
Semantic Web Application development with LITEQ

Martin Leinberger1, Stefan Scheglmann1, Ralf Lämmel2, Steffen Staab1, Matthias
Thimm1, Evelyne Viegas3

1Institute for Web Science and Technologies, University of Koblenz-Landau, Germany
2 The Software Languages Team, University of Koblenz-Landau, Germany

3Microsoft Research Redmond, US

Abstract. The Semantic Web is intended as a web of machine readable data
where every data source can be the data provider for different kinds of applica-
tions. However, due to a lack of support it is still cumbersome to work with RDF
data in modern, object-oriented programming languages, in particular if the data
source is only available through a SPARQL endpoint without further documen-
tation or published schema information. In this setting, it is desirable to have an
integrated tool-chain that helps to understand the data source during development
and supports the developer in the creation of persistent data objects. To tackle
these issues, we introduce LITEQ, a paradigm for integrating RDF data sources
into programming languages and strongly typing the data. Additionally, we re-
port on two use cases and show that compared to existing approaches LITEQ
performs competitively according to the Halstead metric.

1 Introduction

RDF has primarily been developed for consumption by applications rather than direct
use by humans. However, its design choices, which facilitate the design and publication
of data on the Web, complicate the integration of RDF data into applications as its
principles do not tie in smoothly with modern concepts in programming languages.

A paradigm that aims to support a developer in integrating RDF data into his ap-
plication must overcome several challenges. First, accessing an external data source
requires knowledge about the structure of the data source and its vocabulary.

Therefore, an approach that provides integration of RDF data sources should include
a mechanism for exploring and understanding the RDF data source at development time.
Second, it is desirable that an exploration and integration mechanism is well-integrated,
easily learnable and useable. The integration should be either on programming language
level or at least in the used IDE (Integrated Development Environment), as this allows
for seamless exploration and integration during application development. Third, there
is an impedance mismatch between the way classes or types are used in programming
languages compared to how classes are used in RDF data, cf. [8, 14, 6, 3]. For this rea-
son, an approach for integrating RDF data into a programming language must define a
clear mapping between these two mismatching paradigms.

To address these challenges, we present LITEQ, a paradigm for querying RDF data,
mapping it for use in a host language, and strongly typing1 it for taking the full benefits

1 By “strongly typed“, we refer to languages where it is not possible to have unchecked runtime
type errors, e.g., through validating the program by static type checking before execution.

of advanced compiler technology. The core of LITEQ is the Node Path Query Lan-
guage (NPQL), a variable-free schema and data query language, which comprises the
following features:

1. various operators for the navigation and exploration of RDF graphs (Section 4.1),
2. an intensional semantics, which defines the retrieval of RDF schema information

and enables our implementation of LITEQ to provide persistent code types of RDF
entities (Section 4.3),

3. an extensional semantics, which defines the retrieval of RDF resources and enables
our implementation of LITEQ to construct persistent objects from the retrieved data
(Section 4.3), and

4. an autocompletion semantics, which assigns a formal result set to partially written,
i.e. incomplete, queries; this allows an incremental query writing process (Sec-
tion 4.2).

The fully functional prototype of LITEQ (called LITEQF#) is written in F#, a mem-
ber of Microsoft’s .NET family. Up until now, there has been only limited support for
RDF in the .NET framework. Our approach LITEQF# is currently being prepared to be
added to the FSharp.Data project, a library containing access mechanisms for many dif-
ferent structured data formats. In this in-use paper, we report also on two use cases that
show the applicability of LITEQ for practical problems. The prototype is documented
at our website2 and can be downloaded from github3.

The remainder of the paper is organized as follows. In Section 2, we start with a
brief introduction of RDF and F# followed by a general process overview of how a
data model based on the Semantic Web is implemented in Section 3. We then describe
LITEQs features in Section 4 and its implementation in Section 5 before we show the
feasibility of our approach based on two different use cases in Section 6. This is fol-
lowed by a discussion of related work in Section 7 and a short summary in Section
8.

2 Foundations

The Resource Description Framework4 is a data model for representing data on the Web.
An RDF a data source consist of a graph, which is a set of RDF statements (triples).

