
Locking for Concurrent Transactions on
Ontologies

Stefan Scheglmann, Steffen Staab, Matthias Thimm and Gerd Gröner

WeST – Institute for Web Science and Technologies
University of Koblenz-Landau

56070 Koblenz, Germany
{schegi, staab, thimm, groener}@uni-koblenz.de

Abstract. Collaborative editing on large-scale ontologies imposes seri-
ous demands on concurrent modifications and conflict resolution. In or-
der to enable robust handling of concurrent modifications, we propose a
locking-based approach that ensures independent transactions to simul-
taneously work on an ontology while blocking those transactions that
might influence other transactions. In the logical context of ontologies,
dependence and independence of transactions do not only rely on the
single data items that are modified, but also on the inferences drawn
from these items. In order to address this issue, we utilize logical mod-
ularization of ontologies and lock the parts of the ontology that share
inferential dependencies for an ongoing transaction. We compare and
evaluate modularization and the naive approach of locking the whole on-
tology for each transaction and analyze the trade-off between the time
needed for computing locks and the time gained by running transactions
concurrently.

1 Introduction

Ontologies, as a prominent knowledge representation approach on the Web, are
often collaboratively developed, distributed and extended by multiple users. In
general, users modify ontologies independently from each other and they are
not aware of edits of other users. Accordingly, approaches for enabling concur-
rent editing of large ontologies have to ensure that modifications of users are
not contradicting each other. Concurrent ontology editing and knowledge base
authoring has been the topic of several previous works, which can be roughly
partitioned into two categories. First, optimistic versioning-based approaches,
like in Karp et al. [10] or ContentCVS by Ruiz et al. [9], make users feel as in a
single-user setting — by distinguishing between a private (editable) knowledge
base and a public version users can only commit their changes to. In general,
commits in these systems consist of multiple changes and these systems pro-
vide conflict resolution functionalities. Second, systems like [15] address conflict
resolution for parallel editing over a Web interface. The latter systems usually
focus more on the social component by making simultaneous changes of different
users possible and showing them immediately to all users. In terms of time spans

between two commits/edits of a single user, these two categories are the end-
points of a wide spectrum of approaches for dealing with concurrent knowledge
base and ontology editing. However, the trade-off between “isolated” access and
interleaving operations is also studied in traditional transaction management
for databases, which is the foundation for the approach to deal with concurrent
access to ontologies. There, sophisticated access methods and protocols avoid
unwanted intermediate results and guarantee a consistent synchronization be-
tween users. This is achieved by introducing transactions and specific means
for handling them. A transaction is defined by an opening statement (‘begin
of transaction’), some arbitrary program code that includes interactions with
the database and a conclusion statement, i. e., either a ‘commit’ that finalizes
the transaction or an ‘abort’ that erases all effects of this transaction. Using
a transaction, the individual user should be shielded from influences of other
users. The easiest way to achieve such isolation would be a strict serial execu-
tion of all transactions. Because individual transactions, however, may contain
time-consuming user code, the parallel execution of transactions seems to be a
necessity for the performance of the system. Trading off between users’ wishes
for isolation from effects of other users led to the notion of serializability [2]. If
transactions are scheduled in a—typically interleaved—way that is equivalent to
some serial schedule of the same transactions, then the schedule is called seri-
alizable and the program code defining the transactions behaves functionally as
if it has exclusive access to the database. Obviously, such a scheme is not only
desirable to have for databases but is also highly desirable to have in the case
of frequently accessed ontologies. However, there arise several issues that need
to be tackled to carry over the notions of ‘transaction’ and ‘serializability’ from
databases to ontologies: (1)The notion of ‘serializability’ is based on the notion of
‘equivalence’ of transaction schedules, but what does it mean that two schedules
are equivalent if also computational inferences in ontologies need to be accounted
for? (2)As will be shown below, ‘serializability’ is typically based on locking data
items such that different transactions do not interact with each other. But what
should be locked when logical inference comes into play? (3)Locking data items
for transaction scheduling is beneficial as the actual locking process is computa-
tionally cheap. However, in the context of ontologies computing the axioms to be
locked may become computationally expensive. What is the trade-off between
concurrency of ontology access and determining the locks for transactions on an
ontology? To illustrate the above challenges, we consider the following example:

Example 1. Let O = (T ,A) be an ontology with the following axioms in the
T -Box:

A1 ≡ ∀R.D1 (1) A2 ≡ ∀R.D2 (2) D1 uD2 v ⊥ (3)

B v D1 (4) A v ∀R.B (5)

and some arbitrary ABox A. Assume that one user intends to replace Axiom
(4) B v D1 by a new Axiom (6) B v D2. Imagine a second user is asking (at
the same time) for all concepts that subsume A. Before the change of the first
user (replacement of Axiom (4) by (6)), concept A1 subsumes A, but after the

change, A2 subsumes A. Before the first user starts the transaction the result to
the second user’s query would be A v A1 and afterwards A v A2. However, the
relationship does not hold after the first user has deleted Axiom (4) and not yet
added Axiom (6), the result would be neither A v A1 nor A v A2.

