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Abstract

This paper presents Tweety, an open source project for sci-
entific experimentation on logical aspects of artificial intel-
ligence and particularly knowledge representation. Tweety
provides a general framework for implementing and testing
knowledge representation formalisms in a way that is famil-
iar to researchers used to logical formalizations. This frame-
work is very general, widely applicable, and can be used to
implement a variety of knowledge representation formalisms
from classical logics, over logic programming and compu-
tational models for argumentation, to probabilistic modeling
approaches. Tweety already contains over 15 different knowl-
edge representation formalisms and allows easy computation
of examples, comparison of algorithms and approaches, and
benchmark tests. This paper gives an overview on the tech-
nical architecture of Tweety and a description of its different
libraries. We also provide two case studies that show how
Tweety can be used for empirical evaluation of different prob-
lems in artificial intelligence.
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1 Introduction
Knowledge Representation and Reasoning (KR) (Brachman
and Levesque 2004) is an important subfield in Artificial
Intelligence (AI) that deals with issues regarding formaliz-
ing knowledge in such a way that machines can read, un-
derstand, and reason with it. Nowadays, KR has a lot of
applications within e. g. the semantic web (Antoniou and
van Harmelen 2004) as a lot of work on description logics
(Baader et al. 2003) and ontologies originate from this field
(at least the technical or computer-science-oriented perspec-
tives on those). Apart from that, more fundamental work
in KR deals with issues regarding uncertainty of beliefs, dy-
namics of belief, and defeasible reasoning. Most branches of
research in knowledge representation and reasoning is theo-
retical in nature and researchers usually do put effort in im-
plementation and empirical evaluation. To address this issue
we present in this field study the Tweety libraries for logical
aspects of artificial intelligence and knowledge representa-
tion.

Approaches to knowledge representation follow almost
always a specific pattern. Starting from a formal syntax
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one can build formulas which are collected in knowledge
bases. Using knowledge bases one can derive new informa-
tion using either the underlying semantics of the language
or a specific reasoner. For example, propositional logic is
the most basic form for knowledge representation. Given
some set of propositions (or atoms) one can build complex
formulas using disjunction, conjunction, or negation. A set
of propositional formulas—i. e., a knowledge base—can be
used to derive new propositional formulas as conclusions.
This can be done using e. g. the standard model-theoretic
semantics of propositional logic or more sophisticated rea-
soning techniques such as paraconsistent reasoning. Most
logical approaches to knowledge representation such as first-
order logic, description logics, defeasible logics, default log-
ics, probabilistic logics, fuzzy logics, etc. follow this pat-
tern. Moreover, many other formalisms which are not so
obviously rooted in logic such as abstract argumentation or
Bayes nets can also be cast into this framework. For exam-
ple, for abstract argumentation frameworks (Dung 1995), a
knowledge base is given by a conjunction of attack state-
ments between arguments and different kinds of semantics
such as grounded or stable semantics determine how sets of
arguments can be derived from a knowledge base.

The Tweety libraries support the implementation of such
approaches by providing a couple of abstract classes and in-
terfaces for components such as Formula, BeliefBase,
and Reasoner. Furthermore, many strictly logic-based ap-
proaches to knowledge representation can also utilize fur-
ther classes such as Predicate, Atom, and Variable,
to name just a few. Currently, Tweety already contains im-
plementations of over 15 different approaches to knowledge
representation such as propositional logic, first-order logic,
several approaches to probabilistic logics, and several ap-
proaches to computational models of argumentation.

In this paper, besides giving an overview on the techni-
cal details of Tweety and its libraries, we also report on two
case studies that use Tweety as a framework for experimen-
tation and empirical evaluation. The first study is on incon-
sistency measurement for probabilistic logics (Thimm 2011;
2013b). In general, probabilistic logics are concerned with
using quantitative uncertainty for non-monotonic reasoning.
Naturally, these approaches are computationally hard and
not easy to understand, as the underlying reasoning mech-
anisms are quite complicated. Consequently, implementa-



tions serve well to understand examples and to (in-)validate
conjectures. Our second case study is about strategic argu-
mentation in multi-agent systems (Thimm and Garcia 2010;
Rienstra, Thimm, and Oren 2013). Similarly, when defin-
ing agent models and negotiation strategies in such an en-
vironment, effects that occur on a larger scale are hard to
predict by hand. Moreover, just an analytical evaluation
of different negotiation strategies is often also simply too
weak to provide meaningful insights (Rienstra, Thimm, and
Oren 2013). For that reason Tweety can also be used as
a tool for empirical evaluation as e. g. it has been done in
(Rienstra, Thimm, and Oren 2013) to provide average per-
formance results on a series of experiment runs in random
settings. Further works that use Tweety for implementing
knowledge representation formalisms or for empirical eval-
uation are e. g. (Thimm and Kern-Isberner 2008; Thimm
and Garcia 2010; Krümpelmann et al. 2011; Thimm 2011;
Kern-Isberner and Thimm 2012; Thimm 2012; 2013b; Rien-
stra, Thimm, and Oren 2013; Thimm 2013a; Krümpelmann
and Kern-Isberner 2012).