Definition 1 (RDF Graph). Let B (blank nodes), L (literals), and U (URIs) be disjoint
sets. An RDF graph G is a set of RDF triples: G = {(s p o)|(s p o) ∈ (B ∪ U)× U ×
(B ∪ L ∪ U) }. In each RDF triple, s is referred to as subject, p as predicate and o as
object.

2 LITEQ Project at WeST http://west.uni-koblenz.de/Research/systems/
liteq, last visit 12th Mai, 2014

3 LITEQ on Github https://github.com/Institute-Web-Science-and-Technologies/
Liteq, last visit 12th Mai, 2014

4 RDF Primer: http://www.w3.org/TR/rdf-primer last visit January 13th, 2014

In the further course of this paper, we assume that such a graph is enriched with com-
plete RDF schema information such that each predicate between a subject and an object
is appropriately typed with a domain class that the subject belongs to and a co-domain
class that the object belongs to. In addition, we assume for each property only one sin-
gle domain class and one single co-domain class exists. If such strict assumptions are
not met by the RDF data sources, LITEQ provides configuration possibilities that can
make up for not meeting this assumption and which will be explained in Section 4.

The F# language is a statically typed, object-oriented and functional-first program-
ming language based on Microsoft’s .NET framework. It has been fully open sourced
by the F# Software Foundation and features a cross-platform compiler that allows F#
to run on Windows, Linux and OS X. Libraries written in F# can be used in all .NET
languages.

3 Process overview for implementing a use case

Generally, the process of developing an application using an RDF data source can be
described by five different tasks that must be addressed during development. First, the
developer must design an initial data model based on the requirements of his applica-
tion (Task 1). He explores the schema of his data set and identifies the RDF classes
and properties that are of interest to him (Task 2). To this end, he either has external
documentation that he refers to, or has to explore the schema using a series of SPARQL
queries. In this step, he will also align his previously created data model to the data
source. He can then leave the design phase and enter the coding phase, where he im-
plements a data model prototype in the programming language (Task 3) and designs
the queries he needs to access the data (Task 4). Lastly, he has to combine the results
of Task 3 and 4. He needs to map the results of his previously written queries onto the
code types representing his data model (Task 5). Figure 1 summarizes the process.

Fig. 1: Process Overview for creating a data model based on a RDF data set.

4 Using LITEQF# in practice

The current implementation of LITEQ in F# is IDE-independent and can be used in

many F#-IDE like Microsoft’s Visual Studio5, Xamarin Studio6, or Monodevelop7.

Fig. 2: Setting up LITEQ

As with any other library, LITEQ must be referenced and imported before it can be
used. This is shown in Figure 2. The developer imports the LITEQ API, cf. line 1, and
sets up a data access object using a specific configuration. Listing 3 shows an example
of such a configuration file.

s e r v e r U r i = h t t p : / / . . . / open rd f−sesame / r e p o s i t o r i e s / Jamendo
isReadOnly = f a l s e
p r e f i x f i l e = p r e f i x e s . i n i

Listing 3: A LITEQ configuration File.

The first line of this configuration file defines a SPARQL endpoint that is acting as a
data source. The key isReadOnly defines whether the endpoint also accepts SPARQL
update queries or not8. In the example configuration, it is set to false, meaning that the
store can be updated. The prefixfile property points to a file in which RDF vocabulary
prefixes are defined. This is optional, as the namespaces and prefixes may not be known
beforehand, but improves the readability of expressions as the shortened versions can
be used instead of the full URI. As many real world data sources separate the schema
from the data and provide the schema only as a separate file, the optional property
schemaFile has been introduced. This property can be used to include such an external
schema file. If the property is not given, the schema is assumed to be queryable via the
given SPARQL endpoint.

The data access object returned by the initialization can then be used to perform
the different operations provided by LITEQ, such as exploration, navigation, and data
retrieval.

4.1 Node Path Query Language

Core to LITEQ is the Node Path Query Language (NPQL), a schema and data naviga-
tion language which supports the developer in navigating and exploring the RDF data
source from within his programming environment.

