75, f1

hs is clearly an effective and accurate stream-based
inconsistency measure.
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Figure 1: Accuracy performance for the evaluated measures (dashed line is actual inconsistency
value); each value is averaged over 100 random knowledge bases of 5000 formulæ (30 proposi-
tions) with varying inconsistency values
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Figure 1: Accuracy performance for the evaluated measures (dashed line is actual inconsistency
value); each value is averaged over 100 random knowledge bases of 5000 formulæ (30 proposi-
tions) with varying inconsistency values

propositions of the signature. In our setting with |At| = 30 the generated optim-
ization problem contained therefore 230 = 1073741824 variables. Hence, even
the optimization problem itself could not be constructed within the timeout of 2
minutes for every step. In the following, we will therefore not report on further
results for I⌘.

As for the runtime of the window-based approaches of IMI and IMIc and our
stream-based approaches for Ic and Ihs see Table 2. There one can see that J w,g

IMI

and J w,g
IMIc

on the one hand, and J m,g,f
c and J m,g,f

hs on the other hand, have com-
parable runtimes, respectively. The former two have almost identical runtimes,
which is obvious as the determination of the MIs is the main problem in both their
computations. Clearly, J m,g,f

c and J m,g,f
hs are significantly faster per iteration (and

in total) than J w,g
IMI

and J w,g
IMIc

, only very few milliseconds for the latter and several

23

(d) Accuracy J w,max
IMIc

Figure 1: Accuracy performance for the evaluated measures (dashed line
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random knowledge bases of 5000 formulæ (30 propositions) with
varying inconsistency values

7 related work

This work is the first to address inconsistency measurement in streaming
scenarios. The closest family of related works are approaches for efficient
inconsistency measure computation for the classical setting (where a knowl-
edge base is given as a whole).

In (Ma et al., 2009, 2010; Xiao et al., 2010) Ma and colleagues present an
anytime algorithm that approximates an inconsistency measure based on a
4-valued paraconsistent logic (similar to the contension inconsistency mea-
sure). The algorithm provides lower and upper bounds for this measure
and can be stopped at any point in time with some guaranteed quality. The
main difference between our framework and the algorithm of (Ma et al.,
2009, 2010) is that the latter needs to process the whole knowledge base in
each atomic step and is therefore not directly applicable for the streaming
scenario. The empirical evaluation in (Ma et al., 2009, 2010) also suggests
that our streaming variant of Ihs is much more performant as Ma et al.
report an average runtime of their algorithm of about 240 seconds on a
knowledge base with 120 formulæ and 20 propositions (no evaluation on
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Figure 2: Evaluation of the scalability of J m,g0.75,f1
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hundreds and thousands of milliseconds for the former (for all variants of m and
w). The impact of increasing m for J m,g,f

c and J m,g,f
hs is expectedly linear while

the impact of increasing the window size w for J w,g
IMI

and J w,g
IMIc

is exponential (this
is also clear as both solve an FNP-hard problem).

As for the accuracy of the different approaches see Figure 1. There one can see
that both J m,g,f

hs and J m,g,f
c (Figures 1a and 1b) converge quite quickly (almost

right after the knowledge base has been processed once) into a [�1, 1] interval of
the actual inconsistency value, where J m,g,f

hs is even closer to it. The window-
based approaches (Figures 1c and 1d) have a comparable bad performance (this
is clear as those approaches cannot see all MIs at any iteration due to the limited
window size). Surprisingly, the impact of larger values of m for J m,g,f

hs and J m,g,f
c

is rather small in terms of accuracy which suggests that the random process of our
algorithm is quite robust. Even for m = 10 the results are quite satisfactory.

As for the scalability of J m,g0.75,f1

hs see Figure 2. There one can observe a
linear increase in the runtime of all variants wrt. the size of the knowledge base.
Furthermore, the difference between the variants is also linearly in the parameter
m (which is also clear as each population is an independent random process). It
is noteworthy, that the average runtime for J 10,g0.75,f1

hs is about 66.1 seconds for
knowledge bases with 50000 formulæ. As the significance of the parameter m for
the accuracy is also only marginal, the measure J 10,g0.75,f1

hs is clearly an effective
and accurate stream-based inconsistency measure.

7. Related Work

This work is the first to address inconsistency measurement in streaming scen-
arios. The closest family of related works are approaches for efficient inconsist-
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Figure 2: Evaluation of the scalability of J m,g0.75, f1
hs ; each value is averaged

over 10 random knowledge bases of the given size

larger knowledge bases is given) while our measure has a runtime of only
a few seconds for knowledge bases with 5000 formulæ with comparable
accuracy14.

In (McAreavey et al., 2014) an approach is developed for computing mea-
sures based on minimal inconsistent subsets (such as IMI and IMIc ) more
efficiently. Core to the computation of these measures is the determina-
tion of MI(K) for an arbitrary knowledge base K. While the computational
challenges of determining the set of minimal inconsistent subsets for knowl-
edge bases in CNF has been studied for some time in the SAT community—
see e. g. (Liffiton and Sakallah, 2005; Büning and Kullmann, 2009; Liffiton
and Malik, 2013; Previti and Marques-Silva, 2013)—additional issues arise
when considering knowledge bases that are not in CNF. These issues are ad-
dressed by (McAreavey et al., 2014) where an approach for efficiently com-
puting minimal inconsistent sets for arbitrary knowledge is presented. The
approach has been implemented in the tool MIMUS which is based on the
tool CAMUS15 for computing minimal inconsistent subsets of knowledge
bases in CNF. In (McAreavey et al., 2014) this tool has been empirically eval-
uated, also in the context of measuring inconsistency with measures based
on minimal inconsistent subsets. Compared to (McAreavey et al., 2014) we
consider arbitrary inconsistency measures and not just those based on min-
imal inconsistent subsets. Still, the work of McAreavey et al. is relevant
for applying those inconsistency measures to our streaming scenario. We
slightly adapted the general approach of (McAreavey et al., 2014) and used
MARCO16, instead of the predecessor CAMUS, for our empirical evalua-
tion (see Section 6).

8 summary and conclusion

In this paper we introduced and discussed the problem of stream-based
inconsistency measurement. For that, we developed a novel inconsistency

14 Although hardware specifications for these experiments are different this huge difference
is quite relevant.

15 http://sun.iwu.edu/~mliffito/camus/
16 http://sun.iwu.edu/~mliffito/marco/

http://sun.iwu.edu/~mliffito/camus/
http://sun.iwu.edu/~mliffito/marco/
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measure Ihs that is based on the notion of a hitting set and analyzed its
properties. We presented a general framework for applying classical incon-
sistency measures to the streaming scenario and developed specific approx-
imation algorithms for Ihs and the contension measure Ic. Our empirical
evaluation showed that the latter two approaches outperform the baseline
window-based approaches to measure inconsistency and streams and pro-
vide general evidence of the feasibility of stream-based inconsistency mea-
surement.

All discussed inconsistency measures (classical and stream-based ones),
as well as the evaluation framework have been implemented in Java and
added to the open source project Tweety17 (Thimm, 2014d). Current work
is about the application of our work on linked open data sets (Isele et al.,
2010) enriched with OWL semantics.

appendix : proofs of technical results

Proposition 1. Let K be a knowledge base. The following two statements are
equivalent:

1. there is no φ ∈ K with φ |=⊥

2. there exists a hitting set H of K

Proof. Let K = {φ1, . . . , φn}. First, assume that there is no φi ∈ K with
φi |=⊥ for i = 1, . . . , n. It follows Mod(φi) 6= ∅ for every i = 1, . . . , n. Let
ωi ∈ Mod(φi), then by definition {ω1, . . . , ωn} is a hitting set of K. Let
now H = {ω1, . . . , ωm} be a hitting set of K. Then for every φ ∈ K there is
ω ∈ H with ω |= φ. Therefore there can be no φ ∈ K with Mod(φ) 6= ∅.

Proposition 2. Let K be a knowledge base.

1. If H is a hitting set of K then every H′ with H ⊆ H′ is a hitting set of K.

2. H = ∅ is a hitting set of K if and only if K = ∅.

3. K is consistent if and only if there is a hitting set H of K with |H| = 1.

4. If H is a hitting set of K then H is a hitting set of every K′ with K′ ⊆ K.

Proof. Let K = {φ1, . . . , φn}.

1. Let H be a hitting set of K and let H′ be such that H ⊆ H′. Then for
every φ ∈ K we have ω ∈ H ⊆ H′ such that ω |= φ. Therefore H′ is a
hitting set of K.

2. Let K = ∅. Then H = ∅ is a trivial hitting set of K by definition of
universal quantification. Note also that for any K with K 6= ∅ the set
H = ∅ cannot be a hitting set.

17 http://tweetyproject.org

http://tweetyproject.org
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3. Let K 6= ∅ be consistent. Then there is ω ∈ Int(At) with ω |= K,
i. e., ω |= φ for every φ ∈ K. Therefore, {ω} is a hitting set of K
with |{ω}| = 1. Let H be any hitting set of K with |H| = 1, i. e.,
H = {ω}. Then ω |= φ for all φ ∈ K and, hence, φ |= K. Therefore,
K is consistent. For the case K = ∅ note that every subset of Int(At)
is a hitting set of K.

4. Let H be a hitting set of K and let K′ ⊆ K. Then for every φ ∈ K′
there is ω ∈ H with ω |= φ as K′ ⊆ K. Hence, H is a hitting set of
K.

Proposition 3. The function Ihs is a (basic) inconsistency measure.

Proof. We have to show that properties 1.), 2.), and 3.) of Definition 4 are
satisfied.

1. This follows directly from items 2.) and 3.) of Proposition 2.

2. This follows directly from item 4.) of Proposition 2.

3. Let α ∈ Free(K) and define K′ = K \ {α}. Let H be a hitting set
of K′ with |H| being minimal and let ω ∈ H. Furthermore, let
K′′ ⊆ K′ be the set of all formulæ β such that ω |= β. It follows
that K′′ is consistent. As α is a free formula it follows that K′′ ∪ {α}
is also consistent (otherwise there would be a minimal inconsistent
subset of K′′ containing α). Let ω′ be a model of K′′ ∪ {α}. Then
H′ = (H \ {ω}) ∪ {ω′} is a hitting set of K and due to 2.) also of
minimal cardinality. Hence, we have Ihs(K′) = Ihs(K).

Proposition 4. The measure Ihs satisfies the following properties:

• If α ∈ K is such that At(α) ∩ At(K \ {α}) = ∅ then Ihs(K) = Ihs(K \
{α}) (safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).

• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β}) (dominance).

Proof.

• This is satisfied as safe formula independence follows from free
formula independence, cf. (Hunter and Konieczny, 2010; Thimm,
2013b).

• Let H be a hitting set of K with minimal cardinality. So, for every
α ∈ K we have ω ∈ H with ω |= α. Due to α ≡ σ(α) we also have
ω |= σ(α) and, thus for very β ∈ K′ we have ω ∈ H with ω |= β. So
H is also a hitting set of K′. Minimality follows from the fact that σ

is a bijection.
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• Let H be a minimal hitting set of K1 = K ∪ {α} with minimal car-
dinality and let ω ∈ H be such that ω |= α. Then we also have
that ω |= β and H is also a hitting set of K2 = K ∪ {β}. Hence,
Ihs(K1) ≥ Ihs(K2).

Proposition 5. For every knowledge base K

Ihs(K) = min{|Φ| | Φ is a consistent partitioning of K}− 1

with min ∅ = ∞ for every K ∈ K \ {∅} and Ihs(∅) = 0.

Proof. For K = ∅ and the case that K contains φ with φ |=⊥, the statement
is trivially satisfied so assume K 6= ∅ and that K does not contain an
inconsistent formula. Let Φ = {Φ1, . . . , Φn} be a consistent partitioning
with |Φ| being minimal and let ωi ∈ Int(At) be such that ωi |= Φi (for
i = 1, . . . , n). Observe that ωi 6= ωj for all i 6= j, otherwise Φi ∪Φj would
have a model ωi = ωj and Φ′ = Φ \ {Φi, Φj} ∪ {Φi ∪ Φj} would be a
consistent partitioning with |Φ′| < |Φ|. Then H = {ω1, . . . , ωn} is a hitting
set of K and we have Ihs(K) ≤ |Φ| − 1. Let now H = {ω1, . . . , ωn} be a
hitting set of K with |H| being minimal. Let Φ = {Φ1, . . . , Φn} be a set
such that φ ∈ Φi implies ωi |= φ for every φ ∈ K (note that there may be
multiple partitionings satisfying this property but they all have the same
cardinality). Note that Φ is a partitioning of K and that Φi is consistent for
every i = 1, . . . , n. It follows Ihs(K) ≥ |Φ| − 1 and therefore the claim.

Proposition 6. Let K be a knowledge base. If ∞ > Ihs(K) > 0 then

Iη(K) ≤ 1− 1
Ihs(K) + 1

Proof. Let H be a minimal hitting set of K with minimal cardinality, i. e., we
have Ihs(K) = |H| − 1. Define a probability function P : Int(At)→ [0, 1] via
P(ω) = 1/|H| for every ω ∈ H and P(ω′) = 0 for every ω′ ∈ Int(At) \ H
(note that P is indeed a probability function). As H is a hitting set of
K we have that P(φ) ≥ 1/|H| for every φ ∈ K as at least one model
of φ gets probability 1/|H| in P. So we have Iη(K) ≤ 1 − 1/|H| =
1− 1/(Ihs(K) + 1).

Proposition 7. There is no subsumption relation between Ihs and any I ∈
{IMI, IMIc , Ic, Iη}.
Proof.

1. Ihs 6v IMI: Consider the knowledge bases K1 and K2 given as

K8 = {a ∧ b,¬a ∧ b, a ∧ ¬b}
K9 = {a, b, c,¬a ∧ ¬b ∧ ¬c}

Then we have Ihs(K9) = 1 < 2 = Ihs(K8) but IMI(K9) = 3 =
IMI(K8).
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2. IMI 6v Ihs: Consider the knowledge bases K4 and K10 given as

K4 = {a,¬a}
K10 = {a,¬a ∧ ¬b, b}

Then we have IMI(K4) = 1 < 2 = IMI(K10) but Ihs(K4) = 1 =
Ihs(K10).

3. Ihs 6v IMIc : For the knowledge bases from item 1.) we also have
IMI(K8) = 1.5 = IMI(K9).

4. IMIc 6v Ihs: For the knowledge bases from item 2.) we also have
IMIc(K4) = 1/2 < 1 = IMIc(K10).

5. Ihs 6v Ic: see Example 6.

6. Ic 6v Ihs: see Example 6.

7. Ihs 6v Iη : Consider the knowledge bases K4 and K11 given as

K4 = {a,¬a}
K11 = {(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c),

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c),

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ c),

(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c),

(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c),

(a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c),

(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c),

(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c),

(a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c),

(a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c)}

Then we have Ihs(K4) = 1 < 2 = Ihs(K11) but Iη(K4) = 1/2 >
2/5 = Iη(K11). Let us discuss K11 a bit more. Consider the five
interpretations ω1, . . . , ω5 of the propositional signature At = {a, b, c}
defined via

ω1 = abc

ω2 = abc

ω3 = abc

ω4 = abc

ω5 = abc

Then K11 comprises of formulas φ that are satisfied by exactly three
out of these five interpretations (and for each 3-element subset of
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{ω1, . . . , ω5} there is exactly one corresponding formula). It follows
that a probability function P assigning probability 1/5 to each of
these five interpretations (and zero to the remaining interpretations)
yields P(φ) = 3/5 for each φ ∈ K2 (and this is maximal), thus
yielding Iη(K11) = 1 − 3/5 = 2/5. Further, any 3-element subset
of {ω1, . . . , ω5} is also a hitting set of K11: as every φ ∈ K2 is satisfied
by exactly three interpretations, one can remove any two of them
and still maintain the hitting set property. So H = {ω1, ω2, ω3} is a
hitting set and one can easily see that there is no smaller one, yielding
Ihs(K11) = |H| − 1 = 2.

8. Iη 6v Ihs: Consider the knowledge bases K4 and K12 given as

K4 = {a,¬a}
K12 = {a, b,¬a ∨ ¬b}

Then we have Iη(K12) = 1/3 < 1/2 = Iη(K4) but Ihs(K12) = 1 =
Ihs(K4).

Corollary 1. Ihs 6' IMI, Ihs 6' IMIc , Ihs 6' Ic, and Ihs 6' Iη .

Proof. This follows directly from Proposition 7 and the definition of equiv-
alence.

Proposition 8. Let I be an inconsistency measure, w ∈ N ∪ {∞}, and g an
aggregation function.

1. If w is finite then J w,g
I is not an approximation of I .

2. J w,g
I (SK, i) ≤ I(K) for every K ∈ K and i ∈N.

3. If w = ∞ and g(x, y) ≥ (x + y)/2 then J w,g
I is an approximation of I .

Proof.

1. Assume K is a minimal inconsistent set with |K| > w. Then
I(Smax{0,i−w},i) = 0 for all i > 0 (as every subset of K is consistent)
and J w,g

I (S , i) = 0 for all i > 0 as well. As I is an inconsistency
measure I(K) > 0 and, hence, J w,g

I does not approximate I .

2. This follows from the fact that I is a basic inconsistency measure and
therefore satisfies I(K) ≤ I(K′) for K ⊆ K′.

3. If w = ∞ there is i0 ∈ N such that I(Smax{0,i−w},i) = I(K) for
all i > i0. Due to item 2 above (all previous values estimated the
inconsistency value from below) and as g(x, y) > (x + y)/2 (in each
step the new value is the average of the previous value and the actual
inconsistency value) the value I(K) will be approximated by J w,g

I
eventually.
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Proposition 9. For every p ∈ [0, 1), g some aggregation function with g(x, y) ≥
(x+ y)/2, f : N→ [0, 1] a null-bound function, andK ∈ K there is m ∈N such
that with probability greater or equal p it is the case that limi→∞ J m,g, f

hs (SK, i) =
Ihs(K).

Proof. Let p ∈ [0, 1), g some aggregation function with g(x, y) ≥ (x +
y)/2, f : N → [0, 1] a null-bound function, and K ∈ K. Let H =
{ω1, . . . , ωh} ⊆ Int(At) be a hitting set of K such that Ihs(K) = |H| − 1.
Consider the evolution of a single candidate set during the iterated exe-
cution of updatem,g, f

hs ( f orm). If K contains a contradictory formula then
lines 2–5 ensure that the return value of Algorithm 2 is always ∞ and thus
the claim holds trivially. We now assume that K contains no contradictory
formula.

Let C0 = ∅ be the initial candidate set and let Ci for i ∈ N denote the
candidate set after iteration i. In the first iteration, C0 does not contain any
interpretations yet, so lines 9 and 10 of Algorithm 2 are vacuous. As the
condition in line 11 evaluates to true, we add some interpretation to C0. As
H is a hitting set of K there is ω ∈ H with ω ∈ Mod( f orm). The probability
of choosing ω in line 12, so the probability of C0 evolving to C1 = {ω},
is p0 = 1/|Mod( f orm)| > 0. In the second iteration, the probability q1
that line 10 is not executed is greater than zero (as f is bounded by 1 and
the condition involves a strictly less comparison). Assume that ω 6|= f orm
(otherwise simply continue with the next formula in the next iteration).
Then, again, there is ω′ ∈ H with ω′ |= f orm and the probability of
choosing ω′ in line 12 is 1/|Mod( f orm)| > 0. Therefore, the probability
of C0 evolving through C1 to C2 = {ω, ω′} is p1 = p0q1/|Mod( f orm)| > 0.
It follows that the probability of C0 evolving to Ch = H in its h-th iteration
is strictly greater than zero. Note that beginning in the h+ 1-th iteration the
condition in line 11 is not satisfied anymore and that Ci = Ci+1 for every
i > h with positive probability as well as there is a positive probability that
line 10 will not be executed (with increasing probability over the iterations
as f is a null-bound function). So for every candidate set C ∈ Cand there is
a positive probability p̂ that C evolves to H and does not change anymore
thereafter.

In general, observe that every candidate set C ∈ Cand evolves into a hit-
ting set of K as the probability of executing line 10 becomes zero eventually
and lines 11 and 12 ensure that every formula in K has a model in C. Fur-
thermore, each evolution of a candidate set C ∈ Cand is an independent
random process. So for |Cand| = m the probability that at least one ele-
ment of Cand evolves to H in the above described manner is 1− (1− p̂)m

(here (1− p̂)m is the probability that none of the candidate sets evolve to
H). Observe that 1− (1− p̂)m, due to p̂ > 0, is monotonously increasing
in m with limm→∞ 1− (1− p̂)m = 1. Therefore we can choose m̂ such that
1− (1− p̂)m̂ ≥ p ∈ [0, 1) and with probability at least p the set of candidate
sets Cand with |Cand| = m̂ contains at least one candidate set that evolves
to H. Let C0, C1, . . . , Ch, Ch+1, . . . be the evolution of this candidate set with
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C0 ⊆ C1 . . . ⊆ Ch = Ch+1 = . . . with Ch = H. It follows that the variable
newValue has never a value larger than |H| − 1 whenever line 14 is exe-
cuted. As currentValue is initialized with 0 it also follows that currentValue
has never a larger value than |H| − 1 in line 15, as g is an aggregation
function.

Consider now an iteration step i where all candidate sets in Cand have
stabilized and do not change thereafter. Then newValue always has the
value |H| − 1 in line 14. If at iteration step i currentValue has already the
value |H| − 1 then the value of currentValue is not changed (as g is an
aggregation function). Then we have that the return value of Algorithm 2

in line 15 is always |H| − 1 = Ihs(K) and therefore limi→∞ J m,g, f
hs (SK, i) =

Ihs(K). If at iteration step i currentValue has a value α0 < |H| − 1 then
observe that currentValue is updated to some value α1 ≥ (α0 +(|H| − 1))/2
with α1 ≤ |H| − 1 (as g is an aggregation function). In subsequent iterations
this value is updated while satisfying αj ≥ (αj+1 + (|H| − 1))/2 with αj ≤
|H| − 1 which converges to |H| − 1 and thus proves the claim.

Proposition 10. For every p ∈ [0, 1), g some aggregation function with
g(x, y) ≥ (x + y)/2, f : N → [0, 1] a null-bound function, and K ∈ K

there is m ∈ N such that with probability greater or equal p it is the case that
limi→∞ J m,g, f

c (SK, i) = Ic(K).

Proof. Let p ∈ [0, 1), g some aggregation function with g(x, y) ≥ (x + y)/2,
f : N→ [0, 1] a null-bound function, and K ∈ K. Let υ̂ : At→ {T, F, B} be
a three-valued interpretation of the atoms appearing in K such that υ̂ |=3 K
and Ic(K) = |υ̂−1(B)| = t. Consider the evolution of a single three-valued
interpretation υ ∈ Cand during the iterated execution of updatem,g, f

c ( f orm).
Let υ0 be the initial interpretation with υ−1(B) = ∅ set and let υi for

i ∈N denote the interpretation after iteration i. As f is null-bound there is
an iteration k > 0 from which on line 6 is not executed anymore. Further-
more, observe that lines 7–13 ensure that υ is changed in such a way that it
satisfies the formula f orm. Note that once we are in an iteration k′ ≥ k and
υ satisfies all formulas in K lines 7–13 will also not be executed anymore.
Consequently, the evolution of υ always converges at some iteration l > 0
and υl satisfies all formulas in K. Similarly to the analysis in the proof
of Proposition 9 the probability of υ evolving to υ̂, i. e., υl = υ̂, is strictly
greater than zero (albeit potentially quite small). In particular, the probabil-
ity p̂ of the evolution υ0, υ1, . . . , υt, . . . with |υ−1

0 (B)| = 0,|υ−1
1 (B)| = 1,. . . ,

|υ−1
t (B)| = t, and υj+1 = υj = υ̂ for all j ≥ t is strictly greater zero. So

for |Cand| = m the probability that at least one element of Cand evolves
to υ̂ in the above described manner is 1− (1− p̂)m (here (1− p̂)m is the
probability that none of the interpretations evolve to υ̂). Therefore we can
choose m̂ such that 1− (1− p̂)m̂ ≥ p ∈ [0, 1) and with probability at least
p the set Cand with |Cand| = m̂ contains at least one interpretation that
evolves to υ̂. It follows that the variable newValue has never a value larger
than t whenever line 15 is executed. As currentValue is initialized with 0 it
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also follows that currentValue has never a larger value than t in line 16, as
g is an aggregation function.

