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Abstract. We consider augmenting abstract argumentation frame-
works with probabilistic information and discuss different con-
straints to obtain meaningful probabilistic information. Moreover, we
investigate the problem of incomplete probability assignments and
propose a solution for completing these assignments by applying the
principle of maximum entropy.

1 Introduction
Abstract argumentation, as proposed by Dung [1], provides a simple
and appealing representation in the form of a directed graph. An ab-
stract argumentation framework AF is a tuple AF = (Arg,→) where
Arg is a set of arguments and→ is a relation→⊆ Arg×Arg. For two
arguments A,B ∈ Arg the relation A → B means that argument A
attacks argument B. Semantics to an AF can be given by labellings
[7]. A labelling L is a function L : Arg → {in, out, undec} that
evaluates a framework by stating whether an argument is accepted
(in), rejected (out), or whether its status is not determined (undec).
Further constraints, such as conflict-freeness and completeness, can
be imposed on a labelling to obtain different sets of accepted argu-
ments, cf. [1, 7].

Recently there has been interest in augmenting abstract argumen-
tation with a probabilistic assignment to each argument [4, 6, 2].
Here, we regard the assignment as denoting the belief that an agent
has that an argument is justifiable, i. e., that both the premises of the
argument and the derivation of the claim of the argument from its
premises are valid. So for a probability function P , and an argument
A, P (A) > 0.5 denotes that the argument is believed (to the degree
given by P (A)), P (A) < 0.5 denotes that the argument is disbe-
lieved (to the degree given by P (A)), and P (A) = 0.5 denotes that
the argument is neither believed or disbelieved. More precisely, a
probability function P on Arg is a function P : 2Arg → [0, 1] with∑
E⊆Arg P (E) = 1. We abbreviate P (A) =

∑
A∈E⊆Arg P (E).

This means that the probability of an argument is the sum of the
probabilities of all sets of arguments that contain that argument.

The framework that we present in this paper is appealing theoret-
ically as it provides further insights into semantics for abstract argu-
mentation, and it offers a finer-grained representation of uncertainty
in arguments. However, given an argument graph, it may be difficult
for a user to assign a value to every argument. The user might have
knowledge in order to identify a value for some arguments, but the
user may be unable or unwilling to make assignments to the remain-
ing arguments. This means that the user can only provide a partial
assignment. If this is the case, then it would be desirable to have
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techniques to handle this incomplete information. In this short paper,
we take a first step towards this direction and investigate the issue of
completing incomplete probability assignments.

2 Constraints on probability functions
We first consider some constraints on the probability function which
may take different aspects of the structure of the argument graph into
account.

COH P is coherent wrt. AF if for every A,B ∈ Arg, if A → B
then P (A) ≤ 1− P (B).

SFOU P is semi-founded wrt. AF if P (A) ≥ 0.5 for every
unattacked A ∈ Arg.

FOU P is founded wrt. AF if P (A) = 1 for every unattacked A ∈
Arg.

SOPT P is semi-optimistic wrt. AF if P (A) ≥ 1 −
∑
B→A P (B)

for every A ∈ Arg that has at least one attacker.
OPT P is optimistic wrt. AF if P (A) ≥ 1−

∑
B→A P (B) for every

A ∈ Arg.
JUS P is justifiable wrt. AF if P is coherent and optimistic.
TER P is ternary wrt. AF if P (A) ∈ {0, 0.5, 1} for every A ∈

Arg.
RAT P is rational wrt. AF if for every A,B ∈ Arg, if A → B then
P (A) > 0.5 implies P (B) ≤ 0.5.

NEU P is neutral wrt. AF if P (A) = 0.5 for every A ∈ Arg.
INV P is involutary wrt. AF if for every A,B ∈ Arg, if A → B,

then P (A) = 1− P (B).
MAX P is maximal wrt. AF if P (A) = 1 for every A ∈ Arg.
MIN P is minimal wrt. AF if P (A) = 0 for every A ∈ Arg.

Let P(AF) be the set of all probability functions on Arg and Pt(AF)
be the set of all t-probability functions where t is a constraint from
above. We obtain3 the strict classification of classes of probability
functions as depicted in Figure 1.

