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Abstract. Uncertainty about which arguments or attacks should appear in an ar-
gument graph means that there is uncertainty as to the structure of the argument
graph. When informal arguments are presented, there may be imprecision in the
language used, and so the audience may be uncertain as to the structure of the ar-
gument graph as intended by the presenter of the arguments. For a presenter of
arguments, it is useful to know the audience’s argument graph, but the presenter
may be uncertain as to the structure of it. To model each of these situations, we can
use probabilistic argument graphs. The set of subgraphs of an argument graph is a
sample space. A probability value is assigned to each subgraph such that the sum is
1, thereby reflecting the uncertainty over which is the actual subgraph. We can then
determine the probability that a particular set of arguments is included or excluded
from an extension according to a particular Dung semantics. We harness this to
define the notion of an argument lottery, which can be used by the audience to de-
termine the expected utility of a debate, and can be used by the presenter to decide
which arguments to present by choosing those that maximize expected utility.

Keywords. Abstract argumentation, Probabilistic argumentation, Utility theory,
Lotteries, Audience modelling, Uncertainty in argumentation

Draft 2014/06/08

1. Introduction

In abstract argumentation, a graph is used to represent a set of arguments and counterar-
guments. Each node is an argument and each arc from an argument α to an argument β

denotes an attack by α on β . It is a well-established and intuitive approach to modelling
argumentation, and it offers a valuable starting point for theoretical analysis of argumen-
tation [4]. However, including an argument α in a graph usually means that one is sure
that α is a justifiable argument, i. e., that it is an argument that makes sense (indepen-
dently of whether it can be accepted after relating it to other arguments). To address the
need to represent and reason with (quantified) uncertainty, it has been proposed to use a
probability assignment to arguments and to attacks [1]. This can be used to give a proba-
bility distribution over the subgraphs of the argument graph, and this can then be used to
give a probability assignment for a set of arguments being an admissible set or extension
of the argument graph [11,9,10]. The probability distribution over subgraphs denotes the
uncertainty over which subgraph is the actual graph that should be used. We refer to an
argument graph with a probability distribution over subgraphs as a probabilistic argu-
ment graph. We believe the following are two important applications for probabilistic
argument graphs:



• From an audience’s perspective, there may be uncertainty as to what the actual
argument graph is. The audience may hear various comments in a debate, for ex-
ample, but they are not sure about the exact set of arguments and attacks that are
being put forward. For instance, there may be uncertainty about whether some-
one has put forward a complex multifaceted argument, or a number of smaller
more focused arguments or there may doubt about whether some arguments are
just rephrasings of previous arguments. There may be uncertainty about which
arguments are meant to be attacked by some argument, which occurs frequently
when enthymemes are presented. So the audience can collate all the candidates
for arguments and attacks, and construct the graph containing them all, and then
identify a probability distribution over its subgraphs that reflects their uncertainty
about which is the actual graph.

• From a participant’s perspective (i. e. from the perspective of someone who is
about to present arguments and/or attacks to some monological or dialogical ar-
gumentation), there may be uncertainty about what the audience regards as the
argument graph. When a participant (such as a politician) considers presenting ar-
guments to an audience, the participant might not know for sure which arguments
and attacks the audience has in mind. In other words, even before a participant
has started, the audience may already have an argument graph in mind and the
participant will be adding to that graph in the audience’s mind. To handle this, the
participant may have an argument graph which he/she assumes will subsume the
possibilities for the argument graph held by the audience, and then the participant
might identify a probability distribution over subgraphs of the argument graph
to reflect the uncertainty as judged by the participant over which is the subgraph
being used by the audience.

As we will see in this paper, we can investigate probabilistic argument graphs to deter-
mine the probability of outcomes of an argument graph. We define these outcomes in the
form of a generalization of the notion of extensions that we call divisions. A division is
a tuple 〈Φ,Ψ〉 such that there is an extension of the graph that includes the arguments
in Φ and excludes the arguments in Ψ. Using a probabilistic argument graph, we can
determine the probability that a tuple is a division. From an audience’s perspective, this
gives a better understanding of the consequences of the debate that they are observing,
and from a participant’s perspective, it gives a better understanding of whether s/he will
get the desired outcomes from his/her contributions to the argumentation.