The rest of this paper is organized as follows. Section 2
gives an overview on the architecture of Tweety and Sec-
tion 3 presents some technical details on its different li-
braries. In Section 4 two case studies are presented that show
how Tweety can be used for evaluation in scientific research.
Section 5 concludes with a summary and pointers to future
work.

2 Technical Overview
Tweety is organized as a modular collection of Java libraries
with a clear dependence structure. The programming lan-
guage Java has been chosen as it is easy to understand,
commonly used, and platform-independent. Each knowl-
edge representation formalism has a dedicated Tweety li-
brary (ranging from a library on propositional logic to li-
braries on computational models of argumentation) which
provides implementations for both syntactic and semantic
constructs of the given formalism as well as reasoning ca-
pabilities. Several libraries provide basic functionalities that
can be used in other projects. Among those is the Tweety
Core library which contains abstract classes and interfaces
for all kinds of knowledge representation formalisms. Fur-
thermore, the library Math contains classes for dealing with
mathematical sub-problems that often occur, in particular,
in probabilistic approaches to reasoning. Most other Tweety
projects deal with specific approaches to knowledge repre-
sentation. In the next section, we have a closer look on the
individual libraries.

Each Tweety library is organized as a Maven1 project
(Maven is a tool for organizing dependencies between
projects, building, and deploying). Most libraries can be
used right away as they only have dependencies to other
Tweety libraries. Some libraries provide bridges to third-
party libraries such as numerical optimization solvers which
are not automatically found by Maven and have to be in-
stalled beforehand. However, all necessary third-party li-

1http://maven.apache.org

braries can be installed by executing a single install file lo-
cated within the Tweety distribution.

In order to use and develop with Tweety we recommend
using the Eclipse IDE2 and its Maven plugin3. As all Tweety
libraries are organized as Maven projects they can all be
easily imported and used for other projects within Eclipse.
Furthermore, pre-compiled JARs for every library can be
downloaded from the Tweety homepage4 and directly used
in other projects. A third way of using the functionalities
of Tweety is by using its Command Line Interface which is
currently under development.

Currently, Tweety contains 161 Java packages which
themselves contain 794 Java classes in overall 87421 lines
of code. The average cyclomatic complexity number per
method (CCN) (McCabe 1976) is 2.87. This means, that ev-
ery method roughly contains two to three if-else statements
thus reducing complexity on a method-basis and emphasiz-
ing the modular nature of Tweety. Furthermore, the aver-
age code-to-comment ratio in Tweety is 2.13, meaning that
for roughly every two lines of code one line of comment is
given.

3 Libraries
In the following we give a detailed description of the cur-
rently available libraries within Tweety. An overview of
these libraries is given in Table 1 which provides both the
name of a library and its Java root package name.

General Libraries
The General libraries of Tweety provide basic functionali-
ties and utility classes for all other Tweety classes.

Tweety Core The Tweety Core library contains abstract
classes and interfaces for various knowledge representation
concepts. Among the most important ones are
Formula A formula of a representation formalism
BeliefBase Some structure containing beliefs
BeliefSet A set of beliefs, i. e. a set of formu-

las5, it is the most commonly used class derived from
BeliefBase

Signature The signature of a representation formalism
Interpretation An interpretation that evaluates the

truth of formulas
Reasoner Implements a specific reasoning strategy to an-

swer queries for a representation formalism
Parser, Writer For reading/writing formulas and belief

sets
2http://www.eclipse.org
3http://maven.apache.org/eclipse-plugin.

html
4http://www.mthimm.de/projects/tweety/
5Please note that we follow the Java guideline for naming a

class containing a set of beliefs a belief set (it contains a finite
unordered set of elements), opposed to the naming convention in
belief dynamics where a belief set is usually deductively closed. In
terms of belief dynamics research the class BeliefSet actually
represents a belief base.



Library Project root package
General Libraries
Tweety Core net.sf.tweety
Command Line Interface net.sf.tweety.cli
Plugin net.sf.tweety.plugin
Math net.sf.tweety.math
Graphs net.sf.tweety.graphs

Logic Libraries
Logic Commons net.sf.tweety.logics.commons
Propositional Logic net.sf.tweety.logics.pl
First-Order Logic net.sf.tweety.logics.fol
Conditional Logic net.sf.tweety.logics.cl
Relational Conditional Logic net.sf.tweety.logics.rcl
Probabilistic Conditional Logic net.sf.tweety.logics.pcl
Relational Probabilistic Conditional Logic net.sf.tweety.logics.rpcl
Markov Logic net.sf.tweety.logics.ml
Epistemic Logic net.sf.tweety.logics.el
Description Logic net.sf.tweety.logics.pl
Logic Translators net.sf.tweety.logics.translators