Consider now an iteration step i where all interpretations in Cand have
stabilized and do not change thereafter. Then newValue always has the
value t in line 15. If at iteration step i currentValue has already the value
t then the value of currentValue is not changed (as g is an aggregation
function). Then we have that the return value of Algorithm 4 in line 16 is
always t = Ic(K) and therefore limi→∞ J m,g, f

c (SK, i) = Ic(K). If at itera-
tion step i currentValue has a value α0 < t then observe that currentValue is
updated to some value α1 ≥ (α0 + t)/2 with α1 ≤ t (as g is an aggregation
function). In subsequent iterations this value is updated while satisfying
αj ≥ (αj+1 + t))/2 with αj ≤ t which converges to t and thus proves the
claim.
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Abstract

We survey recent approaches to inconsistency measurement in proposi-
tional logic and provide a comparative analysis in terms of their expressivity.
For that, we introduce four different expressivity characteristics that quanti-
tatively assess the number of different knowledge bases that a measure can
distinguish. Our approach aims at complementing ongoing discussions on
rationality postulates for inconsistency measures by considering expressiv-
ity as a desirable property. We evaluate 16 different measures on the pro-
posed characteristics and conclude that the distance-based measure IΣ

dalal
from (Grant and Hunter, 2013) and the proof-based measure IPm from (Jab-
bour and Raddaoui, 2013) have maximal expressivity along all considered
characteristics. In our study, we discovered several interesting relationships
of inconsistency measurement to e. g. set theory and Boolean functions and
we also report on these findings.

1 introduction

Inconsistency measurement is about the quantitative assessment of the
severity of inconsistencies in knowledge bases. Consider the following two
knowledge bases K1 and K2 formalised in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we have {a,¬a∧
¬b} |=⊥ and for K2 we have, e. g., {a,¬a} |=⊥. These inconsistencies
render the whole knowledge bases useless for reasoning if one wants to
use classical reasoning techniques. In order to make the knowledge bases
useful again, one can either rely on non-monotonic/paraconsistent reason-
ing techniques (Makinson, 2005; Priest, 1979) or one revises the knowledge
bases appropriately to make them consistent (Hansson, 2001). Looking at
the knowledge bases K1 and K2 one can observe that the severity of their in-
consistency is different. InK1, only two out of four formulas (a and ¬a∧¬b)
are “participating” in making K1 inconsistent while for K2 all formulas con-
tribute to its inconsistency. Furthermore, for K1 only two propositions (a
and b) are conflicting and using e. g. paraconsistent reasoning one could
still infer meaningful statements about c and d. For K2 no such statement

97
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can be made. This leads to the assessment that K2 should be regarded more
inconsistent than K1.

Inconsistency measures can be used to analyse inconsistencies and to
provide insights on how to repair them. An inconsistency measure I is
a function on knowledge bases, such that the larger the value I(K) the
more severe the inconsistency in K. A lot of different approaches of incon-
sistency measures have been proposed, mostly for classical propositional
logic (Hunter and Konieczny, 2004, 2008, 2010; Ma et al., 2009; Mu et al.,
2011a; Xiao and Ma, 2012; Grant and Hunter, 2011, 2013; McAreavey et al.,
2014; Jabbour et al., 2014b), but also for classical first-order logic (Grant
and Hunter, 2008), description logics (Ma et al., 2007; Zhou et al., 2009), de-
fault logics (Doder et al., 2010), and probabilistic and other weighted logics
(Ma et al., 2012; Thimm, 2013b; Potyka, 2014). Due to this plethora of in-
consistency measures it is hard to determine which measure to use for an
application and which measure is meaningful. Rationality postulates have
been proposed that address the issue of assessing the quality of a measure—
see e. g. (Hunter and Konieczny, 2006; Mu et al., 2011a)—but many of these
properties have been criticised to address only a specific point of view, see
(Besnard, 2014) for a recent discussion on this topic.

In this paper, we take a different perspective on the evaluation of incon-
sistency measures by considering a quantitative analysis of their expressivity,
that is, we study how many different (inconsistent) knowledge bases can
be distinguished by a given inconsistency measure. By the term expressivity
we here refer to the property of a semantical concept—here, an inconsis-
tency measure—and its capability to distinguish syntactical constructs—
here, knowledge bases—, similarly as it has been done for the analysis of
expressivity of semantics for other logical languages, see e. g. skepticism
relations for formal argumentation (Baroni and Giacomin, 2008). Our anal-
ysis is meant to complement the study on rationality postulates and is, of
course, not meaningful on its own as the compliance of measures with the
basic intuitions behind inconsistency measures can only be assessed by ra-
tionality postulates. However, we introduce expressivity of inconsistency
measures as an additional method to evaluate their quality. In particular,
we propose four different expressivity characteristics that quantify the rela-
tion between the number of different values of an inconsistency measure
wrt. different notions of the size of the knowledge base, such as number of
formulas or number of propositions. We conduct a thorough comparative
analysis of 16 different inconsistency measures from the literature (Hunter
and Konieczny, 2008, 2010; Grant and Hunter, 2011; Knight, 2002; Thimm,
2016; Grant and Hunter, 2013; Mu et al., 2011a; Jabbour and Raddaoui, 2013;
Xiao and Ma, 2012; Doder et al., 2010) and classify these measures in a hi-
erarchy of expressivity. In our study, we made several interesting obser-
vations, such as the relation between the measure IMI (Grant and Hunter,
2011) and Sperner families (Sperner, 1928) and of the measure IMIC (Grant
and Hunter, 2011) with profiles of Boolean functions. One of our results
is that the distance-based measure IΣ

dalal from (Grant and Hunter, 2013)
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and the proof-based measure IPm from (Jabbour and Raddaoui, 2013) have
maximal expressivity along all considered characteristics.

In summary, the contributions of this paper are as follows:

1. We conduct a focused survey of 16 inconsistency measures from the
recent literature (Section 3).

2. We propose four different expressivity characteristics, evaluate the
considered inconsistency measures wrt. these characteristics, and
study our findings (Section 4).

3. We classify the evaluated measures into hierarchies of expressivity
and thus provide a means to quantitatively compare different mea-
sures (Section 5).

We give necessary preliminaries in Section 2 and provide a summary in
Section 5. 6 contains proofs of technical results and 6 lists all example
knowledge bases and families of knowledge bases used in the paper. All
inconsistency measures discussed in this paper have been implemented and
an online interface to try out these measures is available1.

2 preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set
of propositions, and let L(At) be the corresponding propositional language
constructed using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At).
Let K be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set
of propositions appearing in X. Semantics to a propositional language is
given by interpretations and an interpretation ω on At is a function ω : At→
{true, false}. Let Int(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) a proposition a ∈ At, denoted by
ω |= a, if and only if ω(a) = true. The satisfaction relation |= is extended
to formulas in the usual way.

As an abbreviation we sometimes identify an interpretation ω with its
complete conjunction, i. e., if a1, . . . , an ∈ At are those propositions that are
assigned true by ω and an+1, . . . , am ∈ At are those propositions that are
assigned false by ω we identify ω by a1 . . . anan+1 . . . am (or any permutation
of this). For example, the interpretation ω1 on {a, b, c} with ω(a) = ω(c) =
true and ω(b) = false is abbreviated by abc.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every
φ ∈ Φ. Define furthermore the set of models Mod(X) = {ω ∈ Int(At) |
ω |= X} for every formula or set of formulas X. If Mod(X) = ∅ we also
write X |=⊥ and say that X is inconsistent.

1 http://tweetyproject.org/w/incmes/

http://tweetyproject.org/w/incmes/
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3 inconsistency measures

Let R∞
≥0 be the set of non-negative real values including ∞. Inconsistency

measures are functions I : K → R∞
≥0 that aim at assessing the severity

of the inconsistency in a knowledge base K, cf. (Grant and Hunter, 2011).
The basic idea is that the larger the inconsistency in K the larger the value
I(K) and I(K) = 0 if and only if K is consistent. However, inconsistency
is a concept that is not easily quantified and there have been a couple
of proposals for inconsistency measures so far, in particular for classical
propositional logic, see e. g. (Besnard, 2014; McAreavey et al., 2014; Jabbour
et al., 2014b; Hunter et al., 2014) for some recent works. We selected 16

inconsistency measures from the literature in order to conduct our analysis
on expressivity, taken from (Hunter and Konieczny, 2008, 2010; Grant and
Hunter, 2011; Knight, 2002; Thimm, 2016; Grant and Hunter, 2013; Mu et
al., 2011a; Jabbour and Raddaoui, 2013; Xiao and Ma, 2012; Doder et al.,
2010). We briefly introduce these measures in this section for the sake of
completeness, but we refer for a detailed explanation to the corresponding
original papers.

To illustrate the different inconsistency measures we will use the knowl-
edge bases K1 and K2 from the introduction as running examples.

Example 1. Let At = {a, b, c, d} and define knowledge bases K1 and K2 as
follows:

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

A summary of the formal definitions of the considered inconsistency
measures can be found in Table 1. We will discuss these measures in more
detail below.

3.1 The drastic inconsistency measure

The basic motivation for measuring inconsistency is to provide a graded
assessment of inconsistency and not only a “consistent”/“inconsistent” as-
sessment. However, in order to evaluate more sophisticated measures and
the usefulness of rationality postulates (cf. beginning of Section 4), the dras-
tic inconsistency measure Id—that can only distinguish between consistent
and inconsistent knowledge bases—is usually used as a baseline approach,
cf. e. g. (Hunter and Konieczny, 2008).

Definition 2. The drastic inconsistency measure Id : K→ R∞
≥0 is defined as

Id(K) =
{

1 if K |=⊥
0 otherwise
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Id(K) =
{

1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) = ∑
M∈MI(K)

1
|M|

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P(α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}
ILPm(K) = Ic(K)/|At(K)|
Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)
M|

Ihs(K) = min{|H| | H is a hitting set of K}− 1

IΣ
dalal(K) = min{∑

α∈K
dd(Mod(α), ω) | ω ∈ Int(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Int(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Int(At)}

ID f (K) = 1−Π|K|i=1(1− Ri(K)/i)

IPm(K) = ∑
a∈At
|PKm (a)| · |PKm (¬a)|

Imv(K) =
|⋃M∈MI(K) At(M)|

|At(K)|
Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

Table 1: Definitions of the considered inconsistency measures

for K ∈ K.

In other words, Id(K) = 1 if and only if K is inconsistent (and 0 other-
wise).

Example 2. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
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As both K1 and K2 are inconsistent we obtain Id(K1) = Id(K2) = 1.

3.2 Inconsistency Measures based on Minimal Inconsistencies

One approach to assess the severity of inconsistency in a knowledge base
is to focus on its set of minimal inconsistent subsets. A set M ⊆ K is called
minimal inconsistent subset (MI) of K if M |=⊥ and there is no M′ ⊂ M with
M′ |=⊥. Let MI(K) be the set of all MIs of K. Informally speaking, minimal
inconsistent subsets contain the essence of the inconsistency in a knowledge
base. Every formula participating in creating an inconsistency is part of at
least one minimal inconsistent subset.

A straightforward approach to use minimal inconsistent subsets for mea-
suring inconsistency is to take their number as an indicator (Hunter and
Konieczny, 2008).

Definition 3. The MI-inconsistency measure IMI : K→ R∞
≥0 is defined as

IMI(K) = |MI(K)|

for K ∈ K.

One drawback of IMI is that it treats every inconsistent subset of K
equally. A knowledge base with one minimal inconsistent subset of size
2 has the same inconsistency value as another knowledge base with one
minimal inconsistent subset of size 10. It is usually acknowledged that a
smaller minimal inconsistent subset is more severe than a larger one, cf.
(Hunter and Konieczny, 2008). The MIc inconsistency measure takes this into
account and is defined as follows.

Definition 4. The MIc-inconsistency measure IMIC : K→ R∞
≥0 is defined as

IMIC(K) = ∑
M∈MI(K)

1
|M|

for K ∈ K.

In other words, for every minimal inconsistent subset M of K, 1/|M| is
added up in order to obtain IMIC(K). In this way, larger minimal inconsis-
tent subset contribute less to the overall inconsistency value than smaller
ones.

Example 3. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
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Here we have

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Therefore we obtain IMI(K1) = 1 and IMI(K2) = 2 and

IMIC(K1) =
1

|{a,¬a ∧ ¬b}| =
1
2

IMIC(K2) =
1

|{a,¬a}| +
1

|{b,¬b}| = 1

The measure IMIC has been further extended in (Mu et al., 2011a) where
not only the sizes of the different minimal inconsistent subsets but also their
distribution in a knowledge base has been considered. For every knowledge
base K and i = 1, . . . , |K|, define

MI(i)(K) = {M ∈ MI(K) | |M| = i}
CN(i)(K) = {C ⊆ K | |C| = i ∧ C 6|=⊥}

That is, MIi(K) is the set of minimal inconsistent subsets of K of size i and
CN(i)(K) is the set of consistent subsets of K of size i. Furthermore define

Ri(K) =
{

0 if |MI(i)(K)|+ |CN(i)(K)| = 0
|MI(i)(K)|/(|MI(i)(K)|+ |CN(i)(K)|) otherwise

for i = 1, . . . , |K|. The value Ri(K) thus gives the ratio of minimal incon-
sistent sets of size i to the number of minimal inconsistent and consistent
subsets of size i. Obviously, if for two knowledge bases K and K′, a value
Ri(K) is larger than Ri(K′) (for some i and everything else being equal)
than K should be regarded more inconsistent than K′. The idea of the ap-
proach of (Mu et al., 2011a) is to weigh these values also wrt. the sizes, i. e.,
a large Ri(K) has more impact than a large Rj(K), with j > i.

Definition 5. The D f -inconsistency measure ID f : K→ R∞
≥0 is defined as

ID f (K) = 1−Π|K|i=1(1− Ri(K)/i)

for K ∈ K.

Note that the above definition of ID f represents only a single instance of
the family introduced in (Mu et al., 2011a). Other variants can be obtained
by other ways of aggregating the values R1(K), . . . , R|K|(K).
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Example 4. We continue Example 3 and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then we have

MI(2)(K1) = {{a,¬a ∧ ¬b}} and MI(i)(K1) = ∅ for i 6= 2

MI(2)(K2) = {{a,¬a}, {b,¬b}} and MI(i)(K2) = ∅ for i 6= 2

Furthermore, we have

CN(1)(K1) = {{a}, {b ∨ c}, {¬a ∧ ¬b}, {d}}
CN(2)(K1) = {{a, b ∨ c}, {a, d}, {b ∨ c,¬a ∧ ¬b}, {b ∨ c, d}, {¬a ∧ b, d}}
CN(3)(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
CN(4)(K1) = ∅

and

CN(1)(K2) = {{a}, {¬a}, {b}, {¬b}}
CN(2)(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}
CN(3)(K2) = ∅

CN(4)(K2) = ∅

yielding

R1(K1) = 0 R2(K1) = 1/6 R3(K1) = 0 R4(K1) = 0

and

R1(K2) = 0 R2(K2) = 2/6 R3(K2) = 0 R4(K2) = 0

Finally, we obtain

ID f (K1) = 1− (1− R1(K1))(1− R2(K1)/2)(1− R3(K1)/3)(1− R4(K1)/4)

=
1

6 · 2 =
1
12

ID f (K2) = 1− (1− R1(K2))(1− R2(K2)/2)(1− R3(K2)/3)(1− R4(K2)/4)

=
2

6 · 2 =
1
6

Another simple approach for utilizing minimal inconsistent subsets is
to use the number of formulas occurring in some minimal inconsistent
subsets—that is, the number of problematic formulas—as the inconsistency
value, cf. e. g. (Grant and Hunter, 2011).
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Definition 6. The problematic inconsistency measure Ip : K→ R∞
≥0 is defined

as

Ip(K) = |
⋃

M∈MI(K)
M|

for K ∈ K.

Example 5. We continue Example 3 and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then Ip(K1) = 2 and Ip(K2) = 4.

3.3 Inconsistency Measures based on Maximal Consistency

Another family closely related to the family of measures based on minimal
inconsistent subsets is the one based on maximal consistent subsets. Let
MC(K) be the set of maximal consistent subsets of K, i. e.

MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}

Note, that a maximal consistent subset can be obtained by removing one
formula from each minimal inconsistent subset from the knowledge base.
Thus, the number of maximal consistent subsets and the number of mini-
mal inconsistent sets correlate.

Furthermore, let SC(K) be the set of self-contradictory formulas of K,
i. e.

SC(K) = {φ ∈ K | φ |=⊥}

An inconsistency measure that takes both maximal consistent subsets and
self-contradictory formulas into account can be defined as follows, cf. e. g.
(Grant and Hunter, 2011).

Definition 7. The MC-inconsistency measure Imc : K→ R∞
≥0 is defined as

Imc(K) = |MC(K)|+ |SC(K)| − 1

for K ∈ K.

Note that the subtraction of 1 in the definition of Imc is to ensure
that a consistent knowledge base has inconsistency value 0 (a consis-
tent knowledge base has one maximal consistent subset, itself, and no
self-contradictory formulas).

Another approach utilizing the idea of maximum consistency is the ap-
proach of (Doder et al., 2010).
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Definition 8. The nc-inconsistency measure Inc : K→ R∞
≥0 is defined as

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

for K ∈ K.

In other words, the inconsistency of K is assessed by seeking a maximal
value n ∈ {1, . . . , |K|} such that all subsets of size n of K are consistent.
The larger this value n, the smaller the inconsistency. Note that the above
definition of Inc differs from the original definition in (Doder et al., 2010)
(where only the max-term was considered) in order to ensure that consis-
tent knowledge bases receive a value of zero and the inconsistency value
increases with increasing inconsistency.

Example 6. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Here we have

MC(K1) = {{a, b ∨ c, d}, {b ∨ c,¬a ∧ ¬b, d}}
MC(K2) = {{a, b}, {a,¬b}, {¬a, b}, {¬a,¬b}}

and SC(K1) = SC(K2) = ∅. Therefore we obtain

Imc(K1) = 1

Imc(K2) = 3

Furthermore, note that for both K1 and K2 we can find subsets of size 2

that are inconsistent: {a,¬a ∧ ¬b} for K1 and {a,¬a} for K2. Furthermore,
all one-element subsets of K1 and K2 are consistent, respectively. Therefore,
we obtain

Inc(K1) = 3

Inc(K2) = 3

3.4 Probabilistic Inconsistency Measures

One of the first approaches to measuring inconsistency is Knight’s measure
Iη , which is based on probability functions over the underlying proposi-
tional language (Knight, 2002). Recall that Int(At) is the set of interpreta-
tions of the propositional language L(At). A probability function P on L(At)
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is a function P : Int(At) → [0, 1] with ∑ω∈Int(At) P(ω) = 1. We extend P to
assign a probability to any formula φ ∈ L(At) by defining

P(φ) = ∑
ω|=φ

P(ω)

Let P(At) be the set of all those probability functions. The idea of (Knight,
2002) is to seek a probability function that maximizes the probability of each
formula of a knowledge base K. If we can find a probability function that
assigns probability 1 to each formula this means that the knowledge base is
consistent. If the knowledge base is inconsistent, then the probability mass
must be distributed (recall that an inconsistent set of formulas cannot be
satisfied by a single interpretation ω; thus the probability P(ω) can only
be associated with a subset of this set). Therefore, the smaller the maximal
probability that can be assigned to all formulas the more inconsistent the
knowledge base.

Definition 9. The η-inconsistency measure Iη : K→ R∞
≥0 is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P(α) ≥ ξ}

for K ∈ K.

Note that we modified the definition of Iη slightly compared to the origi-
nal definition in order to ensure that consistent knowledge bases receive an
inconsistency value of zero.

Instead of seeking a probability function to maximize the probabilities
of the formulas in K, one can simplify this idea and seek only a minimal
set of interpretations that need to receive a positive probability in order to
ensure that every formula has a positive probability (Thimm, 2016). In other
words, a subset H ⊆ Int(At) is called a hitting set of K if for every φ ∈ K
there is ω ∈ H with ω |= φ. Focusing only on minimizing the number of
interpretations needed to form a hitting set we can define another measure
as follows.

Definition 10. The hitting-set inconsistency measure Ihs : K→ R∞
≥0 is defined

as

Ihs(K) = min{|H| | H is a hitting set of K}− 1

for K ∈ K with min ∅ = ∞.

Note that Ihs(K) = ∞ if and only if K contains a self-contradictory
formula, i. e., α ∈ K with α |=⊥. In this case, no hitting set of K exists.
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Example 7. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Consider the probability function P1 ∈ P({a, b, c, d}) defined via

P1(abcd) = P1(abcd) = 0.5

P1(ω) = 0 for ω ∈ Int({a, b, c, d}) \ {abcd, abcd}

Then we obtain

P1(a) = P1(¬a ∧ ¬b) = 0.5

P1(b ∨ c) = P1(d) = 1

and thus P1(φ) ≥ 0.5 for all φ ∈ K1. Furthermore, there can be no
other P′ that assigns larger probability to all φ ∈ K1. Hence, we have
Iη(K1) = 1− 0.5 = 0.5. The function P1 can also be used to determine
Iη(K2) = 0.5.

The set H1 = {abcd, abcd} is also a hitting set of both K1 and K2 and
there is no smaller set that is a hitting set. Therefore we obtain Ihs(K1) =
Ihs(K2) = 1.

3.5 Variable-based Inconsistency Measures

Another approach to assess the severity of inconsistency is to take the num-
ber of propositions from At that participate in the inconsistency. The ap-
proach of (Xiao and Ma, 2012) is to take the ratio of the propositions appear-
ing in a minimal inconsistent subset wrt. the total number of propositions
as the inconsistency value.

Definition 11. The mv inconsistency measure Imv : K→ R∞
≥0 is defined as

Imv(K) =
|⋃M∈MI(K) At(M)|

|At(K)|

for K ∈ K.

In other words, Imv(K) is the ratio of the signature involved in minimal
inconsistent subsets.

Instead of utilizing minimal inconsistent subsets one can also using para-
consistent semantics to identify the part of the signature involved in incon-
sistency. In this paper, we will only consider the contension measure Ic—
cf. e. g. (Grant and Hunter, 2011)—and its normalized variant ILPm from
(Hunter and Konieczny, 2010) as representatives of this family of measures.
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α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 2: Truth tables for propositional three-valued logic (Priest, 1979).

Similar approaches relying on the same ideas can be found in e. g. (Ma et
al., 2007, 2011).