We can further exploit probabilistic argument graphs, by introducing the notion of
lotteries for argumentation. Assume that during a discussion, a debater wants to identify
a good argument to bring into the discussion and that the audience of the discussion is
considering some subgraph of G as the true argument graph. The debater does not know
for sure which subgraph is the correct one but he can identify a probability distribution
over the subgraphs. Now, suppose he is keen that arguments α and β are accepted by
the audience (e. g. they are both in the grounded extension of whichever subgraph the
audience is using). So the outcome we want is that α and β are included in the grounded
extension. If this is not possible, then perhaps he wants the outcome where α is included
and β excluded. Suppose any other outcome is inferior to these two outcomes. By us-
ing the probabilistic argument graphs, we are able to determine a probability for each of
these outcomes, and we can construct a lottery containing these arguments. If we iden-
tify a utility function over outcomes, we can apply utility theory to determine the ex-



pected utility. Furthermore, if we then consider further arguments that we can add to the
discussion, we can evaluate the expected utility of each choice of further arguments to
put forward. We can then determine which actions (i. e. which arguments to add to the
discussion) will offer the maximum expected utility.

The aim of this paper is to develop the use of probabilistic argument graphs, and to
apply them to argumentation lotteries. For this, we make the following contributions:

1. Introduce the notion of a division 〈Φ,Ψ〉 as an outcome that holds for an argu-
ment graph when there is an extension including the arguments in Φ and exclud-
ing the arguments in Ψ (Section 3);

2. Introduce the probability that a division 〈Φ,Ψ〉 is an outcome for a probabilistic
argument graph (Section 4); and

3. Introduce the notion of a argumentation lottery (Section 5) which we show can
be used to determine the expected utility of an argument graph, for an audience’s
perspective, and can be used to enable an agent to determine what would be the
best contribution to make in monological or dialogical argumentation in order to
maximize its expected utility, for a participant’s perspective (Section 6).

We introduce some necessary preliminaries in Section 2 and conclude with a discus-
sion of related work in Section 7. Proofs of technical results can be found in an online
appendix1.

2. Preliminaries

An abstract argument graph is a pair (A ,R) where A is a set and R ⊆ A ×A
[4]. Each element α ∈A is called an argument and (α,β ) ∈R means that α attacks
β (accordingly, α is said to be an attacker or a counterargument for β ). A set of
arguments S ⊆A attacks β ∈A iff there is an argument α ∈ S such that α attacks β .
Also, S defends α ′ ∈A iff for each argument β ∈A , if β attacks α ′ then S attacks β . A
set S⊆A of arguments is conflict-free iff there are no arguments α,α ′ ∈ S such that α

attacks α ′. Let Γ be a conflict-free set of arguments, and let Defended :℘(A )→℘(A )
be a function such that Defended(Γ) = {α | Γ defends α}.

Semantics are given to abstract argument graphs by extensions, i. e,. sets of argu-
ments that are considered to be jointly acceptable. We consider the following types of
extensions: (i) Γ is a complete extension (co) iff Γ =Defended(Γ), (ii) Γ is a grounded
extension (gr) iff it is the (uniquely determined) minimal (w.r.t. set inclusion) complete
extension, (iii) Γ is a preferred extension (pr) iff it is a maximal (w.r.t. set inclusion)
complete extension, and (iv) Γ is a stable extension (st) iff it is a preferred extension
such that Γ attacks β for each argument β ∈ Γ\A . For G = (A ,R), let ExtensionsX (G)
be the set of extensions of G according to semantics X ∈ {co,pr,gr,st}.

In order to present our framework of probabilistic argument graphs we need to intro-
duce some notions for subgraphs of an argument graph. Let R⊗A ′ be the subset of R
involving just the arguments in A ′ ⊆A , i. e., R⊗A ′ = {(α,β )∈R |α,β ∈A ′}. Also
let G /0 denote the empty graph. For argument graphs G = (A ,R) and G′ = (A ′,R ′) we
say that G′ is a subgraph of G, denoted G′ vG, iff A ′ ⊆A and R ′ ⊆R⊗A ′. For any
argument graph G, let Sub(G) denote the set of subgraphs of G (i.e. {G′ | G′ v G}.