The NPQL method of the data access object mentioned above allows for navigating
the schema using NPQL expressions, cf. Figure 4.

5 http://www.visualstudio.com/ last visit April 29th, 2014
6 https://xamarin.com/studio last visit April 29th, 2014
7 http://monodevelop.com/ last visit April 29th, 2014
8 Objects constructed by LITEQF# can automatically update the store when assigned new data.

Fig. 4: Navigating the Schema using NPQL

Every NPQL expression starts with an URI of the target graph. In case of the ex-
ample shown in Figure 4, line 10, we start with foaf:Agent as entry point for our
NPQL exploration. The different operators of NPQL then allow for traversal of the RDF
schema from this entry point on. We provide three different operators in NPQL, which
allow for navigating through the schema in different ways.

1. The subtype navigation operator “v” refines the currently selected RDF type to one
of its direct subclasses. The expression in Figure 4 line 7, will refine the selected
starting point foaf:Agent to mo:MusicArtist.

2. The property navigation operator “->” expects a property that may be reached
from the currently selected RDF type. This property is used as an edge to navigate
to the next node, which is defined as the range type of that property. So extend-
ing the NPQL expression from the Figure 4 lines 8–9, shifts the selection from
foaf:Agent to the property and further to its foaf:Group, its range.

3. The property restriction operator “<-” expects a property and uses this property to
restrict the extension of the currently selected RDF node. To illustrate this, let us
assume a property restriction choosing foaf:skypeID, cf. Figure 4 line 10–11.
This will not change the currently selected RDF type but restrict its extension to
all URIs of RDF type foaf:Group for which there is also an foaf:skypeID
relation.

Using these three operators, the developer can explore the data. Furthermore, he can use
the very same expressions to construct data types and objects from the data and schema,
as we will demonstrate in Section 4.3.

4.2 Autocompletion Support

LITEQF# provides an autocompletion mechanism for NPQL, i. e., at every step of
query writing we can formally define the meaning of the partially written query and
provide suggestions for completion. This was done in order to support the developer
during the exploration of the data source as described in Task 2, Section 3. Figure 5
shows the autocompletion feature when writing an NPQL query in Visual Studio. The
developer starts with mo:MusicArtist and decides to perform a property naviga-
tion. This evaluates to the list of all properties, that have mo:MusicArtist or one of
its supertypes is its domain.

In a further step, the developer reduces the results by defining the starting letters of
the properties to be “ma“, cf. Section 4.1. As shown in Fig. 6, this reduces the results to
foaf:made and foaf:maker.

Fig. 5: LITEQs Autocompletion support.

Fig. 6: Refinement of autocompletion suggestions.

4.3 Evaluation of NPQL expressions

In order to interpret NPQL expressions, LITEQ provides two different functions, (Ex-
tension and Intension) that evaluate complete NPQL expressions based on two for-
mal semantics. We only provide an informal overview here, the formal intensional
and extensional semantics of NPQL can be found in our technical report published
on https://west.uni-koblenz.de/Research/systems/liteq

Intension The intensional semantics evaluates an NPQL expression to a code type (the
intension). This relates to Task 3 (data model creation) as presented in Section 3. Fig-
ure 7 shows the intension of mo:MusicArtist, cf. line 11. In the figure, its code
type MusicArtist is subsequently used to instantiate a new artist newArtist, cf. line 12.
The declared MusicArtist class has property definitions of all properties as they were
defined in the RDF schema, e. g., the foaf:name property of the new instance which
is set to myBandName, cf. line 13.

Fig. 7: Declaring code types using LITEQ.

Extension The extensional semantics evaluates an NPQL expression to its set of RDF
objects. The extension could either be a set of URIs (in case of RDF types) or to a set
of domain/range tuples (in case of properties). This relates to Task 4 (Query design) as
presented in Section 3. However, LITEQ will also automatically type the result of such
an extensional evaluation, returning instances of code types as if they were generated
through an intensional evaluation. Therefore, extensional evaluation also relates to Task
5 (Mapping of query results). Figure 8 shows such a extensionally evaluated NPQL
expression, cf. line 15. This statement returns a sequence of all mo:MusicArtist to
allArtists. This sequence is subsequently iterated in order to print the music records of
all artists, cf. lines 16-17.

