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Abstract

Inconsistencies in knowledge bases are of major concern in knowledge representation and rea-
soning. In formalisms that employ model-based reasoning mechanisms inconsistencies render a
knowledge base useless due to the non-existence of a model. In order to restore consistency an
analysis and understanding of inconsistencies is mandatory. Recently, the field of inconsistency
measurement has gained some attention for knowledge representation formalisms based on clas-
sical logic. An inconsistency measure is a tool that helps the knowledge engineer in obtaining
insights into inconsistencies by assessing their severity. In this paper, we investigate inconsis-
tency measurement in probabilistic conditional logic, a logic that incorporates uncertainty and
focuses on the role of conditionals, i. e. if-then rules. We do so by extending inconsistency
measures for classical logic to the probabilistic setting. Further, we propose novel inconsistency
measures that are specifically tailored for the probabilistic case. These novel measures use
distance measures to assess the distance of a knowledge base to a consistent one and therefore
takes the crucial role of probabilities into account. We analyze the properties of the discussed
measures and compare them using a series of rationality postulates.

Keywords: inconsistency measures, inconsistency management, probabilistic reasoning,
probabilistic conditional logic

1. Introduction

The field of knowledge representation and reasoning (Brachman and Levesque, 2004) is
concerned with formal representations of knowledge and how these formalizations can be used
for reasoning, i. e., how new information can be automatically inferred using a formal system.
One of the big issues in knowledge representation is accuracy. Usually, the term “knowledge”
is used to describe strict or objective information that is considered to be absolutely true in the
given frame of reference, i. e. the real world. The counterpart, denoted by “subjective knowledge”
or “beliefs”, is used to describe information that is assumed to be true by the individual under
consideration. While strict knowledge describes—by definition—a consistent state, subjective
knowledge might be flawed in several aspects. Besides being incorrect with respect to the real
world, subjective knowledge can be incomplete, uncertain, or inconsistent. That is, for some
piece of information I it might be unknown whether I is true or false (incompleteness), I might
be believed only to a certain degree (uncertainty), or I might be in conflict with another piece
of information I ′ (inconsistency). Note that inconsistency of two pieces of information I and
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I ′ implies that at least one of them is incorrect. However, even without the possibility to
compare I and I ′ with the state of the real world, an inconsistency can be detected by a being
capable of reasoning, which is not necessarily true for incorrect information in general. In this
paper, we do not consider the general problem of incorrect information and always assume that
represented pieces of information are subjective. However, as some terms like knowledge base
have been established in the literature we adapt those conventions.

Within the field of knowledge representation and reasoning there are several subfields that
deal with incomplete, uncertain, and/or inconsistent knowledge such as default (Reiter, 1980)
and defeasible reasoning (Kyburg et al., 1990), argumentation (Bench-Capon and Dunne, 2007;
Rahwan and Simari, 2009), or possibilistic and fuzzy reasoning (Siler and Buckley, 2005).
Among the most established logical frameworks for dealing with uncertainty is probability the-
ory (Paris, 2006; Pearl, 1998). There have been numerous works on combining probability
theory with knowledge representation. For example, Bayesian networks and Markov nets allow
for derivation of uncertain beliefs from other uncertain beliefs. Especially in application areas
such as medical diagnosis, where the user has to rely crucially on the certainty of individual
recommendations, reasoning using probabilistic models of knowledge serves well (Parmigiani,
2002).

In this paper we employ probabilistic conditional logic (Rödder, 2000) for representing uncer-
tain knowledge. In probabilistic conditional logic, knowledge is represented using probabilistic
conditionals (ψ |φ)[p] with the intuitive meaning “if φ is true then ψ is true with probability p”.
Probabilistic conditional logic has been studied extensively under several aspects, e. g. effective
reasoning mechanisms (Frisch and Haddawy, 1994), default reasoning (Lukasiewicz, 2000), or
extensions with first-order logic fragments (Kern-Isberner and Lukasiewicz, 2004; Kern-Isberner
and Thimm, 2010). Moreover, the field of information theory provides a nice solution to the
problem of incomplete information in probabilistic conditional logic. Using the principle of
maximum entropy (Paris, 2006) one can complete uncertain and incomplete information in or-
der to gain new information that was unspecified before, see also (Rödder, 2000; Kern-Isberner,
2001). The expert system SPIRIT (Rödder and Meyer, 1996) is a working system that employs
reasoning based on the principle of maximum entropy. It has been applied to various fields of
operations research such as project risk management (Ahuja and Rödder, 2002) and portfolio
selection (Rödder et al., 2009). Though reasoning with maximum entropy can deal with incom-
plete and uncertain information, it is not suitable for reasoning with inconsistent information.
But inconsistency is a ubiquitous matter and human beings have to deal with it all the time.
In knowledge engineering and expert system design it becomes most apparent when multiple
experts try to build up a common knowledge base. However, the issue of extending reasoning
with maximum entropy to inconsistent knowledge bases has been dealt with in the literature
only little so far, cf. (Rödder and Xu, 2001; Finthammer et al., 2007; Daniel, 2009).

In this paper, we investigate inconsistencies in probabilistic conditional logic from an ana-
lytical perspective. One way to analyze inconsistencies is by measuring them. An inconsistency
measure is a function that quantifies the severity of inconsistencies in knowledge bases. An in-
consistency value of zero indicates no inconsistency (and therefore consistency) while the larger
the inconsistency value, the more severe the inconsistency. Thus, an inconsistency measure can
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be seen as the counterpart to an information measure (Cover, 2001) for the case of inconsistent
information. Recently, there has been a gain in attention to approaches for measuring incon-
sistency in classical logics, see e. g. (Hunter and Konieczny, 2010; Grant and Hunter, 2011). In
general, an inconsistency measure can be used to support the knowledge engineer in building
a consistent knowledge base or repairing an inconsistent one. For example, Grant and Hunter
(2011) develop an approach for stepwise inconsistency resolution of inconsistent knowledge bases
that makes use of inconsistency measures. In their approach, a knowledge base is repaired by
e. g. deleting or weakening formulas. There, inconsistency measures serve as heuristics for
selecting the right formula that has to be modified, i. e. by selecting that one that maximizes
consistency gain. Inconsistency measures can also be used to determine which pieces of infor-
mation are most responsible for producing the inconsistency. In (Hunter and Konieczny, 2010;
Thimm, 2011b) the Shapley value (Shapley, 1953) is used to distribute the inconsistency value
of a knowledge base among the individual formulas. In a setting where knowledge is merged
from different sources this information can help in identifying the responsible contributors.

However, classical approaches for inconsistency measurement do not grasp the nuances of
probabilistic knowledge and allow only for a very coarse assessment of the severity of inconsis-
tencies. In particular, those approaches do not take the crucial role of probabilities into account
and exhibit a discontinuous behavior in measuring inconsistency. That is, a slight modification
of the probability of a conditional in a knowledge base may yield a discontinuous change in the
value of the inconsistency. Consequently, we develop novel inconsistency measures that are more
apt for the probabilistic setting. We do so by continuing and largely extending previous work
(Thimm, 2009, 2011a,b). In particular, the contributions of this paper are as follows. First, we
propose and discuss a series of rationality postulates for inconsistency measures in probabilistic
conditional logic. Many of those postulates are inspired by similar properties for the classical
case—see e. g. (Hunter and Konieczny, 2010)—and others specifically address demands arising
from the use of a probabilistic logic, such as the demand for a continuous behavior with respect
to changes in the knowledge base. Second, we extend several inconsistency measures that were
proposed for the classical case to the more expressive framework of probabilistic conditional
logic and investigate their properties with respect to the rationality postulates. Third, we pick
up an extended logical formalization (Muiño, 2011) of the inconsistency measure proposed in
(Thimm, 2009) for probabilistic conditional logic, generalize it, and define a family of inconsis-
tency measures based on minimizing the distance of a knowledge base to a consistent one. We
also propose a novel compound measure that solves an issue with the previous measure. We
thoroughly investigate the properties of all measures with respect to the rationality postulates
and discuss their advantages and disadvantages with the use of examples.

The rest of this paper is organized as follows. We continue in Section 2 with an overview
on probabilistic conditional logic and introduce further notation. In Section 3 we approach the
problem of inconsistency measurement in probabilistic conditional logic by developing a series
of rationality postulates. We continue with an overview on the technical results of the paper
in Section 4. We extend inconsistency measures for classical logic to the probabilistic setting
in Section 5 and present novel inconsistency measures that are more apt for the probabilistic
setting in Section 6. In Section 7 we review related work and in Section 8 we conclude with
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some final remarks. All proofs of technical results can be found in the appendix.

2. Probabilistic Conditional Logic

Let At be a propositional signature, i. e. a finite set of propositional atoms. Let L(At) be
the corresponding propositional language generated by the atoms in At and the connectives ∧
(and), ∨ (or), and ¬ (negation). For φ, ψ ∈ L(At) we abbreviate φ∧ψ by φψ and ¬φ by φ. The
symbols > and ⊥ denote tautology and contradiction, respectively. We use possible worlds, i. e.
syntactical representations of truth assignments, for interpreting formulas in L(At). A possible
world ω is a complete conjunction, i. e. a conjunction that contains for each a ∈ At either a
or ¬a. Let Ω(At) denote the set of all possible worlds. A possible world ω ∈ Ω(At) satisfies
an atom a ∈ At, denoted by ω |= a if and only if a positively appears in ω. The entailment
relation |= is extended to arbitrary formulas in L(At) in the usual way. Formulas ψ, φ ∈ L(At)
are equivalent, denoted by φ ≡ ψ, if and only if ω |= φ whenever ω |= ψ for every ω ∈ Ω(At).

The central notion of probabilistic conditional logic (Rödder, 2000) is that of a probabilistic
conditional.

Definition 1 (Probabilistic conditional). If φ, ψ ∈ L(At) with p ∈ [0, 1] then (ψ |φ)[p] is called
a probabilistic conditional.

A probabilistic conditional c = (ψ |φ)[p] is meant to describe a probabilistic if-then rule,
i. e., the informal interpretation of c is that “if φ is true then ψ is true with probability p”. If
φ ≡ > we abbreviate (ψ |φ)[p] by (ψ)[p]. Further, for c = (ψ |φ)[p] we denote with head(c) = ψ
the head of c, with body(c) = φ the body of c, and with prob(c) = p the probability of c. Let
C(At) denote the set of all probabilistic conditionals with respect to At.

Definition 2 (Knowledge base). A knowledge base K is a finite sequence of probabilistic con-
ditionals, i. e. it holds that K = 〈c1, . . . , cn〉 for some c1, . . . , cn ∈ C(At).

We impose an ordering on the conditionals in a knowledge base K only for technical con-
venience. The order can be arbitrary and has no further meaning other than to enumerate the
conditionals of a knowledge base in an unambiguous way. For similar reasons we allow a knowl-
edge base to contain the same probabilistic conditional more than once. We come back to the
reasons for these design choices later. However, for all practical purposes a knowledge base can
be used as a set of probabilistic conditionals, as it is usually defined for knowledge representation
issues. In particular, for knowledge bases K = 〈c1, . . . , cn〉, K′ = 〈c′1, . . . , c′m〉 and a probabilis-
tic conditional c we define c ∈ K via c ∈ {c1, . . . , cn}, K ⊆ K′ via {c1, . . . , cn} ⊆ {c′1, . . . , c′m},
and K = K′ via {c1, . . . , cn} = {c′1, . . . , c′m}. The union of knowledge bases is defined via
concatenation.

Semantics are given to probabilistic conditionals by probability functions on Ω(At). Let
F(At) denote the set of all probability functions P : Ω(At) → [0, 1]. A probability function
P ∈ F(At) is extended to formulas φ ∈ L(At) via

P (φ) =
∑

ω∈Ω(At),ω|=φ

P (ω) . (1)
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That is, the probability of a formula is the sum of the probabilities of the possible worlds that
satisfy that formula. If P ∈ F(At) then P satisfies a probabilistic conditional (ψ |φ)[p], denoted
by P |=pr (ψ |φ)[p], if and only if P (ψφ) = pP (φ). Note that we do not define probabilistic
satisfaction via P (ψ |φ) = P (ψφ)/P (φ) = p in order to avoid a case differentiation for P (φ) = 0,
see (Paris, 2006) for further justification. Note, that P |=pr (ψ)[p] if and only if P (ψ) = p as
(ψ)[p] is the abbreviation for (ψ | >)[p] and P |=pr (ψ | >)[p], if and only if P (ψ ∧ >) = pP (>)
which is equivalent to P (ψ) = p. A probability function P satisfies a knowledge base K (or
is a model of K), denoted by P |=pr K, if and only if P |=pr c for every c ∈ K. Let Mod(K)
be the set of models of K. If Mod(K) 6= ∅ then K is consistent and if Mod(K) = ∅ then K is
inconsistent.

