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Abstract. We consider the issue of update in settings for preference ag-
gregation under preference changes. While the traditional problem for-
mulation of preference aggregation assumes a fixed set of preference or-
ders and a fixed set of domain elements we investigate how an aggregated
preference order has to be updated when the input orders are dynamic.
Our analysis shows that for even for some simple aggregation rules, i. e.
for the plurality and the Borda rule, the dynamic setting can be handled
more efficiently than recomputing the aggregated preference order from
scratch when changes have to be made.

1 Introduction

Preference aggregation [1] deals with the problem of combining the preferences of
multiple agents into a joint preference order that reflects the agents’ preferences
in a “fair” manner. This field is strongly related to voting systems and social
choice theory [2] and has its main application in recommendation and decision
making in groups [3, 4]. The traditional setting for preference aggregation is a
static one. Given fixed preference orders on a fixed domain one asks for a prefer-
ence order which jointly represents the former ones. However, in many scenarios
both the input preferences and/or the domain under consideration changes. Our
motivation for investigating the issue of dynamic preference aggregation stems
from recommender systems for social media applications. Consider the situation
of visiting a film festival with a mobile recommendation system. In this sce-
nario, one may have preferences regarding movie genres and actors that lead to
recommendations to which theater to go next. Furthermore, one may have infor-
mation on the location of friends and geo-temporal information on the screening
of movies which also lead to preference orders, e. g. one would prefer to go to
a screening which starts in a couple of minutes or where a lot of friends are
present. All these preference orders change over time and so does the aggregated
preference order.

In this paper we investigate the issue of preference aggregation under changes
of the input preference orders. For that we develop a framework for preference
change that distinguishes between two atomic types of changes to a preference
order, namely, weakening and strengthening of a specific domain element. Given



a set of preference orders and an aggregation rule we investigate how the ag-
gregated preference order changes under atomic changes of the input preference
orders. We introduce the notion of a dynamic preference aggregator that dy-
namically adapts the aggregated preference order to changes and develop first
dynamic approaches that implement the plurality and the Borda rule for prefer-
ence aggregation. Our analysis of these approaches show that they outperform
a naive re-computation of the aggregated preference order.

The issue of dynamic preference aggregation is closely related to the issue of
bribery [5]. The bribery problem deals with the question of how to (minimally)
adjust voters’ preferences in order to establish some desired aggregated prefer-
ence order. Dynamic preference aggregation is basically the reverse problem as
we investigate how minimal changes of the voters’ preference change the aggre-
gated order. However, to the best of our knowledge the computational questions
arising in reversing the bribery question have not been addressed before explic-
itly.

The remainder of this paper is structured as follows. In Section 2 we recall
preliminaries on preference representation and preference aggregation. In Sec-
tion 3 we develop our general framework of dynamic preference aggregation un-
der preference change and investigate its general properties. Afterwards we have
a look at specific aggregation rules and their implementation in the dynamic
setting in Section 4. We review some related work in Section 5 and conclude
with a summary and discussion in Section 6.

2 Preferences and Preference Aggregation

Let O = {o1, . . . , on} be a set of outcomes. In order to have a more general
setting, in contrast to the majority of literature on preference aggregation we will
use total preorders, instead of linear orders, to represent preferences. Therefore,
a preference order � on O is a total preorder on O, i. e. a relation �⊆ O × O
that satisfies

1. if o1 � o2 and o2 � o3 then o1 � o3 (transitivity) and
2. for all o1, o2 ∈ O is holds o1 � o2 or o2 � o1 (totality)

If o � o′ then we say that o′ is at least as preferred as o. We abbreviate o ∼ o′ if
both o � o′ and o′ � o, and we abbreviate o ≺ o′ if o � o′ and o′ 6� o. Let PO be
the set of all preference orders on O. Preference orders can be used to represent
a single individual’s preferences on the possible outcomes (of some action) in O.

Example 1. Let O = {rock , pop, country , electronic} be a set of outcomes that
describe the choices for the music genre being played at some event. A possible
preference order �music on O can be given via

country ≺music pop

country ≺music electronic

pop ≺music rock

electronic ≺music rock



In �music the outcome rock is the most preferred option, both pop and electronic
are equally preferred after rock, and country is the least preferred option.