Logic Programming Libraries
Answer Set Programming net.sf.tweety.lp.asp
Dynamics in Answer Set Programming net.sf.tweety.lp.asp.beliefdynamics
Nested Logic Programming net.sf.tweety.lp.nlp

Argumentation Libraries
Abstract Argumentation net.sf.tweety.arg.dung
Deductive Argumentation net.sf.tweety.arg.deductive
Structured Argumentation Frameworks net.sf.tweety.arg.saf
Defeasible Logic Programming net.sf.tweety.arg.delp
Logic Programming Argumentation net.sf.tweety.arg.lp
Probabilistic Argumentation net.sf.tweety.arg.prob

Agent Libraries
Agents net.sf.tweety.agents
Dialogues net.sf.tweety.agents.dialogues

Other Libraries
Action and Change net.sf.tweety.action
Belief Dynamics net.sf.tweety.beliefdynamics
Machine Learning net.sf.tweety.machinelearning
Preferences net.sf.tweety.preferences

Table 1: Overview on the Tweety libraries

Most other Tweety libraries provide specific implemen-
tations of the above abstract classes and interfaces for
their specific representation formalisms. For example,
the library Propositional Logic implements Formula
by PropositionalFormula (which is recursively de-
fined using conjunction, disjunction, and negation) and
Interpretation by PossibleWorld. In this way,
the classical approach to formally define a logical language
via syntax and semantics has a one-to-one correspondence
with its implementation in Tweety.

Besides the above mentioned abstract classes and inter-
faces, Tweety Core provides abstract implementations of
several other knowledge representation concepts and several
utility classes for working with sets, subsets, vectors, and

general rules.

Plugin The Plugin library provides classes for implement-
ing Tweety plugins that can be used by e. g. the Command
Line Interface. This library makes use of the Java Simple
Plugin Framework (JSPF)6. Using these classes one can en-
capsulate the functionalities of a specific knowledge repre-
sentation formalism and expose them in the same way to
user interfaces. The most important class is the abstract class
AbstractTweetyPlugin which is the basis for devel-
oping plugins. Please note that the Plugin library is currently
in an experimental phase.

6https://code.google.com/p/jspf/



Command Line Interface All Tweety libraries can be ac-
cessed programmatically in Java through their API (Ap-
plication Programming Interface). However, for non-
programmers this way of utilizing the libraries is not very
convenient. Using the Plugin library the Command Line In-
terface library provides a general command line interface for
many Tweety libraries. Every library can expose its func-
tionality through a Tweety plugin that can be plugged into
the command line interface and accessed in a uniform way.
Please note that the Command Line Interface library is cur-
rently in an experimental phase.

Math Many algorithms for knowledge representation
and reasoning are based on mathematical methods such
as optimization techniques. The Math library encap-
sulates those mathematical methods and exposes them
through simple interfaces to other libraries for realizing
these algorithms. At the core, the Math library con-
tains classes for representing mathematical terms (such as
Constant, Variable, Product, Logarithm) and
statements (such as Equation). Using these constructs
one can represent e. g. constraint satisfaction problems
(ConstraintSatisfactionProblem) and optimiza-
tion problems (OptimizationProblem). Through the
Solver interface the Math library provides bridges to
several third-party solvers such as the ApacheCommons
Simplex-algorithm7, the OpenOpt solvers8, or Choco9.

Graphs The Graphs library contains a simple graph im-
plementation with utility functions as it can be used e. g. to
represent abstract argumentation frameworks (see Abstract
Argumentation library).

Logic Libraries
The Tweety Logic libraries (located under the package
net.sf.tweety.logics) provide implementations for
various knowledge representation formalisms based on clas-
sical logics (propositional logic and first-order logic) and
non-classical logics such as conditional logic, probabilistic
logics, epistemic logics, or description logic. Each library
follows a strict approach in defining the formalism by im-
plementing the abstract classes and interfaces Formula,
BeliefBase, Interpretation,. . . from the Tweety
Core library. Each library contains a sub-package syntax
which contains the elements to construct formulas of the for-
malism and a sub-package semanticswhich contains ele-
ments for realizing the semantics of the formalism. Besides
these two common sub-packages many libraries also con-
tain parsers for reading formulas from file and reasoner that
implement a specific reasoning approach.

Logic Commons The Logic Commons library contains
abstract classes and interfaces which further refine the gen-
eral Formula interface from the Tweety Core library.
Among these refinements are several concepts that are
shared among a great number of knowledge representation
formalism such as Predicate, Variable or Atom.

7http://commons.apache.org/math
8http://openopt.org
9http://www.emn.fr/z-info/choco-solver/

Propositional Logic The Propositional Logic library pro-
vides an implementation of classical propositional logic.
Propositional formulas can be constructed using e. g.
classes Conjunction or Disjunction and proposi-
tional formulas can be put into a knowledge base of type
PlBeliefSet. Currently, the Propositional Logic library
supports two different reasoners. The first is a simple brute
force approach that directly follows the definition of classi-
cal entailment, i. e. in order to prove a given propositional
formula wrt. a given set of propositional formulas all possi-
ble worlds are enumerated and tested. Obviously, this rea-
soner only works for small examples but is useful when one
is interested in all models of a knowledge base. The second
supported reasoner incorporates the Sat4j reasoner10. Other
SAT-solvers can be added in a straightforward way.