Example 1. Consider the knowledge base

K = 〈(f | b)[0.9], (b | p)[1], (f | p)[0.01]〉

with the intuitive meaning that birds (b) usually (with probability 0.9) fly (f), that penguins
(p) are always birds, and that penguins usually do not fly (only with probability 0.01). The
knowledge base K is consistent as for e. g. P ∈ F(At) with

P (bfp) = 0.005 P (bfp) = 0.49 P (bfp) = 0.045 P (bfp) = 0.01

P (bfp) = 0.0 P (bfp) = 0.2 P (bfp) = 0.0 P (bfp) = 0.25

it holds that P |=pr K as e. g.

P (b) = P (bfp) + P (bfp) + P (bfp) + P (bfp) = 0.55 and

P (bf) = P (bfp) + P (bfp) = 0.495

and therefore P (f | b) = P (bf)/P (b) = 0.9.

Example 2. The knowledge base {(a)[0.9], (a)[0.4]} is inconsistent as there is no P ∈ F(At)
with P (a) = 0.9 and P (a) = 0.4. Furthermore, observe that {(b | a)[0.8], (a)[0.6], (b)[0.4]} is
inconsistent as P |=pr {(b | a)[0.8], (a)[0.6]} implies P (b) ≥ 0.48 which can not simultaneously
be satisfied with P (b) = 0.4.

A probabilistic conditional (ψ |φ)[p] is normal if and only if there are ω, ω′ ∈ Ω(At) with
ω |= ψφ and ω′ |= ψφ. In other words, a probabilistic conditional c is normal if it is satisfiable
but not tautological.

Example 3. The probabilistic conditionals c1 = (> | a)[1] and c2 = (a | a)[0.1] are not normal
as c1 is tautological (there is no ω ∈ Ω(At) with ω |= >a as >a ≡⊥) and c2 is not satisfiable
(there is no ω ∈ Ω(At) with ω |= aa as aa ≡⊥).

As a technical convenience, for the rest of this paper we consider only normal probabilistic
conditionals, so let K be the set of all non-empty knowledge bases of C(At) that contain only
normal probabilistic conditionals.
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Knowledge bases K1,K2 are extensionally equivalent, denoted by K1 ≡e K2, if and only if
Mod(K1) = Mod(K2). Note that the notion of extensional equivalence does not distinguish
between inconsistent knowledge bases, i. e. for inconsistent K1 and K2 it always holds that
K1 ≡e K2. As we are interested particularly in inconsistent knowledge bases we require another
means for comparing those. Knowledge bases K1,K2 are semi-extensionally equivalent, denoted
by K1 ≡s K2, if and only if there is a bijection ρK1,K2 : K1 → K2 such that c ≡e ρK1,K2(c)
for every c ∈ K1. This means that two knowledge bases K1 and K2 are semi-extensionally
equivalent if we find a mapping between the conditionals of both knowledge bases such that
each conditional of K1 is extensionally equivalent to its image in K2. The following relationship
is easy to see and given without proof.

Proposition 1. It holds that K1 ≡s K2 implies K1 ≡e K2

However, note that the other direction is not true in general.

Example 4. Consider the two knowledge bases K1 = 〈(a)[0.7], (a)[0.4]〉 and K2 = 〈(b)[0.8],
(b)[0.3]〉. Both K1 and K2 are inconsistent and therefore K1 ≡e K2. But it holds that K1 6≡s K2

as both (a)[0.7] 6≡e (b)[0.8] and (a)[0.7] 6≡e (b)[0.3].

One way for reasoning with knowledge bases is by using model-based inductive reasoning
techniques (Paris, 2006). For example, reasoning based on the principle of maximum entropy
selects among the models of a knowledge base K the one unique probability function with
maximum entropy. Reasoning with this model satisfies several commonsense properties, see
e. g. (Paris, 2006; Kern-Isberner, 2001). However, a necessary requirement for the application of
model-based inductive reasoning techniques is the existence of at least one model of a knowledge
base. In order to reason with inconsistent knowledge bases the inconsistency has to be resolved
first. In the following, we discuss the topic of inconsistency measurement for probabilistic
conditional logic as inconsistency measures can support the knowledge engineer in the task of
resolving inconsistency.

3. Principles for Inconsistency Measurement

Inconsistency measurement is a research topic that has been mainly investigated in the
field of classical theories only, see e. g. (Grant and Hunter, 2011) for some recent work. In
the following, we investigate inconsistency measurement for probabilistic conditional logic in
a principled fashion but borrow some notation from classical inconsistency measurement like
from (Hunter and Konieczny, 2010). An inconsistency measure I is a function that maps a
(possibly inconsistent) knowledge base onto a non-negative real value, i. e., an inconsistency
measure I is a function I : K → [0,∞). The value I(K) for a knowledge base K is called
the inconsistency value of K with respect to I. In order to formalize the intuition behind
inconsistency measures we give a list of principles that should be satisfied by any reasonable
inconsistency measure. For that we need some further notation.

Definition 3 (Minimal inconsistent set). A set M of probabilistic conditionals is minimal
inconsistent if M is inconsistent and every M′ (M is consistent.
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Let MI(K) be the set of the minimal inconsistent subsets of K ∈ K.

Example 5. Consider the knowledge base K = 〈(a)[0.3], (b)[0.5], (a ∧ b)[0.7]〉. Then the set of
minimal inconsistent subsets of K is given via

MI(K) = { {(a)[0.3], (a ∧ b)[0.7]}, {(b)[0.5], (a ∧ b)[0.7]} } .

The notion of minimal inconsistent subsets captures those conditionals that are responsible
for causing inconsistencies. Conditionals that do not take part in creating an inconsistency are
free.

Definition 4 (Free conditional). A probabilistic conditional c ∈ K is free in K if and only if
c /∈M for all M∈ MI(K).

For a conditional or a knowledge base C let At(C) denote the set of atoms appearing in C.

Definition 5 (Safe conditional). A probabilistic conditional c ∈ K is safe in K if and only if
At(c) ∩ At(K \ {c}) = ∅.

Note that the notion of safeness is due to Hunter and Konieczny (Hunter and Konieczny,
2010). The notion of a free conditional is clearly more general then the notion of a safe
conditional.

Proposition 2. If c is safe in K then c is free in K.

Consider now the following properties, cf. (Hunter and Konieczny, 2010; Thimm, 2009). Let
K,K′ be knowledge bases and c a probabilistic conditional.

Consistency K is consistent if and only if I(K) = 0

Monotonicity I(K) ≤ I(K ∪ {c})
Super-additivity If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)
Weak independence If c ∈ K is safe in K then I(K) = I(K \ {c})
Independence If c ∈ K is free in K then I(K) = I(K \ {c})
Penalty If c ∈ K is not free in K then I(K) > I(K \ {c})
Irrelevance of syntax If K1 ≡s K2 then I(K1) = I(K2)

MI-separability If MI(K1∪K2) = MI(K1)∪MI(K2) and MI(K1)∩MI(K2) = ∅ then I(K1∪K2) =
I(K1) + I(K2)

The property consistency demands that I(K) is minimal for consistent K. The properties
monotonicity and super-additivity demand that I is non-decreasing under the addition of new
information. The properties weak independence and independence say that the inconsistency
value should stay the same when adding “harmless” information. The property penalty is the
counterpart of independence and demands that adding inconsistent information increases the
inconsistency value. We define the property irrelevance of syntax in terms of the equivalence
relation ≡s as all inconsistent knowledge bases are equivalent with respect to ≡e. For an
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inconsistency measure I, imposing irrelevance of syntax to hold in terms of ≡e would yield
I(K) = I(K′) for every two inconsistent knowledge bases K,K′. The property MI-separability—
which has been adapted from (Hunter and Konieczny, 2010)—states that determining the value
of I(K1 ∪ K2) can be split into determining the values of I(K1) and I(K2) if the minimal
inconsistent subsets of K1 ∪ K2 are partitioned by K1 and K2.

The above properties do not take the crucial role of probabilities into account. In or-
der to account for those we need some further notation. Let K be a knowledge base. For
~x ∈ [0, 1]|K| we denote by K[~x] the knowledge base that is obtained from K by replacing
the probabilities of the conditionals in K by the values in ~x, respectively. More precisely,
if K = 〈(ψ1 |φ1)[p1], . . . , (ψn |φn)[pn]〉 then K[~x] = 〈(ψ1 |φ1)[x1], . . . , (ψn |φn)[xn]〉 for ~x =
〈x1, . . . , xn〉 ∈ [0, 1]n. Similarly, for a single probabilistic conditional c = (ψ |φ)[p] and x ∈ [0, 1]
we abbreviate c[x] = (ψ |φ)[x].

Definition 6 (Characteristic function). Let K ∈ K be a knowledge base. The function ΛK :
[0, 1]|K| → K with ΛK(~x) = K[~x] is called the characteristic function of K.

The above definition is the justification for imposing an order on the probabilistic condi-
tionals of a knowledge base.

Definition 7 (Characteristic inconsistency function). Let I be an inconsistency measure and
let K ∈ K be a knowledge base. The function

θI,K : [0, 1]|K| → [0,∞)

with θI,K = I ◦ ΛK is called the characteristic inconsistency function of I and K.

The following property continuity describes our main demand for continuous inconsistency
measurement, i. e., a “slight” change in the knowledge base should not result in a “vast” change
of the inconsistency value.

Continuity θI,K is continuous

The above property demands a certain smoothness of the behavior of I. Given a fixed set
of probabilistic conditionals this property demands that changes in the quantitative part of
the conditionals trigger a continuous change in the inconsistency value. Note that we require
the qualitative part of the conditionals, i. e. premises and conclusions of the conditionals, to
be fixed. This makes this property not applicable for the classical setting. In the probabilistic
setting satisfaction of this property is helpful for the knowledge engineer in restoring consistency.
Observe that for every knowledge base K ∈ K there is always a ~x ∈ [0, 1]|K| such that K[~x] is
consistent, cf. (Thimm, 2009). While in the classical setting, consistency of knowledge bases can
only be restored by either removing or weakening formulas, in the probabilistic setting every
knowledge base can also be made consistent by changing probabilities, see (Finthammer et al.,
2007) for an heuristic approach utilizing this observation. Given that we have a continuous
inconsistency measure the search for a “close” consistent solution can be better guided, see
(Thimm, 2011b) for approaches that utilize continuous inconsistency measures in order to
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implement a search procedure similar to gradient descent search in optimization (Boyd and
Vandenberghe, 2004).

Some relationships between the above properties are as follows.

Proposition 3. Let I be an inconsistency measure and let K,K′ be some knowledge bases.

1. If I satisfies super-additivity then I satisfies monotonicity.

2. If I satisfies independence then I satisfies weak independence.

3. If I satisfies MI-separability then I satisfies independence.

4. K ⊆ K′ implies MI(K) ⊆ MI(K′).

5. If I satisfies independence then MI(K) = MI(K′) implies I(K) = I(K′).

6. If I satisfies independence and penalty then MI(K) ( MI(K′) implies I(K) < I(K′).

In (Hunter and Konieczny, 2010) two further properties are discussed for classical incon-
sistency measurement: normalization and dominance. The property normalization can be
phrased as follows (note that the term normalization is not the be confused with our notion of
normal conditionals).

Normalization I(K) ∈ [0, 1]

The above property states that inconsistency values should be bounded from above by one.
On the one hand, this demand makes perfect sense as this allows for comparing inconsistency
values of different knowledge bases in a unified way. On the other hand, this demand is—in
general—in conflict with the demand for super-additivity as the following example shows.

Example 6. Let i, k ∈ N with k ≤ i. Consider the conditionals

ck1 = (ak)[0.6] ck2 = (ak)[0.4]

on a propositional signature Ati = {a1, . . . , ai}. Obviously, the knowledge base 〈c1
1, c

1
2〉 on At1

is inconsistent and therefore some inconsistency measure I satisfying consistency assigns some
non-zero inconsistency value to 〈c1

1, c
1
2〉, i. e. I(〈c1

1, c
1
2〉) = x > 0. Furthermore, any knowledge

base 〈ci1, ci2〉 on Ati is inconsistent as well and should be assigned the same inconsistency value,
i. e. I(〈ci1, ci2〉) = x. It follows that, if I satisfies super-additivity and does not take the size of
signature of a knowledge base into account then there is a natural number n ∈ N such that for
Kn = 〈c1

1, c
1
2, . . . , c

n
1 , c

n
2 〉 it holds that

I(Kn) ≥ I(〈c1
1, c

1
2〉) + . . .+ I(〈cn1 , cn2 〉) ≥ nx > 1 .

Thus, I cannot satisfy normalization.