3 Partial probability functions
A partial function π : Arg → [0, 1] on Arg is called a partial
probability assignment. A probability function P ∈ P(Arg) is π-
compliant if for every A ∈ domπ we have π(A) = P (A). Let
Pπ(AF) ⊆ P(AF) be the set of all π-compliant probability func-
tions. The question that arises is that given an abstract argumentation
framework AF = (Arg,→) and a partial probability assignment π,
how do we determine P ∈ P(Arg) that is most compatible with both
AF and π, i. e., which P ∈ P(Arg) do we select as a meaningful rep-
resentative? This question has also been addressed in similar ways

3 For proofs of technical results see the extended version of this paper [3].
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Figure 1. Classes of probability functions (a normal arrow→ indicates a
strict subset relation, a dashed arrow 99K indicates a subset relation)

for partial probabilistic information without argumentation, cf. e. g.
[5]. There, the principle of maximum entropy has been used to com-
plete incomplete probabilistic information in probabilistic logics. An
important requirement for applying maximum entropy approaches is
that the probability function with maximum entropy is uniquely de-
termined. A sufficient property to ensure this, is that the set under
consideration is both convex and closed.4

Proposition 1. Let AF = (Arg,→) be an abstract argumentation
framework. The sets P(AF), PCOH(AF), PTER(AF), PNEU(AF),
PINV(AF), PSFOU(AF), PFOU(AF), POPT(AF), PSOPT(AF),
PJUS(AF), PMIN(AF), and PMAX(AF) are convex and closed.

Proposition 2. For every partial probability assignment π the set
Pπ(AF) is convex and closed.

Let t be any one of our properties which lead to a convex and
closed set of probability functions (or any combination of those). If
it is the case that there is at least one π-compliant P in Pt(AF) then
(thanks to the convexity properties) we have that the intersection of
Pπ(AF) and Pt(AF) is convex and closed as well, cf. [5]. In that
case, we can select the probability function with maximal entropy
within this intersection (which is uniquely defined). As for the ra-
tionale of this decision, several results from probability reasoning,
as for example discussed in [5], can be harnessed. We continue with
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Figure 2. Argumentation frameworks for Example 1

some examples to illustrate the definitions and to investigate some of
our concerns in dealing with partial assignments.

4 A setX is convex if for x1, x2 ∈ X it also holds that δx1+(1−δ)x2 ∈ X
for every δ ∈ [0, 1]; a set X is closed if for every converging sequence
x1, x2, . . . with xi ∈ X (i ∈ N) we have that limi→∞ xi ∈ X

Example 1. For the argumentation framework depicted in Fig-
ure 2(a) consider π1 with π1(A) = 1. Obviously, the most reason-
able choice for a π1-compliant P ∈ P(AF) would be P (A) = 1
and P (B) = 0 (by obeying the property of involution). Furthermore,
for π2(B) = 0.3 we would have P (A) = 0.7 and P (B) = 0.3
following the same rationale.

For the argumentation framework depicted in Figure 2(b) consider
π3 with π3(C) = 0.4. A possible choice for P would be P (A) = 0.6,
P (B) = 0.4, and P (C) = 0.4 (having thus a maximally committed
function that is coherent). But note that the set Pπ(AF)∩PCOH(AF)
does contain more than this single probability function. Furthermore,
for π4 with π4(B) = 0.7 and π4(C) = 0.6 one would only guess
P (A) ≤ 0.3 but due to the “inconsistency” of π4 (violating the
coherence condition), what is the best choice?

For the argumentation framework depicted in Figure 2(c) con-
sider π5 with π5(A) = 0.4 and the following four selections
P1, P2, P3, P4 ∈ P(AF):

P1(A) = 0.4 P2(A) = 0.4 P3(A) = 0.4 P4(A) = 0.4

P1(B) = 0.6 P2(B) = 0.4 P3(B) = 0.5 P4(B) = 0.2

P1(C) = 0.4 P2(C) = 0.6 P3(C) = 0.5 P4(C) = 0.3

All of the above probability functions are π5-compliant and coherent.
Function P4 is not maximally committed and as such is perhaps not a
good choice. Both P1 and P2 are “extreme points of view” and model
some kind of probabilistic stable semantics. The function P3 is as
unbiased as possible but still “reasonable” as it models probabilistic
grounded semantics. Note that P3 is also the probability function
with maximal entropy in Pπ(AF) ∩ PCOH(AF).

Given Pπ(AF) and Pt(AF), we can either select P ∈ Pπ(AF)
that is “as close as possible to” Pt(AF) or P ∈ Pt(AF) that is “as
close as possible to” Pπ(AF). In future work, we will investigate
definitions for “as close as possible to”, and we will explore the pros
and cons of each of these alternatives for selecting P .

4 Summary
In this paper, we discussed several constraints for probabilistic ab-
stract argumentation and applied this framework to the problem
of completing partial probability assignments. A first investigation
leads us to believe that maximizing entropy within probability func-
tions of a specific type gives appropriate results for this problem.
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