First-Order Logic This library contains an implementa-
tion of first-order logic as a knowledge representation for-
malism. Both the Propositional Logic library and the First-
Order Logic library are used by many other libraries of
knowledge representation formalisms.

Conditional Logic The Conditional Logic library extends
the Propositional Logic library by conditionals, i. e. non-
classical rules of the form (B | A) (“A usually implies
B”), cf. (Nute and Cross 2002). In the literature, sev-
eral different semantics and reasoning approaches for con-
ditional logics have been proposed and this library can be
used to easily compare their reasoning behavior. Currently,
the Conditional Logic library implements interpretations in
the form of ranking functions (Spohn 1988) and condi-
tional structures (Kern-Isberner 2001), and provides rea-
soner based on z-ranking (Goldszmidt and Pearl 1996) and
c-representations (Kern-Isberner 2001).

Relational Conditional Logic Similar to the Conditional
Logic library the Relational Conditional Logic extends the
First-Order Logic libraries with relational conditionals (i. e.
conditionals that may contain first-order formulas), cf. (Del-
grande 1998; Kern-Isberner and Thimm 2012). Currently,
this library contains an implementation of the relational
c-representation reasoning approach of (Kern-Isberner and
Thimm 2012).

Probabilistic Conditional Logic This library further ex-
tends the Conditional Logic library by extending condition-
als to probabilistic conditionals of the form (B | A)[p] (“A
usually implies B with probability p”), cf. (Rödder 2000).
Besides a naive implementation of probabilistic reasoning
based on the principle of maximum entropy (Paris 1994)
this library also contains several classes for analyzing and
repairing inconsistent sets of probabilistic conditionals, cf.
(Thimm 2011; 2013b). We will discuss this package in more
detail in Section 4.

Relational Probabilistic Conditional Logic By combin-
ing both the Relational Conditional Logic and Probabilis-
tic Conditional Logic libraries the Relational Probabilistic
Conditional Logic library introduces relational conditionals

10http://www.sat4j.org



with probabilities, cf. (Kern-Isberner and Thimm 2010). It
implements both the averaging and aggregating semantics
from (Kern-Isberner and Thimm 2010) and also allows for
lifted inference as proposed in (Thimm 2011).

Markov Logic This library builds on the First-Order
Logic library to implement Markov Logic, an extension of
first-order logic with weights to allow for probabilistic rea-
soning, cf. (Richardson and Domingos 2006). It provides
several propriety sampling-based reasoner and a bridge to
the Alchemy reasoner11.

Epistemic Logic This library extends the Propositional
Logic library with modal operators for epistemic logic and
its semantics with accessibility relations and Kripke models.
Please note that the Epistemic Logic library is currently in an
experimental phase.

Description Logic The Description Logic library provides
a general description logic implementation (Baader et al.
2003) based on the First-Order Logic library. Please note
that the Description Logic library is currently in an experi-
mental phase.

Logic Translators This library provides the abstract class
Translator that provides basic functionalities to imple-
ment translators between different knowledge representation
formalisms. Currently, the Logic Translators library con-
tains translators between first-order logic and answer set
programming, between nested logic programming and an-
swer set programming, and between propositional logic and
first-order logic.

Logic Programming Libraries
The Logic Programming libraries (located under the pack-
age net.sf.tweety.lp) provide implementations of
knowledge representation formalisms based on logic pro-
gramming.

Answer Set Programming The Answer Set Programming
library provides classes for representing extended logic pro-
grams (Gelfond and Leone 2002). Answer set programs
are logic programs of the form A ← B1, . . . , Bm with
first-order literals A,B1, . . . , Bm where the body literals
B1, . . . , Bm may also have a default negation not. This li-
brary provides bridges to several established solvers such as
DLV12, DLV Complex13, and Clingo14.

Dynamics in Answer Set Programming This library ex-
tends the Answer Set Programming library by introducing
revision and update approaches. The library contains imple-
mentations of the approaches introduced in (Krümpelmann
and Kern-Isberner 2012; Delgrande, Schaub, and Tompits
2007) and also revision approaches based on argumentation.

11http://alchemy.cs.washington.edu
12http://www.dlvsystem.com
13https://www.mat.unical.it/dlv-complex
14http://potassco.sourceforge.net

Nested Logic Programming This library contains an im-
plementation of nested logic programs which allow for com-
plex first-order formulas to appear in logic programming
rules (Lifschitz, Tang, and Turner 1999).

Argumentation Libraries
The argumentation libraries (located under the package
net.sf.tweety.arg) are one of the most mature li-
braries of Tweety and contain a wide variety of implemen-
tations of different approaches to computational argumenta-
tion.

