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Abstract. We investigate the relationship between semantics for formal argumen-
tation and measures from social networking theory. In particular, we consider using
matrix exponentials, which are measures used for link prediction and recommenda-
tion in social networks, as a way to measure acceptability of arguments in abstract
argumentation frameworks. We reformulate the approach of matrix exponentials to
adhere for the fact that, compared to the social network setting, edges in argumenta-
tion frameworks have a negative connotation, arguments linked by edges should not
be accepted together, and empirically evaluate this approach on benchmark graphs
from ICCMA’15. Moreover, matrix exponentials can also be used for prediction in
so-called signed social networks, which have both positive and negative edges de-
noting friend and foe relationships. As these networks bear a close resemblance to
bipolar argumentation frameworks, we extend our framework and investigate the
applicability of matrix exponentials from signed networks to be used in bipolar ar-
gumentation frameworks as well. Finally, we evaluate postulates for ranking-based
argumentation semantics for our approach.

Keywords. Abstract Argumentation, Bipolar Argumentation, Ranking Semantics,
Network Theory, Matrix Exponential

1. Introduction

In the field of formal argumentation [9,3], one can entail the validity of defeasible claims
by the analysis of arguments supporting these claims. Other than actual proofs for claims,
arguments are defeasible, meaning that the validity of their conclusions can be chal-
lenged by other arguments. Reasoning about a claim therefore does not only adhere to
the sole existence of arguments supporting this claim, but is also interconnected to other
counterfactual arguments. In order to evaluate which sets of arguments are acceptable,
one can represent the conflicting relationships of arguments as a directed graph, consti-
tuting an argumentation framework where arguments may be seen as vertices and the
attack of one argument to another as a directed edge [9]. There have been major efforts
directed towards the development of semantics to derive which arguments are to be ac-
cepted. This aim mainly comprises finding subsets of arguments in a framework that are
compatible with each other and therefore promote the acceptance of this subset. In other
words, defining the argumentation semantics relates to answering which arguments can
be jointly accepted. There have been different proposals to this matter—see [3] for an
excellent overview—, still there are some behaviors that can be commonly observed in
mainstream semantics. For example, following Rahwan et al. [14], we find that most of



the classical argumentation semantics agree on the principle of reinstatement, i. e., that
arguments which are defended by acceptable arguments should be deemed acceptable.

Mathematically speaking, studies in abstract argumentation semantics are concerned
with graph-theoretic measures on (directed) graphs. Another discipline that studies the
very same mathematical object is (social) network theory [11]. Here, graphs are used
to model e. g. social networks where nodes are people and edges between nodes can be
interpreted by a friend relationship. A particular problem in this area is link prediction
or friend recommendation, i. e., measures that aim at predicting whether a new relation-
ship will be established in the future or to recommend possible friends to the users of
an online social network such as Facebook1 or Twitter2. These approaches can analyze
the relations of a person to directly related friends and can then calculate friend recom-
mendations. This also means a system can rank the recommendations by a score, which
can be seen as the system’s certainty of this recommendation. Methodologically, these
approaches also bear resemblance to ranking semantics [1] for abstract argumentation,
which aim at ordering or assigning numerical values quantifying acceptability to argu-
ments. Moreover, some social networks are signed [13,12], meaning that both friend re-
lationships as well as foe relationships are present3. Conceptually, these networks are
very similar to bipolar argumentation frameworks [2,7,6] which allow the representation
of both an attack between arguments as well as support.

We believe that because of the close methodological similarities of the research dis-
ciplines of formal argumentation and social networking theory, a thorough investigation
of the applicability of the methods from one field to the other may be beneficial. Similar
observations have already been made by some other researchers in the field of formal
argumentation, see e. g. [4,15,17,8,5]. In this paper, we focus on investigating exponen-
tials of adjacency matrices of graphs—a simple measure for link prediction [13,12]—to
be used for abstract argumentation and bipolar argumentation. More precisely, the con-
tributions of this paper are as follows:

• We investigate the concept of matrix exponentials for both abstract and bipolar ar-
gumentation and define measures that aim at assessing acceptability of arguments
(Section 4).

• We formally compare our approach to ranking semantics and investigate its com-
pliance with rationality postulates (also in Section 4).

