
An Integrated Development

Environment for Probabilistic

Relational Reasoning

MARC FINTHAMMER,
FernUniversität in Hagen, Germany,
marc.finthammer@fernuni-hagen.de

MATTHIAS THIMM,
Technische Universität Dortmund, Germany,
matthias.thimm@tu-dortmund.de

draft – 2011-08-02

Abstract

This paper presents KReator, a versatile integrated development environment for probabilistic in-

ductive logic programming currently under development. The area of probabilistic inductive logic

programming (or statistical relational learning) aims at applying probabilistic methods of inference
and learning in relational or first-order representations of knowledge. In the past ten years the com-

munity brought forth a lot of proposals to deal with problems in that area which mostly extend

existing propositional probabilistic methods like Bayes Nets and Markov Networks on relational set-
tings. Only few developers provide prototypical implementations of their approaches and the existing

applications are often difficult to install and to use. Furthermore, due to different languages and
frameworks used for the development of different systems the task of comparing various approaches

becomes hard and tedious. KReator aims at providing a common and simple interface for repre-

senting, reasoning, and learning with different relational probabilistic approaches. It is a general
integrated development environment which enables the integration of various frameworks within

the area of probabilistic inductive logic programming and statistical relational learning. Currently,

KReator implements Bayesian logic programs, Markov logic networks, and relational maximum
entropy under grounding semantics. More approaches will be implemented in the near future or can

be implemented by researchers themselves as KReator is open-source and available under public

license. In this paper, we provide some background on probabilistic inductive logic programming
and statistical relational learning and illustrate the usage of KReator on several examples using

the three approaches currently implemented in KReator. Furthermore, we give an overview on its

system architecture.

Keywords: Probabilistic Reasoning, Relational Representation, Implementation

1 Introduction

Probabilistic inductive logic programming (or statistical relational learning) is a very
active field in research at the intersection of logic, probability theory, and machine
learning, see [4, 3] for some thorough overviews. This area investigates methods for
representing probabilistic information in a relational context for both reasoning and
learning. Traditionally, the focus on research in probabilistic reasoning has been on
propositional models. In the past, a lot of propositional models for probabilistic rea-
soning have been developed such as Bayes nets and Markov nets [39] or probabilistic

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–44 0000 c© Oxford University Press

2 An Integrated Development Environment for Probabilistic Relational Reasoning

conditional logic [43]. But the interest in frameworks and efficient methods for re-
lational probabilistic problems is high since they apply to many applications. The
relational structure of many real-world problems (concerning the internet, telecom-
munication networks, human sciences, bioinformatics, and logistics) as well as the
presence of uncertainty in these problems demand sophisticated reasoning and learn-
ing methods employing both these concepts [4].

Many researchers developed liftings of propositional probabilistic models to the
first-order case in order to take advantage of methods and algorithms already de-
veloped. Among these are the well-known Bayesian logic programs [27] and Markov
logic networks [8] which extend respectively Bayes nets and Markov networks [39] and
are based on knowledge-based model construction [46, 2]. Other approaches also em-
ploy Bayes nets for their theoretical foundation like logical Bayesian networks [9] and
relational Bayesian networks [21]; or they are influenced by other fields of research
like probabilistic relational models [18] by database theory, P-log [1] by answer set
programming, and ProbLog [41] by Prolog. There are also some few approaches to
apply maximum entropy methods to the relational case [33, 45]. The aforementioned
approaches stand representative for a vast variety of different approaches developed
in the past ten to twenty years (we refer to [4, 3] for a more elaborate discussion of
existing approaches and their history). Although there has been great motivation in
developing new approaches for statistical relational learning that deal with specific
scenarios, thorough comparisons of approaches are rare. This is no surprise as many
approaches build on different logics and employ different methods of propositional
probabilistic reasoning methods. Still, there are some exceptions to this statement.
In [22] Jaeger introduces model-theoretic expressivity analysis in order to compare the
expressive power of different approaches to statistical relational learning. There, an
approach A is less or equally expressive than an approach B if we can find “simple”
transformations from the intensional (“the rules”) and the extensional (“the signa-
ture”) parts from A to B, respectively, such that the knowledge modeled in A can
be modeled in B as well, see [22] for details. From a theoretical point of view, a
classification of the existing approaches in such a manner is definitely desirable and
would help to understand the relationships of these approaches more clearly. Unfor-
tunately, in [22] it is only shown that relational Bayesian networks [21] are at least
as expressive as Markov logic networks [8]. Furthermore, it is conjectured [22] that
Bayesian logic programs [27] are equally expressive as relational Bayesian networks
[21]. To our knowledge, no further classifications using model-theoretic expressivity
analysis have been made so far. But a similar approach is pursued in [35] where
it has been shown that Bayesian logic programs [27] and an extension of stochastic
logic programs [36] are of equal expressive power. Furthermore, there are some other
attempts to compare approaches for statistical relational learning that focus more on
comparisons of implementations like [29].

But thorough comparisons are still missing. One explanation for this is the lack
of usable and attractive implementations. Although many of the above approaches
have been implemented by their developers in a prototypical manner these imple-
mentations are often hard to install or hard to use. Thus, it takes a lot of time
and effort to become acquainted with a specific implementation and if one wants to
perform comparisons of different approaches this time and effort is multiplied. Even
the consistent handling of some simple examples becomes an intricate task since one

An Integrated Development Environment for Probabilistic Relational Reasoning 3

has to deal in parallel with the specific syntax of each implementation. Thus, there
is a great need of a unifying system that allows the integration and comparison of
different approaches to statistical relational learning and probabilistic inductive logic
programming. This is addressed by the KReator IDE [12] which we present in this
paper. KReator is part of the ongoing KReate project1 which aims at developing
a common methodology for learning, modelling and inference in a relational proba-
bilistic framework. Currently, the development of KReator is still in a very early
stage but already supports Bayesian logic programs, Markov logic networks, and in
particular a new approach for using maximum entropy methods in a relational con-
text [33]. KReator aims at providing a common interface for different approaches
to statistical relational learning. That way, KReator supports the researcher and
knowledge engineer in developing knowledge bases and employing them in a common
and easy-to-use fashion. KReator provides abstract interfaces to common structures
like knowledge bases and queries and different approaches can be integrated easily by
implementing these interfaces. New approaches can also make use of the logical struc-
tures (for predicates, constants, atoms, etc.) already implemented in KReator. As
said, KReator is still in an early stage of development and more approaches will
be supported in the near future. But KReator is available under the GNU General
Public License and publicly available under http://kreator.cs.tu-dortmund.de,
so developers are also encouraged to add support for their approaches on their own.
As KReator provides a common methodology to address the functionalities of an
approach—in particular KReator provides project management, file handling, and
a graphical and a console-based user interface—developers only need to take care of
the essential components of their approach and can neglect the tedious tasks of im-
plementing the surrounding infrastructure. This also yields a great advantage for the
user of the system as different approaches can be employed using the same interface
and the same methods. The present paper is an extension of [12] and we give an
overview on the internal architecture of KReator and illustrate its usage.

The rest of this paper is organized as follows. In Section 2 we give an overview
on the approaches of statistical relational learning that are currently supported by
KReator, i. e. Bayesian logic programs, Markov logic networks, and the relational
maximum entropy approach. We go on in Section 3 with presenting the system
architecture of KReator and motivate the main design choices. In Section 4 we give
a short manual-style overview on the usage of KReator. In Section 5 we illustrate
the usage of KReator and the different representations mechanisms by some more
examples. In Section 6 we give some hints on future work and conclude.

2 Relational Probabilistic Knowledge Representation

In the following we give a brief overview on frameworks for relational probabilistic
reasoning that are already implemented in KReator. These are Bayesian logic pro-
grams originally due to Kersting et. al. [27], Markov logic networks originally due to
Domingos et. al. [8], and a framework employing reasoning with maximum entropy
methods [33]. Bayesian logic programs use logic programming techniques [17] in order
to provide a mechanism for relational knowledge representation and employ Bayes nets
[39] to perform probabilistic reasoning. Markov logic networks use classical first-order

1http://www.fernuni-hagen.de/wbs/research/kreate/index.html

4 An Integrated Development Environment for Probabilistic Relational Reasoning

logic for knowledge representation and use Markov nets [39] for reasoning. Finally,
the approach on relational maximum entropy uses a relational extension of proba-
bilistic conditional logic [43] for knowledge representation and employs the principle
of maximum entropy [24] for reasoning. In the following subsections, we illustrate
the use of these frameworks on a common example, the well-known burglary example
[39, 4]. More examples in these different approaches will be given later in Section 5.

Example 2.1
We consider a scenario where someone—let’s call him James—is on the road and gets
a call from his neighbor saying that the alarm of James’ house is ringing. James has
some uncertain beliefs about the relationships between burglaries, types of neighbor-
hoods, natural disasters, and alarms. For example, he knows that if there is a tornado
warning for his home place, then the probability of a tornado triggering the alarm of
his house is 0.9. He also knows that if a burglary attempt takes place, the alarm will
ring with a 0.9 probability. Further he knows that if you live in bad neighborhood,
then there is 0.6 probability of a burglary, whereas in an average neighborhood, there
is 0.4 probability, and in a good neighborhood there is merely a 0.3 probability. A
reasonable piece of information to infer from his beliefs and the given information is
“What is the probability of an actual burglary?”.

2.1 Bayesian Logic Programs

Bayesian logic programming is an approach to combine logic programming [17, 32] and
Bayes nets [27]. Bayesian logic programs (BLPs) use a standard logic programming
language and attach to each logical clause a set of probabilities, which define a con-
ditional probability distribution of the head of the clause given specific instantiations
of the body of the clause.

In contrast to first-order logic, BLPs employ an extended form of predicates and
atoms. In BLPs, Bayesian predicates are predicates that feature an arbitrary set as
possible states, i. e. not necessarily the Boolean values {true, false}. For example,
the Bayesian predicate bloodtype/1 may represent the blood type of a person using
the possible states S(bloodtype) = {a, b, ab, 0} [27]. Analogous to first-order logic,
Bayesian predicates can be instantiated to Bayesian atoms using constants and vari-
ables and then each ground Bayesian atom represents a single random variable. If A
is a Bayesian atom of the Bayesian predicate p we set S(A) = S(p).

The basic structure for knowledge representation in Bayesian logic programs are
Bayesian clauses which model probabilistic dependencies between Bayesian atoms.

Definition 2.2 (Bayesian Clause, Conditional Probability Distribution)
A Bayesian clause c is an expression (H | B1, . . . , Bn) with Bayesian atoms H,B1, . . . ,
Bn. With a Bayesian clause c with the form (H | B1, . . . , Bn) we associate a function
cpdc : S(H)× S(B1)× . . .× S(Bn)→ [0, 1] that fulfills

∀b1 ∈ S(B1), . . . , bn ∈ S(Bn) :
∑

h∈S(H)

cpdc(h, b1, . . . , bn) = 1 . (2.1)

We call cpdc a conditional probability distribution. Let CPDp denote the set of all
conditional probability distributions for atoms of predicate p, i. e., it is CPDp =
{cpdH|B1,...Bn

| H is an atom of p}.