A preference order � on O can also be concisely characterized by its ranking
function rank� : O → N defined via

rank�(o) = |{o′|o′ ≺ o}|

Note that we have rank�(o) ≤ rank�(o′) if and only if o � o′. In the following,
we use both the preference order � and its ranking function rank� interchange-
ably. For �music of Example 1 we have

rank�music (country) = 0

rank�music (pop) = 1

rank�music
(electronic) = 1

rank�music
(rock) = 3

We define the sets of direct predecessors pre�(o) and direct successors suc�(o)
of an outcome o as follows:

pre�(o) = {o′ ∈ O | o′ ≺ o ∧ ¬∃ o′′ : o′ ≺ o′′ ≺ o}
suc�(o) = {o′ ∈ O | o ≺ o′ ∧ ¬∃ o′′ : o ≺ o′′ ≺ o′}

We further define the set of most preferred outcomes top(�) and the set of least
preferred outcomes bot(�) via

top(�) = {o ∈ O | suc�(o) = ∅}
bot(�) = {o ∈ O | pre�(o) = ∅}

In Example 1 we have e. g.

suc�music
(country) = {pop, electronic}

top(�music) = {rock}

The field of preference aggregation [1] is concerned with how potentially
conflicting preferences of different individuals are to be aggregated in order to
come up with a single preference order that reflects the group’s joint preference
in a “fair” sense. Formally, a preference aggregator is defined as follows.

Definition 1. A preference aggregator Θ (of order m ∈ N+) is a function Θ :
PmO → PO.

A vector of preference orders � ∈ PmO is also called a preference profile.
In the past 60 years a series of different implementations for preference ag-

gregators have been proposed. The goal of this research is to define a preference
aggregator that is, in some sense, “fair”, i. e. reflects the individual preferences
in an unbiased and intuitively correct way. Some properties that formalize the
notion of “fairness” are as follows.



Pareto-efficiency (PE) For every o, o′ ∈ O, if o �i o′ for all i = 1, . . . ,m then
o � o′ (for preference orders �1, . . . ,�m and �= Θ(�1, . . . ,�m)).

Non-dictatorship (ND) There is no i ∈ {1, . . . ,m} such that �i= Θ(�1

, . . . ,�m) for every 〈�1, . . . ,�m〉 ∈ PmO .

Independence of irrelevant alternatives (IIA) If for two profiles 〈�1, . . . ,�m
〉 and 〈�′1, . . . ,�′m〉 and every i = 1, . . . ,m it holds o �i o′ whenever o �′i o′
then o � o′ whenever o �′ o′ (with �= Θ(�1, . . . ,�m) and �′= Θ(�′1
, . . . ,�′m)).

Monotonicity (Mon) If for two profiles 〈�1, . . . ,�m〉 and 〈�′1, . . . ,�′m〉 we
have that o �i o′ implies o �′i o′ then o � o′ implies o � o′ (with �= Θ(�1

, . . . ,�m) and �′= Θ(�′1, . . . ,�′m)).

Pareto-efficiency says that if all preference orders agree that o′ is at least as
preferred as o then o′ should also be at least as preferred as o in the joint prefer-
ence order. The property non-dictatorship says that there is no single individual
(the dictator) whose preference order is always adopted as the joint preference
order, regardless of what the preference orders actually look like. The property
independence of irrelevant alternatives can be best explained in the context of
voting. There, this property states that given two elections A and B with voters
1, . . . ,m, if every voter i prefers candidate 1 to candidate 2 in A whenever he
prefers candidate 1 to candidate 2 in B, then candidate 1 is preferred to candi-
date 2 in the outcome of the election A if and only if candidate 1 is preferred
to candidate 2 in the outcome of the election B. This means that preferences
regarding other combinations of candidates are irrelevant for the decision regard-
ing just candidates 1 and 2. Monotonicity basically demands that strengthening
the position of an outcome o in one preference order cannot result in a worse
situation for o in the aggregated preference order. Arrow’s famous impossibility
result [6] states that there is no preference aggregator Θ which satisfies (PE),
(ND), and (IIA).1