The previous example showed that an inconsistency measure that does not take (the size
of) the signature into account cannot satisfy consistency, super-additivity, and normalization
at the same time. Furthermore, taking (the size of) the signature into account may become
unintuitive. As for the case of Example 6, in order to allow I to satisfy consistency, super-
additivity, and normalization it has to hold that for K = 〈c1

1, c
1
2〉 defined on At1 and K′ = 〈c1

1, c
1
2〉
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defined on At2 it follows that I(K) 6= I(K′). As K = K′ this result may be unintuitive.
However, one has to note that for K the whole language is affected by the inconsistency while
for K′ only “half” of the language is affected. In particular, for the proposition a2 ∈ At2 there
is no conditional c ∈ K′ such that c ∈ M for some M ∈ MI(K′) and a2 ∈ At(c). Provided
that we employ a paraconsistent reasoning mechanism for probabilistic knowledge—like the one
proposed in (Daniel, 2009)—information about a2 can consistently be derived, maybe only by
inferring that there is no information on a2, i. e., by deriving the probability 0.5 for a2. This
observation distinguishes K′ from K as for the latter a2 does not belong to the signature and
therefore no information is derivable for a2 at all. Although this distinction is marginal, observe
that there is a difference in inferring that we have no information on a2 and that inference on
a2 is not defined.

We now turn to the property dominance (Hunter and Konieczny, 2010) which can be phrased
as follows. Let c1 |=pr c2 be defined via Mod({c1}) ⊆ Mod({c2}) for conditionals c1, c2.

Dominance If c1 |=pr c2 then I(K ∪ {c1}) ≥ I(K ∪ {c2})

The motivation of the property dominance in the classical setting is that logically stronger
formulas have the potential to bring more conflicts (Hunter and Konieczny, 2010). In the
context of probabilistic conditional logic this property is vacuous as entailment by probabilistic
conditionals is trivial.

Proposition 4. Let c1 = (ψ1 |φ1)[p1] and c2 = (ψ2 |φ2)[p2] be normal. If c1 |=pr c2 then
c2 ≡e c1.

Applying this observation to the property dominance we obtain

Dominance If c1 ≡e c2 then I(K ∪ {c1}) = I(K ∪ {c2})

which is a weakening of the property irrelevance of syntax. For this reason, we will not consider
the property dominance in what follows.

4. Overview of Results

In the following sections we investigate different inconsistency measures with respect to
the properties defined above. We review inconsistency measures for classical logics and adapt
them to the probabilistic case in Section 5. In particular, we investigate the drastic inconsis-
tency measure I0, the MI inconsistency measure IMI, the MIC inconsistency measure ICMI, and
the η-inconsistency measure Iη. Afterwards, we develop novel inconsistency measures for the
probabilistic case in Section 6. More specifically, we develop the family of d-inconsistency mea-
sures ID that are based on distance measures D and the family of Σ-inconsistency measures
IIΣ that utilize other inconsistency measures. Finally, in Section 7 we also investigate another
inconsistency measure Ihµ from related work (Daniel, 2009).

Table 1 summarizes the properties of the inconsistency measures discussed in this paper.
Note that we only show the properties of the p-norm distance inconsistency measure Ip as
a particularly good representative for d-inconsistency measures ID. The properties of other
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Property I0 IMI ICMI Iη Ip IIpΣ Ihµ

Consistency X X X X X X X
Monotonicity X X X X X X X
Super-additivity - X X - p = 1 X -
Irrelevance of syntax X X X X X X X
Weak independence X X X X X X X
Independence X X X X X X ?
MI-separability - X X - (p = 1) X -
Penalty - X X - - X -
Normalization X - - X - - X
Continuity - - - - X X X

Table 1: Comparison of inconsistency measures

d-inconsistency measures may vary, cf. Theorem 2. For the same reasons we only show the
properties of the Σ-inconsistency measure instantiated with the p-norm distance inconsistency
measure. In Table 1 the entry “X” means that the inconsistency measure satisfies the given
property, the entry p = 1 means that the property is satisfied if the condition is satisfied, an
entry in parentheses means that satisfaction of the property is conjectured, and a question
mark means that it is unclear whether the property is satisfied.

In the following, we continue with providing the formal definitions of the inconsistency
measures and the elaboration of the technical results.

5. Classical Inconsistency Measures

We start with a survey on existing approaches to inconsistency measurement for classical
logic and adapt those to the probabilistic case. In particular, we have a look at the drastic
inconsistency measure, the MI inconsistency measure, the MIC inconsistency measure, and the
η-inconsistency measure, see e. g. (Hunter and Konieczny, 2008; Knight, 2001) for the classical
definitions. What these approaches have in common, due to their origin, is that they concentrate
on the qualitative part of inconsistency rather than the quantitative part, i. e. the probabilities.

5.1. Drastic Inconsistency Measure

The simplest approach to define an inconsistency measure is by just differentiating whether
a knowledge base is consistent or inconsistent.

Definition 8 (Drastic inconsistency measure). Let I0 : K→ [0,∞) be the function defined as

I0(K) =

{
0 if K is consistent
1 if K is inconsistent

for K ∈ K. The function I0 is called the drastic inconsistency measure.

11



The drastic inconsistency measure allows only for a binary decision on inconsistencies and
does not quantify the severity of inconsistencies. Although being a very simple inconsistency
measure, I0 still satisfies several basic properties as the next proposition shows.

Proposition 5. The function I0 satisfies consistency, irrelevance of syntax, monotonicity,
weak independence, independence, and normalization.

Notice, that I0 satisfies neither super-additivity, penalty, MI-separability, nor continuity.

Example 7. Consider the knowledge bases K1 = 〈c1, c2〉 and K2 = 〈c3, c4〉 given via

c1 = (a)[0.4] c2 = (a)[0.6] c3 = (b)[0.4] c4 = (b)[0.6] .

It follows that I0(K1) = I0(K2) = 1 but

I0(K1 ∪ K2) = 1 6= I0(K1) + I0(K2) ,

therefore violating both super-additivity and MI-separability. Furthermore, c4 is not a free
conditional in K1 ∪K2 but I0(K1 ∪K2 \ {c4}) = I0(K1 ∪K2) violating penalty. Also, I0 fails to
satisfy continuity as Im I0 = {0, 1} (Im f denotes the image of the function f).

One thing to note is that I0 is the upper bound for any inconsistency measure that satisfies
consistency and normalization, i. e., if I satisfies consistency and normalization then I(K) ≤
I0(K) for every K ∈ K (Thimm, 2011b).

5.2. MI Inconsistency Measure

The next inconsistency measure quantifies inconsistency by the number of minimal incon-
sistent subsets of a knowledge base.

Definition 9 (MI inconsistency measure). Let IMI : K→ [0,∞) be the function defined as

IMI(K) = |MI(K)|

for K ∈ K. The function IMI is called the MI inconsistency measure.

The definition of the MI inconsistency measure is motivated by the intuition that the more
minimal inconsistent subsets the greater the inconsistency.

Proposition 6. The function IMI satisfies consistency, monotonicity, super-additivity, weak
independence, independence, irrelevance of syntax, MI-separability, and penalty.

Notice, that IMI satisfies neither normalization nor continuity.

Example 8. Consider again K1 and K2 from Example 7. It holds that IMI(K1 ∪ K2) = 2
violating normalization. Also, IMI fails to satisfy continuity as Im IMI ⊆ N0 (the non-negative
natural numbers).

For a further discussion of the MI inconsistency measure we refer to (Thimm, 2011b).
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5.3. MIC Inconsistency Measure

Only considering the number of minimal inconsistent subsets may be too simple for assess-
ing inconsistencies in general. Another indicator for the severity of inconsistencies is the size of
minimal inconsistent subsets. A large minimal inconsistent subset means that the inconsistency
is distributed over a large number of conditionals. The more conditionals involved in an incon-
sistency the less severe the inconsistency is. Furthermore, a small minimal inconsistent subset
means that the participating conditionals strongly represent contradictory information. Con-
sider the following example for classical logic that can be found in e. g. (Hunter and Konieczny,
2008).

Example 9. In a lottery there are n lottery tickets and only one of them is the winning
ticket. If wi denotes the proposition that ticket i will win the lottery then the (classical)
formula φ = w1 ∨ . . . ∨ wn can be regarded as true. Furthermore, the belief of each ticket
buyer i is that he will not win the lottery, i. e., the formula φi = ¬wi is regarded to be true
for each i = 1, . . . , n. Obviously the set {φ, φ1, . . . , φn} is inconsistent as φ demands that one
ticket has to win and, hence, one ticket owner k is wrong in assuming ¬wk. However, with
increasing number of available tickets the inconsistency becomes negligible and each ticket
owner is justified in believing that he will not win.

Although the previous example has been formulated for classical logic the argument stands
for probabilistic logics as well.

The following inconsistency measure is inspired by (Hunter and Konieczny, 2008) and aims
at differentiating between minimal inconsistent sets of different size.

Definition 10 (MIC inconsistency measure). Let ICMI : K→ [0,∞) be the function defined as

ICMI(K) =
∑

M∈MI(K)

1

|M|

for K ∈ K. The function ICMI is called the MIC inconsistency measure.

Note that ICMI(K) = 0 if MI(K) = ∅.
The MIC inconsistency measure sums over the reciprocal of the sizes of all minimal in-

consistent subsets. In that way, a large minimal inconsistent subset contributes less to the
inconsistency value than a small minimal inconsistent subset. As the MI inconsistency measure
the MIC inconsistency measure behaves well with respect to many desirable properties.

Proposition 7. The function ICMI satisfies consistency, monotonicity, super-additivity, weak
independence, independence, irrelevance of syntax, MI-separability, and penalty.

Note that ICMI satisfies neither normalization nor continuity.

Example 10. Consider the knowledge base K = 〈c1, . . . , c6〉 given via

c1 = (a)[0.4] c2 = (a)[0.6] c3 = (b)[0.4]

c4 = (b)[0.6] c5 = (c)[0.4] c6 = (c)[0.6] .

It follows that ICMI(K) = 1.5 thus violating normalization. ICMI also fails to satisfy continuity as
Im ICMI ⊆ Q+

0 (the non-negative rational numbers).
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For a further discussion of the MIC inconsistency measure we refer to (Thimm, 2011b).

5.4. η-Inconsistency measure

The work (Knight, 2001) employs probability theory itself to measure inconsistency in
classical theories by considering probability functions on classical interpretations. Those ideas
can be extended for measuring inconsistency in probabilistic logics by considering probability
functions on probability functions. Let P̂ : F(At) → [0, 1] be a probability function on F(At)
such that P̂ (P ) > 0 only for finitely many P ∈ F(At). Let F2(At) be the set of those probability
functions. Then define

P̂ (c) =
∑

P∈F(At),P |=prc

P̂ (P ) (2)

for a conditional c. This means that the probability (in terms of P̂ ) of a conditional is the sum
of the probabilities of probability functions that satisfy c. Note that this definition is similar in
spirit to the definition of the probability of formulas in (1). The main difference is that in (1)
formulas of the object level are propositional formulas and in (2) formulas of the object level
are probabilistic conditionals. Note also that by restricting P̂ to assign a non-zero value only
to finitely many P ∈ F(At), the sum in (2) is well-defined.

Now consider the following definition of the η-inconsistency measure.

Definition 11 (η-inconsistency measure). Let Iη : K→ [0,∞) be the function defined as

Iη(K) = 1−max{η | ∃P̂ ∈ F2(At) : ∀c ∈ K : P̂ (c) ≥ η}

for K ∈ K. The function Iη is called the η-inconsistency measure.

The idea of the η-inconsistency measure is that it looks for the largest probability that can
be consistently assigned to the conditionals of a knowledge base and defines the inconsistency
value inversely proportional to this probability.

Example 11. Let K be a knowledge base with K = 〈(b | a)[0.9], (a)[0.9], (b)[0.1]〉. Note that
K is inconsistent. As A1 = {(b | a)[0.9], (a)[0.9]} is consistent, let P1 ∈ F(At) be a probability
function with P1 |=pr A1. Similarly, let A2 = {(b | a)[0.9], (b)[0.1]}, A3 = {(a)[0.9], (b)[0.1]} and
P2, P3 ∈ F(At) such that P2 |=pr A2 and P3 |=pr A3. Then define P̂ ∈ F2(At) via

P̂ (P1) = P̂ (P2) = P̂ (P3) = 1/3

P̂ (P ) = 0 for P ∈ F(At) \ {P1, P2, P3} .

It follows

P̂ ((b | a)[0.9]) =
∑

P∈F(At),P |=prc

P̂ (P ) = P̂ (P1) + P̂ (P2) = 2/3

and similarly P̂ ((a)[0.9]) = P̂ ((b)[0.1]) = 2/3. It is also easy to see that there is no P̂ ′ ∈ F2(At)
such that P̂ ′(c) > 2/3 for all c ∈ K. Therefore, it follows Iη(K) = 1− 2/3 = 1/3.
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Several properties for the η-inconsistency measure can be directly derived from properties
of its classical counterpart. For example, the following proposition is a direct extension of
Theorem 2.12 in (Knight, 2002).

Proposition 8. If MI(K) = {K} then Iη(K) = 1/|K|.

As for the properties proposed in the previous section consider the following proposition.

Proposition 9. The function Iη satisfies consistency, monotonicity, weak independence, in-
dependence, irrelevance of syntax and normalization.

Note that Iη does not satisfy super-additivity, penalty, MI-separability and continuity.

