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Abstract. Markov logic is a robust approach for probabilistic re-
lational knowledge representation that uses a log-linear model of
weighted first-order formulas for probabilistic reasoning. This log-
linear model always exists but may not represent the knowledge
engineer’s intentions adequately. In this paper, we develop a gen-
eral framework for measuring this coherence of Markov logic net-
works by comparing the resulting probabilities in the model with
the weights given to the formulas. Our measure takes the interde-
pendence of different formulas into account and analyzes the degree
of impact they have on the probabilities of other formulas. This ap-
proach can be used by the knowledge engineer in constructing a well-
formed Markov logic network if data for learning is not available. We
also apply our approach to the problem of assessing the compatibility
of multiple Markov Logic networks, i. e., to measure to what extent
the merging of these networks results in a change of probabilities.

1 Introduction
Statistical relational learning [1] is a research area that deals with
knowledge representation and learning in probabilistic first-order
logics. Therein, a particularly popular approach is Markov Logic
[15]. A Markov logic network (MLN) is a set of weighted first-order
formulas where a larger weight means that the formula is more likely
to be true. The semantics of an MLN is given via a log-linear model
that takes the weights of formulas into account in order to determine
probabilities for classical first-order interpretations. Markov logic
networks have been used for e. g. diagnosis of bronchial carcinoma
on ion mobility spectrometry data [3] or social network analysis [2].

In knowledge representation and reasoning consistency is a cru-
cial issue and in order to cope with inconsistency different for-
malisms use different techniques. For example, most belief revision
approaches [6] have to maintain consistency by altering the repre-
sented information, and default logics and the like [14, 5] use a non-
monotonic inference procedure that bypasses classical inconsistency.
Still, even a default theory can be inconsistent in a non-classical
sense if there are two complementary defaults present in the the-
ory. In Markov logic, inconsistency is not an issue as every MLN
has a well-defined log-linear model (ignoring MLNs that contain in-
finite weights on two contradictory formulas). Therefore, every MLN
is consistent by definition. However, whether the log-linear model is
meaningful and adequately represents the information in the network
may not be necessary true. For example, when representing weighted
formulas such as (sunny, 5) and (rain,−20) one would probably ex-
pect that at least P (sunny) > P (rain) for the log-linear model P of
the whole MLN. However, this is not guaranteed as other formulas
may interfere in the computation of the final probabilities. Further-
more, consider the two weighted formulas (ψ, 10) and (¬ψ, 10). The
log-linear model P of only these two formulas is well-defined and
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has P (ψ) = 0.5. It is questionable whether these probabilities are
appropriate and whether it would not be more appropriate to define
this set of formulas as inconsistent. In particular, computing a log-
linear model P ′ of an “empty” knowledge base yields P ′(ψ) = 0.5
as well. Therefore, from the semantical point of view, the difference
between inconsistency (contradicting formulas) and ignorance (no
knowledge at all) cannot be recognized. This also makes it hard to
detect modeling errors, particularly in large knowledge bases.

In this paper, we introduce the notion of coherence for MLNs.
Informally, an MLN is coherent if it is “adequately” represented by
its log-linear model. We develop a general framework for coherence
measurement that bases on a notion of distance between the log-
linear model and the weights of the formulas of the MLN. This mea-
sure is able to identify the amount of interference between different
formulas of the MLN and thus gives an estimation of whether infer-
ence based on the log-linear model might result in counterintuitive
results. We discuss one particular application of our framework for
merging multiple MLNs into a single one. This is a typical scenario
when multiple (domain) experts have to share their knowledge in or-
der to solve a more general task. When merging multiple MLNs, the
formulas of one MLN might influence the probabilities previously
determined by another MLN which might give unintuitive results.
By comparing the coherence of the merged MLN with the coherence
of the individual MLNs we define a notion of compatibility for the
merging scenario. In summary, the contributions of this paper are as
follows:

1. We introduce the notion of coherence as a measure for assessing
the adequateness of the log-linear model of an MLN (Section 3).

2. We show that our measure satisfies several desirable properties
such as monotonicity and independence of irrelevant information.
We also present a methodology for using the notion of coherence
for knowledge engineering (Section 4).

3. We apply the notion of coherence to the problem of merging mul-
tiple MLNs and show that our measure is able to identify incom-
patibilities (Section 5).