1http://www.mthimm.de/misc/probarg_comma2014_proofs.pdf
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Figure 1. A simple argument graph G and its subgraphs.

Example 1. Consider the argument graph G depicted in Figure 1a and its subgraphs
depicted in Figures 1a to 1s. We will use G throughout the paper as a running example.

In the following, we will use the subgraphs of a graph to model uncertainty in the
original graph.

3. Divisions of Included and Excluded Arguments

Let 〈Φ,Ψ〉 be a tuple of sets of arguments of a graph G, i. e., Φ,Ψ ⊆ Nodes(G) and let
Tuples(G) = {〈Φ,Ψ〉 |Φ,Ψ⊆Nodes(G)} be the set of all such tuples. A tuple 〈Φ,Ψ〉 ∈
Tuples(G) is called a division of G when there is an extension of G that includes the
arguments in Φ and excludes the arguments in Ψ. We use the notion of a division as a
generalization of the notion of an extension.

Definition 1. Let G be an argument graph and let X ∈ {co,pr,gr,st} be a semantics.
A tuple 〈Φ,Ψ〉 ∈ Tuples(G) is a division of G w.r.t. X iff there is an extension E ∈
ExtensionsX (G) such that Φ⊆E and E∩Ψ= /0. Let DivisionsX (G) be the set of divisions
of G w.r.t. X.

Example 2. We continue Example 1. The grounded extension of G is {α,γ}. Hence,
Divisionsgr(G) contains exactly the following divisions of G: 〈{α,γ},{β}〉, 〈{α},{β}〉,
〈{γ},{β}〉, 〈 /0,{β}〉, 〈{α,γ}, /0〉, 〈{α}, /0〉, 〈{γ}, /0〉, 〈 /0, /0〉.

The motivation behind a division is that we might want to know if some arguments
are included in an extension and some arguments are excluded in that extension for a
given argument graph. For instance, for a graph G containing numerous arguments in-
cluding arguments α and β , we may want to know whether argument α is included in



and β is excluded from the grounded extension of G. We might be unconcerned about
the other arguments in G. Therefore, we want to know if 〈{α},{β}〉 is in Divisionsgr(G).

Proposition 1. For every argument graph G and each semantics X ∈ {co,pr,gr,st},

1. for every division 〈Φ,Ψ〉 ∈ DivisionsX (G) it holds that Φ∩Ψ = /0.
2. for every α ∈Nodes(G), 〈{α},{}〉∈DivisionsX (G) or 〈 /0,{α}〉∈DivisionsX (G).
3. the empty division 〈 /0, /0〉 is always in DivisionsX (G).
4. for every extension E ∈ ExtensionsX (G) there is a division 〈E,Nodes(G)\E〉 ∈

DivisionsX (G).
5. if 〈Φ,Ψ〉 ∈ DivisionsX (G), Φ′ ⊆Φ, and Ψ′ ⊆Ψ, then 〈Φ′,Ψ′〉 ∈ DivisionsX (G)

Given a graph G and a division 〈Φ,Ψ〉 ∈DivisionsX (G) the set of dividers of 〈Φ,Ψ〉
is the set of subgraphs that have 〈Φ,Ψ〉 as a division.

Definition 2. Let G be an argument graph and let X ∈ {co,pr,gr,st} be a semantics. A
graph G′ = (A ′,R ′)v G is a divider for a tuple 〈Φ,Ψ〉 ∈ Tuples(G) iff 〈Φ,Ψ∩A ′〉 ∈
DivisionsX (G′). Let DividersG

X (〈Φ,Ψ〉) be the set of dividers of 〈Φ,Ψ〉 w.r.t. G and X.