Research in preference aggregation did come up with several preference ag-
gregators that are meaningful under certain circumstances. In this paper, we
consider two of the most simple preference aggregators as suitable examples,
namely plurality preference aggregation and Borda preference aggregation which
are both special cases of scoring rules, cf. [1]. Note that the original definitions for
these preference aggregators are given for total orders instead of total preorders
as we use here. We adapt those definitions appropriately for total preorders as
follows, cf. [7] for some general discussions regarding partially ordered prefer-
ences. Let � = 〈�1, . . . ,�m〉 be a preference profile. The plurality preference
aggregator Θp : PmO → PO and the Borda preference aggregator Θb : PmO → PO

1 Note that the original impossibility result refers to total orders instead of total
preorders but a similar result holds for total preorders as well.



are defined via Θp(�) =�p and Θb(�) =�b, respectively, and

o �p o′ iff |{i | o ∈ top(�i)}| ≤ |{i | o′ ∈ top(�i)}|

o �b o′ iff

m∑
i=1

(rank�i(o)) ≤
m∑
i=1

(rank�i(o
′)) .

Plurality preference aggregation generalizes majority voting and says, that o′ is
at least as preferred as o if and only if o′ appears at least as often as top element
in the preference orders �1, . . . ,�m as o. The intuition behind Borda preference
aggregation is that o′ is at least as preferred as o, if the sum of all ranks over
all considered preference orders for o′ is smaller or equal to the sum for o. Note,
that we generalized the standard definition of the Borda rule by assigning equal
rank to equally classified outcomes.

3 Dynamic Preference Aggregation

In the traditional setting for preference aggregation, preference orders are static
entities that reflect the preferences of some individual at some given point in
time. Furthermore, a preference aggregator is a simple function that takes this
static view and returns a coherent joint preference order for the very same point
in time. However, in reality preferences are rarely static but change frequently. In
the following, we consider the problem of how the joint preference order changes
given that one of the input preference orders changes.

In order to describe “change” of preference orders we need some further
notation. We focus one specific atomic change operations for preference orders
where we only change the preference of a single outcome. More precisely, for a
preference order �, an outcome o ∈ O, the strengthening of � by o, denoted by
� + o, is the preference order �′=� + o characterized via

rank�′(α) =


rank�(α) + |{o′|o′ ∼ α} \ {α}|

(if α = o)
rank�(α)− 1

(if α ∈ suc�(o) and |{o′ | o′ ∼ o}| = 1)
rank�(α) (otherwise)

for every o′ ∈ O. Similarly, the weakening of � by o, denoted by � − o, is the
preference order �′=� − o characterized via

rank�′(α) =


rank�(α)− |{o′|o′ ∈ pre(α)}|

(if α = o and |{o′ | o′ ∼ o}| = 1)
rank�(α) + 1 (if α 6= o and α ∼ o)
rank�(α) (otherwise)

for every o′ ∈ O.



Example 2. We continue Example 1 and assume the music genre electronic has
to be weakened in �music . Then we have �′music=�music −electronic with

country ≺′music electronic ≺′music pop ≺′music rock

with

rank�′
music

(country) = 0 rank�′
music

(electronic) = 1

rank�′
music

(pop) = 2 rank�′
music

(rock) = 3

Furthermore, if we weaken electronic even further we obtain �′′music=�′music

−electronic with

country , electronic ≺′′music pop ≺′′music rock

and

rank�′′
music

(country) = 0 rank�′′
music

(electronic) = 0

rank�′′
music

(pop) = 2 rank�′′
music

(rock) = 3

Strengthening and weakening of outcomes can be regarded as the most basic
change operation for a preference order. Some simple observations on strength-
ening and weakening are summarized in the following proposition. Proofs of
technical results are omitted due to space restrictions.

Proposition 1. Let �∈ PO be a preference order.

1. (� − o) + o =� for all o /∈ bot(�),
2. (� + o)− o =� for all o /∈ top(�),
3. for every other preference order �′∈ PO there are sequences 〈±1, . . . ,±l〉,
〈o1, . . . , ol〉 with ±i ∈ {+ ,−}, oi ∈ O for i = 1, . . . , l for some m ∈ N such
that �=�′ ±1o1 . . .±l ol.

4. computing � ± o has time complexity O(n).

Items 1.) and 2.) state that strengthening and weakening are inverse operations
as long as the element is not a most or least preferred outcome, respectively. Item
3.) states that strengthening and weakening operations are generating operations
of the set of preference orders, i. e. every preference order can be represented as
applying a series of strengthening/weakening operations to every other prefer-
ence relation. Finally, item 4.) states that determining � ± o from � has time
complexity O(n).