In this paper, we present a locking-based framework for handling concurrent
transactions on ontologies. We define a notion of conflict that prevents different
transactions to be executed in an arbitrary way (Sect. 4) and adapt a two-phase
locking approach from databases [3] (Sect. 5). Whenever a user issues some
operation the necessary locks are acquired. For computing the locking areas for
transactions, we utilize the modules of an ontology [6].

2 Foundations and Related Work

The first part of this section introduces fundamentals on concurrent transactions
and locking principles, rooted in the database research field. The second part
gives an overview on related work of concurrent ontology editing.

2.1 Foundations of Transaction and Locking

Transaction management guarantees the isolation of a transaction execution
from the inference with other transactions. Transactions in databases ensure the
following properties [2]: Atomicity: A transaction is either completely executed
or not executed; Consistency: The execution of a transaction has to maintain the
consistency of a database; Isolation: The execution of a set of transactions has
the same effect as all transactions would be executed individually; Durability:
After executing a transaction, all modifications need to be stored in the database.
Technically, isolation can be ensured by serializability, which guarantees that the
outcome of a schedule is equal to the outcome of the same transactions executed
one after the other. Such a schedule is called serializable. The serializability is
guaranteed by concurrency control mechanisms like locking, e. g., the two-phase
locking (2PL) [3], where data of potential competing transactions are locked
in two phases: In the ‘expanding phase’, the transaction successively tries to
acquire locks for the resources of each single atomic operation. If it successfully
acquires a lock then it performs the operations and continues. If the resource of
an operation is already locked by another transaction, the current transaction
will stop and consecutively try to acquire a lock for this resource until it succeeds.
After all operations of an transaction are performed, the transaction will enter
the ‘shrinking phase’ and free all of its locks.

Following this line of argumentation, a key issue is to determine the resources
that need to be locked in order to execute an atomic operation. Obviously, the
locked area should be as small as possible to enable interleaving transactions,
but the area should be as large as necessary to avoid conflicts.

2.2 Concurrent Ontology Editing

The need for concurrency control in knowledge bases was already acknowledged
by Chaudhri et al. [4]. They show the inadequacy of concurrency control mech-
anism from databases and present Dynamic Directed Graph (DDG), a concur-
rency control mechanism for rule-based knowledge bases. Their setting and ap-
proach is similar to ours but use a very restrictive knowledge representation
formalism which simplifies transaction schedule computations.

Other approaches can be roughly partitioned into two categories. The first
category [10, 9] extends versioning systems to the knowledge base setting and
implement an optimistic conflict resolution schema. The second category [15]
applies ideas of online editors to the field of collaborative ontology editing, with-
out considering issues of conflict resolution directly. The rationale behind using
these two approaches base on different assumptions. For the first category, it
is assumed that knowledge bases are created over a large period of time. For
both, it is assumed that the areas of responsibility of different contributors are
relatively independent, i. e. they usually modify different parts of the knowledge
base. However these assumptions do not necessarily hold in many of applica-
tion areas, where e. g. already deployed ontologies are modified more frequently.
In this paper, we focus on scenarios that need not satisfy these assumptions.
Nonetheless, we now look at some of these approaches in more detail.

In [10], Karp et al. introduced an authoring tool for knowledge bases based
on frame logic, a predecessor of modern ontology languages. Along with the
collaborative subsystem they define the notion of conflicts regarding knowledge
base operations and they provide conflict detection mechanisms for the merge
process. A similar approach is pursued in ContentCVS [9]. The authors adopted
the popular concurrent versioning approach CVS to the field of collaborative
ontology development. They include structural and semantic-based conflict de-
tection and state-of-the-art ontology debugging and repair techniques to help
the user in conflict resolution. Both approaches make use of an optimistic ver-
sioning based approach which detects and resolves conflicting edits in commits
on merge time without locking. In [15], Tudorache et al. evaluate the collabo-
ration features of WebProtégé within an intense user study during the develop-
ment process of the 11th version of the International Classification of Diseases
(ICD-11). WebProtégé’s collaborative features are all directly integrated in the
editing process and make all users aware of all edits currently happening. Ad-
ditional WebProtégé provides features for incorporating, tracking and reviewing
changes on-the-fly. This way of collaborative ontology editing is focusing on con-
flict prevention or just-in-time conflict resolution. To provide the users of such
an editor with useful information about possible conflicts resulting from their
edits, an approach similar to our approach could be facilitated. In such a setting
our approach would not lock resources but make users aware of possible conflicts
calculate from the current edits.