Fig. 8: Querying for all artists and iterating through the result.

In LITEQF#, both, the intensional and extensional evaluation is implemented by
transforming the expressions into SPARQL queries which are then executed against a
SPARQL endpoint.

5 Implementation of LITEQF#

LITEQF# is based on the type provider9 framework. This framework allows us to
generate code types based on the available schema information.

Figure 9 shows a class diagram of the current implementation. It is centered around
the LITEQ type provider, which serves as an entry point. It is also responsible for
building the navigational classes for NPQL. All code necessary for the mapping from
RDF types to actual programming language types is contained in the TypeMapper class.
Both need access to the triples and schema information, which can currently either be a
generic SPARQL endpoint via the SPARQL HTTP interface or a dump of the schema.

Fig. 9: Simplified (for brevity) class diagram of the implementation.

Figure 10 shows the runtime behavior of the system. At some point, the library is
called via the build method. This will trigger the creation of all necessary classes for
NPQL queries and usage in the language. However, they newly created classes do not
yet contain any properties as this turned out to be to slow in practice. Properties are only
added once the IDE asks the object for its properties. The objects contain callbacks to
the methods of the LITEQ type provider or type mapper that will return all properties
for the specific object. This step finalizes the object.

9 http://msdn.microsoft.com/en-us/library/hh156509.aspx

Fig. 10: Sequence diagram of behavior during usage.

6 Use Cases

In order to show the feasibility of LITEQF#, we have chosen to implement two tasks
using a traditional framework such as dotNetRDF and the LITEQF# approach. We then
compare the implementations using the Halstead metric [5] to determine the difficulty
and effort of the implementations.

6.1 Use Case: Creating a new artist object and listing all tracks

An RDF data source in a programming language should be easily queryable but also
modifiable. Therefore, our first simple use case is about inserting new data and iterating
over a subset:

R1 The program shall create a new instance of type music artist and assign a name to
that instance.

R2 The program shall iterate over all instances of type music artist and print the music
records associated with them.

The data that serves as the input for this task comes from the Jamendo data set10.

6.1.1 Implementation using the dotNetRDF framework A SPARQL implemen-
tation of this task relies on the SPARQL Update functionality. This type of SPARQL

10 http://moustaki.org/resources/jamendo-rdf.tar.gz, last accessed on
08.05.14

queries allow the insertion of new triples into the triple store. Listing 12 shows how
the code for inserting a new artist with a specific foaf:name looks like. SPARQL
queries are written as plain strings with specific symbols marking substrings that are to
be replaced with concrete values, such as the music artist URI or the name, right before
the update is executed. To simplify the SPARQL query, namespaces are often bound in
a separate step outside of the actual query.

let connection = new SesameHttpProtocolConnector(
"http://.../openrdf-sesame",
"Jamendo")

// Defining Update query
let query = new SparqlParameterizedString("INSERT DATA {

@instanceUri a mo:MusicArtist .
@instanceUri foaf:name @name . }")

query.Namespaces.AddNamespace("mo",
new Uri("http://purl.org/ontology/mo/"))

query.Namespaces.AddNamespace("foaf",
new Uri("http://xmlns.com/foaf/0.1/"))

// Setting specific values and executing
query.SetUri("instanceUri",

new Uri("http://artist/1234"))
query.SetLiteral("name", "myBandName")
connection.Update(query.ToString())

Listing 11: Inserting a new MusicArtist with a specific name.

Iterating over the music artists is similar. Listing 12 shows how it can be implemented.
Again, the query is defined as a string with the namespaces being bound separately. In
this specific query, the expected result contains always the artist URI and the record URI
that was made by this artist. The result of this query is initially a result set, which can
be grouped by artists by piping11 it to the group by function and specifying a projection
function. The computation will result in tuples containing the specific artist and a list
of result sets that contain the query results about the artist. These result sets associated
with the different artists can then be mapped to a list containing only the record URIs.
The resulting tuple containing artist and the list of records they made can then be printed
to the console.

let query’ = new SparqlParameterizedString("SELECT
?artist ?record WHERE {
?artist a mo:MusicArtist .
?artist foaf:made ?record .