Abstract Argumentation This library implements ab-
stract argumentation as proposed in (Dung 1995). An ab-
stract argumentation framework is a directed graph (A,Att)
where A is interpreted as a set of arguments and an edge
(A,A′) ∈ Att is an attack of A on A′. The library provides
implementations of the mostly used semantics and their cor-
responding reasoner, both in terms of extensions (an exten-
sion is a set of arguments that is regarded as accepted by
a semantics) and labelings (a labeling is a function with a
three-valued truth assignment to each argument). Several
utility classes for generating random argumentation frame-
works complement this library.

Deductive Argumentation The Deductive Argumenta-
tion library provides an implementation of the approach pro-
posed in (Besnard and Hunter 2001). In deductive argumen-
tation, an argument is composed of a set of propositional
formulas that derive the claim of the argument. Attack be-
tween arguments is derived from classical unsatisfiability.

Structured Argumentation Frameworks This library
implements the approach of structured argumentation
frameworks as proposed in (Thimm and Garcia 2010). In
structured argumentation frameworks arguments are com-
posed of subarguments and a conclusion.

Defeasible Logic Programming This library provides an
implementation of Defeasible Logic Programming (DeLP)
(Garcia and Simari 2004). In DeLP knowledge bases con-
tain strict and defeasible rules and facts, similar to knowl-
edge representation formalisms for logic programming. De-
feasible rules can be collected in arguments and compared
by generalized specificity (Stolzenburg et al. 2003).

Logic Programming Argumentation This library pro-
vides an implementation of the argumentation approach of
(Schweimeier and Schroeder 2003) which is also based on
logic programming techniques.

Probabilistic Argumentation The Probabilistic Argu-
mentation library extends the Abstract Argumentation li-
brary with non-classical semantics based on probabilistic as-
sessments (Thimm 2012).

Agent Libraries
The agent libraries (located under the package
net.sf.tweety.agents) provide a framework
for analyzing and simulating interactions between agents.



Agents This general library contains an abstract formal-
ization of agents and multi-agent systems. Classes such
as Agent, Environment, MultiAgentSystem, and
Protocol can be used to set up and simulate a sys-
tem of agents within an environment. This library has
a specific focus on the simulation aspect and provides
classes such as MultiAgentSystemGenerator and
GameSimulator that allow the automatic generation of
test scenarios and their evaluation.

Dialogues The library Dialogues extends the Agents li-
brary with the capability of simulating dialogues between
agents, as they are investigated in the context of argumen-
tation in multi-agent systems (Karunatillake et al. 2009). It
also provides an implementation of agents with an opponent
model as proposed in (Rienstra, Thimm, and Oren 2013).
We will discuss this package in more detail in Section 4.

Other Libraries
The above discussed libraries constitute the core of Tweety
by providing implementations of several knowledge repre-
sentation formalisms. This collection is complemented by
some further libraries that relate either to topics that do not
strictly belong to the field of knowledge representation (such
as the Machine Learning library) or can be applied across
several different knowledge representation formalisms (such
as the Belief Dynamics library.

Action and Change The Action and Change library im-
plements several action languages and their dynamics from
(Gelfond and Lifschitz 1998).

Belief Dynamics This library provides a general im-
plementation for various approaches to belief (base)
revision and update (Hansson 2001). It provides interfaces
and several implementations of many concepts used in
belief dynamics such as BaseRevisionOperator,
BaseContractionOperator, IncisionFunc-
tion, and LeviBaseRevisionOperator. Those
classes are defined in such a general way that they can be
used not only to implement belief dynamics for proposi-
tional logic but also for other knowledge representation
formalisms implementing the corresponding Tweety
interfaces. This library contains also specific revision
approaches such as selective revision (Fermé and Hansson
1999) and argumentative selective revision (Krümpelmann
et al. 2011).

Machine Learning The Machine Learning library pro-
vides several abstract concepts that can be used in a machine
learning context such as Observation, Classifier,
and CrossValidator. It contains also an implementa-
tion of support vector machines utilizing LIBSVM15.

Preferences This library contains classes for represent-
ing preference orders and approaches for aggregating them
(Walsh 2007). It also contains an implementation of the dy-
namic preference aggregation approach proposed in (Thimm
2013a).

15http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

4 Case Studies and Evaluation
In this section we discuss two case studies that make use
of Tweety as a platform for experimentation and empirical
evaluation. The first case study is on inconsistency handling
for probabilistic logics (Thimm 2011; 2013b) while the sec-
ond study is on strategic argumentation in multi-agent sys-
tems (Thimm and Garcia 2010; Rienstra, Thimm, and Oren
2013).

Inconsistency Handling for Probabilistic Logics
In order to motivate the work described in this section we
give a brief introduction into probabilistic conditional logic
and its inconsistency measures, cf. (Thimm 2011; 2013b).