For further related work, Falconer et al. [5] describe patterns of editing behav-
ior and roles of the contributors for large scale ontology-development projects.
This is of particular interest for the design and implementation of collabora-

tive editing environments for ontology. The concurrency control mechanism, de-
scribed in this paper, builds the basis for such systems and the calculation of
areas affected by a transaction might benefit from contributor roles and prede-
fined behavior patterns.

For OWL ontologies, Seidenberg and Rector [13] discuss basic principles for
multi-user ontology editing. They indicate that due to inference capabilities the
computation of locking areas goes beyond transaction management principles
in databases since changes of a class might lead to different subsumptions of
other classes, for instance: (i) classes with different names are classified as equal;
(ii) a class is classified as a new subclass of a new/changed class; (iii) a class
might become unsatisfiable. In this paper, we tackle this indicated challenge of
computing locking areas for transaction management.

In order to handle locking, it is necessary to identify areas that are affected
by a transaction. Subsequently, we call such areas of an ontology the area of
influence of a single operation. These areas are obtained by computing modules,
either in terms of structural areas, which are built by traversal techniques [14,
11], or in terms of semantic influence areas [6], as it is used in our work.

3 Preliminaries

In this section, we introduce description logics [1], the language family that
underlies modern ontology languages like OWL2 [8]. For purpose of presentation,
we refer to ALC, but our approach can be generalized to any other description
logic where module computation [6] is supported. The signature SigL = C]R]I
of L is composed of a set C of atomic concepts denoted by A,B,C, . . . , a set R of
atomic roles denoted by r, s, . . . , and a set I of individuals denoted by a, b, c, . . . ,
and subsets of SigL are denoted S,S1,S2, Concepts in L are built using the
symbols in SigL and the following syntax rules:

C ::= A | > |⊥ | (¬C) | (C u C) | (C t C) | (∃ r.C) | (∀ r.C) |

where A ∈ C is a concept name, r ∈ R is a role name and a1, . . . , an ∈ I are
individuals. If C1, C2 are concepts then C1 v C2 is an inclusion axiom. If C is
a concept, r ∈ R is a role, and a, b ∈ I are individuals, then C(a) and r(a, b)
are assertional axioms. An ontology O is a pair O = (T ,A) where T is a finite
set of inclusion axioms (called the Tbox) and A is a finite set of assertional
axioms (called the Abox). The signature Sig(O) of an ontology O is the set
Sig(O) ⊆ SigL of symbols occurring in O. The signature Sig(α) of an axiom
α is defined analogously. If O = (T ,A) is an ontology and α is an axiom we
define O ∪ {α} to be either O ∪ {α} = (T ∪ {α},A) or O ∪ {α} = (T ,A∪ {α}),
depending on whether α is an inclusion or assertional axiom. The set difference
is defined analogously. We assume the standard first-order semantics of O, given
by Tarski style model-theoretic semantics using interpretations like in [1].

4 Transactions on Ontologies

In this section, we illustrate the problem of concurrent transaction management
for ontologies and specify the notion of atomic operations, transactions, trans-
action schedules and serializability. By a slight abuse of the notation, we use
standard set operators in the context of sequences, e. g., a ∈ (a1, . . . , an) ⇐⇒
a ∈ {a1, . . . , an}. The union ∪ of two sequences is defined as the set (a1, . . . , an)∪
(b1, . . . , bm) = {a1, . . . , an, b1, . . . , bm} and the concatenation ◦ of two sequences
is defined as the sequence (a1, . . . , an) ◦ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

Definition 1. Let O be an ontology in language L and VC , VR and VI be sets
of variable names for concepts, roles and individuals. Then an atomic operation
a on O is a tuple a = (o, α), consisting of one operation o ∈ {ask, tell, forget}
and an axiom α with 1.) α ∈ L′ with SigL′ = (C ∪VC)] (R ∪VR)] (I ∪VI)
(if o = ask), 2.) α ∈ L (if o = tell), or 3.) α ∈ O (if o = forget).

For an atomic operation (ask, α), we allow α to contain variable names in order to
ask for more general formulas, e. g., the operation (ask, A v ?X) or (ask, ?Y v
B) with ?X, ?Y ∈ VC , asking for axioms with concept descriptions C such
that O |= A v C is true or for all axioms with concept descriptions D that
O |= D v B is true, respectively. Hence, an empty result to an ask operation
means false whereas some result would mean true. The operation (forget, α)
triggers a contraction of O by α ∈ O yielding a new ontology O′ = O \ {α}.
The operation (tell, α) triggers an expansion of O by α yielding a new ontology
O′ = O ∪ {α}. Note that we do not consider the general problem of complex
belief dynamics in ontologies [12]. For example, we do not consider the problem
of revising an ontology by a possibly contradicting axiom α such that the new
ontology remains consistent. To formalize the above intuition, we introduce two
functions that describe the results of an atomic operation. ans—answer, returns
a set of axioms for a given pair of ontology and atomic operation—and upd—
update returns a new (updated) ontology, for a given pair of ontology and atomic
operation. For α ∈ L′ with SigL′ = (C∪VC)] (R∪VR)] (I∪VI) let gr(α) be
the set of groundings of α in L, i. e., the set of all axioms that are the same as α
but every variable is substituted by some concept description, role description,
or individual. Let O be an ontology and a = (o, α) an atomic operation. Then
define