}")
query’.Namespaces.AddNamespace("foaf",

new Uri("http://xmlns.com/foaf/0.1/"))
query’.Namespaces.AddNamespace("mo",

11 The pipe operator f | > g is used to pass the result of one computation to the next one. An
equal statement has the form g(f()).

new Uri("http://purl.org/ontology/mo/"))

let results =
connection.Query(query’.ToString()):?>SparqlResultSet
|> Seq.groupBy(fun res ->

res.Value("artist").ToString())
|> Seq.map(fun (artist, results) ->

artist, results |> Seq.map(fun res ->
res.Value("record").ToString())

)
for (artist, records) in results do

printfn "Artist %A made the following records: %A"

Listing 12: Iterating over artists and printing records.

6.1.2 Implementation using LITEQ The LITEQ implementation has already been
used as an example. Creating a new music artist is an intensional evaluation of the
mo:MusicArtist URI. The resulting type can afterwards be instantiated and as-
signed data via setter methods as displayed in Fig. 7.

Iterating over the music artists in the data source is an extensional evaluation of
mo:MusicArtist—this returns a sequence of music artists that is iterable as done
in Fig. 8.

6.1.3 Comparison In order to evaluate the two different approaches, we chose to
apply the Halstead metric. According to Halstead, a program can be seen as a collection
of tokens that are classified as operators and operands. Halstead [5] then defines:

Definition 2 (Halsteads complexity measure). Let n1 be the number of distinct oper-
ators, N1 the total number of operators, n2 the number of distinct operands, and N2

the total number of operands. Then one has:

Program vocabulary n = n1 + n2

Program length N = N1 +N2

Volume V = N × log2n
Difficulty D = n1

2 ×
N2

n2

Effort E = D × V
Necessary time T = E

18seconds

Of special interest to us is the difficulty of a program, which expresses how hard it is
to understand it a code review, and the theoretical time that is needed to code such a
program. When applying the metric, we defined that all language constructs, such as
“let .. =“, “type .. =“ or “for .. in .. do“ and access operators were to be counted as op-
erations. The same holds for static parameters12 and “,“ creating tuples in mappings13.
12 <> indicate a static parameter
13 We omitted them when they were used as separators for method parameters due to language

differences between F#, for which LITEQ is optimized and C#, which dotNetRDF was written
in.

The remaining type and method names were counted as operands. The same holds for
strings, except for those representing SPARQL queries. SPARQL queries were counted
as one operator for the general construct (INSERT DATA .. or SELECT .. WHERE ..
), one operation to form a specific triple pattern and three operands per triple. In LITEQ
namespaces are defined in an separate file, so we did not count the code necessary to
add namespace definitions, as shown in Listing 12, By applying this metric to the Use
Case, we get the results shown in Table 214.

dotNetRDF LITEQ
No. of distinct operators (n1) 12 7
No. of distinct operands (n2) 39 18
Total no. of operators (N1) 36 15
Total no. of operands (N2) 63 25
Program Vocabulary 51 25
Program length 99 40
Program Volume 561,57 185,75
Difficulty 9,69 4,86
Effort 5442,91 902,97
Time needed 302s 50s

Table 1: Halsteads complexity applied to Use Case 1.

6.2 Use Case: Analyzing number of EU seats for countries

RDF data sets, especially governmental data, are often used for analysis and visualiza-
tion. Therefore, the second use case visualizes the number of EU seats hold by different
countries:

R1 The program shall select all countries that hold at least one EU seat
R2 The program shall then transform this data into a suitable structure and visualize it

The data set used for this task was a dump of the DBpedia data set15.

6.2.1 Implementation using the dotNetRDF framework Using the dotNetRDF
framework, a developer needs to open the connection to the SPARQL endpoint and
can then write a query receiving the name of the country and its number of seats. He
then needs to map the result from the result set to a tuple containing a string represent-
ing the name of the country and the number of EU seats. The visualization is then only
a function call. Listing 13 shows the the necessary code to do so in F#.