Example 3. We continue Example 2. There we have among others

DividersG
gr(〈{α},{β}〉) = {G,G2,G3,G4,G6,G9,G12,G15}

DividersG
gr(〈{α},{}〉) = {G,G2,G3,G4,G6,G7,G9,G11,G12,G15}

DividersG
gr(〈{β},{α}〉) = {G5,G10,G14,G16}

DividersG
gr(〈{α},{α}〉) = /0

DividersG
gr(〈{α,β},{γ}〉) = {G11}

DividersG
gr(〈{},{}〉) = {G,G1, . . . ,G18}

Proposition 2. For every argument graph G and each semantics X ∈ {co,pr,gr,st},

1. If Φ∩Ψ 6= /0, then DividersG
X (〈Φ,Ψ〉) = /0

2. If Φ = Ψ = /0, then DividersG
X (〈Φ,Ψ〉) = {G′ | G′ v G}

3. If Φ⊆Φ′ and Ψ⊆Ψ′, then DividersG
X (〈Φ′,Ψ′〉)⊆ DividersG

X (〈Φ,Ψ〉)

We will use divisions as our outcomes when we consider lotteries. For this, we need
to ensure that each outcome is disjoint from the other outcomes. For this, we use the
following definition.

Definition 3. Let G be an argument graph, and let T,T ′ ∈ Tuples(G). T and T ′ are
disjoint for G and w.r.t. semantics X iff DividersG

X (T )∩DividersG
X (T

′) = /0. A set T ⊆
Tuples(G) is pairwise disjoint iff for each T,T ′ ∈T , T and T ′ are disjoint.

Example 4. We continue Example 3 and consider grounded semantics. Then 〈{α},{β}〉
and 〈{β},{α}〉 are disjoint and 〈{α}, /0〉 and 〈{γ}, /0〉 are not disjoint as, e. g., G12 is a
divider for both of them.

Proposition 3. Tuples T = 〈Φ1,Ψ1〉,T ′ = 〈Φ2,Ψ2〉 ∈ Tuples(G) with Φ1∩Ψ1 = /0 and
Φ2∩Ψ2 = /0 are disjoint iff either Ψ1∩Φ2 6= /0 or Ψ2∩Φ1 6= /0.



Definition 4. A set of tuples {T1, . . . ,Tk} ⊆ Tuples(G) is exhaustive for G w.r.t. seman-
tics X iff DividersG

X (T1)∪ . . .∪DividersG
X (Tk) = {G′ | G′ v G}.

Example 5. We continue Example 4. The following set of tuples {T1, . . . ,T8} is exhaus-
tive for G with respect to grounded semantics:

T1 = 〈{α,β ,γ},{}〉 T2 = 〈{α,β},{γ}〉 T3 = 〈{α,γ},{β}〉 T4 = 〈{β ,γ},{α}〉
T5 = 〈{α},{β ,γ}〉 T6 = 〈{β},{α,γ}〉 T7 = 〈{γ},{α,β}〉 T8 = 〈{},{α,β ,γ}〉

Furthermore, the tuples are pairwise disjoint (i. e. for each i, j ∈ {1, . . . ,8}, Ti and Tj are
disjoint for grounded semantics).

Proposition 4. Let G be an argument graph and define a set of divisions D via

D = {〈Φ,Ψ〉 |Φ⊆ Nodes(G) and Ψ = Nodes(G)\Φ}

Then D is exhaustive for G w.r.t. any semantics X and D is pairwise disjoint for G w.r.t.
grounded semantics.

Definition 5. A division T subsumes a set of divisions {T1, . . . ,Ti} iff

DividersG
X (T1)∪ . . .∪DividersG

X (Ti) = DividersG
X (T )

Proposition 5. Let D be an exhaustive set of divisions where the divisions in D are
pairwise disjoint. Assume T is a division not in D. Also let D′⊆D be a subset of divisions.
If T subsumes D′, then the set of divisions (D \D′)∪ {T} is exhaustive and pairwise
disjoint.

Example 6. We continue Example 5. Recall that {T1, . . . ,T8} is exhaustive and pairwise
disjoint for G with respect to grounded semantics. The tuple T9 = 〈{β},{}〉 subsumes
{T1,T2,T4,T6}. Therefore {T3,T5,T7,T8,T9} is exhaustive and pairwise disjoint for G
with respect to grounded semantics.

Divisions provide a useful generalization of the notion of extensions which we will
harness when we consider probability distributions over subgraphs and lotteries in the
following subsections.