• We conduct some experiments with our new measures and benchmark graphs
from the First International Competition on Computational Models of Argumen-
tation (ICCMA’15)4 in order to obtain some empirical evidence on the hypothe-
sized relationships of abstract argumentation and matrix exponentials (Section 5).

We introduce necessary preliminaries on abstract and bipolar argumentation frameworks
in Section 2, preliminaries on network theory in Section 3, and conclude in Section 6.

2. Abstract and Bipolar Argumentation Frameworks
An abstract argumentation framework A is defined as a pair A = (Arg,RAtt), where Arg
is a finite set of arguments and RAtt ⊆ Arg × Arg. For two arguments A,B ∈ Arg, we

1http://facebook.com
2http://www.twitter.com
3See e. g. http://www.slashdot.org
4http://argumentationcompetition.org/



say that A attacks B, iff (A,B) ∈ RAtt , which we denote as A → B in the following. An
argument A defends C against B, iff B→ C and A→ B. So, through A we can formalize
arguments and their relations.

Let AttA(X) for a set X of arguments be the set of its attackers, i. e., AttA(X) = {y ∈
Arg | ∃x∈X ,y→ x}. Semantics are given to an argumentation framework A= (Arg,RAtt)
through extensions [9,3], i. e., sets S⊆ Arg. Some important notions on extensions are as
follows:

• S ⊆ Arg is conflict-free iff there are no arguments A, B ∈ S, such that A→ B.
• S ⊆ Arg defends an argument A ∈ S iff for all B /∈ S, if B→ A then there exists an

argument C ∈ S, such that C→ B.
The function F : 2Arg → 2Arg is defined as F(B) = {A | B defends A} and is also called
the characteristic function of A.

• S ⊆ Arg is admissible iff S is conflict-free and S defends all of its elements.
• S ⊆ Arg is preferred iff S is a maximal set, with respect to set inclusion, among

the admissible sets of A.
• S ⊆ Arg is stable iff S is conflict-free and for all B /∈ S there exist an argument A
∈ S such that A→ B.

• S ⊆ Arg is complete iff it is an admissible set and all acceptable arguments, in
respect to S, also belong to S.

• S ⊆ Arg is grounded iff S is the least fixed point of F.
The set of admissible/preferred/stable/complete/grounded extensions establish the se-
mantics of an argumentation framework, cf. [9,3]. Note the grounded extension is always
uniquely defined while stable extensions may not exist [9].

Bipolar argumentation frameworks [2,7,6] extend abstract argumentation frame-
works by introducing an additional relation between argumentations to denote support.
In the following, we focus on the framework of [7]. Formally, a bipolar argumentation
framework B is a tuple (Arg, RAtt , RSupp), where (Arg, RAtt ) is an abstract argumentation
framework and RSupp ⊆ Arg × Arg represents the support relation. In addition to the
notions for abstract argumentation, for two elements A, B ∈ Arg, we say A supports B
iff (A,B) ∈ RSupp, also denoted by A  B. Notions of acceptability and semantics are
extended as follows.

• Given arguments A, B ∈ Arg, a supported defeat is a sequence AR1 ... Rn−1B (for
n ≥ 3), such that for all i=1...n-2, Ri ∈ RSupp and Rn−1 ∈ RAtt .

• Given arguments A, B ∈ Arg, an indirect defeat is a sequence AR1 ... Rn−1B (for
n ≥ 3), such that for all i=2...n-1, Ri ∈ RSupp and R1 ∈ RAtt .

We say that S set-defeats A, iff there exists an argument B ∈ S, such that there is some
directed path from B to A that is a (supported or indirect) defeat. Similarly, we say that
S set-supports A, iff there exists a sequence of the form A1R1 ... Rn−1A (for n ≥ 2), such
that all Ri ∈ RSupp and A1 ∈ S.

In bipolar argumentation frameworks, the concept of conflict-freeness has to be ex-
tended by defining internal and external conflict-freeness.

• S ⊆ Arg is internally conflict-free iff S does not set-defeat any of its elements.
• S ⊆ Arg is externally conflict-free iff S does not set-defeat and set-support the

same argument.
The above notions allow us to define the two important properties of conflict-freeness

and safeness in bipolar frameworks.
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Figure 1. Bipolar argumentation framework from Example 1

• S ⊆ Arg is conflict-free iff @ A, B ∈ S, such that {A} set-defeats B.
• S ⊆ Arg is safe iff @ B ∈ S, such that S set-defeats and set-supports B.