14 The full source code with annotations that describe what we counted as operand and operator or
omitted(e.g. brackets) can be found under http://www.uni-koblenz-landau.de/
campus-koblenz/fb4/west/Research/systems/liteq

15 Available under http://wiki.dbpedia.org/Downloads39, last accessed on
06.05.14

let connection = new SparqlRemoteEndpoint(
new Uri("http://dbpedia.west.uni-koblenz.de:8890/sparql"))

let data =
connection.QueryWithResultSet("""SELECT ?countryName
?numberOfSeats WHERE {

?country <http://dbpedia.org/property/euseats>
?numberOfSeats .

?country <http://xmlns.com/foaf/0.1/name> ?countryName .
}""")

|> Seq.map (fun resultSet ->
resultSet.Value("countryName").ToString(),
int(resultSet.Value("numberOfSeats").ToString()
.Replace("ˆˆhttp://www.w3.org/2001/XMLSchema#integer",

""))
)

data
|> Chart.Pie

Listing 13: Calculating percentage of EU seats.

6.2.2 Implementation using LITEQ All countries holding an EU seat can be se-
lected using an NPQL expression. The expressions returns a sequence of Country
objects as if created through the intension, the name and number of EU seats can be ac-
cessed as in an object model. While they return proper types (strings for the name and
ints for the number of EU seats), they return lists of these types as the schema did not
specify the cardinality. In order to visualize the countries are mapped to a sequence of
tuples containing name and number of EU seats by accessing the corresponding mem-
bers and taking the first element out of the result list. Listing 14 shows the necessary
code to do so.

type Store = RDFStore<".\liteq_default.ini">

let euCountries =
Store.NPQL().‘‘dbpedia:Country‘‘.‘‘<-‘‘.‘‘dbpediapr:euseats‘‘
.Extension

euCountries
|> Seq.map(fun country ->

country.‘‘foaf:name‘‘.[0],
country.‘‘dbpediapr:euseats‘‘.[0])

|> Chart.Pie

Listing 14: Calculating percentage of EU seats using SPARQL.

However, as the DBPedia ontology did not specify any range or domain for the number
of EU seats a country holds, we had to extend the schema, in the local schema file, with
the specific values to enable this implementation.

6.2.3 Implementation using a custom object model Apart from comparing the im-
plementations in LITEQ and plain SPARQL, we also want to compare to an custom
implementation. Such an implementation bases on a object model which incorporates
schematic information that exceeds the information currently available in RDFS such
as information about cardinalities of properties.

As such object models usually do not incorporate query languages, all countries
have to be selected in this scenario. The resulting sequence can then be filtered to con-
tain only countries that hold at least one EU seat. To visualize the data, the same ap-
proach as with LITEQ can be used — mapping the sequence of countries to a sequence
of tuples containing name and number of seats for the country and passing this to the
visualization function. Listing 15 displays such code.

connectToStore "http://.../openrdf-sesame/Jamendo"

let euCountries =
Country.findAllInstances
|> Seq.filter(fun country -> country.EuSeats > 0)

euCountries
|> Seq.map(fun country -> country.Name, country.EuSeats)
|> Chart.Pie

Listing 15: Calculating percentage of EU seats with an object model.

6.2.4 Comparison To evaluate the three different approaches, we again apply the
Halstead metric as defined in Def. 2.

dotNetRDF LITEQ Custom Object Model
No. of distinct operators (n1) 9 7 6
No. of distinct operands (n2) 25 16 13
Total no. of operators (N1) 19 18 13
Total no. of operands (N2) 34 22 20
Program Vocabulary 34 23 19
Program length 53 40 33
Program Volume 269,64 180,94 140,20
Difficulty 6,12 4,81 4,62
Effort 1650,17 870,79 646,99
Time needed 92s 49s 36s

Table 2: Halsteads complexity applied to Use Case 2.

Again, the version using dotNetRDF and SPARQL is the most difficult to under-
stand and slowest to code. LITEQ improves on this while a custom object model can
improve on LITEQ.

6.3 Evaluation of the results

The Halstead metric supports our assumption—in both use cases, it is much easier to
understand the code implementing such a scenario with LITEQ than using SPARQL

queries. The same holds for the time necessary to write the code, which is, in all cases
less for LITEQ than a implementation using dotNetRDF.