4. Probability distributions

Given an argument graph G we represent the uncertainty we may have over the argu-
ments and/or attacks by using the set of subgraphs Sub(G) as the sample space. This
means we are unsure which subgraph is the “correct” subgraph. Then using this sample
space, we define a probability distribution as follows. Note, in previous work, we re-
stricted consideration to the spanning subgraphs—i. e. subgraphs containing all attacks
on a subset of arguments—thereby denoting uncertainty in the arguments [9], or on the
full subgraphs—i. e. subgraphs containing all arguments but a subset of attacks—thereby
denoting uncertainty in the attacks [10]. Here we allow the representation of uncertainty
in both arguments and attacks.



Definition 6. Let G be an argument graph. A probability distribution P for G is a
function P : {G′ | G′ v G}→ [0,1] such that ∑G′vG P(G′) = 1.

Given a probability distribution over subgraphs, we can obtain the probability of
each argument and each attack as a marginal distribution. More specifically, for an argu-
ment graph G and a probability distribution P, the marginal distribution for an argu-
ment α is P(α) = ∑G′vGs.t.α∈Nodes(G′) P(G′). The marginal distribution for an attack
(α,β ) is P((α,β )) = ∑G′vGs.t.(α,β )∈Arcs(G′) P(G′). Note that these probabilities describe
the uncertainty to which an argument or attack is believed to be justifiable, i. e. whether it
is appropriate to consider this element to be present in the argument graph. In particular,
a high probability of an argument does not necessarily imply that the argument is highly
acceptable, see below.

Example 7. We continue Example 6. Define a probability distribution P on G via P(G)=
P(G5) = P(G8) = 0.1, P(G9) = 0.7, and P(G′) = 0 for the remaining subgraphs G′ of
G. Then the marginal distributions are as follows: P(α) = 1, P(β ) = 1, P(γ) = 0.2,
P((α,β )) = 0.9, P((β ,α)) = 0.3, and P((γ,β )) = 0.1.

Now we use the probability distribution over subgraphs to give a probability that a
division holds. As defined below, the probability that a tuple T ∈ Tuples(G) is a division
of G is the sum of the probabilities of the subgraphs for which T is a division. So the
probability that T is a division of G is zero when there is no subgraph G for which T is
a division.

Definition 7. Let G be an argument graph and let X ∈{co,pr,gr,st} be a semantics. Also
let P be a probability distribution of G. For a tuple 〈Φ,Ψ〉 ∈ Tuples(G), the probability
of a division w.r.t. X is

PX (〈Φ,Ψ〉) = ∑
G′∈DividersG

X (〈Φ,Ψ〉)
P(G′)

Example 8. We continue Example 7. There we have P(〈{α},{β}〉) = 0.8 (as G and G9
are the only dividers with positive probabilities) and P(〈{β},{α}〉) = 0.1 (as G5 is the
only divider with positive probability).

The notion of the probability of a division subsumes the definition of the probability
that a set of arguments is an extension, and it subsumes the definition for the probability
that an argument is an inference, cf. [11,9,10].

Proposition 6. For every argument graph G and each semantics X ∈ {co,pr,gr,st},

1. If Φ∩Ψ 6= /0, then PX (〈Φ,Ψ〉) = 0
2. If Φ = Ψ = /0, then PX (〈Φ,Ψ〉) = 1
3. If Φ⊆Φ′ and Ψ⊆Ψ′, then PX (〈Φ′,Ψ′〉)≤ PX (〈Φ,Ψ〉)

5. Argumentation as a lottery

We start by briefly reviewing the notion of a lottery. A lottery is a probability distribution
over a set of possible outcomes. A lottery with possible outcomes φ1, . . . ,φn that can



occur with probabilities p1, . . . , pn is written [p1,φ1; . . . ; pn,φn]. For a utility function U ,
the expected utility of a lottery L, denoted E(L,U), is given by E(L,U) = ∑

n
i=1 piU(φi)

We can view an argument graph G as invoking a lottery. For that we use divisions as
outcomes and the probability of a division holding as the probability of the outcome.
Furthermore, it is quite natural to think of divisions (i.e. inclusions and exclusions of
arguments) as having utility. For example, for an argument graph containing arguments
α , β , and γ , and we prefer to have α and β and to not have γ , otherwise we prefer
either α or β and not γ , otherwise we are indifferent about the outcome, then we have
the preferences over outcomes where 〈{α,β},{γ}〉 is most preferred, 〈{α},{β ,γ}〉 and
〈{β},{α,γ}〉 are the second most preferred, and then 〈{},{α,β}〉 is the least preferred.
Since, we can identify this preference ordering, we can identify a utility function to
indicate the degree to which we prefer each of the options. For instance, we could let the
utility function U be U(〈{α,β},{γ}〉) = 10, U(〈{α},{β ,γ}〉) = 5, U(〈{β},{α,γ}〉) =
5 and U(〈{},{α,β}〉) = 0.