If � = 〈�1, . . . ,�m〉 ∈ PmO is a preference profile we abbreviate

�±i o = 〈�1, . . . ,�i ± o, . . . ,�m〉

with ± ∈ {+ ,−}, o ∈ O, and i = 1, . . . , ,m. The single-step operators + and
− can be extended to multi-step operators +h and −h for h ∈ N via

� +h o =� + o+ . . .+ o︸ ︷︷ ︸
h times

� −h o =� − o− . . .− o︸ ︷︷ ︸
h times



Some observations relating change operations and preference aggregation are as
follows.

Proposition 2. Let � be a preference profile, i ∈ {1, . . . ,m}, ± ∈ {+,−},
o ∈ O, Θ a preference aggregator, �= Θ(�), and �′= Θ(�±i o).

1. If Θ satisfies (IIA) then o1 � o2 iff o1 �′ o2 for all o1, o2 ∈ O \ {o}.
2. If ± = + and Θ satisfies (Mon) then o1 � o2 implies o1 �′ o2 for all

o1 ∈ O \ {o}, o2 ∈ O.
3. If ± = − and Θ satisfies (Mon) then o1 � o2 implies o1 �′ o2 for all

o1 ∈ O, o2 ∈ O \ {o}.

The above proposition states that there are many cases in which the aggregated
preference order only changes minimally on atomic changes of an input prefer-
ence order. For that, it seems beneficial to investigate the computational issue
of dynamic preference aggregation. The core concept of our formalism is the
dynamic preference aggregator which can naively be defined as follows.

Definition 2. A dynamic preference aggregator Λ is a function Λ : PO × N ×
{+ ,−} ×O → PO.

Let �∈ PO be some preference order that is the result of applying some aggre-
gation rule on the profile � = 〈�1, . . . ,�m〉. Furthermore, let i ∈ {1, . . . ,m},
± ∈ {+,−}, and o ∈ O. Then the idea behind a dynamic preference aggregator
Λ is that Λ(�, i,±, o) =�′ is the result of first updating the preference profile
� via �±i o and then aggregating again to �′. However, this update operation
should be performed on � directly. Formally, the intuition of dynamic preference
aggregation can be phrased as follows.

Definition 3. Let Θ be a preference aggregator and Λ be a dynamic preference
aggregator. We say that Λ is a faithful representation of Θ if and only if for all
� = 〈�1, . . . ,�n〉 ∈ PmO , all i = 1, . . . , n, ± ∈ {+ ,−}, and all o ∈ O it holds

Θ(�±i o) = Λ(Θ(�), i,±, o)

In other words, a faithful representation of a preference aggregator is a dynamic
preference aggregator that exhibits the same behavior as the former but adapts
to changes of the input preference orders. Given a preference profile � we expect
updating Θ(�) using Λ to be same as first updating � and then applying Θ
again. Figure 1 illustrates this relationship between a preference aggregator Θ
and a faithful representation Λ using a commuting diagram. However, the def-
inition of a faithful representation is very restricting as it requires a functional
dependency between the old result of aggregation and the new one. In general,
this demand is not satisfiable for most interesting aggregation operators.

Example 3. Let �1,�2,�3 be preference orders on O = {o1, o2, o3} defined via

o3 ≺1 o1 ≺1 o2

o2 ≺2 o3 ≺2 o1

o3 ≺3 o2 ≺3 o1



�1, . . . ,�n �
Θ

�1, . . . ,�′
i, . . . ,�n

�′
i = �i ± o

�′Θ

Λ

Fig. 1. Commuting diagram for dynamic preference aggregation

By using plurality aggregation we obtain Θp(�1,�2) = Θp(�1,�3) =� with

o1 ∼ o2, o3 ≺ o1, o3 ≺ o2 .