When comparing LITEQ to a custom object model, it can be seen that there is
still room for improvement. A better mapping from RDF types to code types manifests
itself in less difficulty and less effort. However, if such a better mapping exists, we can
incorporate it into LITEQ and get similar results.

7 Related Work

LITEQ is generally related to three different research directions: query languages for
RDF, the integration of data access into a host languages in particular mappings of RDF
into the object oriented paradigm, and exploration tools for unknown RDF data sources.

Considering query languages, a number of different languages are available for
RDF. In general, we can distinguish two different ways of querying graph data as RDF.
The first one considers querying as a graph matching problem, matching subgraphs de-
scriptions against the data, like in SPARQL queries. The second way is by using a graph
traversal language, like Gremlin or Cypher or the languages mentioned in [16]. Exam-
ples of graph traversal languages for RDF data are nSPARQL [13], a language with
focus on navigation through RDF data, or GuLP [4], which can include preferential at-
tachment into its queries. However, there are two major differences between these two,
exemplary chosen, languages and LITEQ. While nSPARQL and GuLP both use their
own evaluation implementations, LITEQ exploits the widely spread SPARQL support
by mapping its queries to SPARQL. The second difference lies in the type generation
provided by LITEQ.

NPQL queries and Description Logics (DL) expressions share some similarities. A
DL expressions always describes a concept, its place in the concept lattice and the ex-
tension of the concept. Similarly, NPQL expressions can be evaluated extensionally to
a set of entities or intensionally to a type description including its place in the type hier-
archy. The intensional evaluation of NPQL expressions also consists information about
the attributes of the type, in contrast to DL concepts which only contain information
about constrains over attributes.

The problem of accessing and integrating RDF data in programming environments
has already been recognized as a challenge in various work. Most approaches focus on
ontology driven code generation in order to realize RDF access in the programming en-
vironment. Frameworks like ActiveRDF [9], AliBaba16, OWL2Java [8], Jastor17, RD-
FReactor18, OntologyBeanGenerator19, and Àgogo [12] were developed in the past.

15 Gremlin graph traversal language https://github.com/tinkerpop/gremlin/
wiki last visit January 13th, 2014

15 Cypher graph traversal language in Neo4J http://docs.neo4j.org/chunked/
stable/cypher-query-lang.html last visit January 13th, 2014

16 http://www.openrdf.org/alibaba.jsp last visit January 13th, 2014
17 http://jastor.sourceforge.net/ last visit January 13th, 2014
18 http://semanticweb.org/wiki/RDFReactor last visit January 13th, 2014
19 http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator

last visit January 13th, 2014

An overview can be found at Tripresso20, a project web site on mapping RDF to the
object-oriented world. The common goal for all these frameworks is to translate the
concepts of the ontology into an object-oriented representation. While the previous ex-
amples are targeted at specific languages, some concepts which are language-agnostic
language exist. Àgogo [12] and OntoMDE [15] are programming-language independent
model driven approaches for automatically generating ontology APIs. They introduce
intermediate steps in order to capture domain concepts necessary to map ontologies to
object-oriented representations. All the aforementioned approaches rely on external ex-
ploration of the data, dedicated type declarations, and code generation steps in order to
provide the desired data representations in a programming language.

The basic mapping principles of RDF triples to objects common to the previously
presented approaches [10] and programming language extensions to integrate RDF or
OWL constructs [11] have already been explored. LITEQ also uses these principles.
However, there are two main differences that sets LITEQ apart. For one, LITEQ has
build-in type generation support, that can automatically generate such types. Another
examples that also features this is [11]. This is a language extension for C# that of-
fers features to represent OWL constructs in C# and that is able to create the types at
compile time. In contrast to LITEQ however, there is no means for querying and navi-
gating unknown data sources. The developer must be fully aware of the structure of the
ontology ahead of development time.