An Integrated Development Environment for Probabilistic Relational Reasoning 5

As usual, if the body of a Bayesian clause c is empty (n = 0) we write c as (H)
instead of (H |) and call c a Bayesian fact. For a Bayesian clause c = (H | B1, . . . , Bn)
we abbreviate head(c) = H and body(c) = {B1, . . . , Bn}. In Bayesian logic program-
ming, variables are usually denoted with an beginning uppercase letter and constants
are denoted with an initial lower-case letter. A function cpdc for a Bayesian clause
c expresses the conditional probability distribution P (head(c) | body(c)) and thus
partially describes an underlying probability distribution P . Condition (2.1) ensures
that cpdc indeed describes a conditional probability distribution. For example, given
a clause (h(X) | b(X)) with some Boolean predicate h condition (2.1) ensures that
P (h(a) = true | b(a) = v) + P (h(a) = false | b(a) = v) = 1 for any v ∈ S(b), some
constant a, and a probability distribution P that “represents” cpdc.

Example 2.3
We represent Example 2.1 by declaring the Bayesian predicates

S(alarm/1) = {true, false}
S(burglary/1) = {true, false}
S(tornado/1) = {true, false}
S(lives in/2) = {true, false}

S(neighborhood/1) = {bad, average, good}

and defining a set {c1, c2, c3} of Bayesian clauses with:

c1 : (alarm(X) | burglary(X))

c2 : (alarm(X) | lives in(X,Y), tornado(Y))

c3 : (burglary(X) | neighborhood(X))

For each Bayesian clause ci, we define a function cpdci which expresses our subjective
beliefs (notice that the probabilities stated in the right column are redundant):

cpdc1(true, true) = 0.9 cpdc1(false, true) = 0.1

cpdc1(true, false) = 0 cpdc1(false, false) = 1

cpdc2(true, true, true) = 0.9 cpdc2(false, true, true) = 0.1

cpdc2(true, false, true) = 0 cpdc2(false, false, true) = 1

cpdc2(true, true, false) = 0.01 cpdc2(false, true, false) = 0.99

cpdc2(true, false, false) = 0 cpdc2(false, false, false) = 1

cpdc3(true, bad) = 0.6 cpdc3(false, bad) = 0.4

cpdc3(true, average) = 0.4 cpdc3(false, average) = 0.6

cpdc3(true, good) = 0.3 cpdc3(false, good) = 0.7

For example, cpdc2 expresses that our subjective belief on the probability that the
alarm of a person X will go on given that we know that X lives in town Y and there
is currently a tornado in Y is 0.9. Furthermore, we believe that the probability that
the alarm of X will go on if we know that X lives in Y and that there is no tornado in
Y is 0.01.

6 An Integrated Development Environment for Probabilistic Relational Reasoning

Considering clauses c1 and c2 in Example 2.3 one can see that it is possible to
have multiple clauses with the same head. This means that there may be multiple
causes for some effect or multiple explanations for some observation. In order to
represent these kinds of scenarios the probabilities of causes or explanations have to
be aggregated. BLPs use combining rules in order to aggregate probabilities that
arise from applications of different Bayesian clauses. A combining rule crp for a
Bayesian predicate p/n is a function crp : P(CPDp) → CPDp that assigns to the
conditional probability distributions of a set of Bayesian clauses a new conditional
probability distribution that represents the joint probability distribution obtained
from aggregating the given clauses2. For example, given clauses c1 = (b(X) | a1(X))
and c2 = (b(X) | a2(X)) the result f = crb({cpdc1 , cpdc2}) of the combining rule crb is
a function f : S(b) × S(a1) × S(a2) → [0, 1]. Appropriate choices for such functions
are average or noisy-or, cf. [27].

Example 2.4
We continue Example 2.3. Suppose noisy-or to be the combining rule for alarm.
Then the joint conditional probability distribution cpdc′ for

c′ = (alarm(X) | burglary(X), lives in(X,Y), tornado(Y))

can be computed via

cpdc′(true, t1, t2, t3) = 1− (1− cpdc1(true, t1)) · (1− cpdc2(true, t2, t3))

cpdc′(false, t1, t2, t3) = 1− cpdc′(true, t1, t2, t3)

for any t1, t2, t3 ∈ {true, false}.

A combining rule is a heuristic for estimating the probability of an event e given
two causes c1 and c2 [39]. It has to be noted, that combining probabilities in this
manner might remove the probabilistic interpretation of the resulting values as specific
relationships between the causes have to be assumed. For example, using the noisy-or
combining rule assumes accountability and exception independence of c1 and c2, cf.
[39]. If the presumed relationships do not hold the results might be unexpected and
even unwanted. Consider an extension of the BLP defined in examples 2.3 and 2.4
with the Bayesian clause

c4 : (alarm(X) | power failure(X)) .

Imagine that the conditional probability distribution of c4 assigns a probability of zero
to alarm(X) if there is a power failure. Given the evidences of both a tornado and a
power failure the probability of an alarm should be determined only by considering
clause c4 and not by combining c2 and c4. We refer to [39] for a deeper discussion on
this topic.

Now we are able to define Bayesian logic programs as follows.

Definition 2.5 (Bayesian Logic Program)
A Bayesian logic program B is a tuple B = (C,D,R) with a (finite) set of Bayesian
clauses C = {c1, . . . , cn}, a set of conditional probability distributionsD = {cpdc1 , . . . ,
cpdcn} (one for each clause in C), and a set of combining rules R = {crp1 , . . . , crpm}
(one for each Bayesian predicate appearing in C) .

2P(S) denotes the power set of a set S.

An Integrated Development Environment for Probabilistic Relational Reasoning 7

Semantics are given to Bayesian logic programs via transformation into the propo-
sitional case, i. e. into Bayes nets [39]. Given a specific (finite) universe U a Bayes
net BN can be constructed by introducing a node for every grounded Bayesian atom
in B. Using the conditional probability distributions of the grounded clauses and the
combining rules of B a (joint) conditional probability distribution can be specified for
any node in BN . If BN is acyclic this transformation uniquely determines a proba-
bility distribution P on the grounded Bayesian atoms of B which permits inference,
i. e. P can be used to answer queries.

Example 2.6
Let B be the Bayesian logic program described in Example 2.3 and Example 2.4. Let
Q = (alarm(james) = true | E) with

E = { lives in(james, yorkshire) = true, tornado(yorkshire) = true,

neighborhood(james) = average }

be a query to B that asks for the probability of an alarm in James’ house given that he
lives in an average neighborhood in Yorkshire and there is currently a tornado warning
for Yorkshire. So the universe under discourse consists of the constants james and
yorkshire. So, by instantiating properly and combining the conditional probability
distributions of c1 and c2 yielding the function cpdc′ from Example 2.4 and summing
over the alternatives true and false for the uncertain event burglary(james), in applying
c3 we get

P (Q) = cpdc3(true, average)cpdc′(true, true, true, true) +

cpdc3(false, average)cpdc′(true, false, true, true)

= 0.936 .

Figure 1 illustrates the derivation of the query Q given evidence E. By omitting
nodes representing clauses the derivation tree in Figure 1 can be directly transformed
into a ground Bayes net that can be used to calculate the answer above.

A detailed description of the above (declarative) semantics and an equivalent pro-
cedural semantics which is based on SLD resolution are given in [27].

2.2 Markov Logic Networks

Markov logic [42] establishes a framework which combines Markov networks [39] with
first-order logic to handle a broad area of statistical relational learning tasks. The
Markov logic syntax complies with first-order logic3, however each formula is quanti-
fied by an additional weight value. The semantics of a set of Markov logic formulas
is determined by a probability distribution over possible worlds. A possible world
ω assigns a truth value to every possible ground atom (constructible from the set
of predicates and the set of constants). As we only consider finite universes we use
Herbrand interpretations as possible worlds. A Herbrand interpretation is simply the
set of ground atoms that are assigned the value true in this interpretation; all other
ground atoms are assigned the value false. Let Ω denote the set of all possible worlds.

3Although Markov logic also covers functions (with some restrictions), we will omit this fact, and consider

constants only.

8 An Integrated Development Environment for Probabilistic Relational Reasoning

alarm(james)

c1 c2

tornado(yorkshire)

lives in(james, yorkshire)

tornado(yorkshire)burglary(james)

c3

neighborhood (james)

1

Fig. 1. The derivation for the query Q in Example 2.6.

The fundamental idea in Markov logic is that first-order formulas are not handled
as hard constraints. Instead, each formula is more or less softened depending on
its weight. So a possible world may violate a formula without necessarily receiving
a zero probability. Rather a world is more probable, the less formulas it violates.
A formula’s weight specifies how strong the formula is, i. e. how much the formula
influences the probability of a satisfying world versus a violating world. This way, the
weights of all formulas influence the determination of a possible world’s probability
in a complex manner. One clear advantage of this approach is that Markov logic can
directly handle contradictions in a knowledge base, since the (contradictory) formulas
are weighted against each other anyway. Furthermore, by assigning appropriately
high weight values to certain formulas, it can be enforced that these formulas will be
handled as hard constraints, i. e. any world violating such a strict formula will have
a zero probability. Thus, Markov logic also allows the processing of purely logical
first-order formulas (leaving function symbols out of consideration).

Definition 2.7 (Markov logic network)
A Markov logic network (MLN) L is a finite set L = {(F1, wF1), . . . , (Fn, wFn)} of
pairs (Fi, wFi) with a first-order logic formula Fi and a real value wFi , its weight.
Together with a set of constants C it defines a Markov network ML,C as follows:

• ML,C contains a node for each possible grounding of each predicate appearing in
L.

• ML,C contains an edge between two nodes (i. e. ground atoms) iff the ground
atoms appear together in at least one grounding of one formula in L.

• ML,C contains one feature (function) for each possible grounding of each formula
Fi in L. The value of the feature for a possible world ω is 1, if the ground formula
is true for ω (and 0 otherwise). Each feature is weighted by the weight wi of its
respecting formula Fi.

According to the above definition, an MLN (i. e. the weighted formulas) defines a
template for constructing ground Markov networks. For a different set C ′ of constants,

An Integrated Development Environment for Probabilistic Relational Reasoning 9

a different ground Markov network ML,C′ emerges from L. These ground Markov
networks may vary in size, but their general structure is quite similar, e. g. the
groundings of a formula F have the weight wF in any ground Markov network of L.
For each formula F in an MLN let nF (ω) denote the number of true groundings of F
in the possible world ω.

In Markov logic networks, variables are usually denoted with an initial lower-case
letter and constants are denoted with a beginning uppercase letter (as opposed to the
notation for Bayesian logic programming).

Example 2.8
Let F ≡ r(x) ∧ ¬s(x) be a formula over the predicates r/1, s/1. For a given set of
constants {A,B,C}, F has the groundings Fx/A ≡ r(A)∧¬s(A), Fx/B ≡ r(B)∧¬s(B),
and Fx/C ≡ r(C) ∧ ¬s(C). So for a given possible world ω = {r(A), r(B), r(C), s(A)},
it follows nF (ω) = 2, because F has two true groundings Fx/B, Fx/C.