4. We briefly describe our implementation of the coherence measure-
ment framework (Section 6).

Proofs of technical results have been omitted due to space restrictions
but can be found in an online appendix2.

2 Markov Logic Networks
Markov logic [15] is a statistical relational framework which com-
bines Markov networks [13] with aspects of first-order logic. The
Markov logic syntax complies with first-order logic without func-
tions where each formula is quantified by an additional weight. Let
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Pred be a finite set of predicates, C a finite set of constants, V a set
of variables, andLC be the functor-free first-order language on Pred,
C, and V . For what remains we assume Pred and V to be fixed.

Definition 1. A Markov logic network (MLN) L on LC is a finite or-
dered set of tuples L = 〈(φ1, g1), . . . , (φn, gn)〉 with φ1, . . . , φn ∈
LC and g1, . . . , gn ∈ R.

In contrast to the original literature on MLNs [15] we define an
MLN to be an ordered set of tuples (φi, gi) (i = 1, . . . , n). This
order can be arbitrary and has no special meaning other than to enu-
merate the elements of an MLN in an unambiguous manner. Any set
operation on an MLN is defined in the same way as without an ex-
plicit order.

Note, that the weights of an MLN L have no obvious probabilis-
tic interpretation [4] and are interpreted relative to each other when
defining the joint probability function for L (see below).

Example 1. We adopt the standard example [2] to il-
lustrate the intuition behind MLNs. Define Lsm =
〈(φ1, 0.7), (φ2, 2.3), (φ3, 1.5), (φ4, 1.1), (φ5,∞)〉 via

φ1 = friends(X,Y ) ∧ friends(Y,Z)⇒ friends(X,Z)

φ2 = ¬(∃Y : friends(X,Y ))⇒ smokes(X)

φ3 = smokes(X)⇒ cancer(X)

φ4 = friends(X,Y )⇒ (smokes(X)⇔ smokes(Y ))

φ5 = friends(X,Y )⇔ friends(Y,X)

The above MLN models uncertain relationships of smoking habits
and people. Formula φ1 means that being friends is a transitive re-
lation, φ2 means that people without friends usually smoke, φ3 that
smoking causes cancer, φ4 that friends have similar smoking habits,
and φ5 that being friends is a symmetric relation. The formula φ5

has an infinite weight which results in φ5 being a hard constraint
that must be satisfied.

Semantics are given to an MLN L by grounding L appropriately in
order to build a Markov net and its corresponding log-linear model.
Let Ω(C) be the set of (Herbrand) interpretations for Pred and C.
For φ ∈ LC let gndC(φ) denote the set of ground instances of φ wrt.
C. Let ω ∈ Ω(C) and define nCφ (ω) = |{φ′ ∈ gndC(φ) | ω |=
φ′ }|. The term nCφ (ω) denotes the number of instances of φ that are
satisfied in ω. Then a probability function PL,C : Ω(C)→ [0, 1] can
be defined as

PL,C(ω) =
1

ZC
exp

 ∑
(φ,g)∈L

nCφ (ω)g

 (1)

with

ZC =
∑

ω∈Ω(C)

exp

 ∑
(φ,g)∈L

nCφ (ω)g


being a normalization constant and exp(x) = ex is the exponential
function with base e. By defining PL,C in this way, worlds that vio-
late fewer instances of formulas are more probable than worlds that
violate more instances (depending on the weights of the different
formulas). Hence, the fundamental idea for MLNs is that first-order
formulas are not handled as hard constraints. Instead, each formula
is more or less softened depending on its weight. Hence, a possi-
ble world may violate a formula without necessarily receiving a zero

probability. A formula’s weight specifies how strong the formula is,
i. e., how much the formula influences the probability of a satisfy-
ing world versus a violating world. This way, the weights of all for-
mulas influence the determination of a possible world’s probability
in a complex manner. One clear advantage of this approach is that
MLNs can directly handle contradictions in a knowledge base, since
the (contradictory) formulas are weighted against each other.