ans(O, (o, α)) =

{
{α′ ∈ gr(α) | O |= α′} o = ask
∅ otherwise

upd(O, (o, α)) =

O o = ask
O ∪ {α} o = tell
O \ {α} o = forget

Note that only the ask operation may yield a non-empty answer and only
tell and forget operations actually update the ontology. Based on these atomic
operations, we are able to define ontology transactions as follows.

Definition 2. An ontology transaction θ (or transaction for short) is a finite
sequence θ = (a1, . . . , an) of atomic operations a1, . . . , an.

A transaction bundles a sequence of atomic operations to be executed on be-
half of a user. For a transaction θ = ((o1, α1), . . . , (on, αn)) let axioms(θ) =
{α1, . . . , αn}. We denote with Sig(θ) ⊆ SigL′ the signature of all axioms of a
transaction θ, with L′ being the same as in Definition 1.

For an ontology O and a sequence of atomic operations (a1, . . . , an), in order
to take cumulative changes of O into account, we abbreviate

upd(O, ()) = O (1)

upd(O, (a1, . . . , an)) = upd(upd(O, (a1, . . . , an−1)), an) (2)

for all i = 1, . . . , n. In other words, upd(O, (a1, . . . , an)) is the ontology result-
ing after sequentially executing the atomic operations a1, . . . , an. Analogously,
ans(O, an) is the answer of the atomic operation an on upd(O, (a1, . . . , an−1)).

ans(O, an) = ans(upd(O, (a1, . . . , an−1)), an) (3)

Example 2. To clarify this, we continue with formalizing our Example 2 from the
introduction according to the definitions made so far. Let θ1 = (a1, a2), θ2 = (b1)
be the two transactions on O defined as:

a1 = (forget, B v D1) a2 = (tell, B v D2)

b1 = (ask,A v?X)

As defined in the introduction, transaction θ1 intends to replace the axiom B v
D1 by B v D2 while transaction θ2 asks for all subsumption relations of the form
A v?X. Figure 4 shows the interaction between these two transactions. The left
part of the figure shows transaction θ1, while the right part shows the three
possible execution orders of transactions θ1 and θ2. As we can see, depending
on the transaction order, the outcome differs. The outcome of the operation
of b1 = (ask, (A v?X)) is A v A1 if the operation takes place before and
A v A2 after the operations of θ1, a1, a2. Both cases refer to a serial schedule.
However, in the second case, we observe unintended answers of transaction θ2.
Since the operation (b1) takes place in between the operations a1 and a2 (non-
serial schedule) the only concept that subsumes A is the universal concept >.

Definition 3. Let Θ = {θ1, . . . , θk} with θi = (ai,1, . . . , ai,mi) for i = 1, . . . , k
be a set of transactions. A transaction schedule π of Θ is a transaction π =
(c1, . . . , cm) such that

{c1, . . . , cm} = θ1 ∪ θ2 ∪ . . . ∪ θk (4)

and for all i = 1, . . . , k we have u < r iff s < t for cu = ai,s and cr = ai,t.

Definition 4. Let Θ = {θ1, . . . , θk} be a set of transactions. A transaction
schedule π is a serial transaction schedule of Θ if there is a permutation σ :
{1, . . . , k} → {1, . . . , k} such that

π = θσ(1) ◦ θσ(2) ◦ . . . ◦ θσ(k) (5)

Let ΠserΘ be the set of all possible serial transaction schedules for a given set of
transactions Θ.

Transaction θ1 Transaction θ2

Before schedule Intermediate schedule After schedule

Begin θ2

T |= A v A1 (ask, A v?X)

Begin θ1 End θ2

(forget, B v D1) Begin θ2

T 6|= A v A1 ∨ A v A2 (ask, A v?X)

(tell, B v D2) End θ2

End θ1 Begin θ2

T |= A v A2 (ask, A v?X)

dummy End θ2

Fig. 1. Transaction Processing

Obviously, a serial transaction schedule πser is a transaction schedule that re-
spects the original order of the atomic operations in the original transactions and
executes operations of the individual transactions in distinguishable batches. For
a set Θ of n transactions θi with i = 1, . . . , n there exist n! different serial trans-
action schedules. Apart from the serial transaction schedules, a vast number of
other interleaving schedules exists, e. g., for two transactions of lengths m1,m2

the possible number of schedules is (m1+m2
m1

). So there is, in general, a large num-
ber of possibilities for transactions to interleave. In order to both preserve the
intended semantics of a set of transactions and optimizing performance we are
interested in serializable schedules.