A probability distribution PML,C
can be specified by the ground Markov network

ML,C via the log-linear model

PML,C
(ω) =

1

Z
exp

 ∑
(F,wF)∈L

wFnF (ω)

 (2.2)

over possible worlds ω ∈ Ω [42]. Here,

Z =
∑
ω∈Ω

exp

 ∑
(F,wF)∈L

wFnF (ω)

is a normalization factor and the probability of an arbitrary formula A can be com-
puted via

PML,C
(A) =

∑
ω∈Ω:ω|=A

PML,C
(ω)

where ω |= A denotes the classical logical satisfaction relation. We illustrate the above
definition with our running example.

Example 2.9
In this example, we model the relations described in Example 2.1 as an MLN (i. e.
we do not attempt to convert the BLP from Example 2.3 to an MLN). We describe
the MLN using the Alchemy syntax [31] for MLN files, therefore constant symbols
must start with an upper-case letter, whereas variable symbols must have an initial
lower-case letter. The “!” operator used in the predicate declarations of lives in
and neighborhood enforces that the respective variables will have mutually exclusive
and exhaustive values, i. e. that every person lives in exactly one town and one
neighborhood (in terms of ground atoms).

In order to appropriately represent the uncertain beliefs from Example 2.1 as a
Markov logic network, the weights of formulas have to be determined. In [42] it
is suggested that weights of formulas have to be learned from data. Nonetheless, in
[13, 42] a heuristic is discussed that determines weights of formulas from probabilities.
In [42] an interpretation of the weight wF of a formula F is provided as the log-odd

10 An Integrated Development Environment for Probabilistic Relational Reasoning

between a world where F is true and a world where F is false, other things being
equal. Considering this interpretation one might choose wF = log p

1−p as the weight

of a formula F when p is the intended probability of F , see [13] for a discussion.
We declare the types and respective constants

person = {James,Stefan}
town = {Freiburg,Yorkshire,Austin}

hood status = {Bad,Average,Good}

the typed predicates

alarm(person)

burglary(person)

tornado(town)

lives in(person, town!)

neighborhood(person, hood status!)

and add the following weighted formulas:

2.2 burglary(x) ⇒ alarm(x)

2.2 lives in(x, y) ∧ tornado(y) ⇒ alarm(x)

0.4 neighborhood(x,Bad) ⇒ burglary(x)

−0.4 neighborhood(x,Average) ⇒ burglary(x)

−0.8 neighborhood(x,Good) ⇒ burglary(x)

with the heuristically determined weights 2.2 = log 0.9
0.1 , 0.4 = log 0.6

0.4 , −0.4 = log 0.4
0.6 ,

and −0.8 = log 0.3
0.7

It has to be noted that MLNs—in contrast to BLPs (Example 2.3) and RME (Ex-
ample 2.13, see below)—do not allow to express if-then-rules directly in terms of
conditional probabilities [13]. So we have chosen to model the rule-like knowledge
from Example 2.1 using material implications. Even though this might be a quite
intuitive modelling approach at first glance, it should also be mentioned that implica-
tions are (in general) a sub-optimal choice to model conditional knowledge. As (2.2)
shows, the weight of an MLN implication is effective for a probability if the implication
is logically satisfied, regardless whether both the premise and the consequent hold,
or just the premise fails. Therefore, a modelling approach simply using conjunctions
(instead of implications) might be much more accurate in most cases.

Example 2.10
The ground formula burglary(James)⇒ alarm(James) is satisfied for each world with
{burglary(James) = true ∧ alarm(James) = true}, as well as also for each world with
{burglary(James) = false}. So the weight of this formula has exactly the same effect on
the probability of a world where a burglary takes places and the alarm rings, as well as
on a world where no burglary takes places. This does not model the knowledge from
Example 2.1 very well, which just stated ”if a burglary takes place, then the probabil-
ity that the alarm rings is 0.9” and said nothing about the case that no burglary takes
place. In contrast, a conditional probability P (alarm(James)|burglary(James)) = 0.9
captures the knowledge from Example 2.1 adequately, because it only states a prob-
ability for alarm(James) for the case that burglary(James) holds.

An Integrated Development Environment for Probabilistic Relational Reasoning 11

Probabilistic inference in Markov logic is performed by calculating the conditional
probability of a formula B given a formula A. That way, queries asking for the
probability that a formula B is satisfied given the satisfaction of a formula A can be
formulated.

Let A, B be two first-order formulas. For a given MLN L together with a set of
constants C, the ground Markov network ML,C specifies the probability distribution
PML,C

according to (2.2), so the conditional probability of B given A is defined as:

PML,C
(B|A) =

PML,C
(A ∧B)

PML,C
(A)

=

∑
ω∈Ω:ω|=A∧B

PML,C
(ω)

∑
ω∈Ω:ω|=A

PML,C
(ω)

(2.3)

A direct calculation (2.3) is merely manageable for very small sets of constants, but
intractable for domains of a more realistic size.

While the probability PML,C
(B|A) can be approximated using Markov chain Monte-

Carlo methods, the performance might still be too slow in practice [42]. Therefore,
more sophisticated and efficient algorithms have been developed to perform infer-
ence in MLNs, e. g. MC-SAT and lifted belief propagation. We refer to [42] and [8]
for a detailed explanation of these algorithms and other techniques regarding MLN
inference.

2.3 Relational Maximum Entropy

In the following, we introduce grounding semantics for reasoning under maximum
entropy in first-order probabilistic conditional logic, cf. [33]. In contrast to Bayesian
logic programs or Markov logic networks which extend graph-based propositional for-
malisms like Bayes nets and Markov networks, this approach extends probabilistic
conditional logic [37, 44] to the first-order case. In doing so, the approach discussed
here is similar in spirit to the approaches undertaken in [34] and [14] which also ap-
ply Maximum Entropy reasoning on relational extensions of probabilistic conditional
logic. But here we focus on grounding techniques for first-order probabilistic logic
and particularly in resolving conflicts. The approach of relational maximum entropy
(RME) relies on the central notion of a grounding operator. A grounding operator is a
function that maps a first-order knowledge base onto a propositional one that is used
for reasoning. In this paper, we give only a short overview on grounding operators
and desirable properties of these.

Let L be a first-order language without quantifiers and without functions. We
expect L to be typed, so let SL be a finite set of types. Each constant c and each
variable X appearing in L is associated with one type σ ∈ S (like in Bayesian logic
programming, variables are usually denoted with an beginning uppercase letter and
constants are denoted with an initial lower-case letter). Furthermore, each argument
of a predicate is associated with a type as well, e. g. let p(σ1, σ2) denote a predicate
which’s first argument is of type σ1 and which’s second argument is of type σ2.
We assume L to be well-formed in the sense, that every argument of a predicate is
occupied by a term (either variable or constant) of the correct type. The approach of
RME relies on a first-order extension of probabilistic conditional logic, so the central

12 An Integrated Development Environment for Probabilistic Relational Reasoning

structure for knowledge representation is a conditional. We allow instantiations of
conditionals to be constrained by excluding unwanted combinations of constants.

Definition 2.11 (Constraint formula)
Let X,Y be some variables and k1, . . . , kl some constants in L. An atomic constraint
formula c is either a tautology (>) or an expression of the form X 6= Y or X /∈
{k1, . . . , kl}. A constraint formula c is a finite conjunction c = c1 ∧ . . . ∧ cn of atomic
constraint formulas c1, . . . , cn.

Definition 2.12 (Conditional)
A conditional r is a structure r = (φ | ψ)[α][c] with formulas φ, ψ ∈ L, a real value
α ∈ [0, 1], and a constraint formula c. A conditional r is called ground iff r contains
no variables. The set of all conditionals is denoted by (L | L)rel and the set of all
ground conditionals is denoted by (L | L)relU .

A conditional (φ | ψ)[α][c] describes some kind of default knowledge like “When ψ
then (normally) φ”. While α represents the intended probability of the conditional
to be true, c represents constraints to be respected when grounding the conditional.
Formal semantics to conditionals will be given below. If the premise ψ of a condi-
tional is tautological (ψ ≡ >) we write (φ)[α][c] instead of (φ | ψ)[α][c]. When c is
tautological we write (φ | ψ)[α] instead of (φ | ψ)[α][c]. A set KB of conditionals is
called a knowledge base.

Example 2.13
We represent Example 2.1 in the RME approach as a knowledge base KB . Let the
set S of types be given by S = {Person,Town,HoodStatus} which, respectively, refer
to persons, towns, and status of neighborhood. Then we define following constants of
the respective type:

Person = {james, stefan}
Town = {freiburg, yorkshire, austin}

HoodStatus = {bad, average, good}
The set P contains the following predicates:

alarm(Person)

burglary(Person)

tornado(Town)

lives in(Person,Town)

neighborhood(Person,HoodStatus)

Then our knowledge base KB can be defined by KB = {c1, . . . , c7} with

c1 : (alarm(X) | burglary(X)) [0.9]

c2 : (alarm(X) | lives in(X,Y), tornado(Y)) [0.9] }
c3 : (burglary(X) | neighborhood(X, bad)) [0.6]

c4 : (burglary(X) | neighborhood(X, average)) [0.4]

c5 : (burglary(X) | neighborhood(X, good)) [0.3]

c6 : (neighborhood(X,Z) | neighborhood(X,Y)) [0.0] [Y 6= Z]

c7 : (lives in(X,Z) | lives in(X,Y)) [0.0] [Y 6= Z]

An Integrated Development Environment for Probabilistic Relational Reasoning 13

Notice, that the constraint formulas of conditionals c6 and c7 ensure that only one
value of the second argument of neighborhood resp. lives in is valid at any time.

Semantics are given to a knowledge base KB by grounding KB with a grounding
operator (GOP).

Definition 2.14 (Grounding operator)
A grounding operator (GOP) G is a function G : P((L | L)rel)→ P((L | L)relU) which
maps knowledge bases to ground knowledge bases.

Note, that a ground knowledge base is equivalent to a purely propositional knowl-
edge base by treating ground atoms as propositions. Here, we do not go into details
in strategies for grounding a knowledge base but suppose G to be some reasonable
grounding operator as given. In [33] the naive-, cautious-, conservative-, and speci-
ficity-grounding strategies are presented and analyzed and a more elaborate treatment
of grounding strategies for RME is given. For now, we just consider the following ex-
ample (adapted from [6]) of a grounding operator. We will also revisit this example
in Section 5.2 for an in-depth comparison of different modeling approaches.

Example 2.15
Let KB be given by KB = {c1, c2, c3} with

c1 : (likes(X,Y))[0.9]

c2 : (likes(X, fred))[0.3]

c3 : (likes(clyde, fred))[1.0]

The knowledge base contains a general statement (c1) that represents the proba-
bility of an elephant liking its keeper, and two more specific statements (c2 resp.
c3) that model the relationships for some exceptional individuals Clyde and Fred.
Grounding KB using universal instantiation Guniv , i. e. grounding each conditional
with any possible combination of constants, yields an inconsistent ground knowledge
base Guniv (KB) as Guniv (KB) contains, for instance, both (likes(clyde, fred))[0.3] and
(likes(clyde, fred))[1]. Nonetheless, KB makes perfect sense from a commonsensical
point of view as, for instance, rule c2 should be treated as an exception to c1 and
inhibiting the instantiation of Y with the constant fred in c1. One approach to avoid
these inconsistencies is to completely ignore individuals that already appear within
the knowledge base when instantiating the conditionals. This cautious grounding
operator Gca is formalized in [33]. Consider that language contains the elephants
Clyde, Dumbo and Tuffi and the keepers Fred and Hank. Then the resulting ground
knowledge base Gca(KB) of KB can be given as

Gca(KB) = { (likes(dumbo, hank))[0.9],

(likes(tuffi, hank))[0.9],

(likes(dumbo, fred))[0.3],

(likes(tuffi, fred))[0.3],

(likes(clyde, fred))[1.0] }.