The probability function PL,C can be extended to sentences
(ground formulas) of LC via

PL,C(φ) =
∑
ω|=φ

PL,C(ω) (2)

for ground φ ∈ LC .
Determining the probability of a sentence φ using Equations (1)

and (2) is merely manageable for very small sets of constants, but
intractable for domains of a more realistic size. While PL,C(φ) can
be approximated using Markov chain Monte-Carlo methods (MCMC
methods) performance might still be too slow in practice [15]. There
are more sophisticated and efficient methods to perform approxi-
mated inference if φ is a conjunction of ground literals, cf. [15]. Also,
approaches for lifted inference exploit symmetries in the graph mod-
els which can speed up performance quite impressively, see e. g. [7]
for an overview.

3 Measuring Coherence

Representing knowledge using Markov Logic requires defining the
weights for the qualitative parts of the knowledge. In [15] it is
suggested that weights of formulas have to be learned from data.
Nonetheless, in [2] and [4] a heuristic is discussed that determines
weights of formulas from probabilities. There, an interpretation of
the weight g of a formula φ is provided as the log-odd between a
world where φ is true and a world where φ is false, other things be-
ing equal, i. e., given some probability p ∈ [0, 1] and a formula φ the
corresponding Markov weight gp,φ of p is defined by

gp,φ = ln
p

1− prφ (3)

where lnx is the natural logarithm of x and rφ is the ratio of the
number of worlds not satisfying and the number of worlds satisfying
some ground instance of φ3, see also [4] for a discussion. The jus-
tification for this heuristic comes from the general observation that
for a ground formula φ and an MLN L = 〈(φ, gp,φ)〉, one exactly
obtains PL,C(φ) = p. Arguably, it is easier for an expert to express
uncertainty in the truth of a formula in form of a probability instead
of a weight on a logarithmic scale. When defining an MLN L in this
way one has to be aware of the fact that the probabilistic model PL,C
of L and a set of constants C may not completely reproduce those
intended probabilities.

Example 2. Consider the MLN L = 〈(A(X), 2), (A(c1),−5)〉 and
C = {c1, c2, c3}. Assume that the weights of the formulas of L have
been defined using the schema of Markov weights, i. e., the probabil-
ity ofA(X) is intended to be approximately 0.881 (g0.881,A(X) ≈ 2)
and ofA(c1) it is approximately 0.0067 (g0.0067,A(X) ≈ −5). How-
ever, we obtain PL,C(A(c1)) = 0.041 which matches neither prob-
ability.

3 For example, it is rφ = 1 for a ground atom φ and rφ = 0.75, rφ = 0.25
for a disjunction resp. conjunction of ground atoms.



In contrast to other probabilistic logics such as classical proba-
bilistic logic [12] or Bayes nets [13], weights in Markov Logic are
not handled as constraints but as factors that influence the determi-
nation of probabilities. By accepting this behavior the observation
made in Example 2 is understandable. However, due to this behav-
ior it is hard to verify whether some formalization is adequate for a
representation problem and whether it is robust with respect to ex-
tensions:

Example 3. Assume we want to model an MLN L such that its
model gives a probability 0.5 for each instanceA(c1), A(c2), A(c3).
This can be achieved by modelingL = 〈(A(X),−10), (A(X), 10)〉
and C = {c1, c2, c3}. Assume now we want to incorporate a
new piece of information such that PL,C(A(c1)) = 0.9 but still
PL,C(A(c2)) = PL,C(A(c3)) = 0.5. In order to realize this one
has to add a new weighted formula (A(c1), g) to L with some
weight g. Due to the interference with the other formulas g can-
not easily be determined. This results from the inadequate mod-
eling of the initial knowledge via the MLN L. In this case, the
empty MLN would have been a better fit to represent the intended
uniform probability distribution. Also, the extended MLN L′ =
〈(A(c1), 2.2)〉 (2.2 ≈ ln(0.9/1− 0.9)) yields PL,C(A(c1) ≈ 0.9 and
PL,C(A(c2) = PL,C(A(c3) = 0.5.

In the rest of this section, we investigate the issue of assessing
how well the probabilistic model PL,C of an MLN L and a set of
constants C reflects the probabilities used for defining L. For that we
employ the Markov weights as a comparison criterion, i. e., we com-
pare the probability of every formula of L in the probabilistic model
PL,C with the probability this formula would have in the probabilis-
tic model PL′,C of the MLN L′ that only consists of this formula.
Note that our approach could also be formulated using any other (sur-
jective) function g′p that assigns weights to probabilities.