The contension measure Ic utilizes three-valued interpretations for
propositional logic (Priest, 1979). A three-valued interpretation υ on At is
a function υ : At → {T, F, B} where the values T and F correspond to the
classical true and false, respectively. The additional truth value B stands for
both and is meant to represent a conflicting truth value for a proposition.
The function υ is extended to arbitrary formulas as shown in Table 2.
Then, an interpretation υ satisfies a formula α, denoted by υ |=3 α if either
υ(α) = T or υ(α) = B. Then inconsistency can be measured by seeking an
interpretation υ that assigns B to a minimal number of propositions.

Definition 12. The contension inconsistency measure Ic : K→ R∞
≥0 is defined

as

Ic(K) = min{|υ−1(B)| | υ |=3 K}

for K ∈ K.

In (Hunter and Konieczny, 2010) a variant ILPm of this measure was
defined that further normalizes the inconsistency value by the number of
propositions appearing in K.

Definition 13. The normalized contension inconsistency measure ILPm : K →
R∞
≥0 is defined as

ILPm(K) =
Ic(K)
|At(K)|

for K ∈ K.
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Example 8. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

and recall

MI(K1) = {{a,¬a ∧ ¬b}}
MI(K2) = {{a,¬a}, {b,¬b}}

Then we have

Imv(K1) =
|{a, b}|
|{a, b, c, d}| = 1/2

Imv(K2) =
|{a, b}|
|{a, b}| = 1

Furthermore, consider υ1 : {a, b, c, d} → {T, F, B} defined via

υ1(a) = B υ1(b) = F υ1(c) = υ1(d) = T

Then υ1 |=3 φ for all φ ∈ K1 and there is no other υ′ that assigns B
to fewer propositions, yielding Ic(K1) = 1 and ILPm(K1) = 1/4. For
υ2 : {a, b} → {T, F, B} defined via

υ2(a) = υ2(b) = B

we have υ2 |=3 φ for all φ ∈ K2 and there is no other υ′ that assigns B to
fewer propositions, yielding Ic(K2) = 2 and ILPm(K2) = 2/2 = 1.

3.6 Distance-based Inconsistency Measures

In (Grant and Hunter, 2013) three families of inconsistency measures are
defined that are based on a notion of distance to consistency. More precisely,
an interpretation distance d is a function d : Int(At)× Int(At) → [0, ∞) that
satisfies (let ω, ω′, ω′′ ∈ Int(At))

1. d(ω, ω′) = 0 if and only if ω = ω′ (reflexivity),

2. d(ω, ω′) = d(ω′, ω) (symmetry), and

3. d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) (triangle inequality).

One prominent example of such a distance is the Dalal distance dd defined
via

dd(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}|
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for all ω, ω′ ∈ Int(At). In other words, dd(ω, ω′) is the number of proposi-
tions where ω and ω′ assign different truth values. If X ⊆ Int(At) is a set
of interpretations we define dd(X, ω) = minω′∈X dd(ω

′, ω) (if X = ∅ we
define dd(X, ω) = ∞). While (Grant and Hunter, 2013) consider arbitrary
distances, we will focus here on the Dalal distance for reasons of simplicity.

The basic idea of the approaches in (Grant and Hunter, 2013) is to mea-
sure and aggregate the distances of the models of the formulas in a knowl-
edge base K. For example, if a knowledge base K has two formulas and
their models have a large distance to each other, then K should be regarded
as more inconsistent compared to a knowledge base K′ with two formulas,
where this is not the case. More precisely, the first approach from (Grant
and Hunter, 2013) considered here seeks an interpretation ω such that the
sum of all distances of the sets of models to ω is minimal.

Definition 14. The Σ-distance inconsistency measure IΣ
dalal : K → R∞

≥0 is
defined as

IΣ
dalal(K) = min

{
∑

α∈K
dd(Mod(α), ω) | ω ∈ Int(At)

}

for K ∈ K.

Another approach of (Grant and Hunter, 2013) is to seek an interpretation
ω such that the maximum distance of the sets of models is minimal.

Definition 15. The max-distance inconsistency measure Imax
dalal : K → R∞

≥0 is
defined as

Imax
dalal(K) = min

{
max
α∈K

dd(Mod(α), ω) | ω ∈ Int(At)

}
for K ∈ K.

The final approach of (Grant and Hunter, 2013) is to minimize the num-
ber of formulas, where their corresponding sets of models have a positive
distance.

Definition 16. The hit-distance inconsistency measure Ihit
dalal : K → R∞

≥0 is
defined as

Ihit
dalal(K) = min {|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Int(At)}

for K ∈ K.

Example 9. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
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Observe that for the interpretation ω1 = abcd ∈ Int({a, b, c, d}) we have

dd(Mod(a), ω1) = 0

dd(Mod(b ∨ c), ω1) = 0

dd(Mod(¬a ∧ ¬b), ω1) = 1

dd(Mod(d), ω1) = 0

and therefore ∑α∈K1
dd(Mod(α), ω1) = 1. There is no other interpretation

ω′ with a smaller total distance, so we have IΣ
dalal(K1) = 1. Furthermore,

we have maxα∈K1 dd(Mod(α), ω1) = 1 and there is also no other interpreta-
tion ω′ with a smaller maximum distance. Hence, we have Imax

dalal(K1) = 1
and similarly Ihit

dalal(K1) = 1. For K2 we obtain

IΣ
dalal(K2) = 2

Imax
dalal(K2) = 1

with a similar argumentation as above. For Ihit
dalal(K2) observe that every

interpretation ω must always falsify exactly one formula in {a,¬a} and
exactly one formula in {b,¬b}. Therefore we obtain Ihit

dalal(K2) = 2.

3.7 Proof-based Inconsistency Measures

The final measure we consider in this paper is the proof-based measure
from (Jabbour and Raddaoui, 2013). The basic idea is to count, for all
propositions x ∈ At, both the number of minimal proofs for x and its negation
¬x. If there are many proofs for both, this indicates a large inconsistency
in the knowledge base. In the context of (Jabbour and Raddaoui, 2013) a
minimal proof for α ∈ {x,¬x | x ∈ At} in K is a set π ⊆ K such that

1. α appears as a literal in π

2. π |= α, and

3. π is minimal wrt. set inclusion.

Note that this definition does not require that π is consistent. In particular,
the set {a ∧ ¬a} is a minimal proof for both a and ¬a. Note furthermore,
that item 1.) requires that α appears in the exact same form in π, e. g. a
appears in a ∧ b but not in ¬a ∧ b (this is a syntactic criterion).

Let PKm (x) be the set of all minimal proofs of x in K. The proof-based mea-
sure of (Jabbour and Raddaoui, 2013) can then be defined by summing up
the products of the number of minimal proofs for complementary literals.

Definition 17. The proof-based inconsistency measure IPm : K → R∞
≥0 is

defined as

IPm(K) = ∑
a∈At
|PKm (a)| · |PKm (¬a)|
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for K ∈ K.

Note that the definition of IPm is not the original definition but a charac-
terisation also provided in (Jabbour and Raddaoui, 2013).

Example 10. We continue Example 1 and consider

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Observe that

PK1
m (a) = {{a}}

PK1
m (¬a) = {{¬a ∧ ¬b}}
PK1

m (b) = {{a, b ∨ c,¬a ∧ ¬b}}
PK1

m (¬b) = {{¬a ∧ ¬b}}
PK1

m (c) = {{a, b ∨ c,¬a ∧ ¬b}}
PK1

m (¬c) = ∅

PK1
m (d) = {{d}}

PK1
m (¬d) = ∅

and

PK2
m (a) = {{a}}

PK2
m (¬a) = {{¬a}}
PK2

m (b) = {{b}}
PK2

m (¬b) = {{¬b}}

It follows that

IPm(K1) = 1 · 1 + 1 · 1 + 1 · 0 + 1 · 0 = 2

IPm(K2) = 1 · 1 + 1 · 1 = 2

4 expressivity characteristics

In the literature, inconsistency measures are usually analytically evaluated
on a set of rationality postulates.2 Some basic example postulates given in
(Hunter and Konieczny, 2006) are the following (let I be any inconsistency
measure)

2 Some few works also consider empirical evaluation on computational performance and
accuracy of algorithms approximating existing inconsistency measures, see e. g. (Ma et al.,
2009; McAreavey et al., 2014; Thimm, 2016)
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Consistency I(K) = 0 if and only if K is consistent

Monotony if K ⊆ K′ then I(K) ≤ I(K′)

Independence for all α ∈ K, if α /∈ M for every M ∈ MI(K) then I(K) =
I(K \ {α})

Satisfaction of the property consistency ensures that all consistent knowl-
edge bases receive a minimal inconsistency value and every inconsistent
knowledge base receives a positive inconsistency value (we already im-
plicitly required satisfaction of this postulate in the definition of an in-
consistency measure). The postulate monotony states that the value of in-
consistency can only increase when adding new information. Independence
states that removing “harmless” formulas from a knowledge base does not
change the value of inconsistency. Besides these three postulates a series of
other postulates have been proposed in the literature, see e. g. (Hunter and
Konieczny, 2006; Mu et al., 2011a; Besnard, 2014). However, some of these
postulates are disputed as each of them usually covers only a single aspect
of inconsistency, such as independence, which focuses on the role of minimal
inconsistent subsets. An excellent discussion on the rationality of various
postulates for inconsistency measures can be found in (Besnard, 2014). Be-
sides Besnard, several other authors have also criticised the rationality of
individual postulates—discussions can be found in almost all papers cited
before—and so there is some disagreement on which postulates are mean-
ingful and which are not. One the one hand this calls for more work on
rationality postulates and, on the other hand, it also suggests to investigate
additional means for comparison. In the following, we propose a novel
quantitative approach to evaluate and compare inconsistency measures that
aims at complementing the existing approach of rationality postulates.

The drastic inconsistency measure Id (see Table 1) is usually considered
as a very naive baseline approach for inconsistency measurement. Surpris-
ingly, this measure already satisfies many rationality postulates such as con-
sistency, monotony, and independence (the proofs are straightforward). What
sets it apart from other more sophisticated inconsistency measures is that it
cannot differentiate between different inconsistent knowledge bases. How-
ever, this demand is exactly what inconsistency measures are supposed to
satisfy. While the qualitative behaviour of inconsistency measures is being
discussed quite deeply using rationality postulates, their quantitative prop-
erties in terms of expressivity have been almost neglected so far.3 With ex-
pressivity of inconsistency measures we here mean the number of different
values an inconsistency measure can attain. We investigate the expressivity
of inconsistency measures along four different dimensions of subclasses of
knowledge bases.

3 Some few rationality postulates such as Attenuation (Mu et al., 2011a) are addressing this
issue only in some very limited form and from a particular point of view.
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Definition 18. Let φ be a formula. The length l(φ) of φ is recursively defined
as

l(φ) =


1 if φ ∈ At
1 + l(φ′) if φ = ¬φ′

1 + l(φ1) + l(φ2) if φ = φ1 ∧ φ2
1 + l(φ1) + l(φ2) if φ = φ1 ∨ φ2

Definition 19. Define the following subclasses of the set of all knowledge
bases K:

Kv(n) = {K ∈ K | |At(K)| ≤ n}
K f (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀φ ∈ K : l(φ) ≤ n}
Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| ≤ n}

In other words, Kv(n) is the set of all knowledge bases that mention at
most n different propositions, K f (n) is the set of all knowledge bases that
contain at most n formulas, Kl(n) is the set of all knowledge bases that
contain only formulas with maximal length n, and Kp(n) is the set of all
knowledge bases that contain only formulas that mention at most n dif-
ferent propositions each. The motivation for considering these particular
subclasses of knowledge bases is that each of them considers a different
aspect of the size of a knowledge base. As a syntactical object, a knowledge
base is a set of formulas, and both the number of formulas (considered by
the class K f (n)) and the length of each formula (Kl(n)) are the essential pa-
rameters that define its size. From a semantical point of view, the number of
propositions appearing in each formula (Kp(n)) and in the complete knowl-
edge base (Kv(n)) define the scope of the knowledge. Larger numbers for
both of them also indicate larger scope and thus greater size. Inconsistency
measures should adhere to the size of the knowledge base in terms of their
expressivity. For example, the number of possible inconsistency values of a
particular measure should not decrease when moving from a set Kv(n) to
set Kv(n′) with n′ > n, as knowledge bases with n′ formulas should pro-
vide a larger variety in terms of inconsistency as knowledge bases of size n.
Indeed, this property is true for all considered measures as Kv(n) ⊆ Kv(n′)
(the same holds for all classes above).

The aim of our expressivity analysis is to investigate the number of
different values that a specific inconsistency measure can attain on different
subclasses of knowledge bases. We formalise this idea using expressivity
characteristics as follows.

Definition 20. Let I be an inconsistency measure and n > 0. Let α ∈
{v, f , l, p}. The α-characteristic Cα(I , n) of I wrt. n is defined as

Cα(I , n) = |{I(K) | K ∈ Kα(n)}|
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In other words, Cα(I , n) is the number of different inconsistency values
I assigns to knowledge bases from Kα(n). Note that these characteristics
are not always the same as the maximal value of an inconsistency measure
on a specific set of knowledge bases, even if the codomain of the measure
is the natural numbers. Indeed, it can be the case that intermediate values
cannot be attained.

Example 11. Consider Iη which has the codomain [0, 1] as each value
Iη(K) can be associated with a probability value, cf. Table 1. In (Knight,
2002) it has already been shown that Iη(K) is always a rational number,
so
√

2/2 /∈ Im Iη .4 Furthermore, the possible values of Iη are further
constrained when considering specific subclasses from above. For example,
for every arbitrary knowledge base K which contains at most 2 formulas,
the only possible values of Iη(K) are 0, 1/2, 1, so we have C f (Iη , 2) = 3.

We now come to the main contribution of this paper, which is a thorough
study of the 16 considered inconsistency measures in terms of our four
proposed expressivity characteristics.

Theorem 1. The α-characteristics Cα(I , n) (α ∈ { f , v, l, p}) for the inconsistency
measures Id, IMI, IMIC , Iη , Ic, ILPm , Imc, Ip, Ihs, IΣ

dalal, Imax
dalal , Ihit

dalal, ID f , IPm ,
Imv, and Inc are as shown in Table 3.

The complete proof of the above theorem can be found in the appendix.
However, some of these proofs provide some interesting insights into the
behaviour of particular inconsistency measures and provide relations to
other specific mathematical branches. Therefore, we will discuss these
insights in more detail in the following subsections before we continue with
the actual discussion on comparing expressivity in Section 5.

4.1 Sperner Families and Minimal Inconsistent Sets

Many of the inconsistency measures discussed above use the notion of min-
imal inconsistent subset as a central tool for assessing the inconsistency of
a knowledge base. In its simplest implementation, the inconsistency mea-
sure IMI is defined to be exactly the number of the minimal inconsistent
subsets of a knowledge base. Accordingly, in order to determine the num-
ber C f (IMI, n) it is necessary to investigate how many different minimal
inconsistent subsets a knowledge base with n formulas may possess. This
question has already been investigated from a more abstract perspective
in set theory under the notion of Sperner families (also called independent
systems).

4 Im f is the image of a function f .
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Cv(I ,n) C f (I ,n) C l(I ,n) C p(I ,n)
Id 2 2 2∗ 2
IMI ∞ ( n

bn/2c) + 1 ∞∗ ∞
IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(( n

bn/2c))
† ∞∗∗ ∞∗

Ic n + 1 ∞ ∞∗ ∞
ILPm Φ(n) ∞ ∞∗ ∞
Imc ∞ ( n

bn/2c)
∗∗ ∞∗ ∞

Ip ∞ n + 1 ∞∗ ∞
Ihs 2n + 1 n + 1 ∞∗∗ ∞∗

IΣ
dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n + 2 ∞∗ b(n + 7)/3c∗∗ n + 2
Ihit

dalal ∞ n + 1 ∞∗ ∞
ID f ∞ ≤ Ψ(n)‡ ∞∗ ∞
IPm ∞ ∞ ∞∗ ∞
Imv n + 1 ∞∗ ∞∗ ∞
Inc ∞ n + 1 ∞∗ ∞

Table 3: Characteristics of inconsistency measures (n ≥ 1)
∗only for n > 1
∗∗only for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and
can be defined as Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|, see e. g.
http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of
n variables, see e. g. http://oeis.org/A220880

Definition 21. Let S = {S1, . . . , Sn} with n ≥ 1 be a family of sets over a
set X 6= ∅, i. e., Si ⊆ X for all i = 1, . . . , n. The family S is called a Sperner
family over X if for all S, S′ ∈ S with S 6= S′, S * S′.

In other words, S is a Sperner family if none of its elements is contained
in another. It can easily be seen that for every inconsistent knowledge base
K the set MI(K) is also a Sperner family over K: for M, M′ ∈ MI(K) with
M 6= M′ it cannot hold M ⊆ M′, otherwise M′ would not be a minimal
inconsistent set. Note that a consistent knowledge base yields MI(K) = ∅
which is not covered by the above definition.

As MI(K) is a Sperner family over K its maximal cardinality is bounded
by the maximal cardinality of any Sperner family over K. For the latter we
have the following result.

Theorem 2 ((Sperner, 1928)). Let X be a set with n = |X|.

1. There is a Sperner family Smax over X with |Smax| = ( n
bn/2c).

5

2. For every Sperner family S ′ over X, |S ′| ≤ |Smax|.
5 Smax can be constructed by taking the set of all subsets S ⊆ X with |S| = bn/2c.
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A corollary of the above theorem is that |MI(K)| ≤ ( |K|
b|K|/2c) for every

knowledge base K. Also taking into account that |MI(K)| is always a non-
negative integer we can directly entail C f (IMI, n) ≤ ( n

bn/2c)+ 1 (the addition
of 1 is due to the fact that a consistent knowledge base K yields IMI(K) = 0,
which is not covered by the above theorem).

Interestingly, the set MI(K) is not only a Sperner family, but every
Sperner family can be represented as MI(K) of some knowledge base K.
Let X = {α1, . . . , αn} be any set and let S be a Sperner family over X. Con-
sider a propositional signature At = {a1, . . . , an} where each proposition
ai ∈ At corresponds to the element αi ∈ X. Consider now a knowledge
base KSn = {φ1, . . . , φn} defined via

φi = ai ∧
∧

M∈S ,αi∈M

∨
αj∈M\{αi}

¬aj

for i = 1, . . . , n. Every φi states that ai is accepted and for each set M in S
which contains αi at least one of the other elements must not be accepted.
Thus, every φi lists the conditions under which any set containing αi does
not contain an element of the Sperner family.

Example 12. Let X = {α, β, γ, δ} be a set and consider the Sperner family
S = {S1, S2, S3} over X defined via

S1 = {β, γ, δ} S2 = {α, β} S3 = {α, γ}

Consider now the signature At = {a, b, c, d} where the proposition a corre-
sponds to α, b to β, c to γ, and d to δ. Then KS4 = {φ1, φ2, φ3, φ4} is defined
via

φ1 = a ∧ ¬b ∧ ¬c

φ2 = b ∧ (¬c ∨ ¬d) ∧ ¬a

φ3 = c ∧ (¬b ∨ ¬d) ∧ ¬a

φ4 = d ∧ (¬b ∨ ¬c)

For example, φ3 states that if some set S contains γ (c), either not β or not δ

(¬b ∨ ¬d), and not α (¬a), then S does not contain any element of S .

By construction, it follows that M = {αk1 , . . . , αkm} (for some k1, . . . , km ∈
{1, . . . , n}) is an element of the Sperner family S if and only if the set
{φk1 , . . . , φkm} is a minimal inconsistent subset of KSn = {φ1, . . . , φn}.



4 expressivity characteristics 119

Example 13. We continue Example 12 and consider S1 = {β, γ, δ} ∈ S . The
set S1 corresponds to the set {φ2, φ3, φ4} ⊆ KS4 with

φ2 = b ∧ (¬c ∨ ¬d) ∧ ¬a

φ3 = c ∧ (¬b ∨ ¬d) ∧ ¬a

φ4 = d ∧ (¬b ∨ ¬c)

As one can see {φ2, φ3, φ4} is also a minimal inconsistent subset of KS4 .
Further, the set of minimal inconsistent subsets of KS4 is indeed

MI(KS4 ) = {{φ2, φ3, φ4}, {φ1, φ2}, {φ1, φ3}}

which is in direct correspondence to S .

From these observations it follows that IMI(KSn ) = |MI(KSn )| = |S|.
Observe that if S is a Sperner family over X and S ∈ S then S \ {S} is
also a Sperner family over X (provided that it is non-empty). Then for
a set X with |X| = n and for every i = 1, . . . , ( n

bn/2c) we can define a
Sperner family Si over X with |Si| = i. This means in our setting, for every
i = 1, . . . , ( n

bn/2c) we can define a knowledge base K with |K| = n such that
IMI(K) = i. Together with the fact that 0 is also a possible value of IMI we
obtain C f (IMI, n) = ( n

bn/2c) + 1.

Furthermore, also the set of maximal consistent subsets MC(K) of a knowl-
edge base K form a Sperner family over K, which is the reason why the
value C f (Imc, n) = ( n

bn/2c) is almost the same as C f (IMI, n) (please see the

appendix for the detailed proof of C f (Imc, n) = ( n
bn/2c)).

4.2 Monotone Boolean Functions and Minimal Inconsistent Sets

Another interesting observation is the relation of the measures IMIC and
ID f with the number Ψ(n) of profiles of monotone Boolean functions of n
variables (Stephen and Yusun, 2012). Let us recall some basics on Boolean
functions.

Definition 22. A Boolean function f of n variables (n ∈ N0) is a function
f : {0, 1}n → {0, 1}.

Let B(n) be the set of all Boolean functions of n variables. It can easily be
seen that |B(n)| = 22n

.

Definition 23. A Boolean function f of n variables (n ∈ N0) is monotone if
for every i = 1, . . . , n we have

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f (x1, . . . , xi−1, 1, xi+1, . . . , xn)
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Let MB(n) be the set of all monotone Boolean functions of n vari-
ables. Obviously |MB(n)| ≤ |B(n)|. However, no closed form for
m(n) = |MB(n)|—which is also called Dedekind number6 (Dedekind,
1897)—is known and only values up to n = 8 could be determined yet,
cf. (Stephen and Yusun, 2012). The Dedekind number m(n) has also a
meaning in the context of Sperner families (see previous subsection). In
fact, m(n) is also the number of different Sperner families over a set X with
|X| = n.

For the issue of analyzing inconsistency measures, the Dedekind num-
ber m(n) itself is not directly applicable as it is somewhat syntax-sensitive.
More precisely, consider the set X = {α, β, γ} and the two Sperner families
{{α, β}} and {{β, γ}}. Each of these families count one in the Dedekind
number m(3). From the perspective of inconsistency measurement, the sets
of minimal inconsistent subsets MI(K1) = {{α, β}} and MI(K2) = {{α, γ}}
for some knowledge bases K1,K2 ∈ K f (3) are indistinguishable for all in-
consistency measures solely based on utilizing minimal inconsistent sets.
While for IMI only the number of minimal inconsistent sets is important,
even for more elaborate measures such as IMIC and ID f these sets are equiv-
alent as they coincide in both the number of minimal inconsistent sets and
the cardinalities of each of those. Recall that in order to define the measure
ID f we defined for a knowledge base K the sets

MI(i)(K) = {M ∈ MI(K) | |M| = i}

for i = 1, . . . , |K|. Given these values, we can also redefine the inconsistency
measure IMIC via

IMIC(K) =
|K|
∑
i=1

|MI(i)(K)|
i

Let us call profile(K) = (|MI(1)(K)|, . . . , |MI(|K|)(K)|) ∈ N
|K|
0 the MI-profile

of K. One can see that IMIC depends only on profile(K) and not the actual
structure of the minimal inconsistent subsets.7 However, this property
of indifference has a corresponding property in the context of Boolean
functions.