Observe, for instance, that Gca does not instantiate c1 using the constant clyde, be-
cause clyde already appears in the knowledge base.

14 An Integrated Development Environment for Probabilistic Relational Reasoning

So let G be some well-defined grounding operator and KB be a knowledge base.
Then G(KB) is ground and can be treated as a propositional knowledge base. As
before, a Herbrand interpretation ω of our relational language L is any set of ground
atoms of L and let Ω be the set of all Herbrand interpretations for L. Semantics
are given to a knowledge base KB with means of probability distributions P : Ω →
[0, 1] which map interpretations to probabilities. A probability distribution P can be
extended to ground formulas A ∈ L by defining (also as before)

P (A) =
∑

ω∈Ω,ω|=A

P (ω)

where ω |= A denotes the classical logical satisfaction relation. Then, given a knowl-
edge base KB and a grounding operator G, we say that a probability distribution P
satisfies KB under G, denoted by P |=G KB , if and only if

∀(φ∗ | ψ∗)[α] ∈ G(KB) : P (φ∗ | ψ∗) = α .

This means, that P |=G KB holds if the conditional probability P (φ∗ | ψ∗) equals
α for any ground conditional (φ∗ | ψ∗)[α] in G(KB). To perform reasoning we employ
the principle of maximum entropy [24, 20, 43, 44]. The entropy H of a probability
distribution P is defined as

H(P) = −
∑
ω∈Ω

P (ω) logP (ω) .

By selecting the one probability distribution P that yields maximum entropy, i. e., by
computing

PME
G,KB = arg max

P |=GKB
H(P) (2.4)

we obtain the most unbiased representation of the knowledge in G(KB), cf. [24,
20, 43, 44] for the formal properties and uniqueness theorems. The approach of
maximum entropy yields a model-based inference procedure and reasoning on KB is
now solely performed using the probability distribution PME

G,KB . Then a conditional

Q ∈ (L | L)rel is fulfilled under the grounding G(R) in the knowledge base KB ,
denoted by KB |=ME

G Q, if it holds

KB |=ME
G Q iff PME

G,KB |= G({Q})
iff ∀(φ∗ | ψ∗)[α] ∈ G({Q}) : PME

G,KB (φ∗ | ψ∗) = α .

This means, that KB |=ME
G Q holds if the conditional probability of every ground

instance (φ∗ | ψ∗) of Q wrt. G equals α in PME
G,KB . Figure 2 gives an overview on the

RME approach introduced above.

Example 2.16
Continuing Example 2.13 consider the query Q = (alarm(james) | E) with

E = {lives in(james, austin), tornado(austin),neighborhood(james, average)} .

As before, Q asks for the probability of alarm(james) being true given that James lives
in Austin, there is currently a tornado warning for Austin and the neighborhood of

An Integrated Development Environment for Probabilistic Relational Reasoning 15

Grounding Operator:

G : P((L | L)rel) → P((L | L)relU)

RME KB:

KB ⊆ (L | L)rel

Query:

Q ∈ (L | L)rel

Max-Ent-Reasoner

G(KB) ⊆ (L | L)relU

PME
G,KB |= G({Q})

KB

q

G(KB)

PME
G,KB

G(q)

Fig. 2. Overview on reasoning with RME.

James can be considered as an average neighborhood. As Q is already ground there
is no need to compute G({Q}). So we go on by grounding KB using some chosen
grounding operator. In this example, the result of this grounding is independent of
the actual chosen grounding operator (as there is no conflicting information on a
syntactical level), hence we can use universal instantiation. The following is a short
excerpt of the set of formulas G(KB) yields to:

c1,1 : (alarm(james) | burglary(james)) [0.9]

c1,2 : (alarm(stefan) | burglary(stefan)) [0.9]

c2,1 : (alarm(james) | lives in(james, freiburg), tornado(freiburg)) [0.9]

c2,2 : (alarm(james) | lives in(james, austin), tornado(austin)) [0.9]

. . .

For G(KB) we now compute PME
G,KB by selecting the one probability distribution with

maximum entropy that satisfies G(KB), cf. Equation (2.4). Remember that G(KB)
is ground and as such can be treated as propositional knowledge base, so computing
PME
G,KB can be done using traditional methods for computing the one model with

maximum entropy for propositional models, see e. g. [44]. Then the conditional
probability of alarm(james) given E can be directly calculated to

PME
G,KB (alarm(james) | E) = 0.8951 .

3 KReator: Overview and System Architecture

So far, we described three different approaches for combining first-order representa-
tions of knowledge with probabilistic reasoning. These approaches only serve as rep-
resentatives for a huge variety of different proposals to statistical relational learning
and inductive logic programming. But still, one can note that even these three ap-
proaches differ significantly in both their representation and reasoning behavior; even
in such unimportant manners such as naming conventions for variables and constants
(we deliberately used the common notation for the presented approaches to highlight
this problem). Consequently, as a researcher the problem of evaluating and comparing
these formalisms becomes a tedious task, especially when implementations are proto-
typical and hard to use. In this section, we give an overview on the KReator system
that aims at alleviating common tasks when working with formalisms for statistical
relational learning or inductive logic programming.

16 An Integrated Development Environment for Probabilistic Relational Reasoning

3.1 Overview

KReator4 is an integrated development environment for representing, reasoning, and
learning with relational probabilistic knowledge. Still being in development KReator
aims to become a versatile toolbox for researchers and knowledge engineers in the field
of statistical relational learning. Coming with an intuitive graphical user interface
KReator’s core functionalities allow the knowledge engineer to specify knowledge
bases, ask queries to knowledge bases, and to learn knowledge bases from data. At
this time, KReator supports these tasks using Bayesian logic programs, Markov
logic networks, and relational maximum entropy (cf. Sections 2.1, 2.2, and 2.3). The
main advantage of using KReator (instead of using prototypical implementations
of these formalisms itself) is the common and unified way to address such tasks as
described above. Furthermore, KReator features diverse user friendly amenities like
project management, scripting, syntax highlighting, or LATEX output, which ease the
work on knowledge representation, reasoning, and learning. In the rest of this and
the subsequent section we will discuss several of KReator’s features in more detail.

3.2 Design and Architecture

KReator is written in Java [19] and designed using the object-oriented programming
paradigm. By using Java as programming language KReator is platform indepen-
dent and runs on any system with a Java runtime environment. It facilitates several
architectural and design patterns [16] such as model-view control, abstract factories,
and command patterns. Central aspects of the design of KReator are modular-
ity, extensibility, usability, reproducibility, and its intended application in scientific
research.

Modularity and Extensibility KReator is modular and extensible with respect to
several components. In the following we discuss just two important aspects. First,
KReator’s internal logic is strictly separated from the user interface by an abstract
command layer. This separation not only guarantees a clean and extendable program
structure, but it also allows to make KReator’s core functionalities available to the
user by two different user interfaces: an intuitive-to-use graphical user interface, as
well as a powerful command-line interface (the KReator console) which processes
commands in JavaScript syntax (see Section 4.1). Second, KReator was designed
to support many different approaches for relational knowledge representation, cf. Sec-
tion 2. As a consequence, KReator features very abstract notions of concepts like
knowledge bases, queries and data sets that can be implemented by a specific ap-
proach. Each implemented knowledge representation approach is encapsulated in an
individual plug-in (so at the moment, there are BLP, MLN, and RME plug-ins). This
way, integrating a certain approach into KReator is most flexible and further ap-
proaches will be added in the near future. As KReator is open-source and available
under the GNU General Public License researchers are also encouraged to implement
their approaches themselves.

4The “KR” in KReator stands for “Knowledge Representation” and the name KReator indicates its intended

usage as a development environment for knowledge engineers.

An Integrated Development Environment for Probabilistic Relational Reasoning 17

Usability An important design aspect of KReator and especially of the graphical
user interface is usability. While prototypical implementations of specific approaches
to relational probabilistic knowledge representation (and approaches for any problem
in general) are essential for validating results and evaluation, these software solutions
are often very hard to handle and differ significantly in their usage. Especially when
one wants to compare different solutions these tools do not offer an easy access for
new users. KReator features a common and simple interface to different approaches
of relational probabilistic knowledge representation within a single application. The
work with KReator is furthermore eased by several amenities known from integrated
development environments for programming languages like syntax highlighting and
syntax correction.

Reproducibility KReator records every user operation (no matter whether it was
caused by GUI interaction or by a console input) and its result in a report. Since
all operations are reported in JavaScript syntax (see Section 4.1), the report itself
represents a valid sequence of JavaScript commands. Therefore the whole report
or parts of it can be saved as a JavaScript file, which can be executed anytime
to repeat the recorded operations. So the KReator report allows to retrace and
reproduce all the steps taken when experimenting with knowledge bases. That way,
KReator supports the user to document the results of experiments and the actions
which led to these results in an exact manner.

Application in Scientific Research Both usability and reproducibility are important
aspects when designing a tool for conducting scientific research. Besides that, other
important features are also provided within KReator. For example, KReator
can export knowledge base files as formatted LATEX output, making the seamless
processing of example knowledge bases in scientific publications very convenient.

3.3 Used frameworks

KReator makes use of well-established software frameworks to process some of the
supported knowledge representation formalisms. Performing inference on MLNs is
handled entirely by the Alchemy5 software package [31], a console-based tool for pro-
cessing Markov logic networks. In order to make MLN inference with Alchemy trans-
parent to use, KReator has to accomplish several steps in the background: First, all
user input data (i. e. the query and the accompanied evidence) is converted into the
appropriate Alchemy syntax (see Section 4.2 for more details) and placed in tempo-
rary files so that Alchemy can work with it. Next, KReator calls the Alchemy binary
as an external application with the appropriate command-line parameters which con-
trol several important aspects of the inference process (e. g. what inference algorithm
to use). While Alchemy calculates the answer to the query, KReator monitors its
execution for any potential problems. After Alchemy has successfully finished its cal-
culations, KReator reads in the Alchemy output file, parses its content, and presents
the result in a user-friendly format. That way, Alchemy is seamlessly integrated into
KReator and the user does not have to deal with Alchemy software directly.

To process ground RME knowledge bases, an appropriate reasoner for maximum en-
tropy must be utilized. KReator does not directly interact with a certain reasoner.

5http://alchemy.cs.washington.edu/

18 An Integrated Development Environment for Probabilistic Relational Reasoning

Instead, KReator uses a so-called ME-adapter to communicate with a (quite arbi-
trary) MaxEnt-reasoner. That is, to connect a certain MaxEnt-reasoner to KReator,
an appropriate implementation of the ME-adapter interface must be supplied that
handles the direct communication with the reasoner’s API. Currently, such an adapter
is supplied for the SPIRIT reasoner [44]. SPIRIT6 is a tool for processing (proposi-
tional) conditional probabilistic knowledge bases using maximum entropy methods.
An appropriate adapter for the MEcore reasoner [11] has also been developed (in
terms of a proof-of-concept).