However, following Cayrol et al. [7], admissibility can be further distinguished into
so-called d-admissibility and s-admissibility.

• D-admissibility (D in the sense of Dung): Let S ⊆ Arg. S is a d-admissible set, iff
S is conflict-free and S defends all its elements.

• S-admissibility (S in the sense of safe): Let S ⊆ Arg. S is an s-admissible set, iff S
is safe and S defends all its elements.

Building on the notions of admissibility above, semantics of bipolar argumentation
frameworks are analogously defined as for abstract argumentation frameworks.

Example 1. Consider the bipolar argumentation framework in Figure 1. There, A,B,D is
the d-preferred extension, where A,B and D are the s-preferred extensions respectively.

3. Network Theory and Matrix Exponentials

Much attention in the field of network theory has been directed towards investigating
social network structures [11,10] to understand the interaction and processes between
humans. In this context, graphs are used as a mathematical model of these network struc-
tures. For example, a graph could be utilized to depict users through nodes and friend-
ship relations through directed or undirected edges. There, a graph G =(V,E) us usually
represented by its adjacency matrix A ∈ {0,1} |V|×|V|. Every matrix component Ai j is
defined as:

Ai j =

{
1, if (i,j) ∈ E
0, otherwise

(1)

It is important to realize, that the adjacency matrix of a directed graph, such as the graph
of an argumentation framework, is not symmetric, as an edge from i to j does not imply
an edge from j to i and vice versa. In this work, we will assume that graphs have directed
edges. Note that [17] also makes use of adjacency matrices of argumentation frameworks
to characterize classical semantics.

In the abovementioned social network example, edges have a positive connotation
as they indicate friendship relations. However, real social structures are also subject to
negative effects, e. g. not only friendly but also antagonistic relationships between en-
tities. To model these different relationships, signed networks [13,12] introduce edges,
that are annotated with positive or negative signs. Positive edges represent friendship,
while negative edges represent antagonism. A signed network G is defined as a triple
G=(V, E, σ ), where V is a finite set of vertices, E is the set of edges and σ : E→ {-1,+1}



A B C

(i)

0 1 0
0 0 1
0 0 0


(ii) Adjacency matrix

1 1 0.5
0 1 1
0 0 1


(iii) Matrix exponential

Figure 2. (i) Friendship graph, (ii) corresponding adjacency matrix, and (iii) exponential scores from Exam-
ple 2

is a function that assigns a sign to the edges. Given this signed network G, its adjacency
matrix A ∈ {-1,0,1} |V|×|V| is defined as:

Ai j =

{
σ ({i,j}), if (i,j) ∈ E
0, otherwise

(2)

The adjacency matrices of graphs enable us to do graph analysis by the means of al-
gebraic theory. This allows for approaches like link prediction or recommender systems
[10], which try to analyze the social structure and predict/recommend the creation of
new edges to users. An important principle in this field is the so-called friend-of-a-friend
principle [13], which basically recommends to a user the friends of his own friends. As
the adjacency matrix represents the existing friendship relations, i. e. paths of length 1,
the simple friend-of-a-friend recommendation can be calculated by A2, which represents
paths of length 2 between users. In practice, the friend-of-a-friend recommendation also
considers other users and edges, e. g. users that are connected by longer paths, leading to
the matrix exponential of A.

Definition 1. Let A be some matrix. The matrix exponential exp(A) of A is defined as

exp(A) =
∞

∑
i=0

Ai

i!
(3)

In other words, exp(A) sums paths of any length between users, but weights these by
the inverse factorial path length. The result is a |V|×|V| matrix that contains a so-called
predication or recommendation score (simply called exponential score in the following)
for connecting to new users. The higher this score, the more likely it is that a new edge
will be established in the future.

Example 2. Figure 2 shows the adjacency matrix of the depicted friendship-graph, as
well as the exponential scores computed with the matrix exponential. So we can see for
example, that the system recommends A to befriend user C with a score of 0.5, as C is
also a friend of B. Since Figure 2 shows a directed graph and C has no outgoing edges
yet, there can be no recommendation made.