Similarly as consistency is defined for classical logics we also
define a strict version of coherence. In particular, we say that L is
perfectly coherent wrt. C if PL,C assigns to each formula the same
probability as prescribed by the Markov weights. More formally:

Definition 2. Let L = 〈(φ1, g1), . . . , (φn, gn)〉 be an MLN. We say
that L is perfectly coherent if and only if for all i = 1, . . . , n and
φ′ ∈ gndC(φi) it holds PL,C(φ′) = p and gi = gp,φ.

If g = gp,φ is a Markov weight observe that

p = pg,φ =
exp(g)

rφ + exp(g)

with pg,φ = 1 if g =∞ and pg,φ = 0 if g = −∞. We also call pg,φ
a Markov probability. Following the spirit of inconsistency measures
for probabilistic logics [16] we take a more graded approach to co-
herence analysis and, consequently, in the following we will consider
the problem of defining coherence values.

Before formalizing our coherence measurement framework we
need some further notation. Let C be a set of constants and
φ ∈ LC . The ground vector of φ with respect to C is defined
via gnd→C (φ) = 〈φ1, . . . , φn〉 where gndC(φ) = {φ1, . . . , φn}
and φ1, . . . , φn is some arbitrary but fixed canonical ordering of
gndC(φ). If 〈φ1, . . . , φn〉 ∈ LnC is a vector of formulas and P a
probability function then we write

P (〈φ1, . . . , φn〉) = 〈P (φ1), . . . , P (φn)〉

As a central tool for measuring coherence we use (weak) distance
measures.

Definition 3. Let n ∈ N+. A function d : [0, 1]n× [0, 1]n → [0,∞)
is called a (weak) distance measure if it satisfies 1.) d(~x, ~y) = 0 if
and only if ~x = ~y (reflexivity) and 2.) d(~x, ~y) = d(~y, ~x) (symmetry),
for all ~x, ~y ∈ Rn.

Note that weak distance measures differ from standard dis-
tance measures by not requiring the triangle equality to hold.
In this work we consider the following distance measures (let
~x = 〈x1, . . . , xn〉, ~y = 〈y1, . . . , yn〉 ∈ [0, 1]n, p ∈ N+):
1.) dp(~x, ~y) = p

√
|x1 − y1|p + . . .+ |xn − yn|p (p-norm distance),

2.) dp,0(~x, ~y) = p
√
|x1 − y1|p + . . .+ |xn − yn|p/ p

√
n (normal-

ized p-norm distance), 3.) dmax(~x, ~y) = max{|x1 − y1|, . . . , |xn −
yn|} (max-distance), 4.) dmin(~x, ~y) = min{|x1 − y1|, . . . , |xn −
yn|} (min-distance), and 5.) davg(~x, ~y) = (|x1 − y1|+ . . .+ |xn −
yn|)/n (average distance).

In the following, we will use distance measures to measure the dif-
ferences between vectors of probabilities that arise for each formula
of an MLN upon grounding and the corresponding expected proba-
bilities. In order to aggregate the distances of each formula we use
aggregation functions.

Definition 4. A function θ : [0, 1]n → [0, 1] is called an aggregation
function.

We consider the following aggregation functions (let ~x =
〈x1, . . . , xn〉 ∈ [0, 1]n): 1.) θmax(~x) = max{x1, . . . , xn} (max-
imum), 2.) θmin(~x) = min{x1, . . . , xn} (minimum), and 3.)
θavg(~x) = (x1 + . . .+ xn)/n (average).

Using distance measures and aggregation functions we define the
coherence of an MLN L as how well L reflects the probabilities that
are intended to be modeled by weights.

Definition 5. Let d be a distance measure, θ an aggregation function,
L = 〈(φ1, g1), . . . , (φn, gn)〉 an MLN, and C a set of constants.
Then the coherence cohd,θC (L) of L wrt. C and given d, θ is defined
via

cohd,θC (L) = 1− θ
(〈

d
(
PL,C(gnd→C (φi)),Π

|gnd→C (φi)|
φi,gi

)〉
i=1,...,n

)
(4)

with

Πn
φ,g = 〈pg,φ, . . . , pg,φ︸ ︷︷ ︸

n times

〉

The intuition behind the above definition is as follows. Assume
that (φ(X), g) ∈ L and that {φ(c1), . . . , φ(cn)} are the groundings
of φ(X). Then PL,C assigns to each of this ground formulas a (po-
tentially different) probability PL,C(φ(ci)) (i = 1, . . . , n). First, we
compute the distance of the vector 〈PL,C(φ(c1), . . . , PL,C(φ(cn)〉
to the vector 〈pg,φ(X), . . . , pg,φ(X)〉 (the uniform vector of the prob-
ability corresponding to the weight g). Finally, we aggregate the dis-
tances of all these vectors for all formulas inL. Therefore, cohd,θC (L)
provides an aggregated assessment of how close the actual probabil-
ities match the weights.