4 Usage

KReator comes with a graphical user interface and an integrated console-based
interface. The main view of KReator (see Figure 3) is divided into the menu and
toolbars, as well as four main panels: the project panel, the editor panel, the outline
panel, the console panel. Nearly every property of the graphical user interface can

Fig. 3. KReator – Main window

be conveniently configured using KReator’s preferences dialog (Figure 4). This
dialog also provides access to the configuration of special features of each knowledge
representation formalism. Furthermore, every configuration property can also be
modified using JavaScript so that different configurations can be tested easily in
script files.

The project panel KReator structures its data into projects which may contain

6http://www.fernuni-hagen.de/BWLOR/spirit_int/

An Integrated Development Environment for Probabilistic Relational Reasoning 19

Fig. 4. KReator – Preferences dialog

knowledge bases, scripts written in JavaScript (see below), query collections for
knowledge bases, and evidence or sample files. Although all types of files can be
opened independently in KReator, projects can help the knowledge engineer to
organize his work. The project panel of KReator (seen in the left in Figure 3) gives
a complete overview on the project the user is currently working on.

The editor panel All files supported by KReator can be viewed and edited in the
editor panel (seen in the upper middle in Figure 3). Multiple files can be opened at the
same time and the editor supports editing knowledge bases and the like with syntax
highlighting, syntax check, and other features normally known from development
environments for programming languages, e. g. word completion. KReator’s syntax
highlighting feature does not simply work on a fixed set of keywords of the respective
knowledge bases syntax, but it is based on an in-depth analysis of the knowledge
base file. This allows to precisely identify all structural elements of a knowledge base
and highlight them appropriately in the editor, so the user can directly distinguish
between predicates, constants, variables, etc. Furthermore, syntactical errors in a
knowledge base file can be detected while the file is edited and the affected part
becomes highlighted immediately, providing an instantaneous feedback to the user.

The outline panel The outline panel (seen in the right in Figure 3) gives an structured
overview on the currently viewed file in the editor panel. To provide such a structural

20 An Integrated Development Environment for Probabilistic Relational Reasoning

view of a text file, the file’s content has to be analyzed and interpreted on-the-fly
and internally represented by appropriate KReator data-structures. Performing a
mouse-click on an element in the outline highlights all occurrences of this element
in the file and successively navigates to the appropriate position. If the file is a
knowledge base, the outline shows all available information on the logical components
of the knowledge base. The tree-like structure presents types (if the knowledge base
uses a typed language), predicates (and, in case of BLPs, their states), and constants
(subdivided by types, if applicable) in a clearly arranged fashion. In case of an
evidence or sample file, the outline provides two different views: On the one hand,
the outline shows a sorted list of the predicates and constants which compose the
ground literals of the sample. On the other hand, the outline provides a view of the
ground literals, which can be sorted either by predicate (i. e. grouping all literals of
a certain predicate) or by constant (i. e. grouping all literals that contain a certain
constant).

The console panel The console panel (seen at the lower middle in Figure 3) con-
tains KReator’s command-line interface. The console offers access to KReator’s
functionalities just using textual commands, e. g. to query a knowledge bases. As a
matter of fact, the console is a live interpreter for JavaScript (see below).

The report panel The console panel can be switched to the report panel, in which
every action executed in KReator (regardless of caused by GUI interaction or console
input) is recorded as a JavaScript command, along with its output (formatted as
JavaScript comment). The whole report or parts of it can easily be saved as script
file and executed again when experiments have to be repeated and results have to be
reproduced.

4.1 Employment of JavaScript

KReator scripting facilities are completely based on the Mozilla Rhino JavaScript
engine7 (replacing the proprietary KReatorScript language used in previous ver-
sions of KReator). KReator introduces appropriate JavaScript commands for
all its high-level functionalities (see Figure 5 for some JavaScript lines). Therefore,
every sequence of working steps can be expressed as an appropriate command se-
quence in a JavaScript file. Thus, the (re-)utilization of scripts can clearly increase
the efficiency and productivity when working with KReator. As mentioned above,
the input-console and report work hand in hand with KReator’s scripting func-
tionality, making the employment of JavaScript a strong instrument in the whole
working process. Besides that, the utilization of scripts plays an important role in the
active development of the KReator software, since it allows efficient and sustainable
testing of high-level functionalities during the whole development process.

4.2 Querying a Knowledge Base

One of the most important tasks when working with knowledge bases is to address
queries to a knowledge base, i. e. to infer knowledge. For that reason, KReator

7http://www.mozilla.org/rhino/

An Integrated Development Environment for Probabilistic Relational Reasoning 21

Fig. 5. JavaScript file and console output

provides several functionalities which simplify the dealing with queries and make it
more efficient.
KReator permits the processing of queries expressed in a unified query syntax.

This query syntax abstracts from the respective syntax which is necessary to address
a “native” query to a BLP, MLN, or RME knowledge base (and which also depends
on the respective inference engine). That way, a query in unified syntax can be
passed to an appropriate BLP, MLN, and RME knowledge base as well. The idea
behind this functionality is, that some knowledge (cf. Example 2.1) can be modeled
in different knowledge representation approaches (cf. Example 2.3, Example 2.9, and
Example 2.13) and the user is able to compare these approaches in a more direct
way. Such a comparison can then be done by formulating appropriate queries in
unified syntax, passing them to the different knowledge bases, and finally analyzing
the different answers, i. e. the probabilities.

A KReator query in unified syntax consists of two parts: In the “head” of the
query there are one or more ground atoms whose probabilities shall be determined.
The “body” of the query is composed of several evidence atoms. For each supported
knowledge representation formalism, KReator must convert a query in unified syn-
tax in the exact syntax required by the respective inference engine. Among other
things, this includes e. g. the conversion from lower case constants to upper case ones
(and variables, vice versa), as required by the Alchemy tool for processing MLNs.
KReator also converts the respective output results to present them in a standard-
ized format to the user. Figure 6 illustrates the processing of a query in unified syntax.

22 An Integrated Development Environment for Probabilistic Relational Reasoning

 KReator

BLP
KBase
Input

RME
KBase
Input

MLN
KBase
Input

Query in
Unified
Syntax

MECoRe
SPIRIT

Alchemy

BLP | MLN | RME
Answers

BLP
Reasoner

GOP
Algo.

BLP
KBase
Repres.

MLN
KBase
Repres.

RME
KBase
Repres.

Alchemy
Adapter

ME
Adapter

BLP
Query

Converter

RME
Query

Converter

MLN
Query

Converter

Fig. 6. Processing query in unified syntax

KReator offers the user an easy way to address a query to a knowledge base,
simply by calling its query dialogue. In this dialogue (Figure 7), the user can input
the atoms to be queried and he can conveniently specify the evidence. Since evidence
usually consists of several atoms and is often reused for different queries, the user has
the option to specify a file which contains the evidence to be to considered.

The unified query syntax constitutes a compromise between the querying capabili-
ties of the different knowledge representation formalisms. Therefore, some individual
features of each formalism cannot be expressed in unified syntax. For this reason,
KReator additionally offers a direct access to the querying capabilities of each in-
ference engine. This is realized by corresponding console commands which take a
query in “native” syntax as an argument. Besides the capability of passing individual
(i. e. ad-hoc) queries to a knowledge base, KReator also supports so-called query
collections. A query collections is a file which contains several queries (either in uni-

An Integrated Development Environment for Probabilistic Relational Reasoning 23

Fig. 7. Querying a knowledge base

fied or native syntax). Such a query collection can be passed to a knowledge base,
so that all included queries are processed one after another. That way, KReator
supports a persistent handling and batch-style processing of queries.

Example 4.1
Continuing our previously introduced burglary example (cf. the knowledge bases from
Example 2.3, Example 2.9, and Example 2.13) consider the following evidence:

lives in(james, yorkshire), lives in(stefan, freiburg), burglary(james),

tornado(freiburg),neighborhood(james, average),neighborhood(stefan, bad)

Notice, that we use a slightly different variant for the BLP as represented in Exam-
ple 2.3 with a binary version of the neighborhood predicate. Table 1 shows three
queries and their respective probabilities inferred from each of the example knowl-
edge bases8. Each of the three knowledge bases represents Example 2.1 by a different
knowledge representation approach. Nevertheless, the inferred probabilities are quite
similar, except for some differences for the third query.

4.3 Learning a Knowledge Base from Data

Besides querying (see previous subsection) another important aspect for statistical
relational learning is quite obviously the task of learning which describes the process

8All MLN results in this paper have been calculated using the default Alchemy settings: MC-SAT inference

algorithm with a maximum of 1000 MCMC sampling steps.

24 An Integrated Development Environment for Probabilistic Relational Reasoning

BLP MLN RME

alarm(james) 0.900 0.971 0.913

alarm(stefan) 0.954 0.967 0.922

burglary(stefan) 0.400 0.570 0.650

Table 1. Exemplary queries on different representations of the burglary example.

of building up a knowledge base from a set of data sets. For example, consider the
following set of ground facts:

alarm(anna), alarm(carl), lives in(carl, toronto), burglary(carl)

tornado(austin),neighborhood(anna, average),neighborhood(bob, bad)

lives in(anna, austin), lives in(bob, hongkong), burglary(anna), . . .

The aim of learning is to discover relationships between the individual pieces of in-
formation in such a data set and generalize them in such a manner that a knowledge
base of the form as in Example 2.3, Example 2.9, or Example 2.13 can be given as
output. In the literature there is much work on learning BLPs and MLNs, cf. [26, 42].
But still, learning in the RME framework is still an open problem and part of current
research. Therefore, up this moment KReator supports only learning of BLPs and
MLNs.

Similar to the unified way of querying a knowledge base, the task of learning a
knowledge base is addressed from within KReator in a most abstract fashion. Data
sets can processed by KReator in form of sample files—which simply contain one
ground atom per line—and can be fed to any learning algorithm made available by
a developer in form of a plug-in. Consequently, a KReator plug-in which pro-
vides learning capabilities ensures that it transfers the ready-to-use sample data from
KReator’s data structure to its respective learning algorithm. A KReator plug-in
may support multiple learning algorithms (so-called “learners”) and different prede-
fined configurations for each one. If one provides for a learning algorithm there has to
be at least one so called “writer” which serializes the object structure of a knowledge
base to a file in the specific file format. For example, the BLP implementation cur-
rently provides support for a writer which converts the learned BLP data structure
to the Balios BLP syntax. Although this is the common syntax for BLPs, one might
consider to implement another writer for an alternative BLP syntax. Figure 8 shows
KReator’s learning dialog which allows a direct selection of the favored learner and
writer.
KReator’s support for uniform sample files and its modular learner concept al-

lows the user to perform learning experiments involving different approaches (and/or
learners) in an easy and consistent way. In combination with KReator’s compre-
hensive querying capabilities, this allows to conveniently compare the learning results
across different approaches.

Currently the BLP and MLN plugins provide learning functionality. The learn-
ing algorithm for BLPs is implemented as a proof-of-concept and realizes a simple
structure learner based on exhaustive search and uses a Maximum Likelihood param-
eter estimation, cf. [26]. The MLN plugin uses the learning algorithms provided by

An Integrated Development Environment for Probabilistic Relational Reasoning 25

Fig. 8. KReator – Learning dialog

Alchemy.