We will discuss the exponential score more closely and investigate its relationship
to acceptability of arguments in the next section.

4. Matrix Exponentials for Abstract Argumentation

When comparing the graph representation of argumentation frameworks to the intro-
duced friendship networks, a fundamental difference that can be observed is the differ-



ent connotations of edges. In friendship networks, edges symbolize a positive friendship
relation, whereas the directed edges of argumentation frameworks represent attack rela-
tions. A further difference can be identified regarding edges. Where in friendship net-
works, the path length does not change the semantics of this path, the path length does
have to be considered in argumentation frameworks, due to the concept of defense rela-
tions. So for example, in an argumentation framework, a path of length 1 has a negative
connotation, i. e. attack, but continuing on this path via a further edge changes this to a
positive connotation, i. e. a defense. Given that we have defined the semantics of a rec-
ommendation score in such a way, that a higher score value is superior to a lower value,
when trying to compute a matrix exponential for a graph representing an argumentation
framework, we have to integrate the different connotations of path length in order to
adhere to the semantics of the recommendation score. As a result of this, paths of odd
length should contribute negatively to the exponential score and paths of even length
should contribute positively to the exponential score. We therefore represent attacks as
negative entries in the adjacency matrix, in order to account for these mentioned factors
regarding the semantics of paths in the graph.

Definition 2. Let A = (Arg,RAtt) be an abstract argumentation framework with Arg =
{a1, . . . ,an}. The matrix ÂA ∈ {-1,0} | Arg | × | Arg | with

ÂA
i j =

{
−1, if (ai,a j) ∈ RAtt

0, otherwise
(4)

for all i, j = 1, . . . ,n is called adjusted adjacency matrix of A.

Now we simply apply the matrix exponential to the adjusted adjacency matrix of
argumentation frameworks to obtain exponential scores for arguments.

Definition 3. Let A = (Arg,RAtt) be an abstract argumentation framework with Arg =
{a1, . . . ,an}. The matrix exponential exp(A) is the | Arg | × | Arg | real-valued matrix
defined via exp(A) = exp(ÂA). For ai,a j ∈ Arg the entry exp(A)i j ∈ R is called accept-
ability assessment of a j wrt. ai.

An entry exp(A)i j is thus the accumulated and weighted sum of paths between ai and
a j where paths of odd length contribute negatively and paths of even length contribute
positively. Thus, the interpretation of a positive acceptability assessment of a j wrt. ai
is that ai supports a j or “if ai is accepted then so should a j”. On the other hand, a
negative acceptability assessment of a j wrt. ai indicates some contradiction between the
arguments and “if ai is accepted then a j should not be accepted”. Furthermore, the ith

column in exp(A) gives an overview on how argument ai is assessed by all arguments in
the framework.

Example 3. Figure 3 shows (i) an argumentation framework, (ii) its adjusted adjacency
matrix, and (iii) its matrix exponential. The acceptability assessment of B wrt. A is -1,
the acceptability assessment of C wrt. A is 0.5 and so on. We can observe a correlation
between the acceptability assessment and acceptability as proposed by traditional ar-
gumentation semantics. An admissible set in this framework is {A,C,E}, and as we can
see, the assessments for all pairs of arguments within this set are non-negative. Take the



A B

CD

E

(i) 
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0


(ii) Adjacency matrix


1.00 −1.00 0.5000 −0.1667 0.0416
0.00 1.00 −1.00 0.5000 −0.1667
0.00 0.00 1.00 −1.00 0.5000
0.00 0.00 0.00 1.00 −1.00
0.00 0.00 0.00 0.00 1.00


(iii) Exponential acceptability

Figure 3. Abstract argumentation framework (i), corresponding adjacency matrix (ii) and acceptance scores
computed with the modified matrix exponential(iii).