Definition 5. Let O be an ontology and Θ = {θ1, . . . , θk} be a set of transac-
tions on O. A transaction schedule π′ = (c1, . . . , cn) of Θ is serializable if there
exists a serial transaction schedule πser = (d1, . . . , dn) such that ci = dσ(i) (for
i = 1, . . . , n) for some bijection σ : {1, . . . , n} → {1, . . . , n} of Θ such that

1. upd(O, π′) = upd(O, πser)
2. ans(O, (c1, . . . , ci)) = ans(O, (dσ(1), . . . , dσ(i))) for i = 1, . . . , n

In other words, a transaction schedule π′ is serializable wrt. O if there is
a serial transaction schedule πser such that applying π′ on O yields the same
ontology as applying πser on O and all answers to queries stay the same.

Example 3. We continue Example 2 with the two transactions θ1 = (a1, a2)
and θ2 = (b1). Possible transaction schedules, which adhere to a fixed order in
operations of the same transaction, are π1 = (a1, a2, b1), π2 = (a1, b1, a2) and
π3 = (b1, a1, a2). Both π1 and π3 are serial transaction schedules. The schedule
π2 is not serializable due to

ansπ1
(O, b1) = {A v A1} ansπ3

(O, b1) = {A v A2}
ansπ2

(O, b1) ∩ {A1, A2} = ∅

Definition 6. A set of transaction Θ = {θ1, . . . , θn} is conflicting if there is a
transaction schedule π that is not serializable.

Obviously, in the case of conflicting transactions, some mechanism need to
decide how transactions have to be scheduled in order to have a well-defined
outcome of concurrent transactions. In the following, we address this issue in
a conservative way by restricting interleaving executions of possibly conflicting
transactions using locking.

5 What has to be Locked?

A problem of concurrent transaction management is to find, if existing, a seri-
alizable transaction schedule for a sequence of transactions θ1, . . . , θn. The sim-
plest serializable transaction schedule for a given set of transactions Θ would be
a serial transaction schedule, i. e., locking the whole ontology. However, such a
schedule would potentially suffer from execution delays regarding multiple trans-
actions. The other extreme is to lock exactly this part of the ontology necessary
to avoid conflicts, but this could suffer from a potentially expensive calculation
of the concrete locking area. To remedy this trade-off, we investigate the problem
of determining the right part of the ontology that has to be locked. Based on
this, we are able to investigate the problem of acquiring locks and determining
a serializable interleaving transaction schedule.

5.1 Modules of an Ontology

According to our example in Sect. 4, a lock has to be acquired on more than
just the axioms of the operations of a transaction (axioms(θ)). Additionally,
also the logical consequences, constructed using symbols from Sig(θ), should be
locked. Thus, for a transaction θ over ontology O, we have to lock a sub-ontology
Oθ ⊆ O ∪ axioms(θ), so that every logical consequence α constructed using only
symbols from Sig(θ) with O∪ axioms(θ) |= α is already a logical consequence of
Oθ. It is possible to define finite sets of axioms M⊆ O such that for all axioms
α with terms only from some Signature S ⊆ Sig(O), we have that M |= α iff
O |= α. In such case M is called S-module of O, cf. [6].

Definition 7. Let O′ ⊆ O be ontologies and S be a signature. Then O′ is a
module for S of O, if for all axioms α with Sig(α) ⊆ S, it holds that O′ |= α if
and only if O |= α.

An important property of modules is convexity, i. e., given three ontologies
O1 ⊆ O2 ⊆ O3 if O1 is an S-module in O3 then O1 is an S-module in O2 and
O2 is an S-module in O3 [6]. This means that it is sufficient to focus on minimal
S-modules. An S-module O1 is minimal if there is no other S-module O2 (O1.
This is also advantageous from a locking point of view, locking less is better
since is is more likely that other transactions could also be executed. However,
just one module is not enough since for a given signature S and an ontology

O there might be multiple S-modules and for our task we are interested in the
fragment Oθ that covers all axioms essential for the transaction θ. For such kind
of fragment of an ontology the literature gives us the following definition, cf. [6].

Definition 8. For a signature S and an ontology O, we say that an axiom α ∈ O
is S-essential in O wrt. L if α belongs to some minimal S-module in O wrt. L.

Unfortunately, it has been shown in the literature that deciding if a set of axioms
is a module is hard or even undecidable for expressive DLs [6, 7]. But there exists
several alternative (approximative) definitions of modules. One of them is the so
called locality-based module (LBM) [16], which comes in two flavors, syntactic
and semantic LBM. For syntactic LBMs it is known that they contain the cor-
responding semantic LBM and for their calculation algorithms with polynomial
runtime wrt. the size of the ontology are known [16].