Example 12. Consider again the knowledge bases K1 = 〈c1, c2〉 and K2 = 〈c3, c4〉 from Exam-
ple 7 given via

c1 = (a)[0.4] c2 = (a)[0.6] c3 = (b)[0.4] c4 = (b)[0.6] .

By Proposition 8 it follows that Iη(K1) = Iη(K2) = 1/2 but

Iη(K1 ∪ K2) = 1/2

as well, therefore violating both super-additivity and MI-separability (observe that there are
P1, P2 such that P1 |=pr c1, c3 and P2 |= c2, c4). Consider now the knowledge base K3 =
〈(a)[0.4], (a)[0.6], (¬a)[0.4]〉. Note that (¬a)[0.4] ∈ K3 is not a free conditional in K3. However,
it holds that

Iη(K3) = Iη(K3 \ {(¬a)[0.4]}) = 1/2

as there are P1, P2 ∈ F(At) with P1 |=pr (a)[0.4], (¬a)[0.6] and P2 |=pr (a)[0.6]. Consider
now the knowledge base Kx = 〈(a)[0.2], (a)[x]〉. It holds that Iη(Kx) = 1/2 for x 6= 0.2 and
Iη(Kx) = 0 for x = 0.2. Therefore, Iη fails to satisfy continuity.

5.5. Classical Inconsistency Measures and Continuity

The inconsistency measures discussed above were initially developed for inconsistency mea-
surement in classical theories and therefore allow only for a “discrete” measurement. Hence,
all of the above discussed inconsistency measures do not satisfy continuity. But satisfaction
of continuity is crucial for an inconsistency measure in probabilistic logics in order to assess
inconsistencies in a meaningful manner, cf. also Section 3.

Example 13. Consider the knowledge base K = 〈c1, c2, c3〉 given via

c1 = (b | a)[1] c2 = (a)[1] c3 = (b)[0] .

The knowledge base K is inconsistent and the set of minimal inconsistent subsets is given by
MI(K) = {{c1, c2, c3}}. It follows that

I0(K) = 1 IMI(K) = 1 ICMI(K) =
1

3
Iη(K) =

1

3
.
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Consider a modification K′ = 〈c′1, c′2, c′3〉 of K given via

c′1 = (b | a)[1] c′2 = (a)[1] c′3 = (b)[0.999] .

The knowledge base K′ is still inconsistent and it holds that I(K′) = I(K) for I ∈ {I0, IMI, ICMI,
Iη}. Now consider the knowledge base K′′ = 〈c′′1, c′′2, c′′3〉 given via

c′′1 = (b | a)[1] c′2 = (a)[1] c′′3 = (b)[1] .

The knowledge base K′′ is consistent and it follows that I0(K′′) = IMI(K′′) = ICMI(K′′) =
Iη(K′′) = 0. By comparing K′ and K′′ one can discover only a minor difference of the modeled
knowledge. Whereas in K′′ the proposition b is assigned a probability of 1 in K′ it is assigned
a probability of 0.999. From a practical point of view this difference may be of no relevance.
Still, a knowledge engineer may not grasp the harmlessness of the inconsistency in K′ as K has
the same degree of inconsistency with respect to those classical measures.

The above example motivates the need for a more graded approach to measure the incon-
sistencies in K, K′, and K′′. This measure should assign K′ a much smaller inconsistency value
than to K in order to distinguish their severities. In the next section, we continue with an
investigation of inconsistency measures that take the probabilities of conditionals into account
and therefore satisfy those needs.

6. Inconsistency Measures based on Distance Minimization

As can be seen in Example 13 the probabilities of conditionals play a crucial role in creating
inconsistencies. In order to respect this role we propose a family of inconsistency measures
that is based on the distance to consistency. To this end we employ the notion of a distance
measure.

6.1. The d-inconsistency measure

The obvious difference between classical knowledge bases—i. e. sets of classical formulas—
and probabilistic knowledge bases is that the latter are parametrized by probabilities. There-
fore, given a knowledge base of a fixed qualitative structure the different instantiations of prob-
abilities can be represented within the vector space [0, 1]|K|. In a vector space, the traditional
means of measuring differences are distance measures.

Definition 12 (Distance measure). Let n ∈ N+. A function dn : Rn ×Rn → [0,∞) is called a
distance measure if it satisfies the following properties:

1. dn(~x, ~y) = 0 if and only if ~x = ~y (reflexivity)

2. dn(~x, ~y) = dn(~y, ~x) (symmetry)

3. dn(~x, ~y) ≤ dn(~x, ~z) + dn(~z, ~y) (triangle inequality)

For n ∈ N+ let Dn denote the set of all distance measures dn : Rn × Rn → [0,∞). Let
D =

⋃
n∈N+ Dn.
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The simplest form of a distance measure is the drastic distance measure d0
n defined as

d0
n(~x, ~y) = 0 for ~x = ~y and d0

n(~x, ~y) = 1 for ~x 6= ~y (for ~x, ~y ∈ Rn and n ∈ N+). A more
interesting distance measure is the p-norm distance.

Definition 13 (p-norm distance). Let n, p ∈ N+. The function dpn : Rn ×Rn → [0,∞) defined
via

dpn(~x, ~y) = p
√
|x1 − y1|p + . . .+ |xn − yn|p

for ~x = 〈x1, . . . , xn〉, ~y = 〈y1, . . . , yn〉 ∈ Rn is called the p-norm distance.

Special cases of the p-norm distance include the Manhattan distance (for p = 1) and the
Euclidean distance (for p = 2).

In order to deal with vector spaces of different dimensions we also consider distance gener-
ators which map a dimension n ∈ N+ to a corresponding distance function.

Definition 14 (Distance generator). A distance generator D is a function D : N+ → D such
that D(n) ∈ Dn for all n ∈ N+. Let D be a distance generator.

1. D is monotonically generating if

D(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) ≤ D(n+ 1)(〈x1, . . . , xn+1〉, 〈y1, . . . , yn+1〉) (3)

for every n ∈ N+ and x1, . . . , xn+1, y1, . . . , yn+1 ∈ R.

2. D is super-additively generating if

D(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
+D(m)(〈xn+1, . . . , xn+m〉, 〈yn+1, . . . , yn+m〉)
≤D(n+m)(〈x1, . . . , xn+m〉, 〈y1, . . . , yn+m〉) (4)

for every n,m ∈ N+ and x1, . . . , xn+m, y1, . . . , yn+m ∈ R.

3. D is symmetric generating if

D(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
=D(n)(〈x1, . . . , 1− xi, . . . , xn〉, 〈y1, . . . , 1− yi, . . . , yn〉) (5)

for every i = 1, . . . , n and n ∈ N+.

4. D is continuously generating if D(n) is continuous for every n ∈ N+.

Although distance generators may be defined quite arbitrarily we consider the drastic dis-
tance generator D0 defined via D0(n) = d0

n (for every n ∈ N+) and the p-norm distance
generator Dp defined via Dp(n) = dpn (for every n, p ∈ N+).

Coming back to the issue of measuring inconsistency one can define the “severity of incon-
sistency” in a knowledge base by the minimal distance of the knowledge base to a consistent
one. As we are able to identify knowledge bases of the same qualitative structure in a vector
space, we can employ distance measures for measuring inconsistency.
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Definition 15 (d-inconsistency measure). Let D be a distance generator. Then the function
ID : K→ [0,∞) defined via

ID(K) = inf{D(|K|)(~x, ~y) | K = K[~x] and K[~y] is consistent} (6)

for K ∈ K is called the d-inconsistency measure.

The idea behind the d-inconsistency measure is that we look for a consistent knowledge
base that both 1.) has the same qualitative structure as the input knowledge base and 2.) is
as close as possible to the the input knowledge base. That is, if the input knowledge base is
K[~x] we look at all ~y ∈ [0, 1]|K| such that K[~y] is consistent and ~x and ~y are as close as possible
with respect to the distance measure D(|K|).

As we are mainly working with the p-norm distance we abbreviate IDp simply by Ip. As
the following theorem shows the d-inconsistency measure can be phrased using the minimum
instead of the infimum for every reasonable distance measure.

Theorem 1. If D is continuously generating then

ID(K) = min{D(|K|)(~x, ~y) | K = K[~x] and K[~y] is consistent} (7)

for every K ∈ K.

As the p-norm distance is a continuous function it also follows that Ip can be written like
(A.2) for every p ∈ N. In (Thimm, 2009, 2011b) the measure I1 has been investigated in a
preliminary fashion while (Muiño, 2011; Thimm, 2011a) contain some first discussions of the
general p-norm distance inconsistency measure. In particular, in (Muiño, 2011) it has been
shown that for every p, p′ ∈ N+ with p 6= p′ the two measures Ip and Ip′ are not equivalent,
i. e., there are knowledge bases K1 and K2 such that Ip(K1) > Ip(K2) but Ip′(K1) < Ip′(K2).

Consider also the following observation.

Proposition 10. It holds ID0 = I0.

Before we investigate the formal properties of the above measure we first have a look at an
example.

Example 14. We continue Example 13 with the knowledge base K = 〈c1, c2, c3〉 given via

c1 = (b | a)[1] c2 = (a)[1] c3 = (b)[0]

and consider the p-norm distance inconsistency measure. In particular, observe that for K∗ =
〈(b | a)[1], (a)[0.5], (b)[0.5]〉 it holds that

K∗ ∈ arg min{dp3(~x, ~y) | K = K[~x] and K[~y] is consistent}

for all p ∈ N+. That is, K∗ is a consistent knowledge base that has minimal p-norm distance
to K for all p ∈ N+. In particular, it holds that Ip(K) = p

√
2 · 0.5p. For example, it holds that

I1(K) = 1 and I2(K) ≈ 0.707 .

Furthermore, it holds that I1(K′) = 0.001 and I2(K′) ≈ 0.00071, and clearly I1(K′′) = I2(K′′) =
0.
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As with respect to the properties proposed in the previous section consider the following
results.

Theorem 2. Let D be a distance generator such that ID is well-defined.

1. The function ID satisfies consistency.

2. If D is monotonically generating then ID satisfies monotonicity.

3. If D is super-additively generating then ID satisfies super-additivity.

4. If D is symmetric generating then ID satisfies irrelevance of syntax.

5. If D is continuously generating then ID satisfies continuity.

As for the specific case of the p-norm distance inconsistency measure consider the following
theorem.

Theorem 3. Let p ∈ N+.

1. The function Ip satisfies consistency, monotonicity, weak independence, independence,
irrelevance of syntax, and continuity.

2. If p = 1 then Ip satisfies super-additivity.

The property MI-separability is not, in general, satisfied by ID as the following example
shows.

Example 15. Let K = 〈(a)[0.3], (a)[0.7], (b)[0.3], (b)[0.7]〉. It is easy to see that

I1(K) = 0.4 + 0.4 = 0.8

I2(K) =
√

0.22 + 0.22 + 0.22 + 0.22 = 0.4 .

It also holds that

I1(〈(a)[0.3], (a)[0.7]〉) = I1(〈(b)[0.3], (b)[0.7]〉) = 0.4 and

I2(〈(a)[0.3], (a)[0.7]〉) = I2(〈(b)[0.3], (b)[0.7]〉) =
√

0.22 + 0.22 ≈ 0.283 .

For p = 1 it follows that

I1(K) = I1(〈(a)[0.3], (a)[0.7]〉) + I1(〈(b)[0.3], (b)[0.7]〉) ,

therefore satisfying MI-separability. However, for p = 2 it follows that

I2(K) < I2(〈(a)[0.3], (a)[0.7]〉) + I2(〈(b)[0.3], (b)[0.7]〉)

violating MI-separability—and also super-additivity—as 〈(a)[0.3], (a)[0.7]〉 and 〈(b)[0.3], (b)[0.7]〉
partition the set of minimal inconsistent subsets of K.

As the above example suggests MI-separability seems to be satisfied for Ip with p = 1.
However, neither a counterexample nor a formal proof has been found yet.
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Conjecture 1. If p = 1 then Ip satisfies MI-separability.

Observe that Ip does not satisfy penalty which has been mistakenly claimed in (Thimm,
2009). Consider the following counterexample.

Example 16. Consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉 and the probabilistic con-
ditional (a)[0.5]. Then (a)[0.5] is not free in K′ = K∪{(a)[0.5]} as {(a)[0.3], (a)[0.5]} ∈ MI(K′).
However, it holds that I1(K) = I1(K′) = 0.4—as 〈(a)[0.5], (a)[0.5]〉 has minimal distance to K
and 〈(a)[0.5], (a)[0.5], (a)[0.5]〉 has minimal distance to K′—which violates penalty.

As for normalization consider the following counterexample.

Example 17. Consider the knowledge base K = 〈(a)[0], (a)[1], (b)[0], (b)[1]〉. It is easy to see
that I1(K) = 2 violating normalization.

However, a normalized variant of Ip can be defined by exploiting Ip(K) ≤ |K| for all K ∈ K,
cf. (Thimm, 2011b).