Definition 24. Two Boolean functions f1, f2 of n variables (n ∈ N0) are
equivalent, denoted by f1 ∼ f2, if there is a permutation σ : {1, . . . , n} →
{1, . . . , n} such that

f1(x1, . . . , xn) = f2(xσ(1), . . . , xσ(n))

for all x1, . . . , xn ∈ {0, 1}.
6 See also http://oeis.org/A000372

7 The same holds for ID f as an MI-profile (MI0(K), . . . , MIn(K)) also uniquely determines

the corresponding CN-profile (CN0(K), . . . , CNn(K))

http://oeis.org/A000372
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Let MB(n)/∼ be the quotient set of MB(n) wrt. ∼, i. e.

MB(n)/∼ = {[ f ]∼| f ∈ MB(n)}

where [ f ]∼ is the equivalence class (also called profile) of f , i. e., [ f ]∼ = { f ′ ∈
MB(n) | f ′ ∼ f }. Then Ψ(n) is defined as Ψ(n) = |MB(n)/∼|, i. e., Ψ(n)
is the number of profiles of monotone Boolean functions of n variables. As
for the Dedekind number m(n), no closed form for Ψ(n) is known (Stephen
and Yusun, 2012).8 However, we can observe an intriguing relationship of
this number to inconsistency measures via

Ψ(n) = |{profile(K) | K ∈ K f (n)}|

In other words, the number of different MI-profiles of knowledge bases of
size n is the same as the number of profiles of monotone Boolean functions
of n variables. In order to see this, recall that there is a one-to-one correspon-
dence of MI(K) with Sperner families. It has already been mentioned that
there is also a relationship between Sperner families and monotone Boolean
functions. More precisely, let S be any Sperner family over X = {a1, . . . , an}
and define a Boolean function fS via

fS (x1, . . . , xn) =

{
1 if ∃S ∈ S : S ⊆ {ai | xi = 1}
0 otherwise

. (5.11)

for all x1, . . . , xn ∈ {0, 1}. In other words, the function fS (x1, . . . , xn) evalu-
ates to 1 if there is a member S ∈ S such that the corresponding variables of
the elements of S are 1. Observe that fS is monotone for every Sperner fam-
ily S . Moreover, it can also be seen that for every monotone Boolean func-
tion f there is a uniquely determined Sperner family S such that f = fS .
Consider now two monotone Boolean functions f1, f2 with f1 ∼ f2. Then
these correspond to two Sperner families S1,S2 over X, where S2 can be
obtained from S1 by only permuting the elements of X. The only invariant
between the Sperner families corresponding to the functions in [ f ]∼ is the
number of sets in each, and the sizes of each set. In the context of mini-
mal inconsistent sets, this means that there is a one-to-one correspondence
between any MI-profile and an equivalence class [ f ]∼, leading to Equation
(5.11).

For the specific case of IMIC it has to be observed that the assignment of
an MI-profile to the inconsistency value is not injective, i. e., there may be
more than one MI-profile that is mapped to the same inconsistency value.

Example 14. Consider the knowledge bases K3,K4 ∈ K f (5) defined via

K3 = {a,¬a, b, c, d}
K4 = {a, b, c,¬a ∨ ¬b ∨ ¬c,¬(a ∧ b ∧ c)}

8 See also http://oeis.org/A220880.

http://oeis.org/A220880
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n C f (IMIC , n) Ψ(n)
1 2 2
2 4 4
3 7 9
4 15 25
5 43 95

Table 4: Values of C f (IMIC , n) and Ψ(n) for n = 1, . . . , 5.

Here we have

MI(K3) = {{a,¬a}}
MI(K4) = {{a, b, c,¬a ∨ ¬b ∨ ¬c}, {a, b, c,¬(a ∧ b ∧ c)}}

and therefore

profile(K3) = (0, 1, 0, 0, 0)

profile(K4) = (0, 0, 0, 2, 0)

yielding IMIC(K3) = IMIC(K4) = 1/2.

This behavior is the reason that Ψ(n) is only an upper bound for
C f (IMIC , n) in Theorem 1. As for m(n) and Ψ(n), no closed form for
C f (IMIC , n) could be found in our investigation. Using a computational
brute-force approach we could however determine the first five values for
C f (IMIC , n) (n = 1, . . . , 5) which are listed in Table 4 together with their cor-
responding upper bounds Ψ(n). The measure IMIC is quite simplistic in its
way to aggregate an MI-profile into a single inconsistency measure. A more
elaborated measure is ID f (see Definition 5) where this aggregation is more

fine-grained. For this measure, we obtain C f (IMIC , n) ≤ C f (ID f , n) ≤ Ψ(n),
i. e., ID f is more expressive than IMIC but still bounded by Ψ(n). Note
again that Definition 5 represents only a single instance of a more general
family of inconsistency measures presented in (Mu et al., 2011a). Using an
injective function h from the set of MI-profiles to real numbers one can
instantiate this family with an instance I ′D f

where we could actually have

C f (I ′D f
, n) = Ψ(n).9 In any case, Ψ(n) is always an upper bound for every

measure following the paradigm of ID f .

9 Note that injective functions of the form h : Nk → R do indeed exist for arbitrary (and
infinite) k but require complex constructions. However, it is questionable whether there
are instances that would lead to meaningful inconsistency measures.
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4.3 Knight’s Inconsistency Measure and the Farey Series

Let us now turn to another interesting relationship, namely that of the
inconsistency measure Iη (Knight, 2002) with the Farey series10,11. The latter
is defined as the series of numbers generated by the function Φ : N → N

defined via

Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|

for all x ∈ N. In other words, Φ(x) is the number of different fractional
expressions in [0, 1] with maximal denominator x (where both nominator
and denominator are natural numbers). For example, for x = 3 we have{

0
1

,
1
1

,
0
2

,
1
2

,
2
2

,
0
3

,
1
3

,
2
3

,
3
3

}
=

{
0,

1
3

,
1
2

,
2
3

, 1
}

yielding Φ(3) = 5. Let us now recall the measure Iη which is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P(α) ≥ ξ}

for every K ∈ K. So in order to determine Iη(K) we are seeking a
probability function P ∈ P(At) that maximizes the minimum probability
it assigns to formulas in K. For the remainder of this section, let PK be
any probability function that maximizes the minimum probability of all
formulas of K, i. e., we have Iη(K) = 1− ξK with ξK = min{PK(α) | α ∈
K}.

A first observation one can make about PK and Iη—which also sets it
apart from many other inconsistency measures—is that it does not care for
the syntactic representation of formulas. More precisely, for any knowledge
base K, formulas φ, φ′ with φ ≡ φ′ we have Iη(K∪ {φ}) = Iη(K∪ {φ′}) as
P(φ) = P(φ′) for every probability function. Moreover, we also have Iη(K∪
{φ}) = Iη(K ∪ {φ, φ′}) for the same reason; adding syntactic variations
of already present formulas does not change the inconsistency value. It
follows that we can identify every formula φ ∈ K with its set of models
Mod(φ) in all matters related to determining Iη(K). By abusing notation
we therefore can rewrite K as

K′ = {Mod(φ) | φ ∈ K} ⊆ P(Int(At))

where P(X) is the power set of a set X and At is the signature of the
underlying propositional language. Assume that At = {a1, . . . , an}, then
Int(At) has 2n elements and every Mod(φ) is a subset of those.

Let us first consider the question of how K′ and K could look like if we
want to have ξK′ = k/l for l ∈ {1, . . . , 2n} and k ∈ {1, . . . , l}. Consider
an arbitrary set {ω1, . . . , ωl} ⊆ Int(At) of interpretations (as l ≤ 2n there

10 See http://oeis.org/A005728 for more information on the Farey series.
11 The measure ILPm also has a relationship with the Farey series via Cv(ILPm , n) = Φ(n),

but it is quite straightforwardly explained. See the proof of Theorem 1 for details.

http://oeis.org/A005728
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are enough different interpretations) and define PK′(ω) = 1/l for all ω ∈
{ω1, . . . , ωl} and PK′(ω′) = 0 for all remaining ω′. Then PK′ is indeed a
probability function that assigns equal probability to all {ω1, . . . , ωl}. Then
define a formula φ in such a way that Mod(φ) is any k-element subset of
{ω1, . . . , ωl}. Then we obtain PK(φ) = k/l. Populating K with all φ that
can be defined as such, we obtain a knowledge base K with ξK = k/l.

Example 15. Consider the propositional signature At3 = {a1, a2, a3}, i. e.,
we have n = 3 and 2n = 8. Choose ξK′ = 5/6 (note that 6 ∈ {1, . . . , 8} and
5 ∈ {1, . . . , 6}) and consider the following 6 interpretations ω1, . . . , ω6 ∈
Int(At3):

ω1 = a1a2a3 ω2 = a1a2a3 ω3 = a1a2a3

ω4 = a1a2a3 ω5 = a1a2a3 ω6 = a1a2a3

The following sets M1, . . . , M6 are all 5-element subsets of ω1, . . . , ω6:

M1 = {ω1, ω2, ω3, ω4, ω5} M2 = {ω1, ω2, ω3, ω4, ω6}
M3 = {ω1, ω2, ω3, ω5, ω6} M4 = {ω1, ω2, ω4, ω5, ω6}
M5 = {ω1, ω3, ω4, ω5, ω6} M6 = {ω2, ω3, ω4, ω5, ω6}

Consider formulas φi with Mod(φi) = Mi for i = 1, . . . , 6. For example,
we have φ1 = a1 ∨ (a2 ∧ a3). For the knowledge base K = {φ1, . . . , φ6}
consider the probability function PK with PK(ω1) = . . . = PK(ω6) = 1/6
and P(ω) = 0 for ω ∈ Int(At3) \ {ω1, . . . ω6}. By construction we have
PK(φ1) = . . . = PK(φ6) = 5/6. Note also that there cannot be any other
probability function that gives larger probability to all formulas.

So given a signature At = {a1, . . . , an} and any l ∈ {1, . . . , 2n} and
k ∈ {1, . . . , l} we can construct a knowledge base K such that ξK = k/l
(and therefore Iη(K) = 1− k/l). This gives us Cv(Iη , n) ≥ Φ(2n).

The remaining question is whether there are numbers x ∈ [0, 1] that are
not of the form x = k/l with l ∈ {1, . . . , 2n} and k ∈ {1, . . . , l} and for
which a knowledge base K can be found such that ξK = x. Knight already
showed in (Knight, 2002) that ξK must always be a rational number in the
unit interval, so it is clear that x = p/q for some p, q ∈ N with p ≤ q. So
what about e. g. x = 1/(2n + 1)? It can be shown (see the complete proof in
the appendix) that due to combinatorial reasons a value such as 1/(2n + 1)
cannot be attained for ξK if the underlying signature has n elements. For
example, the uniform probability function P with P(ω) = 1/2n already
yields P(φ) ≥ 1/2n for every formula φ ∈ K as it has at least one model
(note that if K contains a contradictory formula we always have ξK = 0).

Although the expressivity of Iη is characterized by Φ(2n) it has to be
noted that Φ(2n) increases quite rapidly which makes Iη a quite expressive
inconsistency measure (see Section 5).
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4.4 Normal Forms for Knowledge Bases

Many proofs of statements in Theorem 1 (in particular those showing
infinite characteristics) involve the construction of particular families of
knowledge bases that exhibit extreme inconsistency values, such as for
C f (IΣ

dalal, n) = ∞ (for n > 1). Recall that IΣ
dalal is defined by determining an

interpretation ω ∈ Int(At) such that each formula φ ∈ K has minimal dis-
tance to ω (measured in the number of propositions that have to be flipped
in ω order to obtain a model of φ). Then IΣ

dalal is the sum of all these
distances.

In the proof of C f (IΣ
dalal, n) = ∞ (for n > 1) the following family of

knowledge bases Ki is used:

K1
i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai}

for i ∈ N. Note that each K1
i consists of only two formulas but the

number of mentioned propositions increases with increasing i. It can be
seen that for every interpretation ω ∈ Int(At) the sum of its distances to
both formulas amounts to exactly i, i. e., IΣ

dalal(K1
i ) = i and for i → ∞ we

obtain IΣ
dalal(K1

i )→ ∞ and thus C f (IΣ
dalal, n) = ∞.

Constructions such as the above can be used to characterize normal forms
of knowledge bases for inconsistency measures. For example, the above
family K1

i for i ∈N exhaustively describes the image of IΣ
dalal, i. e.,

Im IΣ
dalal = {IΣ

dalal(K1
0), IΣ

dalal(K1
1), IΣ

dalal(K1
2), . . .}

Note that K1
0 = ∅. Every other knowledge base can be transformed into

one of these knowledge bases while retaining its inconsistency value. While
this transformation, of course, does not maintain semantic equivalence
(even in a paraconsistent context), it can be used for illustration purposes.
In each K1

i the inconsistency is boiled down to its essential core as it is
measured by IΣ

dalal. Inspecting this normal form, instead of the original
knowledge base where the inconsistency might be obfuscated, can lead to
better understanding of the severity of the inconsistency. We leave a deeper
investigation of this matter for future work.

4.5 About the Distinction between {α, β} and {α ∧ β}

By studying Table 3 it can be observed that almost all inconsistency mea-
sures have trivial characteristic values, i. e., a value of ∞, wrt. C l and C p, and
the characteristics Cv and C f seem to be much better suited for assessing the
expressivity. The reason for this is that for many inconsistency measures
some conjunctions α ∧ β can be replaced by two distinct formulas α and β

without decreasing the inconsistency value, so large inconsistency values
can be attained by either having few long formulas or many short formulas.
As C l and C p only consider the formula-length as fixed (or the number of
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propositions per formula), arbitrary different inconsistency values can be at-
tained by considering arbitrary large knowledge bases. The only exception,
besides the drastic inconsistency measure Id, is the measure Imax

dalal. Recall
that the measure Imax

dalal is defined as the maximal distance of an optimally
chosen ω ∈ Int(At) to each formula of the knowledge base. If formulas
are short, i. e., they each mention only few propositions, this distance is
bounded, independently of the number of formulas in the knowledge base.

The important distinction between a set of formulas {α, β} and the
conjunction α ∧ β has already been recognized within e. g. the fields of
inconsistent-tolerant reasoning and belief revision (Konieczny et al., 2005;
Delgrande and Jin, 2012). For example, in the context of contracting from
a knowledge base K5 = {a, b} the inference a, the usually accepted result
should be K5 − a = {b}. However, contracting from a knowledge base
K6 = {a ∧ b} the inference a would result in K6 − a = ∅. More generally,
a conjunction α ∧ β establishes a relationship between the formulas α and
β and stipulates that they have to appear together (if one does not appear
then the other one should also not appear). For a more detailed discussion
see (Konieczny et al., 2005; Delgrande and Jin, 2012).

Our study on the characteristics C l and C p (for details see the proofs in
the appendix) shows that many inconsistency measures do not recognize
this difference and, moreover, behave quite incoherently in the general case
of adding either separate formulas or a conjunction of the formulas to a
knowledge base. Consider the following three properties for inconsistency
measures. Let I be an inconsistency measure, K ∈ K, and φ, ψ ∈ L(At) be
arbitrary.

∧-Indifference I(K ∪ {α, β}) = I(K ∪ {α ∧ β}).

∧-Penalty I(K ∪ {α, β}) ≤ I(K ∪ {α ∧ β}).

∧-Mitigation I(K ∪ {α, β}) ≥ I(K ∪ {α ∧ β}).

Note that (Besnard, 2014) proposed ∧-Indifference under the name Adjunc-
tion Invariancy as a desirable property. However, we do not aim to discuss
which (if any) of these properties may be desirable.

But interestingly, only very few of the discussed measures satisfy any of
them.

Theorem 3.

1. The measures Id, Ic, and ILPm satisfy ∧-Indifference, ∧-Penalty, and ∧-
Mitigation.

2. The measures Iη , Ihs, and Imax
dalal satisfy ∧-Penalty, but not ∧-Mitigation.

3. The measures Ihit
dalal and IPm satisfy ∧-Mitigation, but not ∧-Penalty.

4. None of the measures IMI, IMIC , Imc, Ip, IΣ
dalal, ID f , Imv, Inc satisfies any

of ∧-Indifference, ∧-Penalty, or ∧-Mitigation.
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As a consequence, the inconsistency values for many measures change
quite arbitrarily when a conjunction α ∧ β is replaced by it conjuncts α and
β.

Example 16. Consider the knowledge base K7 given via

K7 = {a,¬a}

and

MI(K7) = {{a,¬a}} (5.12)

MI(K7 ∪ {a, b}) = {{a,¬a}} (5.13)

MI(K7 ∪ {a ∧ b}) = {{a,¬a}, {a ∧ b,¬a}} (5.14)

MI(K7 ∪ {a ∧ ¬a,¬¬a}) = {{a,¬a}, {¬a,¬¬a}, {a ∧ ¬a}} (5.15)

MI(K7 ∪ {a ∧ ¬a ∧ ¬¬a}) = {{a,¬a}, {a ∧ ¬a ∧ ¬¬a}} (5.16)

As one can see, the set MI(K) may change quite differently when adding
separate formulas or conjunctions to K. In Equations (5.13) and (5.14) the
addition of a conjunction leads to more minimal inconsistent sets than the
addition of separate formulas. In Equations (5.15) and (5.16) it is exactly
the other way around. It follows that for measures I based on minimal
inconsistent subsets—such as IMI—there is no general relationship such as
I(K ∪ {α, β}) ≤ I(K ∪ {α ∧ β}) or I(K ∪ {α, β}) ≥ I(K ∪ {α ∧ β}) for
arbitrary knowledge bases K and formulas α and β.

5 expressivity orders

Let us now come back to the original motivation of comparing inconsis-
tency measures wrt. their expressivity. Definition 20 provides the basis for
a comparative analysis of inconsistency measures wrt. their expressivity,
which we address with the following definition.

Definition 25. An inconsistency measure I is at least as expressive as an
inconsistency measure I ′ wrt. a characteristic Cα (α ∈ { f , v, l, p}), denoted
by I �α I ′, if there is n0 ∈N such that for all n > n0, Cα(I , n) ≥ Cα(I ′, n).

If both I �α I ′ and I ′ �α I , we say that I and I ′ are equally expressive
wrt. Cα and denote this by I ∼α I ′. If I �α I ′ but not I ∼α I ′ we write
I �α I ′ (I is strictly more expressive than I ′). Note that the expressivity
order � is not to be confused with the refinement order v sometimes
used for pairwise comparisons of inconsistency measures, see e. g. (Thimm,
2016). The refinement order v is defined as I1 v I2 iff I2(K) ≥ I2(K′)
implies I1(K) ≥ I1(K′) for all K,K′. If I1 v I2 this means that I2 is a
refinement of I1. Note that �α compares measures in a quantitative way
and also allows comparison of measures that induce totally different orders
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IMI, IMIC , Imc, Ip, IΣ
dalal, Ihit

dalal, ID f , IPm , Inc �v Iη �v Ihs

�v ILPm �v Imax
dalal �v Ic, Imv �v Id

Ic, ILPm , IΣ
dalal, Imax

dalal, IPm , Imv � f IMI � f Imc � f Ip, Ihs, Ihit
dalal, Inc � f Id

Ic, ILPm , IΣ
dalal, IPm , Imv, Ip, Ihs, Ihit

dalal, Inc, ID f , IMIC , Iη , IMI, Imc �l Imax
dalal �l Id

Ic, ILPm , IΣ
dalal, IPm , Imv, Ip, Ihs, Ihit

dalal, Inc, ID f , IMIC , Iη , IMI, Imc �p Imax
dalal �p Id

Figure 1: Expressivity orders of the investigated inconsistency measures;
measures within the same box are equally expressive wrt. the
particular expressivity characteristic

on knowledge bases. However, it is also easy to see that I1 v I2 implies
I2 �α I1 (for all α ∈ { f , v, l, p}).

By exploiting the results from Theorem 1 we obtain the following simple
corollary.

Corollary 1. The expressivity orders wrt. α-characteristics Cα(I , n)
(α ∈ { f , v, l, p}) for the inconsistency measures Id, IMI, IMIC , Iη , Ic,
ILPm , Imc, Ip, Ihs, IΣ

dalal, Imax
dalal , Ihit

dalal, ID f , IPm , Imv, and Inc are as shown in
Figure 1.

The proof of the above corollary is omitted as the results follow directly
from Theorem 1.

In Figure 1 the order � f does not show the placement of the measures
ID f , IMIC , and Iη as we only provided upper bounds for the corresponding
characteristics in Theorem 1. However, we can give the following partial
classification.

Corollary 2. For I ∈ {Ic, ILPm , IΣ
dalal, Imax

dalal , IPm , Imv}, I � f ID f , I � f IMIC ,
I � f Iη .

The proof of the above corollary is straightforward as, e. g., we provided
a finite bound for C f (Iη , n) (for every n) while C f (Ic, n) is unbounded.
Empirical evidence suggests also the following relationships, but a formal
proof has yet to be found.

Conjecture 1. ID f � f IMIC � f Iη � f IMI.

Figure 1 shows that the measures IΣ
dalal and IPm are the only measures

that have maximal expressivity wrt. all four expressivity characteristics
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(among the considered inconsistency measures) and, as expected, the dras-
tic inconsistency measure Id is the least expressive one. One can also ob-
serve that for many measures their positioning in the orders �v and �p is
complementary, i. e., if a measure has high expressivity wrt. C f it has low
expressivity wrt. Cv (consider e. g. Ic and Ip). This is due to the fact that
many measures measure only a specific aspect of inconsistency and usually
belong either to the MI-based family of inconsistency measures—which fo-
cus on using minimal inconsistent subsets for measuring—or the variable-
based family—which focus on conflicting propositions—, cf. (Hunter and
Konieczny, 2008). Therefore, they are constrained in their expressivity if
one of these dimensions is limited. For example, if the number of formulas
in a knowledge base is restricted, so is the number of minimal inconsistent
subsets.

Again, it should be noted that expressivity characteristics are meant
to complement the investigation of rationality postulates, not to replace
them. Rationality postulates are important to analyze the meaningfulness
of the values of inconsistency measures, while our characteristics provide a
quantitative assessment of their expressivity. However, we believe that the
concept of expressivity characteristics and the results reported in this work
will nurture general comparative analyses of inconsistency measures.

The expressivity characteristics considered in this paper each tackle one
specific aspect of size of a knowledge base. Of course, one can also combine
these characteristics to obtain hybrid versions via

Cα,α′(I , n, m) = |{I(K) | K ∈ Kα(n) ∩Kα′(m)}|

with α, α′ ∈ {v, f , l, p}, α 6= α′, and n, m > 0. For example, Cv, f (I , n, m)
is the number of different inconsistency values on knowledge bases which
mention at most n propositions and consist of at most m formulas. A simple
observation on these new characteristics is the following one.

Proposition 1. Let α, α′ ∈ {v, f , l, p}, α 6= α′, and n, m > 0. Then

Cα,α′(I , n, m) ≤ min{Cα(I , n), Cα′(I , m)}

The proof of the above proposition is straightforward. An investigation
of these hybrid and other characteristics—and the resulting expressivity
orders—is left for future work.