Based on the definition above, we can now state our notion of influence area,
which describes the set of all axioms and entailments, which could be influenced
by a single atomic operation.

Definition 9. The minimal influence area Ωa of an atomic operation a = (o, α)
with respect to an ontology O is the set of all Sig(α)-essential axioms in O. If
o = tell we extend the definition to all Sig(α)-essential axioms in O ∪ {α}.

5.2 Two-Phase Locking for Ontologies

Now, we are able to define a 2PL based locking mechanism for ontology transac-
tions. Algorithm 1 displays the locking procedure. The input to the algorithm is

Algorithm 1: ExecuteTransaction

input : θ, a single transaction, GLock a globale syncronized Lock

1 begin
/* Initialization */

2 TLock ←− ∅;
/* Expanding phase: acquire locks */

3 for i = 1 to |θ| do
4 a←− θ[i];
5 while ((GLock\TLock) ∩ΩSig(a) 6= ∅) do
6 wait;

7 GLock ←− GLock\TLock;
8 TLock ←− ΩSig(a1...ai);
9 GLock ←− GLock ∪ TLock;

10 execute a;

/* Shrinking phase: remove all locks */

11 GLock ←− GLock\TLock;

the transaction θi and a global lock GLock, which is synchronized for all running

instances of this procedure. The algorithm can be subdivided into three parts.
First the initialization part, in which a local empty lock TLock is initialized,
line (2). The second part of the algorithm complies the ‘Expanding Phase’ of
the 2PL mechanism. The algorithm picks the current atomic operation (a) (4).
Only if the intersection between this Ωa and the global lock GLock is empty the
algorithm will continue, otherwise it will wait (5,6). During the time procedure
(a) is waiting for resources to be freed, it could happen that another parallel
working procedure (b) changes the ontology in two ways that could affect (a).
First, an axiom currently in the TLock of (a) is removed by (b), then the TLock
of (a) is just too big but the locking is still valid. Second, a new axiom that
should be part of TLock (a) is added by (b), then the calculated TLock of (a)
is to small and therefore it has to be constantly recalculated. If it is empty the
procedure acquires the lock for a, by adding Ωa to TLock as well as to GLock,
lines (7,8,9). Then the procedure could execute the atomic operation a, line (10).
As soon as all atomic operations of θi are processed, the procedure enters the
‘Shrinking Phase’ (third part) and frees all acquired locks (line (11)).

Theorem 1. Let Θ = {θ1, . . . , θn} be a set of transactions. Any transaction
schedule that is emitted by parallel executions of Algorithm 1 for each transaction
θ1, . . . , θn is serializable.

Proof (Sketch). Let Θ = {θ1, . . . , θn} with θi = (ai,1, . . . , ai,mi) for i = 1, . . . , k
be a set of transactions. Let π = (c1, . . . , cn) be a transaction schedule emitted by
the parallel executions of Algorithm 1. Consider the serial transaction schedule
πser = θσ(1) ◦ . . . θσ(n) with a permutation σ : {1, . . . , n} → {1, . . . , n} and
σ(i) < σ(j) iff k < l for ck = ai,1 and cl = aj,1. In other words, πser is the serial
schedule obtained from π by ordering the transactions according to their first
operation in π. It suffices to show that πser is the witness of π’s serializability
according to Definition 5. Assume upd(O, π′) = upd(O, πser) does not hold. Then
there are transactions θ, θ′ that manipulate some axiom α ∈ O. Without loss of
generality assume θ appears before θ′ in πser. Then θ acquires a lock on at least
the axiom α—note that always α ∈ ΩSig(α)—in line 9 of Algorithm 1 and releases
it only after executing the whole transaction in line 11. Then θ′ is blocked and
O is updated in the same way as a serial execution of θ and θ′, as in πser.
It follows upd(O, π′) = upd(O, πser). Similarly, it also holds that the answer
behavior is the same for both π and πser by taking into account that the subset
Ω′Sig(α) ⊆ O that suffices to produce answers for an operation (ask, α)—i. e.

ans(O, (ask, α)) = {α′ ∈ gr(α) | O |= α′} = {α′ ∈ gr(α) | ΩSig(α) |= α′}— is
accessed by only one transaction at a time as well. ut

6 Evaluation

For our evaluation, we use different versions of the National Cancer Institute
Thesaurus (NCIt) which are available as OWL EL++ ontologies1. As there are

1 NCIt archive http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive, Nov 2012

no real transaction logs available for NCIt (or any other versioned ontology), we
perform our evaluation using transactions artificially generated from four con-
secutive versions available for NCIt. More specifically, for each two consecutive
versions of the NCIt ontology, we generate around 140 different transactions,
each consisting of 6-12 atomic operations, which contain tell -operations on ax-
ioms that are present in the more recent version but missing in the previous
version, forget-operations on axioms that are present in the previous version but
missing in the more recent version, and ask -operations on axioms artificially gen-
erated partially from the signature of the tell - and forget-operations in the same
transaction and potentially other symbols. We computed schedules for around
240 different combinations of these transaction.