As we are in a probabilistic framework, one might wonder why we
use ordinary distance measures and aggregation functions for defin-
ing a measure of coherence. A seemingly better alternative should be
e. g. the Kullback-Leibler divergence [8] which has a well-defined
meaning when measuring the difference between two probability
functions. However, in our setting we compare a probability func-
tion PL,C with a set of probabilities derived from the weights of the



MLN L. In particular, the latter is usually contradictory (unless L is
perfectly coherent), so the meaning of the Kullback-Leibler diver-
gence in this context is not clear. We leave this issue for future work
and consider now the distance measures defined so far.

4 Analysis
To further illustrate the meaning of the Definition 5 let us con-
sider the coherence measure cohdmax,θmax

C and an MLN L =
〈(φ1, g1), . . . (φn, gn)〉. Then cohdmax,θmax

C (L) is one minus the
maximum deviation of the probability of some ground instance φi of
L in PL,C to the probability pi estimated by its weight gi, assumed
that gi has been determined by setting gi = ln pi

1−pi
rφi .

Example 4. Consider the MLN L = 〈(A(X), 2)〉 and C =
{c1, c2, c3}. Note that the probability p intended to be modeled by
the weight 2 is p = p2,A(X) = exp(2)

1+exp(2)
≈ 0.881 (note that

rA(X) = 1). As there is only one formula in L it also follows di-
rectly that PL,C(A(c1)) = PL,C(A(c2)) = PL,C(A(c3)) ≈ 0.881
as well. It follows that cohdmax,θmax

C (L) = 1− 0 = 1.

Example 5. We continue Example 2 and consider the MLN L =
〈(A(X), 2), (A(c1),−5)〉 and C = {c1, c2, c3}. Note that the prob-
ability p1 intended to be modeled by the weight 2 is p1 = p2,A(X) =

exp(2)
1+exp(2)

≈ 0.881 and for the weight −5 it is p2 = p−1,A(c1) =
exp(−5)

1+exp(−5)
≈ 0.0067. For PL,C we obtain PL,C(A(c1)) ≈ 0.041

and PL,C(A(c2)) = PL,C(A(c3)) ≈ 0.881. Then cohdmax,θmax
C (L)

computes to

cohdmax,θmax
C (L) = 1−max{|PL,C(A(c1))− p1|,

|PL,C(A(c2))− p1|, |PL,C(A(c3))− p1|,
|PL,C(A(c1))− p2|}
≈ 0.16

In the introduction we gave an example illustrating that MLNs are
not always capable of differentiating between (logical) inconsistency
and ignorance. However, using our notion of coherence we are able
to detect this difference.

Example 6. Consider the MLN L = 〈(A,−10), (A, 10)〉 with
a proposition (a predicate without parameters) A and C =
{c1, c2, c3}. The probabilities p1, p2 intended to modeled by the
weights −10, and 10 are (respectively) p1 = p−10,A ≈ 0 and
p2 = p10,A ≈ 1 and for PL,C we obtain PL,C(A) = 0.5. Then
we have

cohdmax,θmax
C (L) = 1−max{|PL,C(A)− p1|, |PL,C(A)− p2|}

= 0.5

Furthermore, for the empty MLN L′ = 〈〉 and an arbitrary C we
always have cohd,θC (L) = 1 for any d ∈ {dp, dp,0, dmax, dmin, davg}
and θ ∈ {θmax, θmin, θavg}.

We now turn to the formal properties of cohd,θC .

Proposition 1. For d ∈ {dp,0, dmax, dmin, davg} and θ ∈
{θmax, θmin, θavg} we have cohd,θC (L) ∈ [0, 1] for every L and C.