6 summary and conclusion

We conducted a focused but extensive comparative analysis of 16 inconsis-
tency measures from the recent literature in terms of their expressivity. For
that, we introduced 4 different expressivity characteristics and conducted
an analytical evaluation of the considered measures wrt. these expressivity
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characteristics. Our findings revealed some interesting relationships of in-
consistency measures to, e. g., set theory and monotone Boolean functions.
Finally, the measures IΣ

dalal (Grant and Hunter, 2013) and IPm (Jabbour and
Raddaoui, 2013) have been proven to be maximally expressive wrt. all our
characteristics.

Expressivity characteristics provide a novel evaluation method for assess-
ing the quality of inconsistency measures. It has to be noted again, however,
that high expressivity alone is not a sufficient criterion for doing this. It
is straightforward to construct measures that exhibit maximal expressivity
along all discussed dimensions, but fail to comply with the intuitions one
expects from inconsistency measures. The use of rationality postulates—
such as the ones presented and discussed in (Hunter and Konieczny, 2006;
Mu et al., 2011a; Besnard, 2014)—must still serve as first-level evaluation
criterion. If measures satisfy the same (or a similar set of) rationality postu-
lates, expressivity can be used to make further quality assessments.

To the best of our knowledge, our work is the most extensive compara-
tive analysis of inconsistency measures so far. All inconsistency measures
discussed in this paper have been implemented and an online interface to
try out these measures is available12.

appendix : proofs of technical results

Theorem 1. The α-characteristics Cα(I , n) (α ∈ { f , v, l, p}) for the inconsis-
tency measures Id, IMI, IMIC , Iη , Ic, Imc, Ip, Ihs, IΣ

dalal, Imax
dalal , Ihit

dalal, ID f , IPm ,
Imv, and Inc are as shown in Table 5.

Proof. Let n > 0 except in proofs regarding C l where n > 1 is assumed
(note that C l(I , 1) = 1 for every measure I as every K ∈ Kl(1) does not
contain a negation and is therefore always consistent).

1. Cv(Id, n) = 2
By definition, Id has co-domain {0, 1} and therefore Cv(Id, n) ≤ 2.
For the knowledge bases K8 = {a} and K9 = {a ∧ ¬a} we get
Id(K8) = 0 and Id(K9) = 1 and therefore Cv(Id, n) ≥ 2. As K8
and K9 use only one proposition the statement is true for all n > 0.

2. C f (Id, n) = 2
Analogous to 1.

3. C l(Id, n) = 2
Note that n > 1 is assumed as trivially C l(Id, 1) = 1. Analogous to 1

but consider K8 = {a} and K7 = {a,¬a}.

4. C p(Id, n) = 2
Analogous to 1.

12 http://tweetyproject.org/w/incmes/

http://tweetyproject.org/w/incmes/
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Cv(I ,n) C f (I ,n) C l(I ,n) C p(I ,n)
Id 2 2 2∗ 2
IMI ∞ ( n

bn/2c) + 1 ∞∗ ∞
IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(( n

bn/2c))
† ∞∗∗ ∞∗

Ic n + 1 ∞ ∞∗ ∞
Imc ∞ ( n

bn/2c)
∗∗ ∞∗ ∞

Ip ∞ n + 1 ∞∗ ∞
Ihs 2n + 1 n + 1 ∞∗∗ ∞∗

IΣ
dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n + 2 ∞∗ b(n + 7)/3c∗∗ n + 2
Ihit

dalal ∞ n + 1 ∞∗ ∞
ID f ∞ ≤ Ψ(n)‡ ∞∗ ∞
IPm ∞ ∞ ∞∗ ∞
Imv n + 1 ∞∗ ∞∗ ∞
Inc ∞ n + 1 ∞∗ ∞

Table 5: Characteristics of inconsistency measures (n ≥ 1)
∗only holds for n > 1
∗∗only holds for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and
can be defined as Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|, see e. g.
http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of
n variables, see e. g. http://oeis.org/A220880

5. Cv(IMI, n) = ∞
Consider for i ∈ N the knowledge bases K2

i = {¬a, a, a ∧ a, a ∧ a ∧
a, . . . ,

∧i
j=1 a}. Then IMI(K2

i ) = i and limi→∞ IMI(K2
i ) = ∞. As each

K2
i only uses one proposition the statement is true for every n > 0.

6. C f (IMI, n) = ( n
bn/2c) + 1

Note that for every inconsistent knowledge base K the set MI(K) is a
Sperner family of K, i. e. a set S of subsets from a set T for which for
no two X, Y ∈ S it holds X ⊆ Y. According to Sperner’s theorem the
maximal cardinality (which is also attained) of any Sperner family of
a set T with |T| = n is ( n

bn/2c) (Sperner, 1928). If K is consistent we

have MI(K) = ∅ and IMI(K) = 0, yielding C f (IMI, n) ≤ ( n
bn/2c) +

1. To show C f (IMI, n) ≥ ( n
bn/2c) + 1 we show that every Sperner

family can be represented through MI(K) of a knowledge base K.
Let T = {α1, . . . , αn} be a set and define a propositional signature
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At = {a1, . . . , an}. Let S be any Sperner family of T with cardinality
( n
bn/2c). Define a knowledge base KS

n = {φ1, . . . , φn} via

φi = ai ∧
∧

M∈S,αi∈M

∨
αj∈M\{αi}

¬aj

for i = 1, . . . , n. Informally, every φi states that ai is accepted and for
each set M in S which contains αi at least one of the other elements
must not be accepted. If follows that M = {αk1 , . . . , αkm} (for some
k1, . . . , km ∈ {1, . . . , n}) is an element of S if and only if the set
{φk1 , . . . , φkm} is a minimal inconsistent set. It follows IMI(KS

n) =
|MI(KS

n)| = |S| = ( n
bn/2c). As removing any element from a Sperner

family still yields a Sperner family, every value between 1 and ( n
bn/2c)

can be attained. Together with the fact that 0 is also a possible value
of IMI we obtain C f (IMI, n) ≥ ( n

bn/2c) + 1 and thus C f (IMI, n) =

( n
bn/2c) + 1.

7. C l(IMI, n) = ∞
Note that n > 1 is assumed as trivially C l(IMI, 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then IMI(K3

i ) = i and C l(IMI, n) = ∞ as only formulas of maximum
length two have been used.

8. C p(IMI, n) = ∞
Analogous to 7 (note that every formula in K3

i mentions only one
proposition).

9. Cv(IMIC , n) = ∞
Consider the family of knowledge bases K2

i from 5. Observe that
IMIC(K2

i ) = i/2 and therefore Cv(IMIC , n) = ∞.

10. C f (IMIC , n) ≤ Ψ(n)
Consider the vector profile(K) = (MI0(K), . . . , MIn(K)), called MI-
profile of K in the following, where MIi(K) is the set if i-size minimal
inconsistent subsets of K. Note that every MI-profile induces the
inconsistency value wrt. IMIC of its corresponding knowledge base
by IMIC(K) = ∑n

i=1 |MIi(K)| · 1/i. Furthermore, note that two distinct
MI-profiles may yield the same inconsistency value, e. g. (1, 0, 0) and
(0, 2, 0) yield the same inconsistency value 1. It follows

C f (IMIC , n) ≤ |{(|MI0(K)|, . . . , |MIn(K)|) |
(MI0(K), . . . , MIn(K)) is an

MI-profile for some K ∈ K f (n)}|

As discussed in 6, for every knowledge base K the set MI(K) is a
Sperner family. It is well-known that there is an equivalence between
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Sperner families and monotone boolean functions, cf. (Stephen and
Yusun, 2012). In (Stephen and Yusun, 2012) the number of inequiv-
alent monotone boolean functions has been investigated, see also
http://oeis.org/A220880. These numbers are the same of inequiva-
lent Sperner families as well. Here, two Sperner families MI(K) and
MI(K′) are equivalent if they yield the same MI-profiles. The num-
ber of different MI-profiles is also the number on the right-hand side
of the above equation, thus showing the claim C f (IMIC , n) ≤ Ψ(n)
where Ψ(n) is the number of inequivalent monotone Boolean func-
tions on n variables.

11. C l(IMIC , n) = ∞
Note that n > 1 is assumed as trivially C l(IMIC , 1) = 1. Consider
then the family of knowledge bases K3

i from 7 and observe than
IMIC(K3

i ) = i/2 and therefore C l(IMIC , n) = ∞.

12. C p(IMIC , n) = ∞
Analogous to 11 (note that every formula in K3

i mentions only one
proposition).

13. Cv(Iη , n) = Φ(2n)
We first show Cv(Iη , n) ≤ Φ(2n). In (Knight, 2002) it has already
been shown that Iη(K) ∈ [0, 1] ∩Q for every K (Definition 2.7 and
Theorem 2.28). Hence, assume η = k/l and Iη(K) = 1 − η for
k, l ∈ N and k ≤ l. We also assume for now that K contains no
contradictory formula. Furthermore, we assume that K contains no
free formulas (as Iη satisfies independence they have no influence on
the inconsistency value, cf. (Thimm, 2013b)). Let P be a probability
function such that P(φ) ≥ k/l for all φ ∈ K. It can be assumed that
there is no ω ∈ Int(At) such that P(ω) > 0 but ω 6|= φ for every φ ∈ K
(otherwise one could set P(ω) = 0 and distribute the “probability
mass” P(ω) on the remaining interpretations which have already a
positive probability; this cannot change the fact that P(φ) ≥ k/l for
all φ ∈ K). So it holds that for all ω ∈ Int(At) we have that P(ω) > 0
implies ω |= φ for some φ ∈ K. Define FK(ω) = {φ ∈ K | ω |= φ}
for all ω ∈ Int(At), i. e., FK(ω) is the set of formulas in K that are
satisfied by ω. We can furthermore assume that for all ω, ω′ ∈
Int(At) with P(ω) > 0 and P(ω′) > 0 we have FK(ω) 6⊆ FK(ω′)
(otherwise we could set P(ω) = 0 and add the probability mass
P(ω) to P(ω′), without decreasing the probabilities of the formulas).
Assume furthermore, that among all probability functions that satisfy
the above constraints, P is one such that |{ω|P(ω) > 0}| is minimal.

Now consider the case |{ω | P(ω) > 0}| = 2, i. e., there are two
interpretations ω1, ω2 that receive positive probability. For every for-
mula φ ∈ K it holds that either φ ∈ FK(ω1), or φ ∈ FK(ω2), or
φ ∈ FK(ω1) ∩ FK(ω2). Note that the latter case cannot be possible
for all φ ∈ K as otherwise FK(ω1) = FK(ω2). Furthermore, there is
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one formula φ′ ∈ K with P(φ′) = P(ω1) and one formula φ′′ ∈ K
with P(φ′′) = P(ω2), otherwise we would have FK(ω1) ⊆ FK(ω2) or
FK(ω2) ⊆ FK(ω1). As P(φ) has to be maximal for all φ ∈ K we can
conclude P(ω1) = P(ω2) and therefore η = 1/2.

Now consider the case |{ω | P(ω) > 0}| = 3, i. e., there are three
interpretations ω1, ω2, ω3 that receive positive probability. For each
φ ∈ K let ∆P(φ) = {ω ∈ Int(At) | P(ω) > 0, ω |= φ}, i. e., ∆P(φ)
is such that P(φ) = ∑ω∈∆P(φ)

P(ω). Note that it cannot be the case
that |∆P(φ)| = 3 for any φ ∈ K (otherwise φ would be free in K) or
that |∆P(φ)| = 0 (then φ would be self-contradictory). Consider the
following sub-cases:

a) for all φ ∈ K we have |∆P(φ)| = 1:
Then for all φ ∈ K we have P(φ) = P(ω) for some ω ∈
{ω1, ω2, ω3} and as there are not subset relations between any
FK(ω1), FK(ω2), and FK(ω3), it follows that P(ω1) = P(ω2) =
P(ω3) = 1/3 maximizes each probability and we have η = 1/3.

b) for all φ ∈ K we have |∆P(φ)| = 2:
Then for all φ ∈ K we have P(φ) = P(ω) + P(ω′) for some
ω, ω′ ∈ {ω1, ω2, ω3} with ω 6= ω′ and as there are not subset
relations between any FK(ω1), FK(ω2), and FK(ω3), it follows
that P(ω1) = P(ω2) = P(ω3) = 1/3 maximizes each probability
and we have η = 2/3.

c) otherwise:
Let φ1 ∈ K with |∆P(φ1)| = 1. Without loss of generality assume
∆P(φ1) = {ω1}. As FK(ω2) 6⊆ FK(ω1) there is φ2 ∈ FK(ω2) with
φ2 /∈ FK(ω1). Consider the case that for all φ ∈ FK(ω3) either
φ ∈ FK(ω2) or φ ∈ FK(ω2). Then P′ defined via P′(ω1) = 0.5,
P′(ω2) = 0.5, and P′(ω) = 0 for all other ω yields P′(φ) ≥ 0.5
for all φ ∈ K. Assuming P obtains a larger probability for all
formulas it must hold P(ω) > 0.5 (in order to have P(φ1) > 0.5),
but then P(φ2) < 0.5. So we have a contradiction since P is
supposed to be minimal wrt. |{ω|P(ω) > 0}|. It follows that
there is φ3 ∈ FK(ω3) with φ3 /∈ FK(ω1) and φ3 /∈ FK(ω2), so
P(φ3) = P(ω3). Similarly, it can be assumed that φ2 /∈ FK(ω3)
as well. As P(φ1) = P(ω1), P(φ2) = P(ω2), and P(φ3) = P(ω3)
it follows that P(ω1) = P(ω2) = P(ω3) = 1/3 maximizes each
probability and we have η = 1/3.

So for |{ω | P(ω) > 0}| = 3 we have that η ∈ {1/3, 2/3}. In-
ductively it follows that for |{ω | P(ω) > 0}| = h we have η ∈
{1/h, . . . , (h− 1)/h}. As a signature with n propositions has 2n differ-
ent interpretations, and together with the cases of a consistent knowl-
edge base (inconsistency value 0) and one that contains a contradic-
tory formula (inconsistency value 1) we obtain Cv(Iη , n) ≤ |{k/l |
l = 1, . . . , 2n, k = 0, . . . , l}| = Φ(2n).
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We now show Cv(Iη , n) ≥ Φ(2n). For that let η = k/l for l ∈
{1, . . . , 2n} and k ∈ {1, . . . , l}. Let X = {ω1, . . . , ωl} ⊆ Int(At) be
any set of l different interpretations. Define P via P(ω) = 1/l if
ω ∈ X and P(ω) = 0 otherwise. Define K̂ via φ ∈ K̂ if and only if

φ =
∨

ω∈Xk

φω

where Xk is a k-element subset of X and φω is the complete conjunc-
tion that has ω ∈ Int(At) as its only model (note that K̂ contains ( l

k)
formulas, one for each k-element subset of X). Observe that for all
φ ∈ K̂ we have

P(φ) = P(
∨

ω∈Xk

φω) = ∑
ω∈Xk

P(φω) = k/l

and that this is obviously the maximal possible value for K̂. It follows
Iη(K̂) = 1− k/l and therefore Cv(Iη , n) ≥ Φ(2n).

14. C f (Iη , n) ≤ Φ(( n
bn/2c))

Analogous to 13. However, note that that maximal number of inter-
pretations that may receive a positive probability is bounded by the
number of different FK(ω) for ω ∈ Int(At). As the set of FK(ω) with
P(ω) > 0 form a Sperner family (no two elements have a subset rela-
tion) the maximal cardinality of this set is ( n

bn/2c), cf. (Sperner, 1928).

15. C l(Iη , n) = ∞
Note that n > 1 is assumed as trivially C l(Iη , 1) = 1. For n = 2
observe that either Iη(K) = 0 (for consistent K) or Iη(K) = 0.5.
For the latter, note that if K can only be inconsistent if and only if
there is at least one (possibly more) a ∈ At such that a,¬a ∈ K (or
semantically equivalent formulas). Then any probability function P
with P(φ) maximal for all φ ∈ K has to satisfy P(a) = P(¬a) =
0.5. Therefore we have C l(Iη , 2) = 2. For n = 3 we addition-
ally have the case that a three-element minimal inconsistent subset
{¬a1,¬a2, a1 ∨ a2}may occur with corresponding inconsistency value
1/3, thus C l(Iη , n) = 3. For n > 3 consider the family of knowledge
bases K4

i = {¬a1 ∨ a2,¬a2 ∨ a3, . . . ,¬ai−1 ∨ ai,¬ai ∧ a1}. Note that K4
i

is a minimal inconsistent set. By Theorem 2.12 of (Knight, 2002) it
follows Iη(K4

i ) = 1/|K4
i | = 1/i and therefore C l(Iη , n) = ∞.

16. C p(Iη , n) = ∞
First, for n = 1 observe that either Iη(K) = 0 (for consistent K),
Iη(K) = 1 (for K containing a contradictory formula), or Iη(K) =
0.5. For the latter, note that if K can only be inconsistent without
containing a contradictory formula if and only if there is at least
one (possibly more) a ∈ At such that a,¬a ∈ K (or semantically
equivalent formulas). Then any probability function P with P(φ)
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maximal for all φ ∈ K has to satisfy P(a) = P(¬a) = 0.5. For n > 1
consider the family of knowledge bases K4

i from 15. Note that K4
i is a

minimal inconsistent set. By Theorem 2.12 of (Knight, 2002) it follows
Iη(K4

i ) = 1/|K4
i | = 1/i and therefore C p(Iη , n) = ∞.

17. Cv(Ic, n) = n + 1
Consider the propositional signature At = {a1, . . . , an} and for each
i = 0, . . . , n consider the knowledge base K5

i = {a1 ∧ ¬a1, . . . , ai ∧
¬ai} (with K5

0 = ∅). Then Ic(K5
i ) = i as every a1, . . . , ai has to be set

to B in every model of K5
i . Together with the fact that every model

can assign the value B to at most |At| = n different propositions we
have Cv(Ic, n) = n + 1.

18. C f (Ic, n) = ∞
Consider the family of knowledge bases K6

i = {a1 ∧ . . . ∧ ai ∧ ¬a1 ∧
. . . ∧ ¬ai}. Then Ic(K6

i ) = i for i > 0 and limi→∞ Ic(K6
i ) = ∞. As

each K6
i has only one formula the statement is true for every n > 0.

19. C l(Ic, n) = ∞
Note that n > 1 is assumed as trivially C l(Ic, 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then Ic(K3

i ) = i and C l(Ic, n) = ∞ as only formulas of maximum
length two have been used.

20. C p(Ic, n) = ∞
Analogous to 19 (note that every formula in K3

i mentions only one
proposition).

21. Cv(Imc, n) = ∞
Consider the family of knowledge bases K7

i = {a ∧ ¬a, a ∧ a ∧ ¬a ∧
¬a, . . .

∧i
j=1 a ∧ ¬a} and observe Imc(K7

i ) = |SC(K7
i )| = i + 1 (all

formulas in K7
i are self-contradicting and only the empty subset is a

maximal consistent subset). It follows Cv(Imc, n) = ∞.

22. C f (Imc, n) = ( n
bn/2c)

Note first, that if K contains only self-contradictory formulas we have
MC(K) = ∅. Otherwise, analogously to 6, observe that for every
other consistent or inconsistent knowledge base K the set MC(K) is
a Sperner family of K, i. e. a set S of subsets from a set T for which for
no two X, Y ∈ S it holds X ⊆ Y. According to Sperner’s theorem the
maximal cardinality (which is also attained) of any Sperner family
of a set T with |T| = n is ( n

bn/2c) (Sperner, 1928). Hence we have
0 ≤ |MC(K)| ≤ ( n

bn/2c). Also analogously to 6 observe that every
value can be attained by some knowledge base. For that let S be any
Sperner family of cardinality bn/2c of a set T = {α1, . . . , αn}. Let
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At = {a1, . . . , an} and define a knowledge base K̂S
n = {φ1, . . . , φn}

with

φi =
∨

αi∈M∈S
(
∧

αj∈M
aj ∧

∧
αj 6∈M

¬aj)

for i = 1, . . . , n. Informally, every φi lists all sets M ∈ S that include
αi. Then a set M ⊆ K̂S

n is a maximal consistent subset if and only if
it corresponds to an element of S. As removing any element from a
Sperner family still yields a Sperner family, we have {|MC(K)| | K ∈
K f (n)} = {i ∈N | 0 ≤ i ≤ ( n

bn/2c)}.

Note that for |K| = n it holds 0 ≤ |SC(K)| ≤ n (and every value can
be attained). However, we cannot simply obtain the value C f (Imc, n)
by adding the upper bounds of |MC(K)| and |SC(K)| as these two
values are dependent. Observe that if K with |K| = n contains a
self-contradictory formula φ then φ cannot be part of any maximal
consistent subset of K, i e., we have MC(K) = MC(K \ {φ}). In general,
we have that if K contains k contradictory formulas then we have
|MC(K)| ≤ ( (n−k)

b(n−k)/2c). Define cn,k
mc = ( (n−k)

b(n−k)/2c) and then we obtain

the following characterization of C f (Imc, n):

C f (Imc, n) = max{cn,0
mc , cn,1

mc + 1, cn,2
mc + 2, . . . , cn,n

mc + n}

That is, the value C f (Imc, n) is either cn,0
mc (considering no self-

contradictory formulas) or cn,1
mc + 1 (considering one self-contradictory

formula), etc.. Observe that the first element of the above maximum
is dominant for n > 3. For n = 1 we obtain C f (Imc, n) = 2
(a knowledge base with one formula is either consistent, i. e.,
MC(K) = {K}, SC(K) = ∅, and thus Imc(K) = 0; or it is inconsistent
with MC(K) = {∅}, SC(K) = K, and thus Imc(K) = 1), note that
either the empty set or the whole set are the only possible maximal
consistent subsets. For n = 2 we obtain C f (Imc, n) = 3: either
K is consistent (Imc(K) = 0), or it contains one self-contradictory
formula (Imc(K) = 1), or it contains two contradictory formulas
(Imc(K) = 2), note that the maximal number of consistent subsets of
K is 2 (for the case that K is a two-element minimal inconsistent set),
but then there cannot be self-contradictory formulas and we have
Imc(K) = 1. For n = 3 we obtain C f (Imc, n) = 4 (for a consistent
knowledge base and knowledge bases with 1 to 3 self-contradictory
formulas and one maximal consistent subset), note that the maximal
number of consistent subsets of K is 3, e. g. all two-element subsets,
but then K cannot contain any self-contradictory formula and
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we have Imc(K) = 2 which we can also obtain by having two
self-contradictory formulas. For n > 3 and k = 1, . . . , n we have

cn,0
mc =

(
n

bn/2c

)
=

(
n− 1
bn/2c

)
+

(
n− 1

bn/2c − 1

)
︸ ︷︷ ︸
≥n as n>3

≥
(

n− 1
bn/2c

)
+ n

=

(
n− 1

b(n− 1)/2c

)
+ n

≥
(

n− k
b(n− k)/2c

)
+ n

≥
(

n− k
b(n− k)/2c

)
+ k = cn,k

mc + k

Note that ( n−1
bn/2c) = ( n−1

b(n−1)/2c) holds as for odd n we have ( n−1
bn/2c) =

( n−1
(n−1)/2) = ( n−1

b(n−1)/2c) and for even n we have ( n−1
bn/2c) = (n−1

n/2) which

(as n− 1 is odd) is the same as ( n−1
n/2−1) = ( n−1

b(n−1)/2c). Hence, for n > 3

we obtain C f (Imc, n) = ( n
bn/2c).