Our evaluation aims at measuring the potential benefit of the module-based
locking approach in terms of total execution time. For each atomic operation
in a transaction, we compute the locking areas based on syntactic locality as
described in Sec. 5. While the time needed for computing a module-based lock
is, in general, much larger than for the whole ontology (which is almost imme-
diate) we estimate a benefit when taking varying execution times of non-critical
operations—i. e. user code that is contained in a transaction—into account. We
expect that with increasing average execution time of non-critical operations the
effort for computing a more specific locking area becomes negligible.

6.1 Evaluation Setup

In order to compensate for the lack of existing real transaction logs, we imple-
mented Algorithm 1 in a non-parallel fashion and compute all serializable trans-
action schedules that are consistent with our locking approach. Let Θmod resp.
Θonto be these sets of serializable transaction schedules. For the approach of lock-
ing the whole ontology for each atomic operation it follows that Θonto is the set
of all serial transaction schedules. For both locking approaches and each transac-
tion schedule θ = (c1, . . . , cn) obtained in this way, we estimate the running time
for executing the schedule as follows. Each atomic operation ci (i = 1, . . . , n)
can be decomposed via ci = c′ic

′′
i c
′′′
i , where in c′i the lock is acquired—which

might take some time of lock calculation and the locking itself—c′′i is the criti-
cal operation—which contains the actual database access and is the reason for
acquiring the lock—and c′′′i is a non-critical operation, which might contain user
interaction and other user code. For each non-critical operation c′′′i , we consider
different (but uniform over all non-critical operations) execution times while we
assume critical operations to be immediate, i. e. they have an execution time
of zero. If θ contains a sequence cici+1 = c′ic

′′
i c
′′′
i c
′
i+1c

′′
i+1c

′′′
i+1 where ci and ci+1

originate from different transactions we assume that c′′′i and c′i+1c
′′
i+1c

′′′
i+1 can be

executed in parallel, thus decreasing total execution time. A parallelization fθ
of θ is a function fθ : {1, . . . , n} → {1, . . . , n} that satisfies

1. fθ(i) ≤ fθ(j) for all i, j = 1, . . . , n,
2. If fθ(i) = fθ(j) then c′′i and c′′j come from different transactions, and
3. there is n′ ≤ n with Im fθ = {1, . . . , n′} (Im f is the image of a function f)

Therefore, a parallelization fθ says that all c′′i with fθ(i) = 0 are executed in
parallel at a first step (after their corresponding c′i). Then all c′′i with fθ(i) = 1
are executed in parallel, and so on. The first requirement above ensures that no ci
is executed before cj if j < i. The second requirement says that only operations
of different transactions can be executed in parallel, and the third requirement
states that there are no steps in the execution where nothing is executed. Due to
the assumed execution time of zero for critical operations, we can neglect those.
Let Fθ be the set of all parallelizations of θ. As there may be different variants
on how to parallelize a single transaction schedule we average the total execution
time over all of them. Let tnc be the average execution time for a non-critical
operation and let tX(θ) be the total time needed for computing locks in θ wrt.
the approach X ∈ {onto,mod}. Then we estimate the total execution time for
a transaction schedule θ = (c1, . . . , cn) via

TXtnc(θ) = tX(θ) + tnc

∑
fθ∈Fθ max Im fθ

|Fθ|

Finally, for each tnc we take the average total execution time over all transaction
schedules for both approaches, i. e.

TXtnc =

∑
θ∈ΘX T

X
tnc(θ)

|ΘX |

with X ∈ {onto,mod}. The implementation used for our evaluation can be
downloaded from https://launchpad.net/ontotrans.

6.2 Results

As mentioned, we considered different combinations of transactions of different
lengths. For around 30% of these tested combinations (≈ 240 combinations), we
could find serializable interleaving schedules. This seams to be strongly related
to our strategy of randomly picking axioms to generate the operations of a
transaction. The influence area of a whole transaction consisting of randomly
generated operations can be quite large so that the only possible serializable
schedules for a combination of such transactions are the serial ones. For real
transactions, we assume the axioms in the single operations to be more related
to each other and therefore the influence areas to be smaller. Due to reasons of
execution time, we decided to compute a maximum of 30 schedules per tested
transaction combination. With these settings, we were able to find around 1200
serializable transaction schedules. The average serializable transaction schedules
has only 76.642% of the length of the serial schedules and a single computation of
the two modules, one for the global lock and one for the current atomic operation
takes in average 2.832 seconds. Figure 2, displays the average total execution time
for a schedule of average length of ten, considering different execution times for
the non-critical part c′′′i of the atomic operation. The figure shows that starting
from a average execution time for a non-critical operations of around 12 seconds
the locking based approach starts to perform better.