6.2. The Σ-inconsistency measure

The main drawback of the inconsistency measure discussed above is that it does not satisfy
penalty. However, this issue can be solved by the following compound measure.

Definition 16. Let K be a knowledge base and let I be an inconsistency measure. Then define
the Σ-inconsistency measure IIΣ(K) of K and I via

IIΣ(K) =
∑

M∈MI(K)

I(M) .

The Σ-inconsistency measure is defined as the sum of the inconsistency values of all minimal
inconsistent subsets of the knowledge base under consideration. The following property is easy
to see and given without proof.

Proposition 11. Let I be an inconsistency measure. If MI(K) = {K} then IIΣ(K) = I(K).

The above proposition states that IIΣ(K) is the same as I(K) if K is minimally inconsistent.
For general knowledge bases consider the following example.

Example 18. We continue Example 16 and consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉
and the probabilistic conditional (a)[0.5]. Observe that

II1Σ (K) = I1(K) = 0.4

II1Σ (K ∪ {(a)[0.5]}) = I1(K) + I1(〈(a)[0.7], (a)[0.5]〉) + I1(〈(a)[0.3], (a)[0.5]〉)
= 0.4 + 0.2 + 0.2 = 0.8 .

Therefore, the addition of the non-free conditional (a)[0.5] to K has been penalized by II1Σ .
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As hinted above, the Σ-inconsistency measure IIΣ(K) behaves well with respect to the prop-
erty penalty, provided that the inner measure is a reasonable inconsistency measure. Consider
the following theorem.

Theorem 4. Let I be an inconsistency measure.

1. IIΣ satisfies monotonicity, super-additivity, weak independence, independence, and MI-
separability.

2. If I satisfies consistency then IIΣ satisfies consistency and penalty.

3. If I satisfies irrelevance of syntax then IIΣ satisfies irrelevance of syntax.

4. If I satisfies continuity then IIΣ satisfies continuity.

The following corollary is a direct application of Theorems 3 and 4.

Corollary 1. If p ∈ N+ then IIpΣ satisfies consistency, monotonicity, super-additivity, weak
independence, independence, MI-separability, penalty, irrelevance of syntax, and continuity.

As one can see, the Σ-inconsistency measure performs well with respect to all properties
except normalization.

7. Related Work

The problem of measuring inconsistency in probabilistic knowledge bases is relatively novel
and has—to our knowledge—only been addressed before in (Rödder and Xu, 2001), (Daniel,
2009) and (Muiño, 2011). We have a more closer look on the works (Muiño, 2011) and (Daniel,
2009) below.

Further related work is concerned with measuring inconsistency in classical theories, see e. g.
the works by Hunter et al. (Hunter and Konieczny, 2008; Grant and Hunter, 2008; Hunter and
Konieczny, 2010). While (Hunter and Konieczny, 2008, 2010) deal with measuring inconsistency
in propositional logic, the work (Grant and Hunter, 2008) considers first-order logic. Those
works also take a principled approach to measuring inconsistency and many of our properties
have been adapted from e. g. (Hunter and Konieczny, 2008). Furthermore, the inconsistency
measures presented in Section 6 are straightforward translations of inconsistency measures from
those works. However, Hunter et al. are working with classical theories and as such do not
have to deal with probabilities as a means for knowledge representation. In order to adhere for
the presence of probabilities we introduced continuous inconsistency measures which have no
correspondent in the classical setting.

Besides the inconsistency measures discussed here another form of measuring inconsistency
can be realized using culpability measures (Daniel, 2009; Thimm, 2009), also used under the
term inconsistency values in (Hunter and Konieczny, 2010). A culpability measure does not
assign a degree of inconsistency to the whole knowledge base but to each individual element
of the knowledge base. The interpretation of culpability measures is that they assign a degree
of “blame” for creating an inconsistency to an element. In (Hunter and Konieczny, 2010) such
a measure has been defined in terms of some ordinary inconsistency measure and the Shapley
value, a well-known solution for solving coalition games in game theory (Shapley, 1953). This
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approach can also be applied for inconsistency measures for probabilistic logics as has been
done for the measure I1 in (Thimm, 2009). Furthermore, in (Daniel, 2009) the measure Ihµ (see
below) has also been extended to a culpability measure.

We go on by taking a closer look on the works by Muiño (Muiño, 2011) and Daniel (Daniel,
2009), for some analysis on (Rödder and Xu, 2001) see (Thimm, 2011b).

7.1. Infinitesimal Inconsistency Values

The research presented in this paper is complementary to the work in (Muiño, 2011). The
paper (Muiño, 2011) also discusses the Ip measure but focuses on 1.) the problem of in-
finitesimal inconsistency values and 2.) the application of Ip on the medical knowledge base
CADIAG-2. In particular, it is not investigated how Ip behaves with respect to the principles
above.

The problem of infinitesimal inconsistency values appears when one defines probabilistic
satisfaction via P |=pr

alt (ψ |φ)[p] if and only if

P (ψ |φ) = p and P (φ) > 0 ,

A knowledge base K is |=pr
alt-consistent if there exists P ∈ F(At) with P |=pr

alt K. Using our
notation, the inconsistency measure I ′p from (Muiño, 2011) can be defined via

I ′p(K) = min{Dp(|K|)(~x, ~y) | K = K[~x] and K[~y] is |=pr
alt-consistent} . (8)

Theorem 1 does not apply for I ′p as the set {~y | K[~y] is |=pr
alt-consistent} is not closed. Therefore,

the minimum in (8) is not always defined.

Example 19. Consider the knowledge base K = 〈(a)[0], (b | a)[0.7]〉. Note that K is consistent
(using our notion of probabilistic satisfaction) but not |=pr

alt-consistent as there is no probability
function P with P |=pr

alt (a)[0] and P |=pr
alt (b | a)[0.7]. However, one can easily construct a

sequence of probability functions P1, P2, . . . such that Pi(a) > 0 and Pi(b | a) = 0.7 for i ∈ N
and

lim
n→∞

P (a) = 0 .

In (Muiño, 2011) knowledge bases like K above are assigned an infinitesimal inconsistency
value. The motivation for introducing infinitesimal inconsistency values stems from the appli-
cation of Ip on the medical knowledge base, a collection of expert rules relating symptoms and
diseases. In (Muiño, 2011) it is shown that CADIAG-2 has an infinitesimal inconsistency value.

7.2. Candidacy Degrees of Best Candidates

Among others, one contribution of (Daniel, 2009) is an inconsistency measure on knowledge
bases of probabilistic constraints. In particular, the work (Daniel, 2009) focuses on linear
probabilistic knowledge bases but also considers generalizations such as polynomial probabilistic
knowledge bases. However, in order to compare it to our work we simplify several notations
and present the inconsistency measure Ihµ of (Daniel, 2009) only for probabilistic conditional
logic.
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The central notion of (Daniel, 2009) is the candidacy function. A candidacy function is
similar to a fuzzy set as it assigns a degree of membership of a probability function belonging
to the models of a knowledge base. More specifically, a candidacy function C is a function C :
F(At)→ [0, 1]. A uniquely determined candidacy function CK can be assigned to a (consistent
or inconsistent) knowledge base K as follows. For a probability function P ∈ F(At) and a set
of probability functions S ⊆ F(At) let dE(P, S) denote the distance of P to S with respect to
the Euclidean norm, i. e., dE(P, S) is defined via

dE(P, S) = inf


√ ∑

ω∈Ω(At)

(P (ω)− P ′(ω))2

∣∣∣∣∣ P ′ ∈ S
 .

Let h : R+ → (0, 1] be a strictly decreasing, positive, and continuous log-concave function with
h(0) = 1. Then the candidacy function ChK for a knowledge base K is defined as

ChK(P ) =
∏
c∈K

h
(√

2|At|dE(P,Mod({c}))
)

for every P ∈ F(At). Note that the definition of the candidacy function ChK depends on the
size of the signature At. The intuition behind this definition is that a probability function P
that is near to the models of each probabilistic conditional in K gets a high candidacy degree
in ChK(P ). It is easy to see that it holds that ChK(P ) = 1 if and only if P |=pr K. Using the
candidacy function ChK the inconsistency measure Ihµ can be defined via

Ihµ(K) = 1− max
P∈F(At)

ChK(P )

for a knowledge base K. In (Daniel, 2009) it is shown that Ihµ satisfies (among others) the
following properties.

Proposition 12 (Daniel (2009)). Ihµ satisfies consistency, monotonicity, continuity, and nor-
malization.

Furthermore, it can also be shown that the function Ihµ satisfies the following properties.

Theorem 5. Ihµ satisfies irrelevance of syntax and weak independence.

In Example 6 we talked about the issue of an inconsistency measure satisfying all three of
consistency, super-additivity, and normalization. We showed that an inconsistency measure that
does not take the cardinality of the signature into account cannot satisfy all these properties at
once. As one can see above, the function Ihµ takes the cardinality of the signature into account
and it may be possible that Ihµ satisfies super-additivity. However, this is not the case as the
following example shows.

Example 20. Let At = {a1, a2} be a propositional signature and let K1 = 〈c1, c2〉 and K2 =
〈c3, c4〉 be knowledge bases with

c1 = (a1)[1] c2 = (a1)[0] c3 = (a2)[1] c4 = (a2)[0]
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and let K = K1 ∪ K2. Note that both K1 and K2 are inconsistent and K1 ∩ K2 = ∅. As Ihµ is
defined on the semantic level and does not take the names of propositions into account it follows
that Ihµ(K1) = Ihµ(K2). As the situations in K1 and K2 are symmetric and Ki is symmetric
with respect to c1 and c2 and with respect to c3 and c4 there are probability functions Pi with
Ihµ(Ki) = 1− Ch

Ki
(Pi) for i = 1, 2 and

dE(P1,Mod({c1})) = dE(P1,Mod({c2})) = dE(P2,Mod({c3})) = dE(P2,Mod({c4})) .

Let x = dE(P1,Mod({c1})) and let h∗ : R+ → (0, 1] be a strictly decreasing, positive, and

continuous log-concave function with h∗(0) = 1 and h∗
(√

2|At|x
)

= 0.5. Then it follows

Ch∗
K1

(P1) = 0.25 and Ih∗µ (K1) = 0.75. In order to satisfy super-additivity Ih∗µ must satisfy

Ih∗µ (K) ≥ Ih∗µ (K1) + Ih∗µ (K2) = 1.5

which is a contradiction since Ih∗µ satisfies normalization.

The above example is also a counterexample for MI-separability as K1 and K2 partition
the set of minimal inconsistent subsets. Furthermore, it can be easily seen that Ihµ also fails
to satisfy penalty for similar reasons as Id fails to satisfy penalty. For the knowledge base
K = 〈(b | a)[1], (a)[1], (b)[0]〉 let P ′ be such that

max
P∈F(At)

ChK(P ) = ChK(P ′) . (9)

In other words, P ′ is a probability function that has the maximal candidacy degree with respect
to K. As K is inconsistent, it follows that P ′ fails to satisfy at least one of the probabilistic
conditionals of K. Assume that it holds that P ′ 6|=pr (b | a)[1] which implies P ′(a) > 0. Consider
the knowledge base K′ = K ∪ {c′} with c′ = (b | a)[P ′(b | a)]. As Ihµ satisfies monotonicity it

follows Ihµ(K′) ≥ Ihµ(K) and due to h
(√

2|At|dE(P ′,Mod({c′}))
)

= 1, as dE(P ′,Mod({c′})) = 0,

it follows that P ′ also satisfies

max
P∈F(At)

ChK′(P ) = ChK′(P
′) .

Therefore, P ′ has also maximal candidacy degree with respect to K′ which is clear as we
only added information consistent with P ′ (otherwise P ′ would have violated (9)). It follows
Ihµ(K′) ≤ Ihµ(K) and as {(b | a)[1], (a)[1], c′} is a minimal inconsistent subset of K′ this contra-
dicts penalty. Similar observations can be made when P ′ 6|=pr (a)[1] or P ′ 6|=pr (b)[0].

In (Daniel, 2009) it is shown that Ihµ satisfies several other properties that cannot be related
directly to our properties of Section 3, see (Thimm, 2011b) for a discussion. It is also still an
open issue whether Ihµ satisfies independence.

8. Summary and Discussion

Analyzing inconsistencies is of major concern in the area of knowledge representation as
consistency is a necessary prerequisite for many knowledge representation formalisms. In par-
ticular, the task of inference bases mostly on the consistency of the underlying information. In
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this paper, we investigated inconsistency measures for probabilistic conditional logic. For that,
we developed a series of rationality postulates for inconsistency measures motivated by both
inconsistency measurement for classical logics and the peculiarities of probabilistic knowledge
representation. We adapted several classical inconsistency measures and showed that they lack
a particularly important property for the probabilistic domain, namely, a continuous behavior
with respect to modifications of the knowledge base. Consequently, we investigated inconsis-
tency measures based on distance measures and showed that these measures are more apt for
the probabilistic domain. We compared these measures with related work, in particular with
the approach of (Daniel, 2009).