5 Examples

In this section, we present some more examples for probabilistic relational knowl-
edge modeling. Each example has been modeled for all three knowledge representa-
tion formalisms and aims at (at least) one particular aspect of knowledge modeling.
These aspects have especially been chosen to illustrate certain differences between
the three formalisms. The modeling of an example in each formalism starts from
the informal example description, i. e. we do not attempt to convert the model-
ing from one formalism to another one. We also give a short example that illus-
trates the learning functionalities (Section 5.3) and some runtime comparisons (Sec-
tion 5.4). All examples have also been used during the development of KReator
to evaluate several functionalities, especially those involved in the inference pro-
cesses. We provide a whole set of examples in our model repository, accessible under
http://kreator.cs.tu-dortmund.de/. The versions used for this paper can also be
found under http://kreator.cs.tu-dortmund.de/experiments/igpl2011.html.

5.1 Birds and Penguins

In the following, we discuss the famous Tweety example which is often used in the
context of non-monotonic reasoning. In this relational version of the example, we
consider some birds and want to state some rules about their ability to fly. In partic-
ular, we want to state that birds typically fly, that penguins typically do not fly, and
that every penguin is a bird. This example shows how well a formalism deals with
conflicting information on exceptional individuals. Given a particular bird Tweety
for which we have no knowledge of being a penguin we expect the formalism to de-
rive with a high probability that Tweety does actually fly. Adding the information
that Tweety is a penguin the formalism should derive that Tweety no longer flies.

26 An Integrated Development Environment for Probabilistic Relational Reasoning

Although Tweety is still a bird the more specific information that penguins do not
fly shall override the general rule of birds flying.

Example 5.1
We first represent the example as a Bayesian logic program. Let bird/1, penguin/1,
and flies/1 be predicates with S(bird) = S(penguin) = S(flies) = {true, false}. Then
the above rules can be stated as the set {c1, c2, c3} of Bayesian clauses with

c1 : (bird(X) | penguin(X))

c2 : (flies(X) | bird(X))

c3 : (flies(X) | penguin(X))

and their corresponding conditional probability distributions {cpdc1 , cpdc2 , cpdc3} by

cpdc1(true, true) = 1 cpdc1(false, true) = 0

cpdc1(true, false) = 0.5 cpdc1(false, false) = 0.5

cpdc2(true, true) = 0.9 cpdc2(false, true) = 0.1

cpdc2(true, false) = 0.2 cpdc2(false, false) = 0.8

cpdc3(true, true) = 0.01 cpdc3(false, true) = 0.99

cpdc3(true, false) = 0.3 cpdc3(false, false) = 0.7 .

Notice, that some of the probabilities defined for each conditional probability distri-
bution are somewhat arbitrary. The problem is that defining a probability for a rule
given that its premise is not fulfilled is a hard task. Considering clause c2 saying that
birds usually fly. But what is the probability of a non-bird flying? It is a serious
drawback of Bayesian logic programs (and Bayes nets in general) that they demand
a full specification of a conditional probability distribution when complete informa-
tion is not available. This problem is resolved in logical Bayesian networks [10] by
introducing purely logical statements that are not interpreted in a probabilistic sense.
Furthermore, the Balios engine [28] for Bayesian logic programs allows the specifi-
cation of logical predicates as well and a purely logical specification of background
knowledge using an underlying Prolog theory. See [28, 27] for more details.

To complete the specification of the above Bayesian logic program we define the
noisy-or function to be the combining rule for all predicates, cf. Example 2.4.

Example 5.2
To represent the scenario in Markov logic, we use implications to model the conditional
knowledge from our example. As already discussed in the context of Example 2.9, the
usage of conjunctions instead of implications might provide a better modelling. We
also use the heuristic discussed in Example 2.9 to determine the weights of the for-
mulas from the probabilities defined in the previous example. A much more accurate
(but also more cumbersome) way would have been to generate a set of sample data
which complies with these probabilities and to learn the weights from this sample
data. Both points should be considered when evaluating the MLN results.

An Integrated Development Environment for Probabilistic Relational Reasoning 27

The weighted formulas for the Markov Logic Network are given by

2.1972 bird(x)⇒ flies(x) (5.1)

−4.5951 penguin(x)⇒ flies(x) (5.2)

penguin(x)⇒ bird(x). (5.3)

As said, notice that it is 2.1972 = ln 0.9
0.1 and −4.5951 = ln 0.01

0.99 . Notice further, that
formula (5.3) has been given no weight at all. This is Alchemy syntax and equivalent
to stating that formula (5.3) is a strict formula and should be considered with an
infinite weight.

Example 5.3
From the approaches discussed in this paper the RME approach features the most con-
cise and simple representation of knowledge. The Tweety example can be represented
as a knowledge base KB = {r1, r2, r3} with

r1 : (flies(X) | bird(X))[0.9]

r2 : (flies(X) | penguin(X))[0.01]

r3 : (bird(X) | penguin(X))[1.0]

This representation features both a simple declarative notation with a single attached
value to each formula (likes Markov Logic Networks) and a declarative probabilistic
semantics (like Bayesian Logic Programs).

Considering the Tweety example, the most interesting inferences one would like to
draw concern the flying ability of some particular birds. Let our universe consist of
the four birds Tweety, Huey, Dewey, Louie, and the penguin Opus (who is a bird as
well). Therefore let the set of evidences be given by

{ bird(tweety), bird(huey), bird(dewey), bird(louie), bird(opus), penguin(opus) }

As one might expect, the inferences drawn on their flying ability concerning Tweety,
Huey, Dewey, and Louie will be the same. For all these individuals we have represented
the same knowledge (that they are birds) so they all will fly with the same probability.
This phenomenon is called prototypical indifference and discussed in more detail in
[45]. Hence, it suffices to consider what the different formalisms infer in the flying
ability of one of these individuals (we chose Tweety). This reasoning does not apply
for Opus who is a known penguin. So, we are also interested in the inferences on the
flying ability drawn for Opus. Table 2 shows the results on the queries flies(tweety)
and flies(opus) in the different formalisms. All probabilities are rounded off to three
decimal places when necessary.

One thing to notice is that the inference concerning the flying ability of Opus drawn
from the BLP differs significantly from the intended probability of 0.01. The inferred
probability of 0.901 derives from the fact that both clauses c2 and c3 (see Example 5.1)
are used when determining the probability of flies(opus) (as both apply for Opus) and
combined using noisy-or. In contrast to this result the inference drawn on the flying
ability of Tweety accurately resembles the intended probability when representing

28 An Integrated Development Environment for Probabilistic Relational Reasoning

BLP MLN RME

flies(tweety) 0.900 0.102 0.900

flies(opus) 0.901 0.096 0.010

Table 2. Inferences for the Tweety example

the knowledge as a BLP. One can see that the selection of the “right” combining
rule is crucial when representing knowledge using Bayesian logic programming. As
a comparison, the inference on the flying ability of Opus drawn from the same BLP
but using noisy-and9 as the combining rule for flies yields a probability of 0.009; a
much more adequate probability given the knowledge represented. However, consider
a slight extension of the BLP given in Example 5.1 where we add the following clause:

c4 : (flies(X) | rocket pack(X))

with

cpdc1(true, true) = 0.9 cpdc1(false, true) = 0.1

cpdc1(true, false) = 0.5 cpdc1(false, false) = 0.5

stating that the probability of a flying X is 0.9 when X has a rocket pack. Clearly,
both being a bird and having a rocket pack are independent causes for the ability to
fly and should strengthen the belief in the flying ability of X. But being a penguin
should “override” the influence of being a bird on the ability to fly. As Bayesian logic
programming allows only for a single combining rule to be assigned to a predicate
this situation cannot be modeled without dropping the independence assumption.
However, a naive incorporation of c4 into the BLP yields a probabilistic model that—
in our opinion—does not model the situation adequately. Considering a penguin
without a rocket pack applying the combining rule should result in a small probability
for flying while a penguin with a rocket pack should yield a high probability for flying.
No combining rule can exhibit this behavior.

Complementary to the results drawn from the BLP the MLN gives an intuitive
probability for the query flies(opus) and an unexpected one for the query flies(tweety).
This stems from the fact that the default MLN inference algorithm (which has to be
explicitly configured in Alchemy) makes no closed-world assumption. As there is no
explicit knowledge given on whether Tweety is a penguin or not the formula (5.2) still
has influence on the probability of flies(tweety).

Lastly, the inferences drawn from the RME representation exactly reflects the rep-
resented knowledge. This stems from the excellent commonsensical properties of ME-
inference, cf. [38, 24] and is (in this case) independent of the actually used grounding
operator.

All the above computations were performed using KReator. Figure 9 shows a
script in JavaScript syntax that concisely collects a set of queries to different rep-
resentation formalisms for relational probabilistic reasoning. Having represented the

9The noisy-and combination of two probabilities p1 and p2 is defined as p1 · p2. Remember that the noisy-or

combination of two probabilities p1 and p2 is defined as 1 − (1 − p1) · (1 − p2).

An Integrated Development Environment for Probabilistic Relational Reasoning 29

Fig. 9. A script with queries for the Tweety example and its output in the console

scenario in these formalisms and bundled the different knowledge bases in a project
addressing these knowledge bases is simple and can be done in an unified manner.
The script shown in Figure 9 is also included in our model repository so the results
presented here can be reproduced and confirmed at any time.

5.2 Elephants and Keepers

This example was taken from [6] and has already been employed in Example 2.15
for discussing the problem of grounding relational conditional knowledge bases. The
example under discussion describes a scenario in a zoo with elephants and their keep-
ers. In general, it is very probable (90%) that an elephant likes a keeper. There is
one special keeper, Fred, who has a strange sense of humor, so it is rather improbable
(30%) that an elephant likes him. But there is also one special elephant, Clyde, who
shares Fred’s sense of humor, so Clyde likes Fred for sure (100%).

Thus, this example contains both default as well as specific knowledge about two
types of individuals. From a pure logical point of view there is a conflict between
the specific knowledge about Fred and the default knowledge about elephants and
keepers. Since no explicit exception has been phrased the default knowledge also ap-
plies to Fred. But from a commonsensical point of view, it is obvious that the more

30 An Integrated Development Environment for Probabilistic Relational Reasoning

specific knowledge about Fred should override the default knowledge about elephants
and keepers, as well as the even more specific knowledge about Clyde and Fred should
override the knowledge about elephants and Fred. Therefore it is interesting to com-
pare how each of the three knowledge representation formalisms handles the problems
arising from potential conflicts between default and specific knowledge.

In contrast to the other examples in this paper, the (uncertain) knowledge in this
example is not conditioned, i. e. the example contains no rules but just facts. Hence,
we avoid any side-effect introduced by the different ways of modeling if-then-rules
(especially in the case of MLNs) and we can focus our comparison of the results on
the handling of default and specific knowledge.