23. C l(Imc, n) = ∞
Note that n > 1 is assumed as trivially C l(Imc, 1) = 1. Note fur-
thermore that for n = 2 only literals are allowed as formulas in K.
Consider the family of knowledge bases K3

i = {a1,¬a1, . . . , ai,¬ai}
and observe |K3

i | = 2i and Imc(K3
i ) = 2i (every interpretation ω cor-

responds to a maximal consistent subset of K3
i , i. e., the union of all

ai with ω(ai) = true and ¬ai with ω(ai) = false; adding any other
formula from K3

i makes this set inconsistent). As only formulas of
maximum length 2 are used in K3

i it follows C l(Imc, n) = ∞.

24. C p(Imc, n) = ∞
Consider the family knowledge bases K7

i from 21 and observe that
every formula mentions only one proposition. It follows C p(Imc, n) =
∞.

25. Cv(Ip, n) = ∞
Consider the family of knowledge bases K2

i from 5. Then Ip(K2
i ) = i

and limi→∞ Ip(K2
i ) = ∞. As each K2

i only uses one proposition the
statement is true for every n > 0.

26. C f (Ip, n) = n + 1
For k < n let Mk = {a1, . . . , ak−1,¬a1 ∨ . . .¬ak−1}. Note that Mk is a
minimal inconsistent set. Consider Kn,k = Mk ∪ {ak+1, . . . , an}. Then
Kn,k has exactly one minimal inconsistent subset (Mk) and Ip(Kn,k) =
k. Hence, for k = 1, . . . , n every value in {1, . . . , n} is attained for
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Ip(Kn,k). Together with Ip(K) = 0 for any consistent K of size n we
have C f (Ip, n) = n + 1.

27. C l(Ip, n) = ∞
Analogous to 19.

28. C p(Ip, n) = ∞
Analogous to 20.

29. Cv(Ihs, n) = 2n + 1
Any hitting set can be of maximal size 2n as there are that many
interpretations in a language with n propositions, and as a hitting
set may not be defined in case of a contradictory formula we get
Cv(Ihs, n) ≤ 2n + 1. Let now At be a propositional signature with
|At| = n and consider the knowledge base K8

n =
⋃

ω∈Int(At){φω}
where φω is any formula with Mod(φω) = {ω}. Then K8

n contains
2n formulas and each of them is satisfied by only one interpretation.
We get Ihs(K8

n) = 2n − 1 and removing any formula from K8
n reduces

the value by one, so all values 0, . . . , 2n − 1 are attained. Taking the
case of a knowledge base with a contradictory formula into account,
we obtain Cv(Ihs, n) ≥ 2n + 1 and thus Cv(Ihs, n) = 2n + 1.

30. C f (Ihs, n) = n + 1
For K with |K| = n any hitting set can be of maximal size n, as
only formulas in K need to be hit. Considering the case of a knowl-
edge base with a contradictory formula with get C f (Ihs, n) ≤ n + 1.
For C f (Ihs, n) ≥ n + 1 consider a knowledge base with n pairwise
inconsistent formulas, such as in 29 (note that the signature can be
arbitrarily large). Therefore we get C f (Ihs, n) = n + 1.

31. C l(Ihs, n) = ∞
Note that n > 1 is assumed as trivially C l(Ihs, 1) = 1. For n = 2
or n = 3 consider the interpretations ω1, ω2 with ω1(a) = true and
ω2(a) = false for all a ∈ At. As formulas of maximal length 2 are
either a, or ¬a, and formulas of length 3 are either a ∧ b or a ∨ b for
a, b ∈ At, either ω1 or ω2 is a model of each formula. Therefore,
Ihs(K) = 1 or Ihs(K) = 0 and C l(Ihs, 2) = C l(Ihs, 3) = 2. For n > 3
consider the signature Atm = {a1, . . . , am} and the knowledge base
K9

m = {a ∧ b,¬a ∧ b, a ∧ ¬b | a, b ∈ Atm, a 6= b}. Observe that for
m→ ∞ we have Ihs(K9

m)→ ∞ and therefore C l(Ihs, n) = ∞.

32. C p(Ihs, n) = ∞
First, for n = 1 observe that either Ihs(K) = 0 (for consistent K),
Ihs(K) = ∞ (for K containing a contradictory formula), or Ihs(K) =
1. For the latter, note that given a signature Atm = {a1, . . . , am} the
two interpretations ω1, ω2 with ω1(a) = true and ω2(a) = false, for
all a ∈ Atm, form a hitting set for every knowledge base where the
formulas mention at most one proposition. It follows C p(Ihs, 1) =
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3. For n > 1 consider the signature Atm = {a1, . . . , am} and the
knowledge base K9

m = {a ∧ b,¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b | a, b ∈ Atm, a 6=
b}. Observe that for m → ∞ we have Ihs(K9

m) → ∞ and therefore
C p(Ihs, n) = ∞.

33. Cv(IΣ
dalal, n) = ∞

Consider the family of knowledge bases

K10
i = {a,¬a, a ∧ a,¬a ∧ ¬a, . . . ,

i∧
j=1

a,
i∧

j=1

¬a}

for i ∈ N. Then IΣ
dalal(K10

i ) = i as there are only two interpretations
ω1 and ω2 with ω1(a) = true and ω2(a) = false and for both inter-
pretations it is the case that the sets of models of half of the formulas
in K10

i have a distance of one to each of them (note that |K10
i | = 2i).

Therefore we have Cv(IΣ
dalal, n) = ∞.

34. C f (IΣ
dalal, n) = ∞

For K with |K| = 1 we have that either IΣ
dalal(K) = 0 or IΣ

dalal(K) = ∞
and therefore C f (IΣ

dalal, n) = 2. For n > 1 consider the family of
knowledge bases K1

i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} for i ∈ N and
observe IΣ

dalal(K1
i ) = i. Therefore we have C f (IΣ

dalal, n) = ∞.

35. C l(IΣ
dalal, n) = ∞

Note that n > 1 is assumed as trivially C l(IΣ
dalal, 1) = 1.

Then for i ∈ N consider the family of knowledge bases
K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} and observe IΣ
dalal(K3

i ) = i. Hence, we
obtain C l(IΣ

dalal, n) = ∞.

36. C p(IΣ
dalal, n) = ∞

Analogous to 33 (note that in every formula of K0
i only one proposi-

tion is used).

37. Cv(Imax
dalal, n) = n + 2

For every consistent knowledge base K we have Imax
dalal(K) = 0 and for

the knowledge base K9 = {a ∧ ¬a} we have Imax
dalal(K9) = ∞. Further-

more, for the signature Ati = {a1, . . . , ai} and i = 1, . . . , n consider
the family of knowledge bases K11

i = {φω | ω ∈ Int(Ati)} where
φω is any formula with Mod(φω) = {ω}. Observe that for every
ω ∈ Int(Ati) there is one formula φ ∈ K11

i with dd(Mod(φ), ω) = i
and therefore Imax

dalal(K11
i ) = i. Note also that dd(ω, ω′) ≤ i for every

pair ω, ω′ ∈ Int(Ati) as ω and ω′ can differ in at most i propositions.
Hence, we have Cv(Imax

dalal, n) = n + 2.

38. C f (Imax
dalal, n) = ∞

First, for K with |K| = 1 observe that either Imax
dalal(K) = 0 or

Imax
dalal(K) = ∞ (K can only be inconsistent if it contains a contradic-

tory formula and then the Dalal distance between the set of models
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of this formula (which is the empty set) to any interpretation is ∞).
Therefore we have C f (Imax

dalal, 1) = 2. For n > 1 consider the family
of knowledge bases K1

i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} with i ∈ N.
Then we have Imax

dalal(K1
i ) = di/2e and therefore C f (Imax

dalal, n) = ∞.

39. C l(Imax
dalal, n) = b(n + 7)/3c

Note that n > 1 is assumed as trivially C l(Imax
dalal, 1) = 1. For n = 2

observe that K only contains propositions or negations of proposi-
tions and therefore, the set of models of every formula of K has at
most distance 1 to any interpretation. Therefore, Imax

dalal(K) = 0 or
Imax

dalal(K) = 1 and we have C l(Imax
dalal, 2) = 2. For n = 3 observe that

formulas may only have the form a, ¬a, a ∧ b, or a ∨ b for a, b ∈ At.
Note that only the models of a formula a ∧ b may have distance 2
to some interpretation. However, as a conjunction cannot contain a
negation, the minimal maximal distance of any formula from K is 1
as the models of e. g. ¬a has only distance 1 to any models of a ∧ b.
As there can also be no contradictory formula (for that a length of 4
of a formula is required) we get C l(Imax

dalal, 3) = 2. For n = 4 consider
the interpretation ω with ω(a) = true for every a ∈ Int(At). As ev-
ery conjunction can contain at most one negation, the distance of the
models of every formula to ω is also maximally 1. Additionally, we
have self-contradictory formulas which yield in total C l(Imax

dalal, 4) = 3.
Assume n > 4 with n = 2 + 3k with k > 0 and let φω be the complete
conjunction that has ω ∈ Int(At) as its only model. Then observe
that K12

k = {φω | ω ∈ Int({a0, . . . , ak})} has only formulas of maxi-
mal length n and Imax

dalal(K12
k ) = k + 1 (and that smaller inconsistency

values can be attained by removing some formula in K12
i ). Observe

further that for n ∈ {3 + 3k, 4 + 3k} the maximal distance cannot be
larger than for n = 2 + 3k. Together with consistent knowledge bases
and knowledge bases containing self-contradictory formulas we ob-
tain C l(Imax

dalal, n) = b(n − 2)/3c + 3 = b(n + 7)/3c which holds for
n > 3.

40. C p(Imax
dalal, n) = n + 2

Consider the signature Ati = {a1, . . . , ai} for i = 1, . . . , n and the
family of knowledge bases K11

i = {φω | ω ∈ Int(Ati)}. Note that
every φ ∈ K11

i mentions exactly i propositions and, with the same
argumentation as in 37, we have Imax

dalal(K11
i ) = i. Furthermore, for

a consistent knowledge base K we have Imax
dalal(K) = 0 and for the

knowledge base K9 = {a∧¬a} we have Imax
dalal(K9) = ∞ and therefore

C p(Imax
dalal, n) = n + 2.

41. Cv(Ihit
dalal, n) = ∞

For every i ∈ N consider the knowledge base K10
i = {a,¬a, a ∧

a,¬a ∧ ¬a, . . . ,
∧i

j=1 a,
∧i

j=1 ¬a}. Then Ihit
dalal(K10

i ) = i (consider e. g.
the interpretation ω with ω(a) = true, then the models of half of the
formulas of K10

i have distance one to ω and |K10
i | = 2i). As only one
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proposition is necessary to create any inconsistency value we have
Cv(Ihit

dalal, n) = ∞.

42. C f (Ihit
dalal, n) = n + 1

For every consistent knowledge base K we have Ihit
dalal(K) = 0 and

for the family of knowledge base K5
i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai} (for

i = 1, . . . , n) we have Ihit
dalal(K5

i ) = i. Note that n is also the maximal
value of Ihit

dalal as this is the maximal number of formulas in any K.
Hence, we have C f (Ihit

dalal, n) = n + 1.

43. C l(Ihit
dalal, n) = ∞

Note that n > 1 is assumed as trivially C l(Ihit
dalal, 1) = 1. Consider

the family of knowledge bases K3
i = {a1,¬a1, . . . , ai,¬ai}. Then

Ihit
dalal(K3

i ) = i and therefore C l(Ihit
dalal, n) = ∞ as only formula of

length 2 are necessary to produce any inconsistency value.

44. C p(Ihit
dalal, n) = ∞

Analogous to 41.

45. Cv(ID f , n) = ∞
Consider for i ∈ N the knowledge bases K2

i = {¬a, a, a ∧
a, a ∧ a ∧ a, . . . ,

∧i
j=1 a}. Then MI(1)(K2

i ) = MI(3)(K2
i ) =

MI(4)(K2
i ) = ... = MI(|K

2
i |)(K2

i ) = ∅ and MI(2)(K2
i ) =

{{¬a, a}, {¬a, a ∧ a}, {¬a, a ∧ a ∧ a}, . . . , {¬a,
∧i

j=1 a}}. Therfore

|MI(1)(K2
i )| = |MI(3)(K2

i )| = |MI(4)(K2
i )| = ... = |MI(|K

2
i |)(K2

i )| = 0
and |MI(2)(K2

i )| = i. Furthermore, note that CN(2) is comprised of
every two-element subset of K2

i \ {¬a} and therefore |CN(2)| = ( i
2).

It follows R1(K2
i ) = R3(K2

i ) = R4(K2
i ) = ... = R|K2

i |−1(K2
i ) = 0

and R2(K2
i ) = i/(i + ( i

2)). We obtain ID f (K2
i ) = 1 − R2(K2

i )/2 =

1− i/(2i + 2( i
2)) = 1− i/(2i + i(i− 1)) = 1− 1/(i + 1). As i ∈N we

obtain Cv(ID f , n) = ∞.

46. C f (ID f , n) ≤ Ψ(n)

Analogous to 10. Observe, that each MI-profile (MI0(K), . . . , MIn(K))
also uniquely determines the corresponding CN-profile
(CN0(K), . . . , CNn(K)). That is, there are no two knowledge
bases K and K′ that have the same MI-profile but different CN-
profiles. Then there cannot be more R-profiles (R1(K), . . . , Rn(K))
then there are MI-profiles and, thus, the number of inequivalent
monotone Boolean functions on n variables is also an upper bound
for C f (ID f , n).

47. C l(ID f , n) = ∞
Note that n > 1 is assumed as trivially C l(ID f , 1) = 1. Consider then

the family of knowledge bases K3
i from 7. Observe that MI2(K3

i ) = i
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and MIj(K3
i ) = 0 for j 6= 2. Furthermore, it is CN2 = (2i

2 ) − i and
therefore R2(K3

i ) = i/(2i
2 ).Then

ID f (K3
i ) = 1− i

2(2i
2 )

Hence, we have C l(ID f , n) = ∞.

48. C p(ID f , n) = ∞
Analogous to 45.

49. Cv(IPm , n) = ∞
Consider the family of knowledge bases K2

i = {¬a, a, a ∧
a, . . . ,

∧i
j=1 a} for i ∈ N. Then K2

i contains one minimal proof
for ¬a and i minimal proofs for a (each formula other than ¬a is
a minimal proof for a). Then we have ID f (K2

i ) = i and therefore
Cv(ID f , n) = ∞.

50. C f (IPm , n) = ∞
Consider the family of knowledge bases K6

i = {a1 ∧ . . . ∧ ai ∧ ¬a1 ∧
. . . ∧ ¬ai} for i ∈ N. Then K6

i contains one minimal proof for each
aj and one minimal proof for each ¬aj for j = 1, . . . , i. Then we have
ID f (K6

i ) = i and therefore C f (ID f , n) = ∞.

51. C l(IPm , n) = ∞
Note that n > 1 is assumed as trivially C l(ID f , 1) = 1. Consider the
family of knowledge bases K3

i = {a1, . . . , ai,¬a1, . . . ,¬ai} for i ∈ N.
Then K3

i contains one minimal proof for each aj and one minimal
proof for each ¬aj for j = 1, . . . , i. Then we have ID f (K3

i ) = i and

therefore C l(ID f , n) = ∞ as only formulas of maximal size 2 have
been used.

52. C p(IPm , n) = ∞
Analogous to 51 (note that K3

i mentions only one proposition in each
formula).

53. Cv(Imv, n) = n + 1
Consider the propositional signature At = {a1, . . . , an} and for each
i = 0, . . . , n consider the knowledge base K13

i = {a1 ∧ ¬a1, . . . , ai ∧
¬ai, ai+1, . . . , an} (with K13

0 = ∅). Then Imv(K13
i ) = i/n and we

obtain Cv(Imv, n) = n + 1.

54. C f (Imv, n) = ∞
If |K| = 1 then observe that either Imv(K) = 0 or Imv(K) = 1 (if
the knowledge base is inconsistent then all propositions appearing
in K also appear in the only formula of K and are thus part of
a minimal inconsistent subset) , so we have C f (Imv, 1) = 2. For
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n = |K| > 1 consider for i ∈ N the family of knowledge bases
K14

i = {a1 ∧ . . . ∧ ai−1, ai ∧ ¬ai} and observe Imv(K14
i ) = 1/i. Hence,

we have C f (Imv, n) = ∞ for n > 1.

55. C l(Imv, n) = ∞
Note that n > 1 is assumed as trivially C l(Imv, 1) = 1. For n > 1
consider K15

i = {¬a1, a1, a2, . . . , ai} with i > 1 and note that {¬a1, a1}
is the only minimal inconsistent subset of K15

i . Then Imv(K15
i ) = 1/i

and therefore C l(Imv, n) = ∞.

56. C p(Imv, n) = ∞
Consider the family of knowledge bases K16

i = {a1 ∧ ¬a1, a2, . . . , ai}
for i ∈N. Then Imv(K16

i ) = 1/i and therefore C p(Imv, n) = ∞.

57. Cv(Inc, n) = ∞
Consider the family of knowledge bases K2

i from 5. Then Inc(K2
i ) = i

and limi→∞ Inc(K2
i ) = ∞. As each K2

i only uses one proposition the
statement is true for every n > 0.

58. C f (Inc, n) = n + 1
Obviously, Inc(K) ≤ |K| ∈ {0, . . . , n} for every knowledge base. Con-
sider the family of knowledge bases Kn,k from 26. Then Ip(Kn,k) =
k− 1 for k = 1, . . . , n. Furthermore, a knowledge base K containing
at least one contradictory formula has Inc(K) = |K| = n. Hence, we
have C f (Inc, n) = n + 1.

59. C l(Inc, n) = ∞
Note that n > 1 is assumed as trivially C l(Inc, 1) = 1. For n > 1
consider K15

i = {¬a1, a1, a2, . . . , ai} with i > 1 and note that {¬a1, a1}
is the only minimal inconsistent subset of K15

i . Then Inc(K15
i ) =

|Ki| − 1 = i and therefore C l(Inc, n) = ∞.

60. C p(Inc, n) = ∞
Analogous to 57.

Theorem 3.

1. The measures Id and Ic satisfy ∧-Indifference, ∧-Penalty, and ∧-
Mitigation.

2. The measures Iη , Ihs, and Imax
dalal satisfy ∧-Penalty, but not ∧-Mitigation.

3. The measures Ihit
dalal and IPm satisfy ∧-Mitigation, but not ∧-Penalty.

4. None of the measures IMI, IMIC , Imc, Ip, IΣ
dalal, ID f , Imv, Inc satisfies any

of ∧-Indifference, ∧-Penalty, or ∧-Mitigation.

Proof. Let K be some arbitrary knowledge base and α, β ∈ L(At) formulas.
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1. Note first that if an inconsistency measure I satisfies ∧-Indifference
it also satisfies ∧-Penalty and ∧-Mitigation. Therefore, we only show
that Id and Ic satisfy ∧-Indifference.

a) Id: the statement follows directly from that fact that every
knowledge base K ∪ {α, β} is inconsistent if and only if K ∪
{α ∧ β} is inconsistent.

b) Ic: let υ be a three-valued interpretation υ : At→ {T, F, B} with
υ |=3 K ∪ {α, β}. Then υ(α), υ(β) ∈ {T, B}. From Table 2 it
follows υ(α ∧ β) ∈ {T, B} and therefore υ |=3 K ∪ {α ∧ β} as
well. Note that the converse holds as well. Then we have

Ic(K ∪ {α, β}) = min{|υ−1(B)| | υ |=3 K ∪ {α, β}}
= min{|υ−1(B)| | υ |=3 K ∪ {α ∧ β}}
= Ic(K ∪ {α ∧ β})

2. a) Iη : let P be a probability distribution PInt(At) → [0, 1] with
P(φ) ≥ ξ̂ for all φ ∈ K ∪ {α ∧ β} with ξ̂ being maximal. Then
P(α) ≥ ξ̂ and P(β) ≥ ξ̂ as well. It follows

ξ̂ = max{ξ | ∃P ∈ P(At) : ∀φ ∈ K ∪ {α ∧ β} : P(φ) ≥ ξ}
≤ max{ξ | ∃P ∈ P(At) : ∀φ ∈ K ∪ {α, β} : P(φ) ≥ ξ}

and therefore Iη(K ∪ {α ∧ β}) ≥ Iη(K ∪ {α, β}). To see that Iη

does not satisfy ∧-Mitigation consider K10 = {¬a ∧ b, a ∧ ¬b}
and

Iη(K10 ∪ {a ∧ b}) = 2/3

Iη(K10 ∪ {a, b}) = 1/2

b) Ihs: let H be a hitting set of K ∪ {α ∧ β} and let ω ∈ H be such
that ω |= α ∧ β. Then ω |= α and ω |= β as well and H is a
hitting set of K ∪ {α, β}. So we have that every hitting set of
K ∪ {α ∧ β} is also a hitting set of K ∪ {α, β} and therefore

{H | H is a hitting set of K ∪ {α ∧ β}}
⊆{H | H is a hitting set of K ∪ {α, β}}

and

Ihs(K ∪ {α ∧ β}) = min{|H| | H is a hitting set of K ∪ {α ∧ β}}
≥ min{|H| | H is a hitting set of K ∪ {α, β}}
= Ihs(K ∪ {α, β})
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To see that Ihs does not satisfy ∧-Mitigation consider K10 =
{¬a ∧ b, a ∧ ¬b} and

Ihs(K10 ∪ {a ∧ b}) = 2

Ihs(K10 ∪ {a, b}) = 1

c) Imax
dalal: Let ω ∈ Int(At) be arbitrary. As Mod(α ∧ β) ⊆ Mod(α)

and Mod(α ∧ β) ⊆ Mod(β) we have

dd(Mod(α ∧ β), ω) ≥ dd(Mod(α), ω)

dd(Mod(α ∧ β), ω) ≥ dd(Mod(β), ω)

It follows

max
φ∈K∪{α∧β}

dd(Mod(φ), ω) ≥ max
φ∈K∪{α,β}

dd(Mod(φ), ω)

and

Imax
dalal(K ∪ {α ∧ β}) = min{ max

φ∈K∪{α∧β}
dd(Mod(φ), ω) | ω ∈ Int(At)}

≥ min{ max
φ∈K∪{α,β}

dd(Mod(φ), ω) | ω ∈ Int(At)}

= Imax
dalal(K ∪ {α, β})