In this paper, we used probabilistic conditional logic for knowledge representation which
suffices for many application areas that need to represent rule-like information. However,
probabilistic conditional logic is not capable of expressing general linear relationships such as
“a is twice as probable as b” or polynomial relationships such as “a and b are probabilisti-
cally independent”. Furthermore, using point probabilities can be seen as too restricting as
well and one may want to represent conditionals of the form (ψ |φ)[u, l] with the intended
meaning that P (ψ |φ) ∈ [u, l], cf. (Lukasiewicz, 2002). The motivation of using the simple
framework of probabilistic conditional logic here merely stems from reasons of presentation
rather than inadequacy of the ideas to more complex frameworks. In (Thimm, 2011b) the
inconsistency measure I1 has also been defined for the more general frameworks of linear prob-
abilistic knowledge bases and probabilistic conditional logic with intervals. For example, by
defining K[~x] for a knowledge base of the form K = 〈(ψ1 |φ1)[u1, l1], . . . , (ψn |φn)[un, ln]〉 via
K[~x] = 〈(ψ1 |φ1)[x1

1, x
2
1], . . . , (ψn |φn)[x1

n, x
2
n]〉 with ~x = 〈x1

1, x
2
1, . . . , x

1
n, x

2
n〉 ∈ [0, 1]2n, the in-

consistency measure ID can be defined in the same way as in Definition 15 for probabilistic
conditionals with intervals. Furthermore, the general properties for inconsistency measures
in Section 3 are mostly independent of the actual approach for knowledge representation and
can also be used for other approaches as long as notions of satisfaction and inconsistency are
well-defined.

The focus of the discussion in this paper was mainly on properties of inconsistency measures
and not on their algorithmic computation and complexity. However, Equation (6) already in-
duces a straightforward method to compute the value ID(K) for a specific knowledge base K
by representing (6) as an optimization problem, see (Thimm, 2009; Muiño, 2011) for formal-
izations. Note that these optimization problems are, in general, non-convex. Furthermore, a
subproblem of determining the inconsistency value for a knowledge base K is checking consis-
tency of probabilistic conditional knowledge bases which is an NP-hard problem (Paris, 2006).
Therefore, determining ID(K) is in general a hard task and future work comprises of investi-
gating scalable approaches. Some first steps have already been conducted in (Thimm, 2011b)
by approximating ID(K) by “similar” convex optimization problems. Future work comprises of
developing optimized algorithms by utilizing e. g. more sophisticated methods for probabilistic
consistency checking (Finger and Bona, 2011). The basic approach for computing ID(K) using
non-convex optimization methods has also been implemented in the Tweety library for artificial
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Appendix A. Proofs of Technical Results

Proposition 2. If c is safe in K then c is free in K.

Proof. Assume that c is not free in K ∪ {c}. Then there is a set M ∈ MI(K) with c ∈ M. As
M\ {c} is consistent and At(M\ {c}) ∩ At({c}) = ∅ (as c is safe in K) let P1 be a probability
function in F(At\At({c})) with P1 |=prM\{c}. As c is normal let P2 be a probability function
in F(At({c})) with P2 |=pr c. Let ω ∈ Ω(At) and define ωA with A ⊆ At to be the projection of
ω on A, i. e. ωA =

∧
{a | a ∈ A, ω |= a} ∪ {¬a | a ∈ A, ω |= ¬a}. Define a probability function

P in F(At) via

P (ω) = P1

(
ωAt\At({c})

)
· P2

(
ωAt({c})

)
for all ω ∈ Ω(At). Note that f : Ω(At)→ Ω(At \ At({c}))× Ω(At({c})) with

f(ω) =
(
ωAt\At({c}), ωAt({c})

)
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is a bijection. It follows that P is indeed a probability function as∑
ω∈Ω(At)

P (ω) =
∑

ω∈Ω(At)

P1

(
ωAt\At({c})

)
· P2

(
ωAt({c})

)
=

∑
(ω1,ω2)∈Ω(At\At({r}))×Ω(At({c}))

P1(ω1)P2(ω2)

=
∑

ω1∈Ω(At\At({c}))

∑
ω2∈Ω(At({c}))

P1(ω1)P2(ω2)

=
∑

ω1∈Ω(At\At({c}))

P1(ω1) ·
∑

ω2∈Ω(At({c}))

P2(ω2)


= 1

Furthermore, for ω ∈ Ω(At \ At({c})) it holds that

P (ω) =
∑

ω′∈Ω(At({c}))

P (ω ∧ ω′) =
∑

ω′∈Ω(At({c}))

P1(ω)P2(ω′)

= P1(ω)
∑

ω′∈Ω(At({c}))

P2(ω′) = P1(ω)

and similarly P (ω′) = P2(ω′). It follows that P |=pr M \ {c} and P |=pr c contradicting the
assumption that M is a minimal inconsistent subset.

Proposition 3. Let I be an inconsistency measure and let K,K′ be some knowledge bases.

1. If I satisfies super-additivity then I satisfies monotonicity.

2. If I satisfies independence then I satisfies weak independence.

3. If I satisfies MI-separability then I satisfies independence.

4. K ⊆ K′ implies MI(K) ⊆ MI(K′).

5. If I satisfies independence then MI(K) = MI(K′) implies I(K) = I(K′).

6. If I satisfies independence and penalty then MI(K) ( MI(K′) implies I(K) < I(K′).

Proof.

1. Let I satisfy super-additivity. If c ∈ K then I(K) = I(K∪{c}). If c /∈ K then I(K∪{c}) ≥
I(K) + I({c}) ≥ I(K) due to super-additivity.

2. Let I satisfy independence and let c be safe in K. By Proposition 2, c is also free in K and
it follows I(K \ {c}) = I(K) by independence and, hence, I satisfies weak independence.

3. Let I satisfy MI-separability and let c be free in K. Observe that MI({c}) = ∅ as c
is normal. Then it also holds that MI(K) = MI(K \ {c}) = MI(K \ {c}) ∪ MI({c}) and
MI(K\{c})∩MI({c}) = ∅. By MI-separability it follows that I(K) = I(K\{c})+I({c}) =
I(K \ {c}).
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4. LetM∈ MI(K) be a minimal inconsistent subset of K. Then it holds thatM⊆ K ⊆ K′.
Suppose M /∈ MI(K′) which is equivalent to stating that eitherM is not minimal or not
inconsistent. Both cases contradict the assumption M∈ MI(K).

5. Let K′′ =
⋃
M∈MI(K)M. It holds that I(K) = I(K′′) due to the facts that K \ K′′ only

contains free conditionals of K and that I satisfies independence. As the same is true for
K′ it follows I(K) = I(K′).

6. Let K′′ =
⋃
M∈MI(K)M. It holds that I(K) = I(K′′) due to the facts that K \ K′′ only

contains free conditionals of K and that I satisfies independence. As K′′ ( K′ due to
MI(K) ( MI(K′) and K′ \ K contains at least one conditional c that is not free in K′—
otherwise it would be MI(K) = MI(K′)—it follows I(K′) > I(K′′) = I(K) as I satisfies
penalty.

Proposition 4. Let c1 = (ψ1 |φ1)[p1] and c2 = (ψ2 |φ2)[p2] be normal. If c1 |=pr c2 then
c2 ≡e c1.

Proof. Observe that the set of models Mod({c}) of a probabilistic conditional c = (ψ |φ)[p]
can be described via Mod({c}) = {P ∈ F(At) | P (φ) = x, P (ψφ) = px, x ∈ [0, 1]}. That
is, Mod({c}) is the intersection of F(At) with a hyperplane, i. e. a linear space of dimension
2|At|−1 (note that F(At) can be embedded in a space of dimension 2|At|, one dimension for each
probability of an interpretation), see also (Paris, 2006). In general, there are three different
possible relationships between any two hyperplanes in a space of dimension 2|At|: they may
either be parallel, intersect in a linear space of dimension 2|At| − 2, or coincide. For example,
two planes in 3-dimensional space are either parallel, intersect in a line, or are the same. Then
c1 |=pr c2 implies that the hyperplanes corresponding to c1 and c2 coincide, otherwise there
would be a model of c1 that is not a model of c2. It follows Mod({c1}) = Mod({c2}) and the
claim.

Proposition 5. The function I0 satisfies consistency, irrelevance of syntax, monotonicity,
weak independence, independence, and normalization.

Proof. We only show that I0 satisfies consistency, irrelevance of syntax, monotonicity, indepen-
dence, and normalization as weak independence follows from independence due to Proposition 3.

Consistency A knowledge base K is consistent if and only if I0(K) = 0 by definition.

Irrelevance of Syntax From K1 ≡s K2 follows K1 ≡e K2 by Proposition 1. Therefore, K1 is
inconsistent if and only if K2 is inconsistent. It follows I0(K1) = I0(K2).

Monotonicity If K is inconsistent so is any superset of K. It follows I0(K) = 1 = I0(K∪{c}).
If K is consistent then I0(K ∪ {c}) ≥ I0(K) = 0 by definition.

Independence Assume that K is consistent and c is free in K ∪ {c}. If K ∪ {c} would be
inconsistent then for every minimal inconsistent subsetM of K∪{c} it holds that c /∈M.
Hence, M is also a minimal inconsistent subset of K rendering K inconsistent. As K is
consistent it follows that K ∪ {c} is consistent and therefore I0(K ∪ {c}) = 0 = I0(K). If
K is inconsistent so is any superset of K and hence I0(K ∪ {c}) = 1 = I0(K).
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Normalization For every K it holds that either I0(K) = 0 or I0(K) = 1 and therefore
I0(K) ∈ [0, 1].

Proposition 6. The function IMI satisfies consistency, monotonicity, super-additivity, weak
independence, independence, irrelevance of syntax, MI-separability, and penalty.

Proof. We only show that IMI satisfies consistency, super-additivity, irrelevance of syntax, MI-
separability, and penalty, as monotonicity follows from super-additivity, weak independence fol-
lows from independence, and independence follows from MI-separability, cf. Proposition 3.

Consistency If K is consistent it follows that MI(K) = ∅ and therefore IMI(K) = 0. If K is
inconsistent then MI(K) 6= ∅ and IMI(K) > 0.

Super-additivity Let K∩K′ = ∅. Due to Proposition 3 it holds that MI(K) ⊆ MI(K∪K′) and
MI(K′) ⊆ MI(K∪K′). Due to K∩K′ = ∅ it follows that MI(K)∩MI(K′) = ∅ and therefore
IMI(K∪K′) = |MI(K∪K′)| ≥ |MI(K)∪MI(K′)| = |MI(K)|+ |MI(K′)| = IMI(K′) +IMI(K′).

Irrelevance of syntax Let K1 and K2 be knowledge bases with K1 ≡s K2 and let ρK1,K2 :
K1 → K2 be a bijection with c ≡e ρK1,K2(c) for all c ∈ K1. Let C ⊆ K1 and let

ρK1,K2(C) = {ρK1,K2(c) | c ∈ C} . (A.1)

As Mod(c) = Mod(ρK1,K2(c)) for every c ∈ K1 and due to the fact that ρK1,K2 is a bijection
it follows that M is a minimal inconsistent subset of K1 if and only if ρK1,K2(M) is a
minimal inconsistent subset of K2. Hence, it follows IMI(K1) = IMI(K2).

MI-separability Let K1,K2 be knowledge bases with MI(K1 ∪ K2) = MI(K1) ∪ MI(K2) and
MI(K1)∩MI(K2) = ∅. It follows directly that IMI(K1 ∪K2) = |MI(K1 ∪K2)| = |MI(K1)|+
|MI(K2)| = IMI(K1) + IMI(K2).

Penalty Let c /∈ K be a conditional that is not free in K ∪ {c}. By the facts that MI(K) ⊆
MI(K ∪ {c}) and that there is a M ∈ MI(K ∪ {c}) with c ∈ M it follows that |MI(K)| <
|MI(K ∪ {c})| and therefore IMI(K) < IMI(K ∪ {c}).

Proposition 7. The function ICMI satisfies consistency, monotonicity, super-additivity, weak
independence, independence, irrelevance of syntax, MI-separability, and penalty.

Proof. We only show that ICMI satisfies consistency, super-additivity, irrelevance of syntax, MI-
separability, and penalty as monotonicity follows from super-additivity, weak independence fol-
lows from independence, and independence follows from MI-separability, cf. Proposition 3.

Consistency If K is consistent it follows that MI(K) = ∅ and therefore ICMI(K) = 0 (the empty
sum). If K is inconsistent then MI(K) 6= ∅ withM∈ MI(K) and |M| > 0. It follows that
ICMI(K) > 0.
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Super-additivity Let K ∩ K′ = ∅. Due to Proposition 3 it holds that MI(K) ⊆ MI(K ∪ K′)
and MI(K′) ⊆ MI(K ∪ K′). Due to K ∩ K′ = ∅ it follows that MI(K) ∩ MI(K′) = ∅ and
therefore

ICMI(K ∪ K′) =
∑

M∈MI(K∪K′)

1

|M|
≥

∑
M∈MI(K)

1

|M|
+

∑
M∈MI(K′)

1

|M|
= ICMI(K) + ICMI(K′) .