Example 5.4
We start by representing the above knowledge as a Bayesian logic program. We
define S(likes/2) = {true, false} with noisy-or as combining rule and a set {c1, c2, c3}
of Bayesian clauses

c1 : (likes(X,Y))

c2 : (likes(X, fred))

c3 : (likes(clyde, fred))

with:

cpdc1(true) = 0.90 cpdc1(false) = 0.10

cpdc2(true) = 0.30 cpdc2(false) = 0.70

cpdc3(true) = 1.00 cpdc3(false) = 0.00

Since there are no if-then-rules in this example, we can define the values of cpdci
straight forward, i. e. we do not have to deal with the problem of stating probabilities
for non-fulfilled rules.

Example 5.5
We go on by modeling the scenario as a Markov logic network. We declare the types
and respective constants elephant = {Clyde,Dumbo,Tuffi}, keeper = {Fred,Hank},
the typed predicate likes(elephant , keeper) and the following weighted formulas:

2.1972 likes(x, y)

−0.8573 likes(x,Fred)

likes(Clyde,Fred).

Formula likes(Clyde,Fred) has no weight assigned explicitly because it is a strict for-
mula (with an implicitly infinite weight). The weights of the other formulas have
been determined by the heuristic described in Example 2.9, i. e. 2.1972 = log 0.9

0.1 and
−0.8573 = log 0.3

0.7 .

Example 5.6
Finally, we recast the representation of the scenario in the RME framework, cf. Ex-
ample 2.15. We declare the types and respective constants Elephant = {clyde, dumbo,
tuffi}, Keeper = {fred, hank}, the typed predicate likes(Elephant ,Keeper) and the
following conditionals:

An Integrated Development Environment for Probabilistic Relational Reasoning 31

BLP MLN RME

likes(dumbo, hank) 0.900 0.897 0.900

likes(clyde, hank) 0.900 0.897 0.900

likes(dumbo, fred) 0.930 0.808 0.300

likes(clyde, fred) 1.000 1.000 1.000

Table 3. Inferences for the Elephants-and-Keepers example

(likes(X,Y)) [0.9]

(likes(X, fred)) [0.3]

(likes(clyde, fred)) [1.0]

Note that in order to handle the above knowledge base appropriately with the RME
framework a more sophisticated grounding operator has to be used that solves the
conflicts between the contradictory statements involving Clyde or Fred. Here, we
use the specificity grounding operator which prefers instances of more specific con-
ditionals over instances of less specific conditionals. For example, groundings of
the more specific conditional (likes(X, fred))[0.3] are preferred over groundings of
the less specific conditional (likes(X,Y))[0.9]; but the (already ground) conditional
(likes(clyde, fred))[1.0] is preferred over the conflicting grounding of the (compara-
tively) less specific conditional (likes(X, fred))[0.3]. That way, the specificity ground-
ing operator keeps only instances of conditionals that are most specific, cf. [33] for a
more detailed elaboration.

To analyze the different modelings and their respective handling of conflicting de-
fault and specific knowledge, we formulate the queries stated in the left column of
Table 3 and infer their respective probabilities from each knowledge representation
formalism. The queries cover the four kinds of interesting relations of elephants
with keepers: an ordinary elephant (Dumbo) with an ordinary keeper (Hank), the
special elephant Clyde with an ordinary keeper, an ordinary elephant with the spe-
cial keeper Fred, as well as the special elephant Clyde with the special keeper Fred.
The results show that each formalism infers, as expected, the same probability for
likes(dumbo, hank) and likes(clyde, hank). That is, although Clyde is an exceptional
elephant considering its relationship with Fred, this does not distinguish Clyde from
any other elephant (e. g. Dumbo) in its relationship to an ordinary keeper (e. g.
Hank).

The inferred BLP results show that the default knowledge is represented as intended,
whereas the more specific knowledge of c2 has not been handled properly. For the
query likes(dumbo, fred) both clauses c1 and c2 are applicable and their probabilities
are strengthened by the selected combining rule. As already mentioned in analysis
of Example 5.1 this is due to the chosen combining rule noisy-or for the predicate
likes. Performing the same calculations with noisy-and as combining function, we get
the results 0.900 / 0.900 / 0.27 / 0.27. So, noisy-and handles the specific knowledge
about Dumbo and Fred as intended, but results in a probability for likes(clyde, fred)
which is almost inverse to the intended probability.

32 An Integrated Development Environment for Probabilistic Relational Reasoning

The results inferred from the MLN approximate the default knowledge quite well
and the specific knowledge about Clyde and Fred is represented as intended. But
the probability inferred for the relationship between an ordinary elephant and Fred
completely fails the intended probability. This is due to the heuristically determined
weights, which do not represent the relative importance of the respective formula ade-
quately in this case. In order to decrease the inferred probability of likes(dumbo, fred),
it can be presumed that decreasing the weight of formula likes(X, fred) might have the
desired effect, i. e. that a world satisfying this formula will suffer a stronger decrease
in probability. In fact, adjusting the formula’s weight to −3.1 has the desired ef-
fect: We infer the probability 0.302 for the query likes(dumbo, fred), whereas all other
(rounded) probabilities stay the same. So it becomes clear that, in principle, MLNs
can handle conflicts between default and specific knowledge quite well, but the deter-
mination of appropriate weights is crucial for an adequate knowledge representation
and inference. In this simple example without complex dependencies between formu-
las, guessing an appropriate weight was still feasible. But in slightly more complex
examples this is hardly possible, so that appropriate weights can only be determined
by learning from sample data.

The query results inferred from the RME match the intended probabilities perfectly.
Thus, the RME approach can handle the default and the specific knowledge most
directly. This is due to the chosen grounding operator in this example, which deals
with conflicting parts of the knowledge exactly as intended, and the characteristics of
ME-optimal knowledge representation, which represents the knowledge as unbiasedly
as possible, and therefore prevents any unintended effects in the inference process.

Note, that both, the BLP from Example 5.4 and the MLN from Example 5.5 can
be modified in order to account for the exceptional individuals Clyde and Fred. For
example, the MLN from Example 5.5 can be rewritten as

2.1972 likes(x, y) ∧ y 6= Fred

−0.8573 likes(x,Fred) ∧ x 6= Clyde

likes(Clyde,Fred)

Querying the above MLN with the queries from Table 3 results in much more adequate
inferences than the original MLN: 0.884 / 0.876 / 0.283 / 1.000. However, imagine that
the knowledge captured in the MLN of Example 5.5 is distributed over several sources
and only combined during runtime. One source might maintain general knowledge
on the domain (such as the first formula) and other sources might contribute with
specific information on individuals (such as the other formulas). In this scenario
a representation like the one above cannot be realized. Therefore, representing the
knowledge with the modified MLN above hinders modularity and also makes extending
the knowledge base with new information a hard task. A similar discussion applies
to the BLP as well.

All results from this example have been calculated with KReator by simply per-
forming the execution of a single JavaScript file which contained all queries. As
the above discussion of the results pointed out, for a knowledge engineer it is often
necessary to experiment with certain aspects a knowledge base (e. g. combining rules,
or weights) or the inference process. In such situations, KReator’s scripting abil-
ities prove to be very helpful, since the execution of a JavaScript file allows the
convenient recalculation of all results after some modifications have been made to a

An Integrated Development Environment for Probabilistic Relational Reasoning 33

knowledge base. Even more, important parameters of the inference process (e. g. the
RME grounding operator) can be set directly within the JavaScript file. Thus, such
parameters can easily be changed and the script be rerun to compare the results and
therefore analyze the effects of the respective inference parameter.

5.3 Learning about Birds and Penguins

While the previous examples were concerned with reasoning tasks we give now a small
example for learning knowledge bases from data. As there is, up to now, no learning
algorithm for RME available (this is an open research problem and left for future
work) we will concentrate on the BLP and MLN formalisms.

We use the same scenario as in Section 5.1 and employ a very useful functionality
of KReator: data generation from knowledge bases. This functionality allows to
generate sample data from some knowledge base that describes the knowledge base
with respect to the knowledge bases’s rules and parameters. We omit a more detailed
description of this functionality as it depends on the specific approach. As a starting
point we use the BLP from Example 5.1 from which we generate 500 data sets. Each
of these data sets consists of expressions of the form

penguin(a) = B

bird(a) = B

flies(a) = B

with some constant a and B ∈ {true, false}. The statistical distribution of birds
that are penguins and/or fly resembles the probabilities in the CPD of the BLP in
Example 5.1.

Applying the standard learning algorithm for BLPs without optimization onto the
sample data results in a new BLP given via

c1 : (flies(X) | bird(X))

c2 : (penguin(X) | bird(X))

c3 : (bird(X))

with corresponding conditional probability distributions {cpdc1 , cpdc2 , cpdc3} given
via

cpdc1(true, true) = 0.475 cpdc1(false, true) = 0.525

cpdc1(true, false) = 0.319 cpdc1(false, false) = 0.681

cpdc2(true, true) = 0.674 cpdc2(false, true) = 0.326

cpdc2(true, false) = 0 cpdc2(false, false) = 1

cpdc3(true) = 0.774 cpdc3(false) = 0.226 .

Notice, that the above BLP differs significantly from the BLP in Example 5.1, both in
structure and probabilities. While the differences in the structure of the BLPs stem
from the employed learning algorithm resp. the parameters of this algorithm the
differences of the parameters—e. g. the lower probability of a bird that flies—come

34 An Integrated Development Environment for Probabilistic Relational Reasoning

from the underlying population in the sample data. As one can see from the values
of cpdc2 nearly two thirds of the birds considered are penguins and as a consequence
the probability of a flying bird is considerably lower. This is due to the fact that the
BLP in Example 5.1 gives no information on the distribution of penguins among the
birds and thus the same holds for the generated data.

Applying the default beam search structure learning algorithm for MLNs [30] with-
out optimization results in the MLN given via

0.110111 bird(x)

−0.238245 flies(x)

0.728441 penguin(x)

7.00987 ¬penguin(x) ∨ bird(x)

The main remark to be made to this MLN is that no relationship between the at-
tributes bird , penguin, flies have been found except for the quite obvious rule that
penguins are birds. Although the MLN above describes the sample data very well it
is not very informative as there is no relationship given for bird and flies. However,
this stems from the fact that the learning algorithm used in this experiment is the
default learning algorithm of Alchemy without parameter optimization.

As can be seen from the above discussion the two complementary functionalities of
generating data and learning are a helpful means to understand knowledge represented
in some knowledge base.

5.4 Runtime analysis

Table 4 shows a runtime comparison of the current reasoner implementations for BLPs,
MLNs, and RME. When comparing the given runtimes one has to be aware of the fact
that the current implementations of the reasoners for Bayesian logic programming
and relational maximum entropy are experimental and mainly serve as an illustration
for KReator’s functionalities. The current implementation of the BLP reasoner uses
a very naive approach for (exact) inference by first building the SLD tree for some
query and then propagating probabilities down to the query atom in question. For
future work we plan to integrate a propositional Bayesian network reasoner such as
the Bayesian Network tools for Java10 to allow for faster and approximate inference.
The current implementation of the RME approach relies heavily on the underlying
propositional maximum entropy reasoner, cf. Section 3.3. Most of these reasoners are
hardly applicable for large knowledge bases due to memory insufficiencies. In Table 4,
cells with a dash indicate a memory error when trying to query the RME knowledge
base with the given evidences. As approximate inference is an open problem for rela-
tional maximum entropy further investigations have to be made before implementing
a scalable version of the RME inference mechanism. Only the MLN implementation
in KReator uses a mature tool for processing its knowledge bases: Alchemy. This
application has been developed for quite some time, so it is not surprising that it fea-
tures good running times as given in Table 4. However, one has to note, that Alchemy
employs approximate inference only and that the above runtimes stem from running
Alchemy with the default setting. The experiments measure inference behavior on

10http://bnj.sourceforge.net/

An Integrated Development Environment for Probabilistic Relational Reasoning 35

queries and were performed on three different knowledge bases with increasingly com-
plex evidences. They were performed on an Intel Core 2 Duo with 3.06 GHz and 4 GB
of memory and Table 4 shows the average runtime out of 10 runs.