A

C

B

D E

(i) 
1.54 −1.17 −0.63 0.36 −0.13
−1.17 1.54 −0.63 0.36 −0.13
0.00 0.00 1.00 −1.00 0.50
0.00 0.00 0.00 1.00 −1.00
0.00 0.00 0.00 0.00 1.00


(ii) Exponential acceptability

Figure 4. Abstract argumentation framework (i) and acceptance scores (ii).

constellation A→B→C. From the viewpoint of A, the explicit attack to B is weighted
more significantly than the defense relation from A to C, resulting in the acceptability as-
sessments -1 and 0.5 respectively. In our opinion, this resembles characteristics similar
to the results observed in the experiments by Rahwan et al. [14]. If argument A explicitly
attacks B, we can be certain A does not accept B. But in a human context, would this
really mean that A would also accept C? The acceptability assessment of C wrt. A is a
reasonable prediction for the outcome of an argumentation process [14].

Example 4. Figure 4 depicts (i) an argumentation framework with cycles and (ii) its
matrix exponential. Looking at the acceptability assessments for argument A (first col-
umn), the fact that B is attacked by A, as well as B also attacking A, has increased the
assessment that B is to be resented. When observing the triangle between A, B and C,
we find that A attacks C but is also involved in a defense relation via A→B→C. The ac-
ceptability assessment of C wrt. A is still negative. This underlines, that explicit attacks
against a node are considered more important than a defense relation.

In order to make use of the assessments in the matrix exp(A) we now introduce a
simple way to aggregate them and obtain a single value for each argument. In a first step,
we consider a relative assessment wrt. some given set of arguments.

Definition 4. Let E ⊆Arg= {a1, . . . ,an} be a set of arguments and a j ∈Arg. The relative
acceptance score scoreE(ai) of ai wrt. E is defined via

scoreE(a j) = ∑
ai∈E

exp(A)i j

The value scoreE(a j) aggregates the acceptability assessments of arguments in E for
argument a j. A positive value scoreE(a j) indicates that a j is assessed as acceptable. In



particular, if E is any classical extension (such as a preferred extension), we would expect
that scoreE(a j) for every a j ∈ E is positive, indicating joint acceptability of arguments
within an extension. We will come back to this issue in Section 5.

A more general acceptance score can be defined by considering the accumulated
acceptability assessments wrt. to all arguments.

Definition 5. Let ai ∈ Arg. The absolute acceptance score score(ai) of ai is defined via

score(ai) = scoreArg(ai)

The value score(ai) indicates the general acceptance of ai within the argumentation
framework. As for the relative acceptance score from above, we will have a closer look
at the relationship of this score with classical argumentation semantics in Section 5. Note
that the above method for aggregating an acceptance score for an argument is simple
summation. Other aggregation methods are imaginable as well but left for future work.

Formally, our approach of acceptance scores resembles ranking semantics for argu-
mentation frameworks, which recently have gained some attention in the community, see
e. g. the work by Amgoud et al. [1]. In general, a ranking semantics S is a function that
orders the arguments of an argumentation framework A = (A,R) in an order from most
acceptable to least acceptable.

Definition 6. Let A = (Arg,RAtt) be an abstract argumentation framework. Define the
relation SAexp ⊆ Arg×Arg through (a,b) ∈ SAexp iff score(a)≥ score(b).

For sets of arguments X ,Y ⊆ Arg define furthermore X ≤SAexp
Y if for all y ∈ Y there

is a x ∈ X with (x,y) ∈ SAexp. Define also X <SAexp
Y if for all y ∈ Y there is a x ∈ X with

(x,y) ∈ SAexp and (y,x) /∈ SAexp.
In [1] several rationality postulates have been proposed which should be satisfied by

any argumentation semantics based on ranking. Although the motivation of our approach
originates in a different field than argumentation theory, it still satisfies many of these
postulates as our next result shows.

Theorem 1. The ranking Sexp satisfies the following postulates:

Abstraction Let A = (A,R) and A’ = (A’,R’) be two argumentation frameworks. If A
and A′ are isomorphic, i. e., there is a bijection f : A→ A′ with ∀a,b ∈ A, aRb iff
f(a)R’f(b), then (a,b) ∈ SAexp whenever ( f (a), f (b)) ∈ SA

′
exp.

Independence For all simply-connected components B= (A′,R′) of A= (A,R), ∀a,b ∈
A′, (a,b) ∈ SBexp whenever (a,b) ∈ SAexp.

Counter-Transitivity If AttA(b)≤SAexp
AttA(a) then (a,b) ∈ SAexp.