Irrelevance of syntax Let K1 and K2 be knowledge bases with K1 ≡s K2 and let ρK1,K2 :
K1 → K2 be a bijection with c ≡e ρK1,K2(c) for all c ∈ K1. In the proof of Proposition 6
it has already been shown that M is a minimal inconsistent subset of K1 if and only
if ρK1,K2(M) is a minimal inconsistent subset of K2, cf. the definition of ρK1,K2(M) in
Equation (A.1). As ρK1,K2 is a bijection it also follows that |M| = |ρK1,K2(M)| and hence

ICMI(K2) =
∑

M∈MI(K2)

1

|M|
=

∑
M∈MI(K1)

1

|ρK1,K2(M)|
=

∑
M∈MI(K1)

1

|M|
= ICMI(K1) .

MI-separability Let K1,K2 be knowledge bases with MI(K1 ∪ K2) = MI(K1) ∪ MI(K2) and
MI(K1) ∩MI(K2) = ∅. It follows directly that

ICMI(K1 ∪ K2) =
∑

M∈MI(K1∪K2)

1

|M|
=

∑
M∈MI(K1)

1

|M|
+

∑
M∈MI(K2)

1

|M|
= ICMI(K1) + ICMI(K2) .

Penalty Let c /∈ K be a conditional that is not free in K ∪ {c}. By the facts that MI(K) ⊆
MI(K ∪ {c}) and that there is a M ∈ MI(K ∪ {c}) with c ∈ M it follows that |MI(K)| <
|MI(K ∪ {c})| and therefore ICMI(K) < ICMI(K ∪ {c}).

Proposition 8. If MI(K) = {K} then Iη(K) = 1/|K|.

Proof. Let K = 〈c1, . . . , cn〉 and let K1, . . . ,Kn be defined via Ki = K \ {ci} for i = 1, . . . , n.
Each Ki for i = 1, . . . , n is consistent as K is minimally inconsistent. Therefore, let P1, . . . , Pn
be probability functions with Pi |=pr Ki for i = 1, . . . , n. Define P̂ through P̂ (Pi) = 1/n and
P̂ (P ) = 0 for all P ∈ F(At) with P /∈ {P1, . . . , Pn}. Note that every ci is contained in every
Kj with j 6= i. Therefore, all probability functions Pj with j 6= i satisfy ci and it follows

P̂ (ci) = P̂ (P1) + . . .+ P̂ (Pi−1) + P̂ (Pi+1) + . . .+ P̂ (Pn) =
n− 1

n
= 1− 1

n
.

It follows that P̂ (ci) = 1 − 1/n for every i = 1, . . . , n and, hence, Iη(K) ≥ (1 − 1/n). It is also

easy to see that there can be no P̂ ′ with P̂ ′(ci) > 1− 1/n for all i = 1, . . . , n, see (Knight, 2002)
for details. It follows Iη(K) = (1− 1/n).
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Proposition 9. The function Iη satisfies consistency, monotonicity, weak independence, in-
dependence, irrelevance of syntax and normalization.

Proof. We only show that Iη satisfies consistency, monotonicity, independence, irrelevance of
syntax and normalization as weak independence follows from independence, cf. Proposition 3.

Consistency Let K be consistent and P be a probability function with P |=pr K. Define
P̂P via P̂P (P ) = 1 and P̂P (P ′) = 0 for all P ′ ∈ F(At) with P ′ 6= P . It follows that
P̂P (c) = 1 for every c ∈ K and due to normalization it follows Iη(K) = 1 − 1 = 0. If K
is inconsistent there can be no P̂ with P̂ (c) = 1 for every c ∈ K because otherwise every
P with P̂ (P ) > 0 would obey P |=pr K. Therefore max{η | ∃P̂ : ∀c ∈ K : P̂ (c) ≥ η} < 1
and Iη(K) > 0.

Monotonicity Let K be a knowledge base, c a conditional and K′ = K∪{c}. Let P̂ ∈ F2(At)
be a probability function and η′ ∈ [0, 1] be such that

Iη(K′) = 1− η′ and η′ = max{η | ∀c ∈ K′ : P̂ (c) ≥ η} .

In particular, it holds that P̂ (c) ≥ η′ for all c ∈ K and therefore

Iη(K) = 1−max{η | ∀c ∈ K : P̂ (c) ≥ η} ≤ 1− η′ = Iη(K′) .

Independence Let K be a knowledge base and let c ∈ K be free in K. Due to monotonicity it
follows Iη(K) ≥ Iη(K \ {c}). The proof of Iη(K) ≤ Iη(K \ {c}) is analogous to the proof
of Corollary 2.20 in (Knight, 2002).

Irrelevance of Syntax Let K1 and K2 be knowledge bases with K1 ≡s K2 and let ρK1,K2 :
K1 → K2 be a bijection with c ≡e ρK1,K2(c) for all c ∈ K1. As Mod(c) = Mod(ρK1,K2(c))

for all c ∈ K1 it follows that P̂ (c) = P̂ (ρK1,K2(c)) for every P̂ ∈ F2(At) and therefore
Iη(K1) = Iη(K2).

Normalization For every P̂ : F(At) → [0, 1] and probabilistic conditional c it holds that
P̂ (c) ∈ [0, 1] as P̂ is a probability function. It follows that max{η | ∃P̂ : ∀c ∈ K : P̂ (c) ≥
η} ∈ [0, 1] and therefore Iη(K) ∈ [0, 1].

Theorem 1. If D is continuously generating then

ID(K) = min{D(|K|)(~x, ~y) | K = K[~x] and K[~y] is consistent} (A.2)

for every K ∈ K.

Proof. Let K = 〈c1, . . . , cn〉 be a knowledge base with ci = (ψi |φi)[pi] for i = 1, . . . , n and
d = D(n). Consider the set PK ⊆ F(At)× [0, 1]n defined via

PK = {〈P, 〈x1, . . . , xn〉〉 ∈ F(At)× [0, 1]n | P |=pr ΛK(x1, . . . , xn)}
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We show now that PK is a closed set. Let 〈Pi, 〈xi1, . . . , xin〉〉 ∈ PK for i ∈ N be such that
limi→∞(Pi, (x

i
1, . . . , x

i
n)) exists and define

〈Q, 〈y1, . . . , yn〉〉 = lim
i→∞
〈Pi, 〈xi1, . . . , xin〉〉

In particular, it holds that limi→∞ Pi = Q with Q ∈ F(At).2 For j = 1, . . . , n, if Q(φj) > 0
then there is some k ∈ N such that for all i > k it holds that Pi(φj) > 0 as well. Therefore, for
i > k it holds that Pi(ψj |φj) = xij and

Q(ψj |φj) =
Q(ψjφj)

Q(φj)
=

limi→∞ Pi(ψjφj)

limi→∞ Pi(φj)
= lim

i→∞

Pi(ψjφj)

Pi(φj)
= lim

i→∞
Pi(ψj |φj) = lim

i→∞
xij = yj

which implies Q |=pr (ψj |φj)[yj]. Furthermore, for j = 1, . . . , n, if Q(φj) = 0 then trivially
Q |=pr (ψj |φj)[yj] due to our definition of probabilistic satisfaction. It follows that Q |=pr

ΛK(y1, . . . , yn) and therefore Q ∈ PK, i. e., PK is closed. Consider now the projection ρ : PK →
[0, 1]n defined via ρ(〈P, 〈x1, . . . , xn〉〉) = 〈x1, . . . , xn〉 for 〈P, 〈x1, . . . , xn〉〉 ∈ PK. As F(At) is
compact—see e. g. (Thimm, 2011b)—it follows that ρ is a closed map, cf. the Tube Lemma3

(Munkres, 1999). Therefore, ρ maps closed sets to closed sets and it follows that

ρ(PK) = {〈x1, . . . , xn〉 ∈ [0, 1]n | ∃P : 〈P, 〈x1, . . . , xn〉〉 ∈ PK}
= {~x ∈ [0, 1]n | K[~x] is consistent}

is a closed set. Observe that we can write ID(K) as

ID(K) = min{d(〈p1, . . . , pn〉, 〈x1, . . . , xn〉) | 〈x1, . . . , xn〉 ∈ ρ(PK)} .

As ρ(PK) is a closed set—and also compact as it is bounded due to ρ(PK) ⊆ [0, 1]n—and
the mapping 〈x1, . . . , xn〉 7→ d(〈p1, . . . , pn〉, 〈x1, . . . , xn〉) is continuous—as d is a continuous
function and p1, . . . , pn are constants—the set

Nd
K = {d(〈p1, . . . , pn〉, 〈x1, . . . , xn〉) | 〈x1, . . . , xn〉 ∈ ρ(PK)}

is closed as well. Note that ρ(PK) and therefore Nd
K are non-empty as for every K there is

always a ~x such that K[~x] is consistent (take an arbitrary positive probability function P and
define xi = P (ψi |φi), see also (Thimm, 2009)). It follows that inf Nd

K = minNd
K and therefore

ID(K) = minNd
K.

Proposition 10. It holds ID0 = I0.

2Note that the set F(At) is a closed set, see e. g. (Thimm, 2011b).
3An equivalent formalization of the Tube Lemma is “If X is Hausdorff and Y is Hausdorff and compact then

p : X ×Y → X with p(x, y) = x is a closed map”. Note, that all spaces above are Hausdorff as they are subsets
of Euclidean spaces (or can be characterized as such).
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Proof. Let K = K[~x] for some ~x ∈ [0, 1]n be a consistent knowledge base and let d0 = D0(n).
Then clearly ID0(K) = 0 = I0(K) as d0(~x, ~x) = 0 is minimal and K[~x] is consistent. Let
K = K[~x] for some ~x ∈ [0, 1]n be an inconsistent knowledge base. As noted in the proof
of Theorem 1 there is a ~y ∈ [0, 1]n such that K[~y] is consistent. It follows that ID0(K) ≤
d0(~x, ~y) = 1 and ID0(K) > d0(~x, ~x) = 0 as K[~x] is inconsistent. Due to Im d0 = {0, 1} it follows
ID0(K) = 1 = I0(K) and therefore ID0 = I0. As I0 is well-defined so is ID0 .

Theorem 2. Let D be a distance generator such that ID is well-defined.

1. The function ID satisfies consistency.
2. If D is monotonically generating then ID satisfies monotonicity.
3. If D is super-additively generating then ID satisfies super-additivity.
4. If D is symmetric generating then ID satisfies irrelevance of syntax.
5. If D is continuously generating then ID satisfies continuity.

Proof. Let K = 〈c1, . . . , cn〉 ∈ K be a knowledge base with ci = (ψi |φi)[pi] for i = 1, . . . , n,
d = D(n), and define ΘK = {~y | K[~y] is consistent}.

1. If K = K[~x] is consistent then due to d(~x, ~x) = 0 and d(~x, ~y) ≥ 0 for all ~y ∈ [0, 1]|K| it
follows ID(K) = 0.

2. Without loss of generality we only show that ID(K) ≥ ID(K \ {cn}). First, note
that if K′ = 〈c1, . . . , cn−1〉[〈y1, . . . , yn−1〉] is consistent there is a yn ∈ [0, 1] such that
〈c1, . . . , cn〉[〈y1, . . . , yn〉] is consistent (by taking some model P of K′ and defining yn =
P (ψn |φn); the latter is defined as cn is normal). Furthermore, if 〈c1, . . . , cn〉[〈y1, . . . , yn〉]
is consistent so is 〈c1, . . . , cn−1〉[〈y1, . . . , yn−1〉]. It follows that 〈y1, . . . , yn−1〉 ∈ ΘK′ if and
only if there is a yn ∈ [0, 1] such that 〈y1, . . . , yn〉 ∈ ΘK. Let now K = K[~x] for some
~x = 〈x1, . . . , xn〉 ∈ [0, 1] and 〈y1, . . . , yn−1〉 ∈ ΘK′ . Then for every yn ∈ [0, 1] such that
〈y1, . . . , yn〉 ∈ ΘK it holds that

d(〈x1, . . . , xn−1〉, 〈y1, . . . , yn−1〉) ≤ d(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)

asD is monotonically generating. It follows that every element ofM1 = {d(~x, ~y) | ~y ∈ ΘK}
is greater or equal to an element in M2 = {d(〈x1, . . . , xn−1〉, ~y) | ~y ∈ ΘK′}. Consequently,
ID(K′) = minM2 ≤ minM1 = ID(K) proving monotonicity.

3. This proof is analogous to the proof of 2.).
4. LetK1 = K1[ ~x1] andK2 = K2[ ~x2] be knowledge bases withK1 ≡s K2 and ~x1 = 〈x1

1, . . . , x
n
1 〉

and ~x2 = 〈x1
2, . . . , x

n
2 〉 (with |K1| = n = |K2|). Let K′1 = K1[~y1] be consistent such that

ID(K1) = d(~x1, ~y1) for some ~y1 = 〈y1
1, . . . , y

n
1 〉. In Proposition 4 it has been shown that

for normal c = (ψ |φ)[p] and c′ = (ψ′ |φ′)[p′] with c ≡e c′ it holds that either
(a) φ ≡ φ′ and ψ ∧ φ ≡ ψ′ ∧ φ′ and p = p′ or
(b) φ ≡ φ′ and ψ ∧ φ ≡ ψ′ ∧ φ′ and p = 1− p′.