tnc/sec0

5

10

15

20

25

30

t/sec

0 50 100 150 200 250 300

Tmod
T onto

Fig. 2. Average Total Execution Time for Tmod vs. T onto

6.3 Lessons Learned and Discussion

The relatively high threshold shown in Fig. 2 is the result of the expensive
module calculation. Due to a lack of implementations of incremental module
calculation mechanisms like those introduced in [17], we use the locality-based
module calculation of the OWLAPI which recalculates the global module for
every comparison. It turns out that this global lock calculation takes on average
over 90% of the whole time spend on module calculation. Thus, applying an
optimized incremental module calculation and efficient caching strategies would
lead to a significant decrease in average module calculation time and therefore to
a significantly lower threshold. However, even with our naive implementation our
results depicted in Fig. 2 clearly show the benefit of computing module-based
locks as total execution time decreases compared to the naive approach.

7 Conclusion

In this paper, we have presented a locking approach for concurrent ontology
transactions. While the management of transactions in general is a challenging
problem on its own, it becomes more complicated for ontologies since changes
in an ontology also affect the entailments of the ontology. Thus, the manage-
ment of transactions has to take the entailments of an ontology into account.
Several research has been done in order to analyze changes in ontologies and to
compare versions of ontologies or to build links between ontology versions. The
locking approach in this paper is a further step towards collaborative ontology
management. The locking principle takes the dependencies between axioms re-
garding the DL entailment into account, by determining the influence area of
transactions. Locking policies lock ontologies according to the influence area of
a transaction.

As a next step, we plan to investigate efficient scheduling of ontology trans-
actions, while the presented locking principles and locking policies are the fun-
damental building blocks of a scheduling approach.

Acknowledgments The research reported here was partially supported by the
SocialSensor FP7 project (EC under contract number 287975).

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

2. P.A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan
Kaufmann, 1997.

3. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

4. Vinay K. Chaudhri, Vassos Hadzilacos, and John Mylopoulos. Concurrency Con-
trol for Knowledge Bases. In Bernhard Nebel, Charles Rich, and William R.
Swartout, editors, KR, pages 762–773. Morgan Kaufmann, 1992.

5. S. M. Falconer, T. Tudorache, and N. F. Noy. An analysis of collaborative patterns
in large-scale ontology development projects. In K-CAP, pages 25–32. ACM, 2011.

6. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of Ontologies:
Theory and Practice. Journal of Artificial Intelligence Research, 31:273–318, 2008.

7. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Ex-
tracting Modules from Ontologies: A Logic-Based Approach. In Heiner Stucken-
schmidt, Christine Parent, and Stefano Spaccapietra, editors, Modular Ontologies,
volume 5445 of LNCS, pages 159–186. Springer, 2009.

8. P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. OWL
2 Web Ontology Language Primer. W3C Recommendation, 27:1–123, 2009.

9. E. Jiménez-Ruiz, B. C. Grau, I. Horrocks, and R. B. Llavori. Supporting concur-
rent ontology development: Framework, algorithms and tool. Data Knowl. Eng.,
70(1):146–164, 2011.

10. P. D. Karp, V. K. Chaudhri, and S. M. Paley. A Collaborative Environment for
Authoring Large Knowledge Bases. J. Intell. Inf. Syst., 13(3):155–194, 1999.

11. Natalya Fridman Noy and Mark A. Musen. Specifying Ontology Views by Traver-
sal. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,
ISWC, volume 3298 of LNCS, pages 713–725. Springer, 2004.

12. Guilin Qi and Fangkai Yang. A Survey of Revision Approaches in Description
Logics. In Diego Calvanese and Georg Lausen, editors, RR, volume 5341 of LNCS,
pages 74–88. Springer, 2008.

13. Julian Seidenberg and Alan Rector. A methodology for asynchronous multi-user
editing of semantic web ontologies. In Derek H. Sleeman and Ken Barker, editors,
K-CAP, pages 127–134. ACM, 2007.

14. Julian Seidenberg and Alan L. Rector. Web ontology segmentation: analysis, clas-
sification and use. In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors, WWW, pages 13–22. ACM, 2006.

15. Tania Tudorache, Sean M. Falconer, Natalya F. Noy, Csongor Nyulas, Tevfik Be-
dirhan stn, Margaret-Anne D. Storey, and Mark A. Musen. Ontology development
for the masses: Creating icd-11 in webprotg. In P. Cimiano and H. S. Pinto, editors,
EKAW, volume 6317 of LNCS, pages 74–89. Springer, 2010.

16. C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and D. Tsarkov.
Syntactic vs. semantic locality: How good is a cheap approximation? CoRR,
abs/1207.1641, 2012.

17. C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure
of an ontology: Atomic decomposition and module count. In WoMO, volume 230,
pages 25–39. IOS Press, 2011.