We formalize the construction of a lottery for argumentation as follow. For this we
need to ensure that the dividers we use as outcomes in the lottery as pairwise disjoint and
together they are exhaustive.

Definition 8. . Let G be the argument graph, let {T1, . . . ,Tk} be a set of divisions, and
let P be a probability distribution. The tuple [PX (T1),T1; . . . ;PX (Tk),Tk] is an argumen-
tation lottery for G w.r.t. semantics X iff

1. ∑Ti∈{T1,...,Tk}PX (Ti) = 1
2. {T1, . . . ,Tk} is exhaustive and pairwise disjoint for G w.r.t. X

Example 9. We continue Example 8. Recall that {T3,T5,T7,T8,T9} is exhaustive and
pairwise disjoint for G with respect to grounded semantics (see Example 6) and let P be
as defined in Example 7. This gives the following argumentation lottery

[P(T3),T3;P(T5),T5;P(T7),T7;P(T8),T8;P(T9),T9] = [0.1,T3;0.7,T5;0,T7;0.1,T8;0.1,T9]

Define a utility function U via U(T3) = 10, U(T5) = 5, U(T7) = 5, U(T8) = 0, and for
k ∈ {1,2,4,6,9}, U(Tk) = −10. Observe that U favours α and/or γ , but not β , in our
grounded extension. Therefore the expected utility is (0.1 · 10) + (0.7 · 5) + (0.0 · 5) +
(0.1 ·0)+(0.1 ·−10) = 3.5.

The following result shows that for grounded semantics there is always an argumen-
tation lottery. Furthermore, with the use of subsumption, we can restructure the argu-
mentation lottery to reduce the number of outcomes as illustrated in the above example.

Proposition 7. Let G be an argument graph, P a probability distribution on G, and
{T1, . . . ,Tk}= {〈Φ,Ψ〉 |Φ⊆Nodes(G),Ψ=Nodes(G)\Φ}. Then [P(T1),T1; . . . ;P(Tk),Tk]
is an argumentation lottery for G with respect to grounded semantics.

For other semantics such as preferred and stable we can also construct argumentation
lotteries. However, we are not able to just resort to D= {〈Φ,Ψ〉 |Φ⊆Nodes(G) and Ψ=
Nodes(G) \Φ}. Rather, we need to consider the actual argument graph to determine
which divisions are disjoint.

We believe that expected utility is a useful formal tool for an audience to judge
argumentation. From the audience’s perspective, we are interested in modelling how a



member of the audience may evaluate some arguments. For example, a member of the
audience of a political speech may listen to the arguments and counterarguments that the
politician has presented, or a member of the audience of a debate may hear the argu-
ments and counterarguments exchanged by the participants. In each case, an argument
graph is produced. The member of the audience then may look at the arguments and the
attacks and she may be uncertain whether some of the arguments should be included in
the graph (perhaps some arguments are rephrasing of previously expressed arguments),
and/or whether some of the attacks hold (perhaps the arguments are enthymemes, and
she doubts that the enthymemes can be decoded so that it can be attacked by the given
counterarguments). In order to represent the uncertainty in the arguments and attacks,
the member of the audience identifies a probability distribution over the subgraphs. With
this probability distribution, she can determine the probability that specific arguments
are included or excluded according to specific semantics. Furthermore, by determining
the expected utility of the argumentation lottery, she can determine the worth of the con-
sequences of the debate to her in utility-theoretic terms.