For propositional formulas φ, ψ and a real-value p ∈ [0, 1]
we call (φ |ψ)[p] a probabilistic conditional. A probabilis-
tic conditional (φ |ψ)[p] represents a specific form of de-
feasible rule and has the intuitive meaning “if ψ is true
then φ is true with probability p”. A (probabilistic con-
ditional) knowledge base K is a set of probabilistic con-
ditionals. Semantics are given to probabilistic condition-
als by probability functions P : Ω → [0, 1] with Ω being
the set of interpretations (possible worlds) of the underly-
ing propositional logic16. A probability function P satisfies
a conditional (φ |ψ)[p] if and only if P (φ ∧ ψ) = pP (ψ)
(the probability of a formula is defined to be the sum of
the probabilities of all possible worlds satisfying it). Note
that this follows the definition of conditional probability
(P (φ | ψ) = P (φ∧ φ)/P (ψ) = p) as long as P (ψ) 6= 0. In
order to avoid a case differentiation for P (ψ) = 0 we use the
above definition, cf. (Paris 1994). A probability function P
satisfies a knowledge base K if and only if it satisfies all its
probabilistic conditionals. A knowledge base is consistent if
such a probability function exists.

Example 1 Consider K = {(f | b)[0.9], (b | p)[1],
(f | p)[0.01]} with the intuitive meaning that birds (b)
usually (with probability 0.9) fly (f ), that penguins (p) are
always birds, and that penguins usually do not fly (only with
probability 0.01). The knowledge base K is consistent as a
probability function satisfying it can easily be constructed,
cf. (Thimm 2013b). Note that e. g. the knowledge base
K = {(x | y)[0.9], (y | >)[0.9], (x | >)[0.2]} is inconsistent
(> is a logical tautology): bonsidering just the conditionals
(x | y)[0.9] and (y | >)[0.9] we obtain that x has to be at the
least probability 0.81 which is inconsistent with stating that
x has probability 0.2.

In order to deal with inconsistent knowledge bases the
work (Thimm 2013b) proposes inconsistency measures as
a tool for analyzing inconsistencies. An inconsistency mea-
sure is a function I that takes a knowledge base K and com-
putes an inconsistency value I(K) ∈ [0,∞) with the intu-
itive meaning that a larger value indicates a more severe in-
consistency (and I(K) = 0 means that K is consistent). See
(Thimm 2013b) for more details, some rationality postulates
on inconsistency measurement, and specific approaches.

16We assume that the set of propositions is finite and so is the set
of possible worlds



The inconsistency measurement framework
has been implemented in the Probabilistic Con-
ditional Logic library of Tweety (sub-package
net.sf.tweety.logics.pcl.analysis). How-
ever, as inconsistency measurement is a broader topic that
can also be used in other knowledge representation for-
malisms such as classical logics (Grant and Hunter 2006),
the concept inconsistency measure is already implemented
in the Tweety Core library as a very general interface (only
an excerpt is shown):

p u b l i c i n t e r f a c e I n c o n s i s t e n c y M e a s u r e
<T ex tends B e l i e f B a s e> {

p u b l i c Double i n c o n s i s t e n c y M e a s u r e
( T b e l i e f B a s e ) ;

}

The interface above is parametrized by the specific
type of belief base using Java Generics. All types
of belief bases used within Tweety, such as propo-
sitional belief sets (PlBeliefSet) or probabilis-
tic conditional knowledge bases (PclBeliefSet),
are derived from BeliefBase. The package
net.sf.tweety.logics.pcl.analysis pro-
vides several implementations of the above interface such
as

p u b l i c c l a s s M i I n c o n s i s t e n c y M e a s u r e
implements I n c o n s i s t e n c y M e a s u r e
<P c l B e l i e f S e t > {

@Override
p u b l i c Double i n c o n s i s t e n c y M e a s u r e

( P c l B e l i e f S e t b e l i e f S e t ) {
P c l D e f a u l t C o n s i s t e n c y T e s t e r

c o n s i s t e n c y T e s t e r =
new P c l D e f a u l t C o n s i s t e n c y T e s t e r ( ) ;

re turn new Double ( c o n s i s t e n c y T e s t e r .
m i n i m a l I n c o n s i s t e n t S u b s e t s (
b e l i e f S e t ) . s i z e ( ) ) ;

}
}

which is an implementation of the MI-inconsistency
measure (Grant and Hunter 2006) for probabilis-
tic conditional logic. It takes the number of min-
imal inconsistent subsets of a knowledge as an as-
sessment of its inconsistency. Another example, the
DistanceMinimizationInconsistencyMeasure,
also makes use of the Math library. This measure assesses
the grade of inconsistency by measuring how much the
probabilities of the conditionals have to be modified in order
to obtain a consistent knowledge base, cf. (Thimm 2013b).
This problem is solved by optimization techniques that can
be found in the Math library.

For probabilistic conditional logic, determining whether
a knowledge base is inconsistent are assessing its inconsis-
tency value is not easily done by hand. Using the imple-
mentations of various inconsistency measures in Tweety, we
were able to compute and compare inconsistency values for
various knowledge bases, cf. (Thimm 2011). Furthermore,
as the interfaces and abstract classes provided by Tweety are
very general and force the programmer to work as abstract as
possible, even the implementation of such specific concepts

such as inconsistency measures yield very generally appli-
cable classes that are easily adapted to other approaches.