The above proposition shows that many coherence measures are
normalized on [0, 1] and, therefore, different MLNs can be compared
and categorized by their coherence values. Note that the Proposi-
tion 1 does not hold in general for dp.

Proposition 2. If d satisfies reflexivity and θ satisfies
θ(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0 then cohd,θC (L) = 1 iff L
is perfectly coherent wrt. C.

The above proposition states that our framework satisfies the basic
property of detecting whether an MLN is perfectly coherent, given
some minimal requirements of both distance measure and aggrega-
tion function.

Corollary 1. If d ∈ {dp, dp,0, dmax, davg} (p ∈ N+) and θ ∈
{θmax, θavg} then cohd,θC (L) = 1 iff L is perfectly coherent wrt. C.

Note that the above statement does not hold for dmin and θmin.
Next we look into the behavior of cohd,θC under changes of L and

C.

Proposition 3. For any d it holds cohd,θmax
C (L) is monotonically

decreasing in L, i. e. cohd,θmax
C (L) ≥ cohd,θmax

C (L ∪ {(φ, g)}).

This property states that cohd,θmax
C (L) cannot get more coherent

under addition of formulas. This corresponds to the classical con-
cept of inconsistency insofar that an inconsistent knowledge base of
classical logical formulas cannot get consistent when adding new in-
formation. Note that the above property does not hold in general for
θmin and θavg. For a special case of a new formula we make the fol-
lowing observation.

Proposition 4. For any d, if a consistent φ shares no predicate with
L then cohd,θmax

C (L) = cohd,θmax
C (L ∪ {(φ, g)}) for every g ∈ R.

In other words, if we add totally unrelated (but consistent) infor-
mation to an MLN this does not change its coherence.

Proposition 5. For θ ∈ {θmax, θmin, θavg} it holds that
cohdmin,θ

C (L) is monotonically increasing in C, i. e. cohdmin,θ
C (L) ≤

cohdmin,θ
C∪{c}(L).

This result states that considering more individuals increases the
coherence of the MLN wrt. dmin. The rationality of satisfying this
property is evident as by taking more individuals into account excep-
tions to formulas become negligible. Consider the MLN L of Exam-
ple 5 which specifies a general rule (A(X) has to hold in general)
and an exception (c1 does not satisfy A(X)). However, the general
rule dominates the coherence value the the more individuals actually
satisfy it.

Example 7. We continue Example 5 but consider varying sizes
of the domain. So let L = 〈(A(X), 2), (A(c1),−5)〉 and Ci =
{c1, . . . , ci} for i ∈ N. Figure 1 shows the behavior of four different
coherence measures when the domain increases in size.

The framework proposed so far can be utilized by a knowledge
engineer when debugging MLNs. In particular, a coherence measure
can be used to evaluate whether the semantics of an MLN adequately
represents its intended meaning if no data for learning is available.
Note that this tool can be applied even if the heuristic for defining
weights from probabilities may not seem adequate as the tool uses
these only for assessing the influence one formula has on another.

Example 7 showed that, in particular, distance measures based on
the p-norm may give a more fine-grained view on the evolution of
coherence values (however, note that these distance measures do not
satisfy monotonicity wrt. the domain in general). Independently of
the actually chosen combination of distance measure and aggregation
function, by utilizing the framework of coherence measurement for
analyzing a given MLN the knowledge engineer is already able to
detect several design flaws:
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Figure 1. Coherence values for Example 7

1. If an MLN is coherent (i. e. has a comparatively large coherence
value) but exhibits unintuitive inferences, then probably some
weights have been chosen wrong (as there is only little interde-
pendence between formulas).

2. If an MLN is coherent and exhibits no unintuitive inferences, then
the MLN is a good representation of the given knowledge and it
will probably be easier to extend it.

3. If an MLN is incoherent (i. e. has a comparatively low coherence
value) and exhibits unintuitive inferences, then the knowledge en-
gineer should have a look into the structure of the knowledge base
as there may be unwanted interdependences amongst formulas.

4. If an MLN is incoherent but exhibits no unintuitive inferences,
then the MLN may not be an adequate representation of the knowl-
edge and further extensions might yield unintuitive results.

As a final remark, observe that our notion of coherence is also
compatible with the usual notion of probabilistic consistency. In par-
ticular, starting from a consistent probabilistic view in form of a
probability function, we can always find a perfectly coherent MLN
representing this probability function.