To see that Imax
dalal does not satisfy ∧-Mitigation consider K11 =

{¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b} and

Imax
dalal(K11 ∪ {a ∧ b}) = 2

Imax
dalal(K11 ∪ {a, b}) = 1

3. a) Ihit
dalal: Let ω ∈ Int(At) be arbitrary. Note that ω 6|= α ∧ β

if and only if either ω 6|= α, ω 6|= β, or both. Therefore,
dd(Mod(α ∧ β), ω) > 0 if and only if either dd(Mod(α), ω) > 0,
dd(Mod(β), ω) > 0, or both. Then it holds

|{φ ∈ K ∪ {α ∧ β} | dd(Mod(φ), ω) > 0}|
≤|{φ ∈ K ∪ {α, β} | dd(Mod(φ), ω) > 0}|

and Ihit
dalal(K ∪ {α ∧ β}) ≤ Ihit

dalal(K ∪ {α, β}). To see that Ihit
dalal

does not satisfy ∧-Penalty consider K12 = {¬a,¬b} and

Ihit
dalal(K12 ∪ {a ∧ b}) = 1

Ihit
dalal(K12 ∪ {a, b}) = 2

b) IPm : observe that if π is a minimal proof for some γ in K ∪ {α ∧
β} it holds that, if α ∧ β ∈ π then either
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i. π \ {α ∧ β} ∪ {α}, or

ii. π \ {α ∧ β} ∪ {β},

iii. both of the above, or

iv. π \ {α ∧ β} ∪ {α, β}

is a minimal proof (are minimal proofs) for γ in K ∪ {α, β}. In
any case, for every γ it holds |PK∪{α∧β}

m (γ)| ≤ |PK∪{α,β}
m (γ)| and

therefore IPm(K ∪ {α ∧ β}) ≤ IPm(K ∪ {α, β}). To see that IPm

does not satisfy ∧-Penalty consider K13 = {¬a} and

IPm(K13 ∪ {a ∧ ¬¬a}) = 1

IPm(K13 ∪ {a,¬¬a}) = 2

4. a) IMI: consider Example 16 with K7 = {a,¬a}. Here we have

IMI(K7 ∪ {a, b}) = 1 < 2 = IMI(K7 ∪ {a ∧ b})

and

IMI(K7 ∪ {a ∧ ¬a,¬¬a}) = 3 > 2 = IMI(K7 ∪ {a ∧ ¬a ∧ ¬¬a})

b) IMIC : consider Example 16 with K7 = {a,¬a}. Here we have

IMIC(K7 ∪ {a, b}) = 1/2 < 1 = IMIC(K7 ∪ {a ∧ b})

and

IMIC(K7 ∪ {a ∧ ¬a,¬¬a}) = 2 > 3/2 = IMIC(K7 ∪ {a ∧ ¬a ∧ ¬¬a})

c) Imc: consider Example 16 with K7 = {a,¬a}. Here we have

Imc(K7 ∪ {a,¬a}) = 1 < 2 = Imc(K7 ∪ {a ∧ ¬a})

and for K9 = {a, b} we have

Imc(K9 ∪ {¬a,¬b}) = 2 > 1 = Imc(K9 ∪ {¬a ∧ ¬b})

d) Ip: consider K10 = {¬a, a,¬b, b}. Here we have

Ip(K10 ∪ {a, b}) = 4 < 5 = Ip(K10 ∪ {a ∧ b})

and for K5 = {a, b} we have

Ip(K5 ∪ {¬a,¬b}) = 4 > 3 = Ip(K5 ∪ {¬a ∧ ¬b})
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e) IΣ
dalal: consider K5 = {a, b}. Here we have

IΣ
dalal(K5 ∪ {¬a, a}) = 1 < ∞ = IΣ

dalal(K5 ∪ {¬a ∧ a})

and for K14 = {a, b, a ∧ b,¬a ∧ ¬b} we have

IΣ
dalal(K14 ∪ {¬a,¬b}) = 4 > 2 = IΣ

dalal(K14 ∪ {¬a ∧ ¬b})

f) ID f : consider Example 16 with K7 = {a,¬a}. Here we have

ID f (K7 ∪ {a, b}) = 1/6 < 1/3 = ID f (K7 ∪ {a ∧ b})

and for K15 = {a ∧ b, a ∧ c, a ∧ d} we have

ID f (K15 ∪ {¬a,¬a ∧ e}) = 3/10 > 1/4 = ID f (K15 ∪ {¬a ∧ ¬a ∧ e})

g) Imv: consider K8 = {a}. Here we have

ID f (K8 ∪ {¬a, b}) = 1 < 2 = ID f (K8 ∪ {¬a ∧ b})

and for K6 = {a ∧ b} we have

ID f (K6 ∪ {¬a, a}) = 2 > 1 = ID f (K6 ∪ {¬a ∧ a})

h) Inc: consider K8 = {a}. Here we have

Inc(K8 ∪ {¬a, a}) = 1 < 2 = Inc(K8 ∪ {¬a ∧ a})

and for K7 = {a,¬a} from Example 16 we have

Inc(K7 ∪ {b, c}) = 3 > 2 = Inc(K7 ∪ {b ∧ c})

appendix : list of knowledge bases

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}
K3 = {a,¬a, b, c, d}
K4 = {a, b, c,¬a ∨ ¬b ∨ ¬c,¬(a ∧ b ∧ c)}
K5 = {a, b}
K6 = {a ∧ b}
K7 = {a,¬a}
K8 = {a}
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K9 = {a ∧ ¬a}
K10 = {¬a ∧ b, a ∧ ¬b}
K11 = {¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b}
K12 = {¬a,¬b}
K13 = {¬a}
K14 = {a, b, a ∧ b,¬a ∧ ¬b}
K15 = {a ∧ b, a ∧ c, a ∧ d}
K1

i = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai} i ∈N

K2
i = {¬a, a, a ∧ a, a ∧ a ∧ a, . . . ,

i∧
j=1

a} i ∈N

K3
i = {a1, . . . , ai,¬a1, . . . ,¬ai} i ∈N

K4
i = {¬a1 ∨ a2,¬a2 ∨ a3, . . . ,¬ai−1 ∨ ai, ai ∧ ¬a1} i ∈N

K5
i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai} i ∈N

K6
i = {a1 ∧ . . . ∧ ai ∧ ¬a1 ∧ . . . ∧ ¬ai} i ∈N

K7
i = {a ∧ ¬a, a ∧ a ∧ ¬a ∧ ¬a, . . .

i∧
j=1

a ∧ ¬a} i ∈N

K8
i = {a1 ∧ ¬a1, a2, . . . , ai} i ∈N

K9
i = {a ∧ b,¬a ∧ b, a ∧ ¬b | a, b ∈ Ati, a 6= b} i ∈N

K10
i = {a,¬a, a ∧ a,¬a ∧ ¬a, . . . ,

i∧
j=1

a,
i∧

j=1

¬a} i ∈N

K11
i = {φω | ω ∈ Int(Ati)} i ∈N

K12
i = {¬a1, a1, a2, . . . , ai} i ∈N

K13
i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai, ai+1, . . . , an} i ∈N

K14
i = {a1 ∧ . . . ∧ ai−1, ai ∧ ¬ai} i ∈N

K15
i = {¬a1 ∧ a1 ∧ a2 ∧ . . . ∧ ai} i ∈N

K16
i,j = {a1, . . . , ai,¬a1, . . . ,¬ai} i, j ∈N
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Abstract

This paper presents Tweety, an open source project for scientific experimen-
tation on logical aspects of artificial intelligence and particularly knowledge
representation. Tweety provides a general framework for implementing
and testing knowledge representation formalisms in a way that is familiar
to researchers used to logical formalizations. This framework is very gen-
eral, widely applicable, and can be used to implement a variety of knowl-
edge representation formalisms from classical logics, over logic program-
ming and computational models for argumentation, to probabilistic mod-
eling approaches. Tweety already contains over 15 different knowledge
representation formalisms and allows easy computation of examples, com-
parison of algorithms and approaches, and benchmark tests. This paper
gives an overview on the technical architecture of Tweety and a descrip-
tion of its different libraries. We also provide two case studies that show
how Tweety can be used for empirical evaluation of different problems in
artificial intelligence.

1 introduction

Knowledge Representation and Reasoning (KR) (Brachman and Levesque,
2004) is an important subfield in Artificial Intelligence (AI) that deals with
issues regarding formalizing knowledge in such a way that machines can
read, understand, and reason with it. Nowadays, KR has a lot of applica-
tions within, e. g., the semantic web (Antoniou and van Harmelen, 2004),
as a lot of work on description logics (Baader et al., 2003) and ontologies
originate from this field (at least the technical or computer-science-oriented
perspectives on those). Apart from that, more fundamental work in KR
deals with issues regarding uncertainty of beliefs, dynamics of belief, and
defeasible reasoning. Many branches of research in knowledge representa-
tion and reasoning is theoretical in nature and researchers usually do not
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put effort in implementation and empirical evaluation. To address this is-
sue we present in this field study the Tweety libraries for logical aspects of
artificial intelligence and knowledge representation.

Approaches to knowledge representation follow almost always a specific
pattern. Starting from a formal syntax one can build formulas which are
collected in knowledge bases. Using knowledge bases one can derive new
information using either the underlying semantics of the language or a spe-
cific reasoner. For example, propositional logic is the most basic form for
knowledge representation. Given some set of propositions (or atoms) one
can build complex formulas using disjunction, conjunction, or negation. A
set of propositional formulas, i. e., a knowledge base, can be used to de-
rive new propositional formulas as conclusions. For instance, this can be
done using the standard model-theoretic semantics of propositional logic or
more sophisticated reasoning techniques such as paraconsistent reasoning.
Most logical approaches to knowledge representation such as first-order
logic, description logics, defeasible logics, default logics, probabilistic log-
ics, fuzzy logics, etc. follow this pattern. Moreover, many other formalisms
which are not so obviously rooted in logic such as abstract argumentation
or Bayes nets can also be cast into this framework. For example, for abstract
argumentation frameworks (Dung, 1995), a knowledge base is given by a
conjunction of attack statements between arguments and different kinds
of semantics such as grounded or stable semantics determine how sets of
arguments can be derived from a knowledge base.

The Tweety libraries support the implementation of such approaches
by providing a couple of abstract classes and interfaces for components
such as Formula, BeliefBase, and Reasoner. Furthermore, many strictly
logic-based approaches to knowledge representation can also utilize
further classes such as Predicate, Atom, and Variable, to name just a few.
Currently, Tweety already contains implementations of over 15 different
approaches to knowledge representation such as propositional logic,
first-order logic, several approaches to probabilistic logics, and several
approaches to computational models of argumentation.

In this paper, besides giving an overview on the technical details of
Tweety and its libraries, we also report on two case studies that use Tweety
as a framework for experimentation and empirical evaluation. The first
study is on inconsistency measurement for probabilistic logics (Thimm,
2011, 2013b). In general, probabilistic logics are concerned with using
quantitative uncertainty for non-monotonic reasoning. Naturally, these ap-
proaches are computationally hard and not easy to understand, as the un-
derlying reasoning mechanisms are quite complicated. Consequently, im-
plementations serve well to understand examples and to (in-)validate con-
jectures. Our second case study is about strategic argumentation in multi-
agent systems (Thimm and Garcia, 2010; Rienstra et al., 2013). Similarly,
when defining agent models and negotiation strategies in such an environ-
ment, effects that occur on a larger scale are hard to predict by hand. More-
over, just an analytical evaluation of different negotiation strategies is often
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also simply too weak to provide meaningful insights (Rienstra et al., 2013).
For that reason Tweety can also be used as a tool for empirical evaluation
as it has been done in (Rienstra et al., 2013) to provide average performance
results on a series of experiment runs in random settings. Further works
that use Tweety for implementing knowledge representation formalisms or
for empirical evaluation are, e. g., (Thimm and Kern-Isberner, 2008; Thimm
and Garcia, 2010; Krümpelmann et al., 2011; Thimm, 2011; Kern-Isberner
and Thimm, 2012; Thimm, 2012, 2013b; Rienstra et al., 2013; Thimm, 2013a;
Krümpelmann and Kern-Isberner, 2012).

The rest of this paper is organized as follows. Section 2 gives an overview
on the architecture of Tweety and Section 3 presents some technical details
on its different libraries. In Section 4 two case studies are presented that
show how Tweety can be used for evaluation in scientific research. Section
5 concludes with a summary and pointers to future work.

2 technical overview

Tweety is organized as a modular collection of Java libraries with a clear
dependence structure. The programming language Java has been chosen
as it is easy to understand, commonly used, and platform-independent.
Each knowledge representation formalism has a dedicated Tweety library
(ranging from a library on propositional logic to libraries on computational
models of argumentation) which provides implementations for both syn-
tactic and semantic constructs of the given formalism as well as reasoning
capabilities. Several libraries provide basic functionalities that can be used
in other projects. Among those is the Tweety Core library which contains
abstract classes and interfaces for all kinds of knowledge representation for-
malisms. Furthermore, the library Math contains classes for dealing with
mathematical sub-problems that often occur, in particular, in probabilistic
approaches to reasoning. Most other Tweety projects deal with specific ap-
proaches to knowledge representation. In the next section, we have a closer
look on the individual libraries.

Each Tweety library is organized as a Maven1 project (Maven is a tool for
organizing dependencies between projects, building, and deploying). Most
libraries can be used right away as they only have dependencies to other
Tweety libraries. Some libraries provide bridges to third-party libraries
such as numerical optimization solvers which are not automatically found
by Maven and have to be installed beforehand. However, all necessary
third-party libraries can be installed by executing a single install file located
within the Tweety distribution.

In order to use and develop with Tweety we recommend using the Eclipse
IDE2 and its Maven plugin3. As all Tweety libraries are organized as Maven
projects they can all be easily imported and used for other projects within

1 http://maven.apache.org
2 http://www.eclipse.org
3 http://maven.apache.org/eclipse-plugin.html

http://maven.apache.org
http://www.eclipse.org
http://maven.apache.org/eclipse-plugin.html
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Eclipse. Furthermore, pre-compiled JARs for every library can be down-
loaded from the Tweety homepage4 and directly used in other projects. A
third way of using the functionalities of Tweety is by using its Command
Line Interface which is currently under development.

Currently, Tweety contains 161 Java packages which themselves contain
794 Java classes in overall 87421 lines of code. The average cyclomatic com-
plexity number per method (CCN) (McCabe, 1976) is 2.87. This means, that
every method roughly contains two to three if-else statements thus reduc-
ing complexity on a method-basis and emphasizing the modular nature of
Tweety. Furthermore, the average code-to-comment ratio in Tweety is 2.13,
meaning that for roughly every two lines of code one line of comment is
given.

3 libraries

In the following we give a detailed description of the currently available
libraries within Tweety. An overview of these libraries is given in Table 1

which provides both the name of a library and its Java root package name.
Furthermore, the final column lists references to original literature and the
implemented reasoning mechanisms and solvers. There, a dagger (†) in-
dicates that a the particular reasoning mechanism has been directly imple-
mented from the original literature, a double dagger (‡) means that a wrap-
per for the existing original implementation is provided, and an asterisk (∗)
refers to related literature.

3.1 General Libraries

The General libraries of Tweety provide basic functionalities and utility
classes for all other Tweety classes.

Tweety Core

The Tweety Core library contains abstract classes and interfaces for various
knowledge representation concepts. Among the most important ones are

Formula A formula of a representation formalism.

BeliefBase Some structure containing beliefs.

BeliefSet A set of beliefs, i. e., a set of formulas, it is the most commonly
used class derived from BeliefBase. Please note that we follow the
Java guideline for naming a class containing a set of beliefs a belief
set (it contains a finite unordered set of elements), opposed to the
naming convention in belief dynamics where a belief set is usually
deductively closed. In terms of belief dynamics research the class
BeliefSet actually represents a belief base.

4 http://www.mthimm.de/projects/tweety/

http://www.mthimm.de/projects/tweety/
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Library Project root package Notes

General Libraries
Tweety Core net.sf.tweety

Command Line Interface nst.cli

Plugin nst.plugin ∗JSPFa

Math nst.math ‡lpsolveb, ‡OpenOptc,
‡Apache simplexd, ‡Chocoe,
†Gradient descent

Graphs nst.graphs

Logic Libraries
Logic Commons nst.logics.commons †(Grant and Hunter, 2006),

†(Hunter and Konieczny, 2006)
Propositional Logic nst.logics.pl ‡Sat4jf

First-Order Logic nst.logics.fol ∗(Brachman and Levesque, 2004)
Conditional Logic nst.logics.cl †(Pearl, 1990), †(Kern-Isberner, 2001)
Relational Conditional Logic nst.logics.rcl †(Kern-Isberner and Thimm, 2012)
Prob. Conditional Logic nst.logics.pcl †(Rödder, 2000), †(Thimm, 2013b),

†(Potyka, 2014)
Rel. Prob. Conditional Logic nst.logics.rpcl †(Kern-Isberner and Thimm, 2010)
Markov Logic nst.logics.ml †(Richardson and Domingos, 2006)

‡Alchemyg

Epistemic Logic nst.logics.el ∗(Fagin et al., 1995)
Description Logic nst.logics.dl ∗(Baader et al., 2003)
Logic Translators nst.logics.translators

Logic Programming Libraries
Answer Set Programming nst.lp.asp ‡Clingoh, ‡DLVi

Dynamics in ASP nst.lp.asp.beliefdynamics †(Krümpelmann and Kern-Isberner, 2012)
Nested Logic Programming nst.lp.nlp ∗(Lifschitz et al., 1999)

Argumentation Libraries
Abstract Argumentation nst.arg.dung †(Dung, 1995),

†(Baroni et al., 2011)
Deductive Argumentation nst.arg.deductive †(Besnard and Hunter, 2001),

†(Besnard and Hunter, 2006)
Structured AFs nst.arg.saf †(Thimm and Garcia, 2010)
DeLP nst.arg.delp †(Garcia and Simari, 2004),

†(Stolzenburg et al., 2003)
Logic Prog. Argumentation nst.arg.lp †(Schweimeier and Schroeder, 2003)
Probabilistic Argumentation nst.arg.prob †(Thimm, 2012)

Agent Libraries
Agents nst.agents ∗(Weiss, 2013)
Dialogues nst.agents.dialogues †(Thimm and Garcia, 2010),

†(Rienstra et al., 2013)

Other Libraries
Action and Change nst.action †(Gelfond and Lifschitz, 1998)
Belief Dynamics nst.beliefdynamics †(Hansson, 2001),

†(Fermé and Hansson, 1999),
†(Krümpelmann et al., 2011)

Machine Learning nst.machinelearning ‡LIBSVMj

Preferences nst.preferences ∗(Walsh, 2007), †(Thimm, 2013a)

Table 1: Overview on the Tweety libraries (the prefix nst stands for
net.sf.tweety)

a https://code.google.com/p/jspf/
b http://lpsolve.sourceforge.net
c http://openopt.org
d http://commons.apache.org/math
e http://www.emn.fr/z-info/choco-solver/
f http://www.sat4j.org
g http://alchemy.cs.washington.edu
h http://potassco.sourceforge.net
i http://www.dlvsystem.com
j http://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://code.google.com/p/jspf/
http://lpsolve.sourceforge.net
http://openopt.org
http://commons.apache.org/math
http://www.emn.fr/z-info/choco-solver/
http://www.sat4j.org
http://alchemy.cs.washington.edu
http://potassco.sourceforge.net
http://www.dlvsystem.com
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Signature The signature of a representation formalism.

Interpretation An interpretation that evaluates the truth of formulas.

Reasoner Implements a specific reasoning strategy to answer queries for a
representation formalism.

Parser, Writer For reading/writing formulas and belief sets.

Most other Tweety libraries provide specific implementations of the above
abstract classes and interfaces for their specific representation formalisms.
For example, the library Propositional Logic implements Formula by
PropositionalFormula (which is recursively defined using conjunction,
disjunction, and negation) and Interpretation by PossibleWorld. In this
way, the classical approach to formally define a logical language via syntax
and semantics has a one-to-one correspondence with its implementation in
Tweety.

Besides the above mentioned abstract classes and interfaces, Tweety Core
provides abstract implementations of several other knowledge representa-
tion concepts and several utility classes for working with sets, subsets, vec-
tors, and general rules.

Plugin

The Plugin library provides classes for implementing Tweety plugins that
can be used by, e. g., the Command Line Interface. This library makes use of
the Java Simple Plugin Framework (JSPF)5. Using these classes one can encap-
sulate the functionalities of a specific knowledge representation formalism
and expose them in the same way to user interfaces. The most impor-
tant class is the abstract class AbstractTweetyPlugin which is the basis for
developing plugins. Please note that the Plugin library is currently in an
experimental phase.

Command Line Interface

All Tweety libraries can be accessed programmatically in Java through their
API (Application Programming Interface). However, for non-programmers this
way of utilizing the libraries is not very convenient. Using the Plugin library
the Command Line Interface library provides a general command line inter-
face for many Tweety libraries. Every library can expose its functionality
through a Tweety plugin that can be plugged into the command line in-
terface and accessed in a uniform way. Please note that the Command Line
Interface library is currently in an experimental phase.

5 https://code.google.com/p/jspf/

https://code.google.com/p/jspf/
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Math

Many algorithms for knowledge representation and reasoning are based
on mathematical methods such as optimization techniques. The Math li-
brary encapsulates those mathematical methods and exposes them through
simple interfaces to other libraries for realizing these algorithms. At the
core, the Math library contains classes for representing mathematical terms
(such as Constant, Variable, Product, Logarithm) and statements (such
as Equation). Using these constructs one can represent, e. g., constraint
satisfaction problems (ConstraintSatisfactionProblem) and optimization
problems (OptimizationProblem). Through the Solver interface the Math li-
brary provides bridges to several third-party solvers such as the ApacheCom-
mons Simplex-algorithm6, the OpenOpt solvers7, or Choco8.

Graphs

The Graphs library contains a simple graph implementation with utility
functions as it can be used, e. g., to represent abstract argumentation frame-
works (see Abstract Argumentation library).

3.2 Logic Libraries

The Tweety Logic libraries (under the package net.sf.tweety.logics) pro-
vide implementations for various knowledge representation formalisms
based on classical logics (propositional logic and first-order logic) and non-
classical logics such as conditional logic, probabilistic logics, epistemic log-
ics, or description logic. Each library follows a strict approach in defining
the formalism by implementing the abstract classes and interfaces Formula,
BeliefBase, Interpretation,. . . from the Tweety Core library. Each library
contains a sub-package syntax which contains the elements to construct
formulas of the formalism and a sub-package semantics which contains
elements for realizing the semantics of the formalism. Besides these two
common sub-packages many libraries also contain parsers for reading for-
mulas from file and reasoner that implement a specific reasoning approach.

Logic Commons

The Logic Commons library contains abstract classes and interfaces which
further refine the general Formula interface from the Tweety Core library.
Among these refinements are several concepts that are shared among a
great number of knowledge representation formalism such as Predicate,
Variable or Atom.

6 http://commons.apache.org/math
7 http://openopt.org
8 http://www.emn.fr/z-info/choco-solver/

http://commons.apache.org/math
http://openopt.org
http://www.emn.fr/z-info/choco-solver/
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Propositional Logic

The Propositional Logic library provides an implementation of classical
propositional logic. Propositional formulas can be constructed using, e. g.,
classes Conjunction or Disjunction and propositional formulas can be put
into a knowledge base of type PlBeliefSet. Currently, the Propositional
Logic library supports two different reasoners. The first is a simple brute
force approach that directly follows the definition of classical entailment,
i. e., in order to prove a given propositional formula wrt. a given set of
propositional formulas all possible worlds are enumerated and tested.
Obviously, this reasoner only works for small examples but is useful when
one is interested in all models of a knowledge base. The second supported
reasoner incorporates the Sat4j reasoner9. Other SAT-solvers can be added
in a straightforward way.

First-Order Logic

This library contains an implementation of first-order logic as a knowledge
representation formalism. Both the Propositional Logic library and the First-
Order Logic library are used by many other libraries of knowledge represen-
tation formalisms.

Conditional Logic

The Conditional Logic library extends the Propositional Logic library by con-
ditionals, i. e., non-classical rules of the form (B | A) (“A usually implies
B”), cf. (Nute and Cross, 2002). In the literature, several different seman-
tics and reasoning approaches for conditional logics have been proposed
and this library can be used to easily compare their reasoning behavior.
Currently, the Conditional Logic library implements interpretations in the
form of ranking functions (Spohn, 1988) and conditional structures (Kern-
Isberner, 2001), and provides reasoner based on z-ranking (Goldszmidt and
Pearl, 1996) and c-representations (Kern-Isberner, 2001).