Strategic Argumentation
Our second case study is about strategic argumentation in
multi-agent systems. In the works (Thimm and Garcia 2010;
Rienstra, Thimm, and Oren 2013) we investigated systems
of agents that are engaged in dialogues and aim at resolving
contradiction by exchange of arguments. We give a brief in-
troduction into the topic now, but simplify the formalization
for the sake of readability.

We consider two agents PRO (proponent) and OPP (op-
ponent) engaged in a dialogue about a specific argument A
(we use the terminology of abstract argumentation frame-
works as mentioned earlier). The proponent has the goal
to establish that A is acceptable and the opponent has the
goal to establish that A is not acceptable. Both agents have
only access to a subset of all available arguments and are, in
general, ignorant or uncertain about the arguments the other
agent has access to. Both agents take turn in forwarding a set
of arguments. In (Rienstra, Thimm, and Oren 2013) several
different belief states with opponent models were proposed
and discussed that help an agent to act strategically in these
kinds of dialogues. The first type T1 of belief state is a tuple
(B,E) where B is the set of arguments a particular agent
(either PRO or OPP) has access to, and E is the opponent
model which is itself a belief state of type T117. This type
of belief state therefore models what an agent thinks another
agent beliefs, etc.. The second T2 and third T3 types of be-
lief state extend the first type by introducing uncertainty on
the set of arguments believed by the other agent and uncer-
tainty about the arguments themselves. The second type of
belief state T2 is a tuple (B,P ) where B is again the set of
arguments a particular agent has access to and P is a proba-
bility distribution over some set {K1, . . . ,Kn} where each
Ki (i = 1, . . . , n) is again a belief state of type T2. For
a formalization of the belief state of type T3 see (Rienstra,
Thimm, and Oren 2013). In (Rienstra, Thimm, and Oren
2013) it has been analytically shown that the expressiveness
of the three models is increasing from T1 to T3. However, in
order to understand the differences between the three mod-
els examples have to be created and computed with different
belief states. In the setting of strategic argumentation, this
is a hard task to do by hand. In a system with at least two
agents where both agents are equipped with a non-trivial be-
lief state that changes with every action, running through a
complete example by hand is a tedious task.

The complete setting of (Rienstra, Thimm, and Oren
2013) has been implemented in the Dialogues library which
makes heavy use of the general agent classes from the
Agents library and, of course, the knowledge representation
formalism from the Abstract Argumentation library. The
central class of the implementation is the ArguingAgent
class (we only show an excerpt):

p u b l i c c l a s s ArguingAgent ex tends Agent {
p r i v a t e B e l i e f S t a t e b e l i e f S t a t e ;

17Note that this model has originally been proposed in (Oren and
Norman 2010)



p r i v a t e A g e n t F a c t i o n f a c t i o n ;

@Override
p u b l i c E x e c u t a b l e n e x t ( C o l l e c t i o n <?

ex tends P e r c e i v a b l e > p e r c e p t s ) {
/ / [ env = t h e e n v i r o n m e n t o b j e c t ]
t h i s . b e l i e f S t a t e . u p d a t e ( env .

g e t D i a l o g u e T r a c e ( ) ) ;
re turn t h i s . b e l i e f S t a t e . move ( env ) ;

}
}

The central attributes of an arguing agent are its belief state
and its faction (e. g. either PRO or OPP). The method
next(...) (derived from the super-class Agent) de-
termines the agent’s behavior on receiving some percep-
tion from the environment and returns some action (of type
Executable). Here, the agent first updates its belief state
with the current dialogue trace (a sequence of sets of ar-
guments advanced so far) and then returns its own move
(a set of arguments). The three different belief state types
have been implemented in the classes T1BeliefState,
T2BeliefState, and T3BeliefState. Arguing
agents are organized in a GroundedGameSystem which
is of type MultiAgentSystem<ArguingAgent> and
models an argumentation dialogue (“grounded” refers to the
grounded semantics used for this type of game). On top of
this implementation of the actual dialogue system a sim-
ulation framework was implemented that allows the (ran-
dom) generation of the above multi-agent systems and mea-
sures the performance of the individual agents over a series
of runs. The central class for the simulation framework is
the GroundedGameGenerator which implements the
interface MultiAgentSystemGenerator and is able
to generate (random) multi-agent systems of arguing agents.