Proposition 6. Let P : Ω(C) → [0, 1] be any probability
function. Then there is a perfectly coherent MLN L on LC with
PL,C = P . In particular, it holds cohd,θC (L) = 1 for any d ∈
{dp, dp,0, dmax, dmin, davg} and θ ∈ {θmax, θmin, θavg}.

As for every MLN L the probability function PL,C is always well-
defined the above observation can also be used to transform an inco-
herent MLN L into a coherent MLN L′ that weighs formulas more
adequately. However, note that the formulas in L′ need not necessar-
ily to be the same as in L.

5 Application: Compatibility of MLNs

A particular use case for applying our framework arises when consid-
ering a knowledge merging scenario. Consider the case of multiple
experts merging their knowledge in order to obtain a broader picture
on some problem domain. Then, the individual pieces of information
of each expert contribute to the overall probabilities obtained from
the log-linear model of the merged MLN. Given that the experts have
contradictory views on some parts of the modeled knowledge the
merged MLN might not adequately reflect the joined knowledge. In

order to analyze whether the merging of MLNs gives rise to a poten-
tially meaningless joint MLN we employ our framework of coher-
ence measurement as follows.

Definition 6. Let d be a distance measure, θ an aggregation function,
L1, . . . , Lm MLNs, andC1, . . . , Cm sets of constants. The compati-
bility compd,θC1,...,Cm

(L1, . . . , Lm) of L1, . . . , Lm wrt. C1, . . . , Cm
given d, θ is defined via

compd,θC1,...,Cm
(L1, . . . , Lm)

=
1

2

(
1 + cohd,θC1∪...∪Cm

(L1 ∪ . . . ∪ Lm)− 1

m

m∑
i=1

cohd,θCi
(Li)

)
The value compd,θC1,...,Cm

(L1, . . . , Lm) describes how well the
MLNs L1, . . . , Ln can be merged. In essence, it measures how
much the coherence of the joint MLN differs from the average
coherence of all input MLNs. Intuitively, the larger the value of
compd,θC1,...,Cm

(L1, . . . , Lm) the more compatible the MLNs should
be. The exact form of the compatibility measure has been chosen like
this to satisfy the normalization property, see Proposition 8 below.
Example 8. Consider the three MLNs L1 =
〈(φ1, 1.85), (φ2, 1.85)〉, L2 = 〈(φ3,∞)〉, L3 =
〈(φ4, 1.1), (φ5,∞)〉 defined via

φ1 = quaker(X) ⇒ pacifist(X)

φ2 = republican(X) ⇒ ¬pacifist(X)

φ3 = republican(nixon) ∧ quaker(nixon) ∧ president(nixon)

φ4 = president(X) ⇒ ¬actor(X)

φ5 = president(reagan) ∧ actor(reagan)

which model an extended version of the Nixon diamond. Using
cohdmax,θmax

C we obtain

cohdmax,θmax
{d} (L1) ≈ 0.982

cohdmax,θmax
{nixon} (L2) = 1

cohdmax,θmax
{reagan} (L3) = 0.9

and for the merged MLN L = L1 ∪ L2 ∪ L3 we obtain

cohdmax,θmax
{d,nixon,reagan}(L) ≈ 0.55

This leads to

compdmax,θmax
{d},{nixon},{reagan}(L1, L2, L3) ≈ 0.295

Furthermore, note that cohdmax,θmax
{d,nixon} (L1 ∪ L2) = 0.55 and

cohdmax,θmax
{nixon,reagan}(L2 ∪ L3) = 0.85 and, therefore, L2 and L3 are

more compatible than L1 and L2:

compdmax,θmax
{d},{nixon}(L1, L2) ≈ 0.2795

compdmax,θmax
{nixon},{reagan}(L2, L3) = 0.45

Our compatibility measure gives meaningful results in the above
example. We now investigate how it behaves in the general case.

Proposition 7. It holds compd,θmax
C1,...,Cm

(L1, . . . , Lm) ∈ [0, 1] for
every d ∈ {dp,0, dmax, dmin, davg},

The statement above says that the compatibility measure is nor-
malized and therefore comparable.