That is, we obtain that profiles 〈�1,�2〉 and 〈�1,�3〉 are aggregated yielding
the same result. Let � = 〈�1,�2〉, �′ = 〈�1,�3〉 and consider �̂ = Θp(�+2o2)

resp. �̂′ = Θp(�′ +2 o2) with

o1∼̂o2, o3≺̂o1, o3≺̂o2
o1≺̂

′
o2, o3≺̂

′
o2, o3≺̂

′
o1

In summary, we get Θp(�) = Θp(�′) but Θp(�+2o2) 6= Θp(�′+2o2). Therefore,
there can be no dynamic preference aggregator Λp that is a faithful representa-
tion of Θp.

The above example (unsurprisingly) shows that there is no direct functional de-
pendency between � and �′. In order to get to actual approaches for addressing
the dynamic preference problem we need to have some more information that is
carried from one update to the other.

Definition 4. A state-based dynamic preference aggregator ∆ is a pair ∆ =
〈ι, Λ〉 such that

1. ι is function ι : PmO → S ×PO and
2. Λ is a function Λ : S × N× {+ ,−} ×O → S × PO

where S is some set of states.

The intuition behind a state-based dynamic preference aggregator ∆ = 〈ι, Λ〉
is as follows. Given a preference profile � = 〈�1, . . . ,�m〉 the function ι is the
initialization function that delivers ι(�) = (S,�) where � is the aggregated
preference order of � and S some state (defined in some way suitable for the
preference aggregator) that is carried over to the next update. Given a state S,
i ∈ {1, . . . ,m}, ± ∈ {+,−}, and o ∈ O the value Λ(S, i,±, o) = (S′,�′) then



updates the state S to S′ and the aggregated order � to �′, given the change
operation ±i on o. Formally, this intuition extends our notion of faithfulness as
follows.

Definition 5. Let Θ be a preference aggregator and ∆ = 〈ι, Λ〉 be a state-
based dynamic preference aggregator. We say that ∆ is a state-based faithful
representation of Θ if and only if for all � = 〈�1, . . . ,�m〉 ∈ PmO , all se-
quences 〈〈±1, i1, o1〉, . . . , 〈±k, ik, ok〉〉 ∈ ({+ ,−} × N × O)k there are states
S1, . . . , Sk−1 ∈ S such that

〈S1, Θ(�)〉 = ι(�)

〈Sj , Θ(�(±1)i1o1 . . . (±j)ijoj)〉 = Λ(Sj−1, ij ,±j , oj)

for j = 2, . . . , k.

In the next section we investigate actual approaches for state-based dynamic
preference aggregators that effectively implement the preference aggregators dis-
cussed before.

4 Approaches and Analysis

We first discuss a naive implementation which just applies the original preference
aggregator on every change operation.

Definition 6. Let Θ be a preference aggregator and let Scan = PmO . The canon-
ical state-based dynamic preference aggregator ∆can

Θ for Θ is the pair ∆can
Θ =

〈ιcanΘ , ΛcanΘ 〉 with ιcanΘ : PmO → Scan × PO and ΛcanΘ : Scan × N× {+ ,−} × O →
Scan × PO defined via

ιcanΘ (�) = 〈�, Θ(�)〉
ΛcanΘ (�, i,±, o) = 〈�±i o,Θ(�±i o)〉

The canonical state-based dynamic preference aggregator simply carries over the
whole preference profile from one iteration to the next and applies the preference
aggregator in a direct way. This is the baseline approach for solving the dynamic
preference aggregation problem but, obviously, the effort required at each itera-
tion should not be necessary. The following proposition follows by construction
of the canonical state-based dynamic preference aggregator.

Proposition 3. Let Θ be a preference aggregator. Then ∆can
Θ is a state-based

faithful representation of Θ.

Example 4. We continue Example 3 and define � = 〈�1,�2,�3〉. For the plu-
rality preference aggregator Θp we obtain

ιcanΘp
(�) = 〈�,�〉



where � is defined via o3 ≺ o2 ≺ o1. Therefore, � is the initial result of aggre-
gating �. Assume now that in the preference order �3 the outcome o2 is to be
strengthened, i. e., we have �′3=�3 +o2 with o3 �′3 o1, o2. Then we have

ΛcanΘp
(�, 3,+, o2) = 〈〈�1,�2,�′3〉,�′〉

where �′= Θp(�1,�2,�′3) is defined via o3 ≺′ o1, o2. In this example, a (simple)
strengthening of o2 in one of the input preference orders caused a strengthening
of o2 in the aggregated order as well.