Relational Conditional Logic

Similar to the Conditional Logic library the Relational Conditional Logic ex-
tends the First-Order Logic libraries with relational conditionals (i. e. condi-
tionals that may contain first-order formulas), cf. (Delgrande, 1998; Kern-
Isberner and Thimm, 2012). Currently, this library contains an implementa-
tion of the relational c-representation reasoning approach of (Kern-Isberner
and Thimm, 2012).

9 http://www.sat4j.org

http://www.sat4j.org
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Probabilistic Conditional Logic

This library further extends the Conditional Logic library by extending condi-
tionals to probabilistic conditionals of the form (B | A)[p] (“A usually implies
B with probability p”), cf. (Rödder, 2000). Besides a naive implementa-
tion of probabilistic reasoning based on the principle of maximum entropy
(Paris, 1994) this library also contains several classes for analyzing and
repairing inconsistent sets of probabilistic conditionals, cf. (Thimm, 2011,
2013b). We will discuss this package in more detail in Section 4.

Relational Probabilistic Conditional Logic

By combining both the Relational Conditional Logic and Probabilistic Condi-
tional Logic libraries the Relational Probabilistic Conditional Logic library in-
troduces relational conditionals with probabilities, cf. (Kern-Isberner and
Thimm, 2010). It implements both the averaging and aggregating semantics
from (Kern-Isberner and Thimm, 2010) and also allows for lifted inference
as proposed in (Thimm, 2011).

Markov Logic

This library builds on the First-Order Logic library to implement Markov
Logic, an extension of first-order logic with weights to allow for probabilis-
tic reasoning, cf. (Richardson and Domingos, 2006). It provides several
propriety sampling-based reasoner and a bridge to the Alchemy reasoner10.

Epistemic Logic

This library extends the Propositional Logic library with modal operators for
epistemic logic and its semantics with accessibility relations and Kripke
models. Please note that the Epistemic Logic library is currently in an exper-
imental phase.

Description Logic

The Description Logic library provides a general description logic implemen-
tation (Baader et al., 2003) based on the First-Order Logic library. Please note
that the Description Logic library is currently in an experimental phase.

Logic Translators

This library provides the abstract class Translator that provides basic func-
tionalities to implement translators between different knowledge represen-
tation formalisms. Currently, the Logic Translators library contains transla-
tors between first-order logic and answer set programming, between nested
logic programming and answer set programming, and between proposi-
tional logic and first-order logic.

10 http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu
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3.3 Logic Programming Libraries

The Logic Programming libraries (located under the package
net.sf.tweety.lp) provide implementations of knowledge represen-
tation formalisms based on logic programming.

Answer Set Programming

The Answer Set Programming library provides classes for representing ex-
tended logic programs (Gelfond and Leone, 2002). Answer set programs
are logic programs of the form A ← B1, . . . , Bm with first-order literals
A, B1, . . . , Bm where the body literals B1, . . . , Bm may also have a default
negation not. This library provides bridges to several established solvers
such as DLV11, DLV Complex12, and Clingo13.

Dynamics in Answer Set Programming

This library extends the Answer Set Programming library by introducing re-
vision and update approaches. The library contains implementations of
the approaches introduced in (Krümpelmann and Kern-Isberner, 2012; Del-
grande et al., 2007) and also revision approaches based on argumentation.

Nested Logic Programming

This library contains an implementation of nested logic programs which
allow for complex first-order formulas to appear in logic programming
rules (Lifschitz et al., 1999).

3.4 Argumentation Libraries

The argumentation libraries (under the package net.sf.tweety.arg) are
one of the most mature libraries of Tweety and contain a wide variety of
implementations of different approaches to computational argumentation.

Abstract Argumentation

This library implements abstract argumentation as proposed in (Dung,
1995). An abstract argumentation framework is a directed graph (A, Att)
where A is interpreted as a set of arguments and an edge (A, A′) ∈ Att is
an attack of A on A′. The library provides implementations of the mostly
used semantics and their corresponding reasoner, both in terms of exten-
sions (an extension is a set of arguments that is regarded as accepted by a
semantics) and labelings (a labeling is a function with a three-valued truth
assignment to each argument). Several utility classes for generating ran-
dom argumentation frameworks complement this library.

11 http://www.dlvsystem.com
12 https://www.mat.unical.it/dlv-complex
13 http://potassco.sourceforge.net

http://www.dlvsystem.com
https://www.mat.unical.it/dlv-complex
http://potassco.sourceforge.net
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Deductive Argumentation

The Deductive Argumentation library provides an implementation of the ap-
proach proposed in (Besnard and Hunter, 2001). In deductive argumen-
tation, an argument is composed of a set of propositional formulas that
derive the claim of the argument. Attack between arguments is derived
from classical unsatisfiability.

Structured Argumentation Frameworks

This library implements the approach of structured argumentation frame-
works as proposed in (Thimm and Garcia, 2010). In structured argumenta-
tion frameworks arguments are composed of subarguments and a conclu-
sion.

Defeasible Logic Programming

This library provides an implementation of Defeasible Logic Programming
(DeLP) (Garcia and Simari, 2004). In DeLP knowledge bases contain strict
and defeasible rules and facts, similar to knowledge representation for-
malisms for logic programming. Defeasible rules can be collected in ar-
guments and compared by generalized specificity (Stolzenburg et al., 2003).

Logic Programming Argumentation

This library provides an implementation of the argumentation approach of
(Schweimeier and Schroeder, 2003) which is also based on logic program-
ming techniques.

Probabilistic Argumentation

The Probabilistic Argumentation library extends the Abstract Argumentation
library with non-classical semantics based on probabilistic assessments
(Thimm, 2012).

3.5 Agent Libraries

The agent libraries (located under the package net.sf.tweety.agents)
provide a framework for analyzing and simulating interactions between
agents.
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Agents

This general library contains an abstract formalization of agents and multi-
agent systems. Classes such as Agent, Environment, MultiAgentSystem, and
Protocol can be used to set up and simulate a system of agents within an
environment. This library has a specific focus on the simulation aspect and
provides classes such as MultiAgentSystemGenerator and GameSimulator

that allow the automatic generation of test scenarios and their evaluation.

Dialogues

The library Dialogues extends the Agents library with the capability of sim-
ulating dialogues between agents, as they are investigated in the context
of argumentation in multi-agent systems (Karunatillake et al., 2009). It also
provides an implementation of agents with an opponent model as proposed
in (Rienstra et al., 2013). We will discuss this package in more detail in Sec-
tion 4.

3.6 Other Libraries

The above discussed libraries constitute the core of Tweety by providing
implementations of several knowledge representation formalisms. This
collection is complemented by some further libraries that relate either to
topics that do not strictly belong to the field of knowledge representation
(such as the Machine Learning library) or can be applied across several
different knowledge representation formalisms (such as the Belief Dynamics
library).

Action and Change

The Action and Change library implements several action languages and
their dynamics from (Gelfond and Lifschitz, 1998).

Belief Dynamics

This library provides a general implementation for various approaches to
belief (base) revision and update (Hansson, 2001). It provides interfaces
and several implementations of many concepts used in belief dynamics
such as BaseRevisionOperator, BaseContractionOperator, IncisionFunc-
tion, and LeviBaseRevisionOperator. Those classes are defined in such
a general way that they can be used not only to implement belief dynam-
ics for propositional logic but also for other knowledge representation for-
malisms implementing the corresponding Tweety interfaces. This library
contains also specific revision approaches such as selective revision (Fermé
and Hansson, 1999) and argumentative selective revision (Krümpelmann et
al., 2011).
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Machine Learning

The Machine Learning library provides several abstract concepts that can
be used in a machine learning context such as Observation, Classifier,
and CrossValidator. It contains also an implementation of support vector
machines utilizing LIBSVM14.

Preferences

This library contains classes for representing preference orders and ap-
proaches for aggregating them (Walsh, 2007). It also contains an imple-
mentation of the dynamic preference aggregation approach proposed in
(Thimm, 2013a).

4 case studies and evaluation

In this section we discuss two case studies that make use of Tweety as
a platform for experimentation and empirical evaluation. The first case
study is on inconsistency handling for probabilistic logics (Thimm, 2011,
2013b) while the second study is on strategic argumentation in multi-agent
systems (Thimm and Garcia, 2010; Rienstra et al., 2013).

4.1 Inconsistency Handling for Probabilistic Logics

In order to motivate the work described in this section we give a brief intro-
duction into probabilistic conditional logic and its inconsistency measures,
cf. (Thimm, 2011, 2013b).

For propositional formulas φ, ψ and a real-value p ∈ [0, 1] we call
(φ |ψ)[p] a probabilistic conditional. A probabilistic conditional (φ |ψ)[p]
represents a specific form of defeasible rule and has the intuitive meaning
“if ψ is true then φ is true with probability p”. A (probabilistic conditional)
knowledge base K is a set of probabilistic conditionals. Semantics are given
to probabilistic conditionals by probability functions P : Ω → [0, 1] with
Ω being the set of interpretations (possible worlds) of the underlying
propositional logic (We assume that the set of propositions is finite and
so is the set of possible worlds). A probability function P satisfies a
conditional (φ |ψ)[p] if and only if P(φ ∧ ψ) = pP(ψ) (the probability
of a formula is defined to be the sum of the probabilities of all possible
worlds satisfying it). Note that this follows the definition of conditional
probability (P(φ | ψ) = P(φ ∧ φ)/P(ψ) = p) as long as P(ψ) 6= 0. In order
to avoid a case differentiation for P(ψ) = 0 we use the above definition, cf.
(Paris, 1994). A probability function P satisfies a knowledge base K if and
only if it satisfies all its probabilistic conditionals. A knowledge base is
consistent if such a probability function exists.

14 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Example 1. Consider K = {( f | b)[0.9], (b | p)[1], ( f | p)[0.01]} with the in-
tuitive meaning that birds (b) usually (with probability 0.9) fly ( f ), that
penguins (p) are always birds, and that penguins usually do not fly (only
with probability 0.01). The knowledge base K is consistent as a probability
function satisfying it can easily be constructed, cf. (Thimm, 2013b). Note
that, e. g., the knowledge base K = {(x | y)[0.9], (y | >)[0.9], (x | >)[0.2]} is
inconsistent (> is a logical tautology): considering just the conditionals
(x | y)[0.9] and (y | >)[0.9] we obtain that x has to be at the least probability
0.81 which is inconsistent with stating that x has probability 0.2.

In order to deal with inconsistent knowledge bases the work (Thimm,
2013b) proposes inconsistency measures as a tool for analyzing inconsis-
tencies. An inconsistency measure is a function I that takes a knowledge
base K and computes an inconsistency value I(K) ∈ [0, ∞) with the intu-
itive meaning that a larger value indicates a more severe inconsistency (and
I(K) = 0 means that K is consistent). See (Thimm, 2013b) for more details,
some rationality postulates on inconsistency measurement, and specific ap-
proaches.

The inconsistency measurement framework for probabilistic logics has
been implemented in the Probabilistic Conditional Logic library of Tweety
(sub-package net.sf.tweety.logics.pcl.analysis). However, as inconsis-
tency measurement is a broader topic that can also be used in other knowl-
edge representation formalisms such as classical logics (Grant and Hunter,
2006), the concept inconsistency measure is already implemented in the Logic
Commons library (sub-package net.sf.tweety.logics.commons.analysis)
as a very general interface (only a simplified version is shown):

public i n t e r f a c e InconsistencyMeasure
<T extends Bel i e fBas e > {

public Double inconsistencyMeasure
( T b e l i e f B a s e ) ;

}

The interface above is parametrized by the specific type of belief base us-
ing Java Generics. All types of belief bases used within Tweety, such as
propositional belief sets (PlBeliefSet) or probabilistic conditional knowl-
edge bases (PclBeliefSet), are derived from BeliefBase. The package
net.sf.tweety.logics.commons.analysis provides several generally ap-
plicable implementations of the above interface such as (only a simplified
version is shown):

public c l a s s MiInconsistencyMeasure
<S extends Formula , T extends B e l i e f S e t <S>>
implements InconsistencyMeasure <T> {

private B e l i e f S e t C o n s i s t e n c y T e s t e r <S , T> consTester ;

public MiInconsistencyMeasure ( B e l i e f S e t C o n s i s t e n c y T e s t e r <S , T>
consTester ) {

t h i s . consTester = consTester ;



4 case studies and evaluation 165

}

@Override
public Double inconsistencyMeasure

( T b e l i e f S e t ) {
return new Double ( t h i s . consTester . minimal Incons is tentSubsets

( b e l i e f S e t ) . s i z e ( ) ) ;
}

}

The above measure is an implementation of the MI-inconsistency mea-
sure (Grant and Hunter, 2006) and is applicable for all kinds of logics
that provide an implementation of an BeliefSetConsistencyTester.
This measure takes the number of minimal inconsistent subsets of
a knowledge as an assessment of its inconsistency. Another exam-
ple, particularly for the case of probabilistic conditional logic, is the
DistanceMinimizationInconsistencyMeasure that makes use of the Math
library. This measure assesses the grade of inconsistency by measuring
how much the probabilities of the conditionals have to be modified in
order to obtain a consistent knowledge base, cf. (Thimm, 2013b). This
problem is solved by optimization techniques that can be found in the
Math library.

For probabilistic conditional logic, determining whether a knowledge
base is inconsistent and assessing its inconsistency value is not easily done
by hand. Using the implementations of various inconsistency measures
in Tweety, we were able to compute and compare inconsistency values for
various knowledge bases, cf. (Thimm, 2011). Furthermore, as the interfaces
and abstract classes provided by Tweety are very general and force the
programmer to work as abstract as possible, even the implementation of
such specific concepts such as inconsistency measures yield very generally
applicable classes that are easily adapted to other approaches.

4.2 Strategic Argumentation

Our second case study is about strategic argumentation in multi-agent
systems. In the works (Thimm and Garcia, 2010; Rienstra et al., 2013)
we investigated systems of agents that are engaged in dialogues and aim
at resolving contradiction by exchange of arguments. We give a brief
introduction into the topic now, but simplify the formalization for the sake
of readability.

We consider two agents PRO (proponent) and OPP (opponent) engaged
in a dialogue about a specific argument A (we use the terminology of
abstract argumentation frameworks as mentioned earlier). The proponent
has the goal to establish that A is acceptable and the opponent has the goal
to establish that A is not acceptable. Both agents have only access to a
subset of all available arguments and are, in general, ignorant or uncertain
about the arguments the other agent has access to. Both agents take turn
in forwarding a set of arguments. In (Rienstra et al., 2013) several different
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belief states with opponent models were proposed and discussed that help
an agent to act strategically in these kinds of dialogues. The first type T1
of belief state is a tuple (B, E) where B is the set of arguments a particular
agent (either PRO or OPP) has access to, and E is the opponent model
which is itself a belief state of type T1

15. This type of belief state therefore
models what an agent thinks another agent beliefs, etc.. The second T2 and
third T3 types of belief state extend the first type by introducing uncertainty
on the set of arguments believed by the other agent and uncertainty about
the arguments themselves. The second type of belief state T2 is a tuple
(B, P) where B is again the set of arguments a particular agent has access to
and P is a probability distribution over some set {K1, . . . , Kn} where each
Ki (i = 1, . . . , n) is again a belief state of type T2. For a formalization of the
belief state of type T3 see (Rienstra et al., 2013). In (Rienstra et al., 2013) it
has been analytically shown that the expressiveness of the three models is
increasing from T1 to T3. However, in order to understand the differences
between the three models examples have to be created and computed with
different belief states. In the setting of strategic argumentation, this is a
hard task to do by hand. In a system with at least two agents where both
agents are equipped with a non-trivial belief state that changes with every
action, running through a complete example by hand is a tedious task.

The complete setting of (Rienstra et al., 2013) has been implemented in
the Dialogues library which makes heavy use of the general agent classes
from the Agents library and, of course, the knowledge representation for-
malism from the Abstract Argumentation library. The central class of the
implementation is the ArguingAgent class (we only show an excerpt):

public c l a s s ArguingAgent extends Agent {
private B e l i e f S t a t e b e l i e f S t a t e ;
private AgentFaction f a c t i o n ;

@Override
public Executable next ( Col lec t ion <? extends Perce ivable >

percepts ) {
/ / [ env = t h e env i ronment o b j e c t ]
t h i s . b e l i e f S t a t e . update ( env . getDialogueTrace ( ) ) ;
return t h i s . b e l i e f S t a t e . move( env ) ;

}
}

The central attributes of an arguing agent are its belief state and its faction,
e. g., either PRO or OPP. The method next(...) (derived from the super-
class Agent) determines the agent’s behavior on receiving some perception
from the environment and returns some action (of type Executable). Here,
the agent first updates its belief state with the current dialogue trace (a se-
quence of sets of arguments advanced so far) and then returns its own move
(a set of arguments). The three different belief state types have been imple-
mented in the classes T1BeliefState, T2BeliefState, and T3BeliefState.
Arguing agents are organized in a GroundedGameSystem which is of type

15 Note that this model has originally been proposed in (Oren and Norman, 2009)
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Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with ar-
gumentation. [6] describes two systems which concern them-

1http://tinyurl.com/tweety-opp

selves with the likelihood that an agent knows a specific argu-
ment, and we can view the possible argument AFs that can be
induced from these likelihoods as possible models of agent
knowledge. [15] investigates probabilistic interpretations of
abstract argumentation and relationships to approaches for
probabilistic reasoning. Furthermore, [8] investigated strate-
gies in such a probabilistic setting but concerned themselves
with monologues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [10], which aims to minimise the cost
of moves, with no concern to the opponent’s knowledge, and
without looking more than one step ahead when reasoning.
Such a strategy can easily be encoded by our approach. By
assigning probabilities to arguments, [14] constructed a game
tree allowing dialogue participants to maximise the likelihood
of some argument being accepted or rejected. The probabili-
ties in that system arose from a priori knowledge, and no con-
sideration was given to the possibility of an opponent model.

[12; 13] consider a very different aspect of strategy, at-
tempting to identify situations which are strategy-proof, that
is, when full revelation of arguments is the best course of
action to follow. Similarly, [16] extends that work to struc-
tured AFs and also proposes some simple dominant strate-
gies for other specific situations. This can be contrasted with
our work, where e. g. withholding information can result in a
better outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work

We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [5] has high-
lighted the need for strategies when structured argumentation
is used. Since the work presented here can easily be extended
to this domain, we are in the process of adapting our algo-
rithms to deal with dialogues built on top of structured argu-
mentation.

Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with
argumentation. [Hunter, 2012] describes two systems which

1http://tinyurl.com/tweety-opp

concern themselves with the likelihood that an agent knows a
specific argument, and we can view the possible argument
AFs that can be induced from these likelihoods as possi-
ble models of agent knowledge. [Thimm, 2012] investigates
probabilistic interpretations of abstract argumentation and re-
lationships to approaches for probabilistic reasoning. Fur-
thermore, [Oren et al., 2012] investigated strategies in such
a probabilistic setting but concerned themselves with mono-
logues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [Oren et al., 2006], which aims to min-
imise the cost of moves, with no concern to the opponent’s
knowledge, and without looking more than one step ahead
when reasoning. Such a strategy can easily be encoded by
our approach. By assigning probabilities to arguments, [Roth
et al., 2007] constructed a game tree allowing dialogue par-
ticipants to maximise the likelihood of some argument being
accepted or rejected. The probabilities in that system arose
from a priori knowledge, and no consideration was given to
the possibility of an opponent model.

[Rahwan and Larson, 2008; Rahwan et al., 2009] consider
a very different aspect of strategy, attempting to identify sit-
uations which are strategy-proof, that is, when full revelation
of arguments is the best course of action to follow. Simi-
larly, [Thimm and Garcia, 2010] extends that work to struc-
tured AFs and also proposes some simple dominant strategies
for other specific situations. This can be contrasted with our
work, where e. g. withholding information can result in a bet-
ter outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work
We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [Hadjiniko-
lis et al., 2012] has highlighted the need for strategies when
structured argumentation is used. Since the work presented
here can easily be extended to this domain, we are in the pro-
cess of adapting our algorithms to deal with dialogues built
on top of structured argumentation.

Figure 1: Average performance of T1, T2, and T3 belief state models after
5000 simulation runs (with Binomial proportion confidence inter-
vals)

MultiAgentSystem<ArguingAgent> and models an argumentation dialogue
(“grounded” refers to the grounded semantics used for this type of game).
On top of this implementation of the actual dialogue system a simula-
tion framework was implemented that allows the (random) generation of
the above multi-agent systems and measures the performance of the indi-
vidual agents over a series of runs. The central class for the simulation
framework is the GroundedGameGenerator which implements the interface
MultiAgentSystemGenerator and is able to generate (random) multi-agent
systems of arguing agents.

In (Rienstra et al., 2013), for evaluating performance we generated a
random abstract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded extension, i. e., under
perfect information the proponent should win the dialogue. However, from
these 10 arguments only 50 % are known by the proponent but 90 % by the
opponent. We used a proponent without opponent model and generated
an belief state of type T3 for the opponent. From this T3 belief state we
derived T2 and T1 belief states by ignoring the added expressivity. For
each belief state we simulated a dialogue against the same opponent and
counted the number of wins. We repeated the experiment 5000 times,
Figure 1 shows our results, cf. (Rienstra et al., 2013). There, it can be
seen that increasing the complexity of the belief state yields better overall
performance (thus confirming the analytical evaluation). However, this
empirical evaluation sheds also more light on the importance of the added
expressivity for strategic argumentation. While T2 is significantly better
that T1, the difference between T3 and T2 is nearly marginal. These kinds
of nuances are very difficult to discover when considering only analytical
evaluation.
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5 summary and future work

In this paper we presented Tweety, a comprehensive collection of Java li-
braries for logical aspects of artificial intelligence and knowledge repre-
sentation. We gave an overview on the technical aspects and provided
details on its individual packages. Finally, we presented two case studies
that make use of Tweety as a framework for experimentation and empirical
evaluation.

Tweety is an open source project16,17 and can therefore be used and ex-
tended by everyone. In particular, instantiating the abstract Tweety classes
for a particular formalism is simple. Although Tweety is implemented in a
object-oriented programming language it follows a strict declarative formal
way to define concepts from theoretical knowledge representation research.
Tweety is available under the GNU General Public License version 3.0. In
order to contribute to the main Tweety repository contact the author.

To the best of our knowledge, Tweety is the first attempt to provide a
general-purpose framework for a broad variety of knowledge representa-
tion formalisms. However, there exist also more specialized frameworks
for specific approaches or areas, such as the OWLAPI18 for working with
OWL ontologies, KReator19 for relational probabilistic knowledge represen-
tation, or bcontractor20 for belief dynamics.

Current and future work on Tweety is mainly concerned with extending
the general infrastructure and improving usability. In particular, current
work is about implementation of the plugin architecture for all libraries, a
command line interface, and a web front-end. The ultimate goal there is
to have several standardized user interfaces that are apt to work with any
kind of knowledge representation mechanism and thus remove the burden
of designing and implementing user interfaces from the researcher.

16 http://www.mthimm.de/projects/tweety/
17 The source code of Tweety is hosted at SourceForge: http://tweety.svn.sourceforge.

net.
18 http://owlapi.sourceforge.net
19 http://kreator-ide.sourceforge.net
20 https://code.google.com/p/bcontractor/

http://www.mthimm.de/projects/tweety/
http://tweety.svn.sourceforge.net
http://tweety.svn.sourceforge.net
http://owlapi.sourceforge.net
http://kreator-ide.sourceforge.net
https://code.google.com/p/bcontractor/
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