Proposition 8. For every d ∈ {dp,0, dmax, dmin, davg} it is
compd,θmax

C1,...,Cm
(L1, . . . , Lm) = 0 if and only if cohd,θmax

C1∪...∪Cm
(L1 ∪

. . . ∪ Lm) = 0 and cohd,θmax
Ci

(Li) = 1 for all i = 1, . . . ,m.

The above proposition states that a set of MLNs is completely
incompatible if and only if each individual MLN is perfectly coherent
and the merged MLN is completely incoherent.



6 Implementation
The framework for measuring coherence of MLNs has been imple-
mented in the Tweety library for artificial intelligence4. The frame-
work contains implementations for all distance measures and aggre-
gation functions discussed above and we provided both a naive and
complete MLN reasoner and a wrapper for using the Alchemy5 MLN
reasoner. While the naive MLN reasoner implements Equations (1)
and (2) in a straightforward way by simply computing the the proba-
bilities PL,C(ω) for all ω ∈ Ω(C), the Alchemy MLN reasoner sup-
ports different approximate methods such as Markov chain Monte-
Carlo. Computing the coherence value cohd,θC (L) is computationally
quite expensive as it involves calls to the MLN reasoner for every
ground instance of a formula in L. Therefore, using the naive MLN
reasoner is only feasible for small examples. However, in its current
version the Alchemy MLN reasoner does not support querying the
probabilities of arbitrary ground formulas but only for ground atoms.
In order to obtain the probability of an arbitrary ground formula φ us-
ing Alchemy it has to be incorporated into the MLN via adding a strict
formula φ⇔ a with some new ground atom a. Then the probability
of a can be queried which is, in theory, the same as the probability
of φ. However, during our experiments we discovered that internal
optimization mechanisms of Alchemy might change the probabilities
of other formulas when adding the strict formula φ⇔ a. This obser-
vation also raises the need for the development of an MLN reasoner
that supports querying for arbitrary ground formulas. Recent devel-
opments such as [10] are gaining to close this gap.

7 Discussion and Conclusion
We introduced coherence as an indicator of how the weighted formu-
las of an MLN interact with each other. We used distance measures
and aggregation functions to measure coherence by comparing the
observed probabilities with the ones stemming from a naive proba-
bilistic interpretation of the weights. By doing so, we came up with
a meaningful assessment tool that satisfies several desirable proper-
ties. As an application for our framework we investigated the issue of
merging and developed an indicator for quantifying the compatibility
of different MLNs.

The approach presented in this paper can be used by a knowledge
engineer to determine suitable weights for formulas, thus comple-
menting the work of Pápai et al. [11] where MLNs are constructed
by taking subjective probabilities of an expert into account. In par-
ticular, [11] already discusses the issue of consistent and inconsis-
tent input probabilities and that in the latter case, parameters for the
probability distribution have to be averaged, thus also resulting in an
incoherent MLN in the sense of our work. By assessing the repre-
sentation quality of MLNs using our approach experts can be guided
to carefully choose correct weights/probabilities or re-structure the
knowledge base.

To the best of our knowledge this work is the first that deals with
quantifying the representation quality of an MLN by investigating
the interrelationships of its formulas. The work presented is inspired
by works on measuring the inconsistency in probabilistic conditional
logic [16]. The work [16] defines an inconsistency measure by mea-
suring the distance of an inconsistent knowledge base to the next
consistent one. In this aspect, our framework uses similar methods.
But as the concept of consistency is not applicable for MLNs we used
a probabilistic interpretation of weights as a reference for assessing

4 http://tinyurl.com/MLNCoherence2
5 http://alchemy.cs.washington.edu

the coherence of an MLN. The term coherence has also been used
before to describe “appropriateness” of a knowledge base or a model
in other contexts. For example, in [9] a set of propositional formu-
las is said to be coherent with respect to a probability function if the
probability of each single formulas increases when conditioning on
the other formulas (there are also other similar notions considered).

Although MLNs are quite a mature framework for dealing with
first-order probabilistic information, the lack of powerful and flexible
MLN reasoner became evident in our experiments. Besides Alchemy
we also looked at other available reasoning systems for MLNs such
as thebeast6 and Tuffy7 but all lacked the crucial feature of computing
the probabilities of arbitrary ground formulas. For future work, we
consider to approach this problem and develop an MLN reasoner that
can specifically be used for measuring coherence. Another direction
for future work is the problem of deciding whether a coherent MLN
can be learned from data and how to do this.
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