Proposition 4. Let Θ be a preference aggregator of time complexity O(f(n,m)).
Then ιcanΘ has time complexity O(f(n,m)) and ΛcanΘ has time complexity O(n+
f(n,m)). The space complexity for storing a state in Scan is O(nm).

The question we are addressing in the following is whether the time complexity
O(n + f(n,m)) of updating the aggregated preference order can be improved.
Proposition 2 already suggested that there are many cases under which the
aggregated preference order only changes slightly. We now have a look at some
concrete preference aggregators and, first, give a straightforward approach for
the plurality aggregator.

Definition 7. Let � = 〈�1, . . . ,�m〉 and let Sp = PmO × NO. Define

ιp(�) = 〈〈�, g〉, Θp(�)〉

with g : O → N and g(o) = |{i | o ∈ top(�i)}|. Define

Λp(〈�, g〉, i,±, o) = 〈〈�±i o, g′〉,�′〉

with g′ : O → N defined via2

g′(o′) = g(o′)− [o′ ∈ top(�i) ∧ o /∈ top(�i ±o)]
+ [o′ /∈ top(�i) ∧ o ∈ top(�i ±o)]

and

o1 �′ o2 iff g′(o1) ≤ g′(o2)

Then ∆p = 〈ιp, Λp〉 is called the dynamic plurality preference aggregator.

The above definition avoids re-computing the whole aggregated preference order
and only considers changes in the top elements of the preference order that is
being changed. More precisely, the value g(o′)—which stores the number of times
each element appears as a top element in the preference orders—is updated by
subtracting 1 if the element has been top-ranked in �i and is no longer top-
ranked in �i ±o or by adding 1 if the element has not been top-ranked in �i
but is top-ranked in �i ±o.
2 [P ] is the Iverson bracket defined via [P ] = 1 if P is true and [P ] = 0 otherwise.



Proposition 5. ∆p is a state-based faithful representation of Θp.

Proposition 6. ιp has time complexity O(nm) and Λp has time complexity
O(n). The space complexity for storing a state in Sp is O(nm).

Note that the time complexity of computing Θp(�) is O(nm). Thus Λp has
better time complexity (O(n)) than the canonical solution ΛcanΘp

with O(nm), cf.
Proposition 4.

Example 5. We continue Example 4. For � = 〈�1,�2,�3〉 we obtain

ιp(�) = 〈〈�, g〉,�)〉

with � as in Example 4 and g : O → N given via g(o1) = 2, g(o2) = 1, and
g(o3) = 0. Given that o2 is to be strengthened in �3, i. e. �′3=�3 +o2, we obtain

Λp((�, g), 3,+, o2) = 〈〈〈�1,�2,�′3〉, g′〉,�′〉

with

g′(o1) = g(o1)− [o1 ∈ top(�3) ∧ o1 /∈ top(�′3)]

+ [o1 /∈ top(�3) ∧ o1 ∈ top(�′3)] = 2− 0 + 0 = 2

g′(o2) = 1− 0 + 1 = 2

g′(o3) = 0− 0 + 0 = 0

and therefore o3 ≺′ o1, o2.

We now turn to the Borda preference aggregator.

Definition 8. Let � = 〈�1, . . . ,�m〉 and let Sb = PmO × NO. Define

ιb(�) = 〈(�, g), Θb(�)〉

with g : O → N and g(o) =
∑m
i=1 rank�i

(o). Define

Λb((�, g), i,±, o) = 〈(�±i o, g′),�′〉

with g′ : O → N defined via

g′(o′) = g(o′)− rank�i
(o′) + rank�i±o(o

′)

and

o1 �′ o2 iff g′(o1) ≤ g′(o2)

Then ∆b = 〈ιb, Λb〉 is called the dynamic Borda preference aggregator.

The dynamic Borda preference aggregator is defined in a similar way as the
dynamic plurality preference aggregator (in fact, both definitions can easily be
generalized to obtain a scheme for dynamic preference aggregators for preference
aggregators based on scoring rules). For each o′ ∈ O only the rank changes of
o′ in �i are taken into account when updating the value g(o′), which stores the
sum of all ranks for all �j , j = 1, . . . ,m.



Proposition 7. ∆b is a state-based faithful representation of Θb.

Proposition 8. ιb has time complexity O(nm) and Λb has time complexity
O(n). The space complexity for storing a state in Sb is O(nm).