Define now ~y2 = 〈y1
2, . . . , y

n
2 〉 via yi2 = yi1 if xi2 = xi1 and via yi2 = 1− yi1 if xi2 = 1− xi1 (for

i = 1, . . . , n). As D is symmetric generating, by iteratively applying (5) it follows that
d( ~x2, ~y2) = d( ~x1, ~y1). Note also that, by construction, K2[~y2] is consistent as K2[~y2] ≡s
K1[~y1]. It follows that ID(K2) ≤ d( ~x2, ~y2) = d( ~x1, ~y1) = ID(K1). Similarly we obtain
ID(K1) ≤ ID(K2) and therefore the claim.
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5. Let ~x ∈ [0, 1]|K|. For every ~y ∈ ΘK the mapping ~x 7→ d(~x, ~y) is continuous as D is
continuously generating. As the minimum of a set of continuous functions is continuous
it follows that the mapping ~x 7→ Id(K[~x]) is continuous as well.

Theorem 3. Let p ∈ N+.

1. The function Ip satisfies consistency, monotonicity, weak independence, independence,
irrelevance of syntax, and continuity.

2. If p = 1 then Ip satisfies super-additivity.

Proof. 1. It has already been noted that Dp is continuously generating and therefore Ip is
well-defined. By Theorem 2 it also follows that Ip satisfies consistency and continuity.
We continue with showing that Dp is also monotonically and symmetric generating. Let
x1, . . . , xn+1, y1, . . . , yn+1 ∈ R+ for some n ∈ N+.

Dp(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
= p
√
|x1 − y1|p + . . .+ |xn − yn|p

≤ p
√
|x1 − y1|p + . . .+ |xn − yn|p + |xn+1 − yn+1|p

=Dp(n+ 1)(〈x1, . . . , xn+1〉, 〈y1, . . . , yn+1〉)

as |xn+1 − yn+1|p ≥ 0 and the root function is monotonic. Let i ∈ {1, . . . , n}.

Dp(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
= p
√
|x1 − y1|p + . . .+ |xi − yi|p + . . .+ |xn − yn|p

= p
√
|x1 − y1|p + . . .+ |1− xi − (1− yi)|p + . . .+ |xn − yn|p

=Dp(n)(〈x1, . . . , 1− xi, . . . , xn〉, 〈y1, . . . , 1− yi, . . . , yn〉) .

By Theorem 2 it follows that Ip satisfies monotonicity and irrelevance of syntax. It
remains to show that Ip satisfies weak independence and independence. Before proving
independence we first show that from both K ∪ {(ψ |φ)[p1]} and K ∪ {(ψ |φ)[p2]} being
consistent for some knowledge base K and p1 ≤ p2 it follows that K ∪ {(ψ |φ)[y]} is
consistent for every y ∈ [0, 1] that satisfies p1 ≤ y ≤ p2. Let P1 |=pr K ∪ {(ψ |φ)[p1]}
and let P2 |=pr K ∪ {(ψ |φ)[p2]}. If P1(φ) = 0 then clearly P1 |=pr K ∪ {(ψ |φ)[y]}
for every y ∈ [0, 1] due to our definition of probabilistic satisfaction. If P2(φ) = 0
then P2 |=pr K ∪ {(ψ |φ)[y]} for every y ∈ [0, 1] accordingly. So assume P1(φ) > 0
and P2(φ) > 0. Let δ ∈ [0, 1] and consider the probability function Pδ defined via
Pδ(ω) = δP1(ω) + (1− δ)P2(ω) for all ω ∈ Ω(At). Then Pδ |=pr K for all δ ∈ [0, 1] as the
set of models of a knowledge base is a convex set, cf. (Paris, 2006). Furthermore, note
that Pδ(φ) > 0 for every δ ∈ [0, 1] as both P1(φ) > 0 and P2(φ) > 0. Then Pδ(ψ |φ) is
continuous in δ and for every y ∈ [p1, p2] there is a δy ∈ [0, 1] such that Pδy(ψ |φ) = y. It
follows that Pδy |=pr K∪{(ψ |φ)[y]} for every y ∈ [p1, p2] and therefore K∪{(ψ |φ)[y]} is
consistent for every y ∈ [p1, p2].
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Let now K = 〈c1, . . . , cn〉 and ci = (ψi |φi)[pi] for i = 1, . . . , n be a knowledge base
and let c = (ψ |φ)[p] be free in K ∪ {c}. Assume that K is also a minimal incon-
sistent set, i. e. MI(K) = {K}. Let Ip(K) = x and let 〈x1, . . . , xn〉 ∈ [0, 1]n be such
that ΛK(x1, . . . , xn) is consistent and |p1 − x1| + . . . + |pn − xn| = x. Consider now
K′ = 〈(ψ1 |φ1)[p1], . . . , (ψn |φn)[pn], (ψ |φ)[p]〉. It suffices to show that ΛK′(x1, . . . , xn, p)
is consistent. Define Cj = K \ {(ψj |φj)[pj]} for every j = 1, . . . , n. Then both Cj
and Cj ∪ {c} are consistent. Let pj be such that there is a P with P |=pr Cj ∪ {c},
P |=pr (ψj |φj)[p′j] and |pj − p′j| is minimal. It follows that |pj − p′j| ≥ x (otherwise this
would contradict Ip(K) = x). Assume w.l.o.g. p′j > pj. As {c, cj} is consistent as well
(as c is free) it follows that {c, (ψj |φj)[y]} is consistent for every y ∈ [pj, p

′
j] due to our

elaboration above. As |pj − xj| ≤ x it follows xj ∈ [pj, p
′
j] as well (or xj ∈ [p′j, pj] if

pj > p′j). Hence, {c, (ψj |φj)[xj]} is consistent for every j = 1, . . . , n. As ΛK(x1, . . . , xn)
is consistent and c is consistent with every combination of conditionals in ΛK(x1, . . . , xn)
it follows that ΛK′(x1, . . . , xn, p) is consistent. The above can be generalized if K contains
multiple minimal inconsistent subsets by iteratively considering each minimal inconsistent
subset of K. By Proposition 3 it also follows that Ip satisfies weak independence.

2. Due to Theorem 2 it suffices to show that D1 is super-additively generating. Let n,m ∈
N+ and x1, . . . , xn+m, y1, . . . , yn+m ∈ R.

D1(n)(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
+D1(m)(〈xn+1, . . . , xn+m〉, 〈yn+1, . . . , yn+m〉)
=|x1 − y1|+ . . .+ |xn − yn|+ |xn+1 − yn+1|+ . . .+ |xn+m − yn+m|
=D1(n+m)(〈x1, . . . , xn+m〉, 〈y1, . . . , yn+m〉)

Theorem 4. Let I be an inconsistency measure.

1. IIΣ satisfies monotonicity, super-additivity, weak independence, independence, and MI-
separability.

2. If I satisfies consistency then IIΣ satisfies consistency and penalty.

3. If I satisfies irrelevance of syntax then IIΣ satisfies irrelevance of syntax.

4. If I satisfies continuity then IIΣ satisfies continuity.

Proof.

1. We first show that IIΣ satisfies super-additivity. If K ∩K′ = ∅ then it holds that MI(K) ∩
MI(K′) = ∅ as well. Due to Proposition 3 it follows that MI(K) ∪MI(K′) ⊆ MI(K ∪ K′).
It follows

IIΣ(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) ≥
∑

M∈MI(K)

I(M) +
∑

M∈MI(K′)

I(M) = IIΣ(K) + IIΣ(K′) .

37



Due Proposition 3 it also follows that IIΣ satisfies monotonicity. We now show that IIΣ
satisfies MI-separability. Let MI(K∪K′) = MI(K)∪MI(K′) and MI(K)∩MI(K′) = ∅. Then
clearly

IIΣ(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) =
∑

M∈MI(K)

I(M) +
∑

M∈MI(K′)

I(M) = IIΣ(K) + IIΣ(K′) .

Due to Proposition 3 it also follows that IIΣ satisfies independence and weak independence.

2. We first show that IIΣ satisfies consistency. If K is consistent then MI(K) = ∅ and
IIΣ(K) = 0. If K is inconsistent then there is aM∈ MI(K) and as I satisfies consistency
it follows that I(M) > 0. Hence, IIΣ(K) > 0 as well. We now show that IIΣ satisfies
penalty. Let c ∈ K be a probabilistic conditional that is not free inK. Due to Proposition 3
it follows that MI(K\ {c}) ⊆ MI(K). As c /∈ K \ {c} and there is at least oneM∈ MI(K)
with c ∈ M it follows that MI(K \ {c}) ( MI(K). As I satisfies consistency it follows
that I(M) > 0 and therefore IIΣ(K \ {c}) < IIΣ(K).

3. Let it hold that K1 ≡s K2. It follows that for every M ∈ MI(K1) there is M′ ∈ MI(K2)
withM≡sM′, and vice versa. As I satisfies irrelevance of syntax it follows that I(M) =
I(M′) for every M ∈ MI(K1). Hence, it holds that IIΣ(K1) =

∑
M∈MI(K1) I(M′) =∑

M′∈MI(K2) I(M′) = IIΣ(K2).

4. It is easy to see that θIIΣ,K is given via θIIΣ,K =
∑
M∈MI(K) θI,M (given an adequate ordering

of the conditionals in K). It follows directly, that θIIΣ,K is continuous if θI,M is continuous

for every M∈ MI(K), i. e., if I satisfies continuity.

Theorem 5. Ihµ satisfies irrelevance of syntax and weak independence.

Proof.

Irrelevance of syntax Let K1 and K2 be knowledge bases with K1 ≡s K2 and let ρK1,K2 :
K1 → K2 be a bijection with c ≡e ρK1,K2(c) for all c ∈ K1. Due to Mod({c}) =
Mod({ρK1,K2(c)}) it follows that dE(P,Mod({c})) = dE(P,Mod({ρK1,K2(c)})) and there-
fore ChK1

(P ) = ChK2
(P ) for every c ∈ K1 and P ∈ F(At). It follows Ihµ(K1) = Ihµ(K2).

Weak independence Let K = 〈c1, . . . , cn〉 be a knowledge base with ci = (ψi |φi)[pi] for
i = 1, . . . , n and assume w.l.o.g. that cn is safe in K, i. e. At(cn) ∩ At(K \ {cn}) = ∅. For
B with At(K) ⊆ B let

Ω̂Bh (K) = {P ∈ F(B) | Ihµ(K) = 1− ChK(P )} .

It suffices to show that there is a P ∗ ∈ Ω̂
At(K)
h (K \ {cn}) with P |=pr cn as this implies

ChK(P ∗) = ChK\{cn}(P
∗) (due to h(0) = 1) and therefore Ihµ(K) ≤ Ihµ(K \ {cn}). Together

with monotonicity it follows Ihµ(K) = Ihµ(K \ {cn}).
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Let ω ∈ Ω(At) and define ωA ∈ Ω(A) with A ⊆ At to be the projection of ω onto A, e. g.
for At = {a, b, c} and ω = a ∧ ¬b ∧ c it is ω{a,b} = a ∧ ¬b. Furthermore, if P ∈ F(At) let
P |A ∈ F(At) denote the projection of P onto A ⊆ At, that is

P |A(ω′) =
∑

ω∈Ω(At),ω|=ω′
P (ω)

for all ω′ ∈ Ω(A). In (Daniel, 2009) it has been shown that ChK is language invariant,
that is in particular, for every P ∈ F(At \ At(cn)) and every P ′ ∈ F(At) such that
P = P ′|At\At(cn) it holds that ChK\{cn}(P ) = ChK\{cn}(P

′). In other words, as no atom of

At(cn) is mentioned in K\ {cn} it holds that ChK\{cn}(P
′) is the same as ChK\{cn}(P ) if P is

the projection of P ′ onto At \ At(cn). In particular, it follows

Ω̂
At(K)
h (K \ {cn}) = {P | P |At(K)\At(cn) ∈ Ω̂

At(K)\At(cn)
h (K \ {cn})}

Let now P ′′ ∈ F(At(cn)) with P ′′ |=pr cn and P ′ ∈ Ω̂
At(K)\At(cn)
h (K \ {cn}). Define P ′′′ ∈

F(At(K)) via
P ′′′(ω) = P ′′(ωAt(cn))P

′(ωAt(K)\At(cn))

By construction it holds that P ′′′|At(K)\At(cn) = P ′ ∈ Ω̂
At(K)\At(cn)
h (K \ {cn}) and therefore

P ′′′ ∈ Ω̂
At(K)
h (K \ {cn}). As P ′′′ |=pr cn the claim follows.
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