Strict Counter-Transitivity If AttA(b)<SAexp
AttA(a) then (a,b) ∈ SAexp.

Quality Precedence If ∃c ∈ AttA(b) such that ∀d ∈ AttA(a), (d,c) /∈ SAexp, then (b,a) /∈
SAexp.

The proof of the above theorem is omitted due to space limitations but straightfor-
ward. For a detailed discussion of these postulates see [1].

Before discussing some experiments in Section 5 we will have a look at the case
of bipolar argumentation frameworks first. In particular, the matrix exponential can be



A

CB

D

E

(i)


0 −1 −1 0 0
−1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


(ii) Adjacency matrix


1.78 −2.01 −2.01 −0.78 −0.23
−1.41 2.38 2.01 0.78 0.23
−0.59 1.41 1.78 1.23 1.78
0.00 0.00 0.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00


(iii) Exponential acceptability

Figure 5. Bipolar argumentation framework (i), corresponding adjacency matrix (ii) and acceptance scores
computed with the matrix exponential(iii).

applied to bipolar argumentation frameworks in more direct way by explicitly utilizing
signed networks as in Equation (2).

Definition 7. Let B =(Arg, RAtt , RSupp) be a bipolar argumentation framework with
Arg = {a1, . . . ,an}. The matrix B̂B ∈ {-1,0,1} | Arg | × | Arg | with

ÂA
i j =


−1, if (ai,a j) ∈ RAtt

1, if (ai,a j) ∈ RSupp

0, otherwise
(5)

for all i, j = 1, . . . ,n is called adjusted adjacency matrix of B.

Definition 8. Let B =(Arg, RAtt , RSupp) be a bipolar argumentation framework with
Arg = {a1, . . . ,an}. The matrix exponential exp(B) is the | Arg | × | Arg | real-valued
matrix defined via exp(B) = exp(B̂B). For ai,a j ∈ Arg the entry exp(B)i j ∈R is called
acceptability assessment of a j wrt. ai.

Relative and absolute acceptance scores can be defined for bipolar frameworks in
the same way as for classical argumentation frameworks.

Example 5. Figure 5 shows (i) a bipolar argumentation framework, (ii) its adjacency
matrix, and (iii) the corresponding acceptance scores. From the point of view of argument
A, both B and C have an acceptability assessment of roughly -2, indicating a strong case
that these two arguments are not to be accepted by A. This low score can be attributed
to the explicit attack relations. Furthermore, we see that argument C supports D, which
itself supports E. Again from the view of A, the acceptability assessments are negative
for both D and E. Yet, the assessment for E is slightly higher than for D. In our opinion,
this showcases the successful implementation of our underlying motivation.

5. Experimental Evaluation

In this section, we report on some experiments we conducted in order to test the ap-
plicability of the relative and absolute acceptance scores introduced above. The experi-
ments have been conducted on graphs from the First International Competition on Com-
putational Models of Argumentation5 (ICCMA’15) [16], which will be described in Sec-

5http://argumentationcompetition.org



tion 5.1. We will describe our experiment goals and setup in more detail in Section 5.2
and present our results in Section 5.3.

5.1. Benchmark graphs

Our study has been conducted on all argumentation frameworks from ICCMA’15. How-
ever, for all graphs we ignored empty extensions, as the absolute- and relative acceptance
scores are only properly defined for extensions with at least one element via Definition
4, respectively Definition 5.

5.2. Experiment Goal and Setup

We computed the absolute- and relative acceptance score for all arguments in all frame-
works wrt. complete, preferred, grounded, and stable semantics. If e. g. multiple stable
extensions can be defined for a single framework, we computed the scores for all of these
extensions and then took the average. So for every framework, we were able to assign
a relative- and absolute acceptance score to each argument wrt. one of the mentioned
semantics. Our experiment was implemented in GNU Octave. For the largest ICCMA
data-sets, computing mentioned scores took under a minute. In our opinion, this shows
that it is feasible to compute our proposed semantics in practice.

Regarding relative acceptance scores, i. e. the assessment of an argument from the
viewpoint of the respective extension, we can distinguish between the relative acceptance
score of extension members and non-extension members. As a result, we aggregated the
individual relative acceptance scores into the three subgroups of positive (> 0), neutral
(= 0) and negative scores (< 0) for these two types of arguments. Furthermore, we com-
puted the average values for the relative- and absolute acceptance scores. Subsequently,
the aim of our experiment was to validate these values against the following hypotheses.