In (Rienstra, Thimm, and Oren 2013), for evaluating per-
formance we generated a random abstract argumentation
theory with 10 arguments, ensuring that the argument under
consideration is in its grounded extension, i. e. under perfect
information the proponent should win the dialogue. How-
ever, from these 10 arguments only 50 % are known by the
proponent but 90 % by the opponent. We used a proponent
without opponent model and generated an belief state of type
T3 for the opponent. From this T3 belief state we derived T2
and T1 belief states by ignoring the added expressivity. For
each belief state we simulated a dialogue against the same
opponent and counted the number of wins. We repeated
the experiment 5000 times, Figure 1 shows our results, cf.
(Rienstra, Thimm, and Oren 2013). There, it can be seen
that increasing the complexity of the belief state yields bet-
ter overall performance (thus confirming the analytical eval-
uation). However, this empirical evaluation sheds also more
light on the importance of the added expressivity for strate-
gic argumentation. While T2 is significantly better that T1,
the difference between T3 and T2 is nearly marginal. These
kinds of nuances are very difficult to discover when consid-
ering only analytical evaluation.
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Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with ar-
gumentation. [6] describes two systems which concern them-

1http://tinyurl.com/tweety-opp

selves with the likelihood that an agent knows a specific argu-
ment, and we can view the possible argument AFs that can be
induced from these likelihoods as possible models of agent
knowledge. [15] investigates probabilistic interpretations of
abstract argumentation and relationships to approaches for
probabilistic reasoning. Furthermore, [8] investigated strate-
gies in such a probabilistic setting but concerned themselves
with monologues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [10], which aims to minimise the cost
of moves, with no concern to the opponent’s knowledge, and
without looking more than one step ahead when reasoning.
Such a strategy can easily be encoded by our approach. By
assigning probabilities to arguments, [14] constructed a game
tree allowing dialogue participants to maximise the likelihood
of some argument being accepted or rejected. The probabili-
ties in that system arose from a priori knowledge, and no con-
sideration was given to the possibility of an opponent model.

[12; 13] consider a very different aspect of strategy, at-
tempting to identify situations which are strategy-proof, that
is, when full revelation of arguments is the best course of
action to follow. Similarly, [16] extends that work to struc-
tured AFs and also proposes some simple dominant strate-
gies for other specific situations. This can be contrasted with
our work, where e. g. withholding information can result in a
better outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work

We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [5] has high-
lighted the need for strategies when structured argumentation
is used. Since the work presented here can easily be extended
to this domain, we are in the process of adapting our algo-
rithms to deal with dialogues built on top of structured argu-
mentation.

Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with
argumentation. [Hunter, 2012] describes two systems which

1http://tinyurl.com/tweety-opp

concern themselves with the likelihood that an agent knows a
specific argument, and we can view the possible argument
AFs that can be induced from these likelihoods as possi-
ble models of agent knowledge. [Thimm, 2012] investigates
probabilistic interpretations of abstract argumentation and re-
lationships to approaches for probabilistic reasoning. Fur-
thermore, [Oren et al., 2012] investigated strategies in such
a probabilistic setting but concerned themselves with mono-
logues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [Oren et al., 2006], which aims to min-
imise the cost of moves, with no concern to the opponent’s
knowledge, and without looking more than one step ahead
when reasoning. Such a strategy can easily be encoded by
our approach. By assigning probabilities to arguments, [Roth
et al., 2007] constructed a game tree allowing dialogue par-
ticipants to maximise the likelihood of some argument being
accepted or rejected. The probabilities in that system arose
from a priori knowledge, and no consideration was given to
the possibility of an opponent model.

[Rahwan and Larson, 2008; Rahwan et al., 2009] consider
a very different aspect of strategy, attempting to identify sit-
uations which are strategy-proof, that is, when full revelation
of arguments is the best course of action to follow. Simi-
larly, [Thimm and Garcia, 2010] extends that work to struc-
tured AFs and also proposes some simple dominant strategies
for other specific situations. This can be contrasted with our
work, where e. g. withholding information can result in a bet-
ter outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work
We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [Hadjiniko-
lis et al., 2012] has highlighted the need for strategies when
structured argumentation is used. Since the work presented
here can easily be extended to this domain, we are in the pro-
cess of adapting our algorithms to deal with dialogues built
on top of structured argumentation.

Figure 1: Average performance of T1, T2, and T3 belief state
models after 5000 simulation runs ((with Binomial propor-
tion confidence intervals)

5 Summary and Future Work

In this paper we presented Tweety, a comprehensive collec-
tion of Java libraries for logical aspects of artificial intelli-
gence and knowledge representation. We gave an overview
on the technical aspects and provided details on its individ-
ual packages. Finally, we presented two case studies that
make use of Tweety as a framework for experimentation and
empirical evaluation.

Tweety is an open source project18,19 and can therefore be
used and extended by everyone. In particular, instantiating
the abstract Tweety classes for a particular formalism is sim-
ple. Although Tweety is implemented in a object-oriented
programming language it follows a strict declarative formal
way to define concepts from theoretical knowledge repre-
sentation research.

Current and future work on Tweety is mainly concerned
with extending the general infrastructure and improving us-
ability. In particular, current work is about implementation
of the plugin architecture for all libraries, a command line
interface, and a web front-end. The ultimate goal there is to
have several standardized user interfaces that are apt to work
with any kind of knowledge representation mechanism and
thus remove the burden of designing and implementing user
interfaces from the researcher.
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