6. Maximizing expected utility in argumentation

We now consider the argumentation lottery from the perspective of the participant. When
an agent presents an argument α , this can be viewed as a lottery by the agent since there
is uncertainty about whether α will be included or excluded from the viewpoint of the
audience according to some semantics. If the agent’s probability distribution is P then it
can assess the outcome of presenting argument α by evaluating the lottery

[P(〈{α}, /0〉),〈{α}, /0〉;P(〈 /0,{α}〉),〈 /0,{α}〉]

with respect to its utility function U . Now suppose the agent has a choice of arguments
to present say α1, α2, or α3, and for each of the arguments αi ∈ {α1,α2,α3}, if αi is
presented, the agent is unsure whether αi will be in, out or undecided from the viewpoint
of the audience according to , e. g., grounded semantics. So each αi is an option for an
action with an associated lottery Li, respectively, of the above form. Given these lotteries,
we can choose the argument αi that maximizes expected utility. In the same way, suppose
that an agent has a choice of which sets of arguments to present, say A1, A2, or A3, but
the agent is concerned about another argument β in G. For instance, in a dialogue, β may
have been given earlier, and the agent wants to know which would be the best arguments
to add at this stage in order to get a particular outcome concerning β .

We organize these ideas as follows. Let the proponent be the person who wants
to make a contribution to a discussion (or debate, etc). A contribution is one or more
arguments and attacks. Suppose the proponent can choose between a number of options
for the contributions. So each option for a contribution contains one or more arguments.
Let the options be C1, . . . ,Ck. Now suppose G is the argument graph that includes all
the possible arguments and attacks that the intended audience may currently entertain,
called the current argument graph. For each option for a contribution Ci ∈{C1, . . . ,Ck},
let G+Ci be the argument graph obtained by augmenting G with the arguments and
attacks in Ci. Suppose for each argument graph G+Ci, the proponent has a probability
function Pi over the subgraphs of G+Ci. Furthermore, suppose for each argument graph



G+Ci, the proponent has some arguments it wants included or excluded. In other words,
the proponent can identify an exhaustive and pairwise disjoint set of divisions for each
argument graph G+Ci, together with an associated utility function. Therefore, for each
argument graph G+Ci, the proponent can produce an argumentation lottery Li for the
action of making the contribution Ci.

So there are options for contributions C1,. . . , Ck, and for each option for a contribu-
tion Ci ∈ {C1, . . . ,Ck}, there is a lottery Li. Hence, the expected utility of each lottery can
be calculated as described in general above. According to utility theory, the best option
for a contribution is the contribution C j for which the expected utility of the lottery L j is
maximal. We formalize this process in the following definition of a game. Note, for this,
the lottery is only implicit in the definition.

Definition 9. A game is tuple (G,P,U,D,O) where G = (A ,R) is an argument graph,
P is a probability distribution over subgraphs of G, U is a utility function over divi-
sions, D is a set of divisions that is exhaustive and pairwise disjoint, and O is a set of
contributions. For each Ci ∈ O,

• Ci is a contribution (Bi,S i) with arguments Bi and attacks S i ⊆ (A ∪Bi×
A ∪Bi).

• Pi is a probability distribution over subgraphs of G+Ci such that for each G′vG,
Pi(G′+Ci) = P(G′).

For each Ci ∈ O and X ∈ {co,pr,gr,st} define E(G+Ci) = ∑Tj∈D Pi
X (Tj)×U(Tj). A

contribution Ci which maximizes E(G+Ci) is an optimal contribution to G.

In the above definition, we do not explicitly construct a lottery but we calculate the
expected utility directly from the outcomes (i. e. the divisions specified in O) using the
probability distribution Pi and the utility function U .

Example 10. Consider the argument graph G1 and its subgraphs with non-zero proba-
bility given in Figure 2a, together with associated probability distribution. Assume that
the outcomes are 〈{α},{}〉 and 〈{},{α}〉 where U(〈{α},{}〉) = 10 and U(〈{},{α}〉) =
−10. Hence, the expected utility of the argumentation lottery is (0.2× 10) + (0.8×
−10) =−6.

Now consider the contribution C1 = ({δ},{(δ ,β )}) which we use to give the graph
G1

1 = G1 +C1 together with the subgraphs with non-zero probability depicted in Fig-
ure 2b. Hence, the expected utility of the argumentation lottery is (0.8× 10)+ (0.2×
−10) = 6.