Note that the time complexity of computing Θb(�) is O(nm). Thus Λb has
better time complexity (O(n)) than the canonical solution ΛcanΘb

with O(nm), cf.
Proposition 4.

Example 6. We continue Example 4. For � = 〈�1,�2,�3〉 we obtain

ιb(�) = 〈〈�, g〉,�)〉

with �= Θb(�) given via o3 ≺ o2 ≺ o1 and g : O → N given via g(o1) = 5,
g(o2) = 3, and g(o3) = 1. Given that o2 is to be strengthened �3, i. e. �′3=�3

+o2, we obtain

Λb((�, g), 3,+, o2) = 〈〈〈�1,�2,�′3〉, g′〉,�′〉

with

g′(o1) = g(o1)− rank�3(o1) + rank�′
3
(o1)

= 5− 2 + 1 = 4

g′(o2) = 3− 1 + 1 = 3

g′(o3) = 1− 0 + 0 = 1

and therefore �′=�.

The computational approaches discussed so far illustrate that in dynamic set-
tings, preference aggregation can be implemented more effectively. This work
is the first step towards investigating the issue of dynamic preference aggrega-
tion. Current work deals with investigating more complex preference aggregation
mechanisms such as the Dodgson and Kemeny rules, cf. [8, 9].

5 Related Work

Preference reasoning and preference aggregation is a very active area within ar-
tificial intelligence research, economics, and other fields. However, there are only
few works that deal with dynamics in preference aggregation settings. Related to
our work is e. g. [10] that deals with influence of one agent’s preferences to other
agents’ preferences. This setting also entails some dynamics as preference rela-
tions might be changed through influence. Maudet et al. investigate this setting
within the framework of CP-nets [3], a specific approach to reason with prefer-
ences. They are mainly interested in computational properties in this framework
but do not investigate preference change in our more general setting. The work
[11] explicitly considers updates to input preference orders and their influence



to aggregation. They introduce the property of update monotonicity for (static)
preference aggregators as a novel property to assess the quality of an aggrega-
tor. An aggregator satisfies update monotonicity if under changes of one input
preference order towards the aggregated order, the aggregation does not change.
Therefore, [11] do not consider general updates and computational approaches.

Furthermore, there are approaches in belief revision that deal with dynam-
ics of epistemic states given in form of preorders. For example, the work [12]
considers iterated belief revision based on enriched preference states. There, a
preference state is basically a preference order on possible worlds that is revised
upon newly received evidence. The work [13] deals with revising a given pref-
erence relation with another (partial) one such that the former is modified in
a minimal way to incorporate the latter. Although these works also deal with
issues related to temporal evolution of (preference) orders they do not address
the evolution of the aggregated orders.

Top-k querying [14] deals with effective approaches to determine the best
k answers to a (relational) query, given possibly multiple preference orders. In
many approaches, the final aggregated order is constructed by incrementally tak-
ing more result items into account. Similar to the setting of dynamic preference
aggregation the aggregated order is also dynamically updated. However, top-
k querying mechanisms consider fixed preference orders and dynamics is only
implicitly present by taking more result items into account. The work [15] con-
siders a similar setting of taking more result items with fixed preferences into
account but also uses methods from preference aggregation. However, the issue
of dynamics is only briefly discussed and not elaborated.

6 Summary and Conclusion

We discussed the issue of dynamics in general settings of preference aggrega-
tion under preference change. We introduced the concept of dynamic preference
aggregators and investigated the consequences of atomic changes in the input
preference orders. Besides some general results on the relationships between the
original aggregated order and the updated aggregated order we also established
a framework for computational approaches to dynamic preference aggregation.
We developed dynamic preference aggregators for two simple aggregation mech-
anisms, namely plurality and Borda, and discussed their properties.

As mentioned in the introduction the work developed here is applied in the
field of social web recommendation systems and a first prototype of a work-
ing application is currently under development. Another application of dynamic
preference aggregators can also been seen in preference elicitation [16]. Prefer-
ence elicitation describes the process of iteratively updating an initially empty
preference order in order to determine an agent’s preference order. When pref-
erence orders of multiple agents have to be elicited and their orders have to be
aggregated methods for dynamic preference aggregation can be utilized.
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