Hypothesis 1. If E is a complete, grounded, stable or preferred extension, the relative
acceptance scores of all members of E are strictly positive.

Hypothesis 2. If E is a complete, grounded, stable or preferred extension, the relative
acceptance scores of all non-members of E are strictly negative.

Hypothesis 3. If E is a complete, grounded, stable or preferred extension, the absolute
acceptance scores of all members of E are on average higher than the absolute accep-
tance score of all non-members of E.

5.3. Results

As a first result, we found that the relative acceptance scores of extension members are
strictly positive. This conforms with the definition of admissible extensions as there may
be no attacks within extensions. In our opinion, this shows that our approach manifests a
ranking-based semantics that does not contradict extension-based argumentation seman-
tics. Figure 6 shows the distribution of the average relative acceptance score of extension
members under the grounded semantics for all considered graphs. The distributions for
the complete, stable and preferred extension are very similar and were therefore omitted.
As all relative acceptance scores of extension members are strictly positive, we accept
hypothesis 1.

Figure 6 also shows the average distribution of relative acceptance scores for non-
extension elements. As can be observed, there are some graphs where the relative accep-
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Figure 6. Distribution of acceptance scores of ICCMA graphs wrt. grounded extensions. The x-axis delineates
the relative acceptance score (left), respectively the absolute acceptance score (right). The y-axis corresponds
to the number of arguments with the respective score.

tance score of non-extension elements is greater than 0. We therefore reject hypothesis 2.
However, it is noticeable that the scores of non-extension members are on average much
lower than the scores of extension members. To put this into perspective, the average
relative score for the extension members was 1.029, clearly distinguishable from the
average relative acceptance score of non-extension members, which was -0.103.

When considering absolute acceptance scores, we incorporate assessments of ar-
guments from the viewpoint of non-extension members. Here, the average absolute ac-
ceptance score of extension members was 0.733. So even when incorporating all non-
extension members, i. e. attacks that should lower the individual acceptance scores, the
average acceptance score of extension members did not decrease significantly. Regard-
ing non-extension members, the average absolute acceptance score was 0.065. Non-
extension members can form components that conform to each other. These components
might not be admissible, still they can promote each other internally. This support will
therefore increase the absolute acceptance score. Yet, we can accept hypothesis 3, as we
find that admissible arguments wrt. the complete, grounded, preferred or stable extension
of all graphs are ranked as more acceptable on average based on our approach.

6. Summary

We have proposed an approach that computes acceptance scores of arguments using ma-
trix exponentials from network theory. We applied this approach to both classical and
bipolar argumentation frameworks and investigated its properties. Moreover, we con-
ducted experiments to evaluate the applicability of our approach and its relationships to
classical semantics. The empirical evaluation yielded two results. First, the relative ac-
ceptance score of extension members is positive in 100% of the cases. This conforms
with classical semantics and shows that our approach is able to compute scores that ad-
here to these semantics. Secondly, for absolute acceptance scores the relative scores from
before did not change significantly. In our opinion, this is a further point indicating that
the semantics we assigned to the score, namely a higher score relating to a higher accept-
ability of an argument, is plausible. Figure 6 clearly shows, that the relative- and abso-
lute acceptance scores of extension arguments are on average higher than the respective
scores of non-extension arguments.



Our work contributes both from the conceptual as well as the computational point
of view to research in computational argumentation. First, our ranking-based semantics
gives a new perspective on fine-grained assessments of acceptability due to the use of
matrix exponentials and its links to network theory. Second, as the (approximations of)
the matrix exponentials are feasible to compute and due to the strong relationships be-
tween our semantics and classical semantics one could exploit this for computational
purposes and develop a new solver for abstract argumentation based on our approach.
We leave this topic for future work.

Further future work could be directed towards investigating comparable scores based
on other recommendation measures from network theory. It is also worth noting that it
might prove as beneficial to apply abstract argumentation theory to network theory, e. g.
to consider whether certain argumentation semantics might be utilized to promote an
understanding of groups in social networks.
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