Finally consider the contribution C2 = ({ε},{(ε,γ)}) which we use to give the
graph G2

1 = G1 +C2 together with the subgraphs with non-zero probability depicted in
Figure 2c. Hence, the expected utility of the argumentation lottery is (0.3×10)+(0.7×
−10) = 4.

So both contributions turn a negative expected utility into a positive expected utility,
with C1 being the contribution that maximizes utility.

So by harnessing a probabilistic argumentation graph, and an argumentation lottery,
a participant can optimize its choice of actions in argumentation. This can be for ex-
ample in monological argumentation (e. g. in a speech or a written article) or dialogical
argumentation (e. g. a discussion or debate) when a participant wants to present argu-



G1 β → α ← γ 0.1
G2 β → α 0.6
G3 α ← γ 0.1
G4 α 0.2

(a)

G1
1 δ → β → α ← γ 0.1

G1
2 δ → β → α 0.6

G1
3 δ α ← γ 0.1

G1
4 δ α 0.2

(b)

G2
1 β → α ← γ ← ε 0.1

G2
2 β → α ε 0.6

G2
3 α ← γ ← ε 0.1

G2
4 α ε 0.2

(c)

Figure 2. Subgraphs and probability distributions for Example 10

ments and/or counterarguments in order to convince the audience that some particular
arguments should be accepted and some should be rejected.

We implemented the concepts introduced in this paper and, in particular, the game
setting described in this section in the Tweety library for Artificial Intelligence [16].
Moreover, we conducted some empirical evaluation of the lottery approach for move se-
lection in order to validate its feasibility and performance compared to a simple utility-
based move selection2. More precisely, we generated random argument graphs (with an
average of 5 arguments and 0.3 attack probability between any two distinct arguments,
no self-attacks), a random probability distribution on the subgraphs, and a random utility
function (with all utilities in the range [0,1]). Then we sampled (wrt. to the probability
distribution) some subgraph to be the actual subgraph assigned to the audience. After-
wards we used our lottery-based approach to determine the set of arguments that should
be brought forward and computed the resulting utility after the audience incorporated
this set into its argument graph. As a baseline approach, we also determined another set
of arguments by only maximizing utility and without taking the probability function and
lotteries into account—i. e. the contribution which resulted in the graph with maximum
utility was chosen—, and computed the resulting utility on the actual graph. We repeated
this experiment 500 times and obtained an average utility for the baseline approach of
approximately 0.5571 (standard deviation 0.0953) and an average utility for the lottery
approach of approximately 0.6494 (standard deviation 0.0657; the difference is signifi-
cant with 99% confidence). This (preliminary) investigation shows already the feasibil-
ity of our approach. For future work, we aim at conducting further and more systematic
experiments.

7. Discussion

In this paper, we have investigated how probabilistic argumentation can be harnessed
to formalize the notion of a lottery for argumentation. An argumentation lottery can be
used to judge the expected utility of the outcomes in an argument graph. Furthermore, an
argumentation lottery can be constructed for each of a number of possible contributions
that can be made to a discussions, debate, etc. These lotteries can then be used to deter-
mine the contribution that maximizes the expected utility. Therefore, an agent making a
decision on what contribution (if any) to make in argumentation now has a formal tool to
make the best choice. We can consider uncertainty from either the audience’s perspective
or the participant’s perspective. In previous work, we have modelled audiences in terms

2http://tiny.cc/TweetyLottery



of the beliefs and desires to assist a participant in choosing the most believable or the
most desirable arguments to make [8,7]. However, that did not consider the uncertainty
associated with modelling the audience, and it did not provide a utility-theoretic frame-
work. Utility theory has been considered in other frameworks for argumentation (for
example [12,14,13]). Moreover, integrating quantitative uncertainty into argumentation
theory has also been investigated in, e. g., [11,5,15]. However, this is the first paper that
provides a framework for using probabilistic argumentation for argumentation lotteries.

Our work has strong relationships to strategical issues in multi-agent argumentation
[14,13,6] where also game theoretical means are utilized for deciding on the next best
move in dialogues. In future work, we would like to investigate how our approach could
be used in such settings. We would also like to investigate how our approach could be
integrated with techniques for updating argument graphs to enforce particular outcomes
(see for example [3,2]) since our notion of a contribution can be regarded as an update.
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