Other research work has a dedicated focus on exploration and visualization of Web
data sources. The main motivation of this work is to allow users without SPARQL
experiences an easy means to get information from RDF data sources. tFacet [1] and
gFacet [7] are tools for faceted exploration of RDF data sources via SPARQL endpoints.
fFacet provides a tree view for navigation, while gFacet has a graph view for browsing.
The navigation of RDF data for the purpose of visualizing parts of the data source
is studied in [2], but with the focus on visualization aspects like optimization of the
displayed graph area. In contrast to LITEQ, these approaches do not consider any kind
of integration aspects like code generation and typing. Furthermore, the navigation is
rather restricted to a simple hierarchical top-down navigation.

8 Summary

This paper presented the fully functional prototype of LITEQF# targeted for release
as part of FSharp.Data library. The implementation features a new paradigm to access
and integrate representations for RDF data into typed programming languages. We also
showed the feasibility of our approach. The documentation of the current LITEQF# li-
brary, including a video showing LITEQ in use, can be found on our website21, while the
source code is available at Github22. In the near future, we plan to improve performance
and stability of the system, before shifting focus and ensuring a smooth integration into
20 http://semanticweb.org/wiki/Tripresso last visit January 13th, 2014
21 http://west.uni-koblenz.de/Research/systems/liteq, last visit 12th Mai,

2014
22 https://github.com/Institute-Web-Science-and-Technologies/
Liteq, last visit 12th Mai, 2014

FSharp.Data.

Acknowledgments This work has been supported by Microsoft.

References

1. S. Brunk and P. Heim. tFacet: Hierarchical Faceted Exploration of Semantic Data Using
Well-Known Interaction Concepts. In DCI2011, volume 817 of CEUR-WS.org, pages 31–
36, 2011.

2. J. Dokulil and J. Katreniaková. Navigation in RDF Data. In iV2008, pages 26–31. IEEE
Computer Society, 2008.

3. V. Eisenberg and Y. Kanza. Ruby on semantic web. In Serge Abiteboul, Klemens Böhm,
Christoph Koch, and Kian-Lee Tan, editors, ICDE2011, pages 1324–1327. IEEE Computer
Society, 2011.

4. V. Fionda and G. Pirrò. Querying graphs with preferences. In CIKM2013, pages 929–938,
2013.

5. Maurice H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

6. L. Hart and P. Emery. OWL Full and UML 2.0 Compared.
http://uk.builder.com/whitepapers/0and39026692and60093347p-39001028qand00.htm,
2004.

7. P. Heim, J. Ziegler, and S. Lohmann. gFacet: A Browser for the Web of Data. In IMC-
SSW2008, volume 417 of CEUR-WS, pages 49–58, 2008.

8. A. Kalyanpur, D. J. Pastor, S. Battle, and J. A. Padget. Automatic Mapping of OWL Ontolo-
gies into Java. In SEKE2004, 2004.

9. E. Oren, R. Delbru, S. Gerke, A. Haller, and S. Decker. Activerdf: object-oriented semantic
web programming. In WWW2007, pages 817–824. ACM, 2007.

10. E. Oren, B. Heitmann, and S. Decker. ActiveRDF : Embedding Semantic Web Data into
Object-oriented Languages. J. Web Sem., pages 191–202, 2008.

11. A. Paar and Vrandecic D. Zhi# - OWL Aware Compilation. In ESWC2011, volume 6644 of
LNCS, pages 315–329. Springer, 2011.

12. F. S. Parreiras, C. Saathoff, T. Walter, T. Franz, and S. Staab. ‘a gogo: Automatic Generation
of Ontology APIs. In ICSC2009. IEEE Press, 2009.

13. J. Pérez, M. Arenas, and C. Gutierrez. nsparql: A navigational language for rdf. J. Web Sem.,
8(4):255–270, 2010.

14. T. Rahmani, D. Oberle, and M. Dahms. An adjustable transformation from owl to ecore. In
MoDELS2010, volume 6395 of LNCS, pages 243–257. Springer, 2010.

15. S. Scheglmann, A. Scherp, and S. Staab. Declarative representation of programming access
to ontologies. In ESWC2012, volume 7295 of LNCS, pages 659–673. Springer, 2012.

16. P. T. Wood. Query languages for graph databases. SIGMOD Record 2012, 41(1):50–60,
2012.