In Table 4, the knowledge base colorblind describes a genetic model of inher-
iting color blindness from ancestors. It assumes some pedigree given as evidence
and describes how color blindness inherits from the roots—ancestors with no parents
given—down to other persons in the pedigree. The experiments colorblind-1 to
colorblind-4 use the same knowledge base but with an increasing size of the given
pedigree (with 5, 21, 41, 101 persons, respectively). The knowledge base cold de-
scribes a probabilistic model of cold contagion within some population. The rules in
cold describe some initial probability of having a cold, the probability of having a
cold if one is susceptible, and the probability of having a cold if one had contact with
someone who has a cold. The experiments cold-1 to cold-4 use the same knowledge
base but with an increasing size of the underlying population (with 5, 10, 20, 50 per-
sons, respectively). The knowledge base randomwalk describes a probabilistic model
of a simple random walk. Given two positions and a probability of 0.8 for switching
position the rules in randomwalk describe the progress over some time steps. As be-
fore, the experiments randomwalk-1 to randomwalk-4 use the same knowledge base
but increasingly consider more time steps (5, 10, 20, 50 time steps, respectively).

For each formalism a separate representation of each knowledge base has been used
that model the same knowledge in an approximate manner. A complete listing of the
knowledge bases used in the runtime analysis can be found in Appendix A. Note,
that the knowledge base cold cannot be represented as a BLP in a direct fashion
because the contact relation used to determine one’s probability of having a cold is
a symmetric relation that may introduce cycles into the ground Bayesian network.
Consider the following excerpt from cold.rme:

(cold(X) | contact(X,Y), cold(Y),X 6= Y)[0.6]

This clause means that the probability of X having a cold depends on the probability
of Y having a cold if X had contact with Y. Here, contact is meant to be symmetric, so
the probability of, say, Jack has a cold depends on the probability of, say, Christine,
having a cold which itself depends on Jack having a cold (if both had contact with
each other). This kind of relationship cannot be modeled in a BLP in general, cf.
Section 2.1. In order to apply Bayesian logic programming to the cold example the
data used in the experiments reflected in Table 4 for cold contains no cycles for
contact and the BLP itself does not perform a “symmetric closure” on contact , i. e.,
while the MLN for cold contains the strict formula

contact(X,Y)⇔ contact(Y,X).

the BLP does not contain something similar.
All data used for undertaking the presented experiments can be found under http:

//kreator.cs.tu-dortmund.de/experiments/igpl2011.html in form of a KReator
project. This project also contains a script directly executable from within KReator
that runs all queries and measures the runtimes automatically.

36 An Integrated Development Environment for Probabilistic Relational Reasoning

BLP MLN RME

colorblind-1 0.069 0.117 9157.561

colorblind-2 2.314 0.230 –

colorblind-3 33.897 0.273 –

colorblind-4 5573.572 0.459 –

cold-1 0.015 0.189 0.438

cold-2 0.023 0.189 –

cold-3 0.079 0.264 –

cold-4 1.667 0.820 –

randomwalk-1 0.020 0.167 0.174

randomwalk-2 0.023 0.180 4223.182

randomwalk-3 0.078 0.192 –

randomwalk-4 0.996 0.269 –

Table 4: Runtime comparison of the different implementations (all values are given
in seconds).

6 Summary and Future Work

In this paper we presented KReator and illustrated its system architecture and
usage. Although KReator is still in an early stage of development it already supports
Bayesian logic programs, Markov logic networks, and relational maximum entropy.
For each of these formalisms we provided an extensive overview and illustrated their
differences using several examples. By doing so, we also showed the advantages of
using a user-friendly toolbox like KReator for comparing and evaluating different
formalisms for relational probabilistic reasoning.

While their exist many prototypical implementations of specific approaches, non
of these systems follows KReator’s approach in providing a general and unifying
framework for different approaches to statistical relational learning or inductive logic
programming. To our knowledge, there is only one software system which takes an
approach comparable to KReator in the sense that it combines different formalisms
within one system. The ProbCog (Probabilistic Cognition for Cognitive Technical
Systems) system11 [23] is a software suite for statistical relational learning and cur-
rently supports three different knowledge representation approaches. But the primary
application focus of the ProbCog system differs significantly from KReator, since
ProbCog is developed for its intended practical application and integration in cognitive
technical systems. So it focuses on providing a versatile and efficient framework for
that specific purpose and does not provide a unified graphical user interface, whereas
KReator’s focus is on facilitating the typical workflow of a knowledge engineer,
researcher, or developer.

Although KReator is now at a usable state for many scientific tasks in the area of
relational probabilistic reasoning there are still a lot of plans on future development,

11http://ias.cs.tum.edu/research-areas/knowledge-processing/probcog

An Integrated Development Environment for Probabilistic Relational Reasoning 37

most notable of these being the integration of learning knowledge bases from data.
Due to the open architecture of KReator and the ability to perform many tasks on
abstract notions of e. g. knowledge bases the task of implementing learning algorithms
for different representation formalisms will benefit from many commonalities of these
algorithms. Most approaches on learning statistical relational models from data rely
on established work from propositional learners. Learning the structure of relational
probabilistic models can be done using standard inductive logic programming sys-
tems like CLAUDIEN [40] or MACCENT [5]. Learning the values (probabilities) of
the models can be performed using e. g. the EM-algorithm (expectation maximiza-
tion, see [7]). These common components will certainly simplify implementing the
ability to learn different knowledge bases from data within KReator. In order to
gain the ability to learn knowledge bases for RME (which differs significantly from
other relational models which mostly rely on graphical notions and probabilistic de-
pendence/independence assumptions) we plan to integrate an extended version of
the CondorCKD system [15, 25]. CondorCKD is a propositional learning system for
conditionals that relies on an algebraic characterization of interrelationships between
conditionals in a knowledge base, cf. [24].

We plan to enhance KReator’s unified query syntax to allow more complex
queries. This requires more sophisticated conversion patterns to translate a uni-
fied query to the respective target syntax, e. g. to handle multi-state BLP predicates
in an automated way. The enhancement of the query syntax will go along with the
development of an even more challenging feature: We plan on introducing some kind
of unified knowledge base (template) format. The final goal is to be able to formulate
(at least) the central aspects of a knowledge base in a unified syntax and to have this
knowledge base be converted to different target languages more or less automatically.
Having this functionality available will further improve the handling and comparison
of different knowledge representation formalisms. In order to evaluate this feature on
a large scale we also plan to implement other formalisms for relational probabilistic
knowledge representation. In particular, we plan to add support for logical Bayesian
networks [9] and probabilistic relational models [18], as well as to use KReator as
a testbed to evaluate other approaches for relational probabilistic reasoning under
maximum entropy [45].

We also plan to introduce JavaScript commands which shall allow to modify
central aspects of a knowledge base. For example, one command could permit to
”disable” a rule of the knowledge base, so that the impact of this rule to a certain
query result could be analyzed. Another command could enable the user to alter a
rule’s quantification value (probability or weight) successively to observe its impact
to a certain query.

Since one central feature of KReator is to support the user when comparing query
results of different knowledge bases, we will continue to extend this functionality in
future development. For example, a future release of KReator will present the
results of queries addressing different knowledge bases in a spreadsheet-like structure.
That way, the user will be able to instantly compare all inferred probabilities at a
glance.
KReator is available under the GNU General Public License and the latest version

can be obtained from http://kreator.cs.tu-dortmund.de.

38 An Integrated Development Environment for Probabilistic Relational Reasoning

Acknowledgements. The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grants BE 1700/7-1 and KE 1413/2-1). We also
thank the anonymous reviewers for their helpful suggestions to improve this paper
and Sebastian Loh for implementing most of the functionalities in KReator and the
initial work on relational maximum entropy.

References

[1] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning with Answer Sets.

Theory and Practice of Logic Programming, 2009.

[2] John S. Breese. Construction of Belief and Decision Networks. Computational Intelligence,

8(4):624–647, 1992.

[3] James Cussens. Logic-based Formalisms for Statistical Relational Learning. In Lise Getoor and
Ben Taskar, editors, An Introduction to Statistical Relational Learning. MIT Press, 2007.

[4] Luc De Raedt and Kristian Kersting. Probabilistic Inductive Logic Programming. In Luc

De Raedt, Kristian Kersting, Niels Landwehr, Stephen Muggleton, and Jianzhong Chen, editors,
Probabilistic Inductive Logic Programming, pages 1–27. Springer, 2008.

[5] Luc Dehaspe. Maximum Entropy Modeling with Clausal Constraints. In Proceedings of the

7th International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in
Artificial Intelligence, pages 109–125. Springer, 1997.

[6] James P. Delgrande. On First-Order Conditional Logics. Artificial Intelligence, 105(1–2):105–

137, 1998.

[7] Arthur P. Dempster, Laird. Nan M., and Donald B. Rubin. Maximum-Likelihood from Incom-

plete Data via the EM Algorithm. Journal of the Royal Statistical Society, 1977.

[8] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool

Publishers, 2009.

[9] Daan Fierens. Learning Directed Probabilistic Logical Models from Relational Data. PhD thesis,
Katholieke Universiteit Leuven, 2008.

[10] Daan Fierens, Hendrik Blockeel, Jan Ramon, and Maurice Bruynooghe. Logical Bayesian Net-

works. In S. Dzeroski and H. Blockeel, editors, Proceedings of the 3nd International Workshop
on Multi-Relational Data Mining, pages 19–30, 2004.

[11] Marc Finthammer, Christoph Beierle, Benjamin Berger, and Gabriele Kern-Isberner. Proba-

bilistic Reasoning at Optimum Entropy with the MEcore System. In Proceedings of the 22nd
International FLAIRS Conference (FLAIRS’09). AAAI Press, 2009.

[12] Marc Finthammer, Sebastian Loh, and Matthias Thimm. Towards a Toolbox for Relational

Probabilistic Knowledge Representation, Reasoning, and Learning. In Workshop on Relational
Approaches to Knowledge Representation and Learning, Proceedings, pages 34–48, Paderborn,

Germany, September 2009.

[13] Jens Fisseler. Toward Markov Logic with Conditional Probabilities. In David C. Wilson and
H. Chad Lane, editors, Proceedings of the 21st International FLAIRS Conference, pages 643–

648. AAAI Press, 2008.

[14] Jens Fisseler. First-Order Probabilistic Conditional Logic: Introduction and Representation. In

Workshop on Relational Approaches to Knowledge Representation and Learning at KI-2009,

Proceedings, Paderborn, Germany, September 2009.

[15] Jens Fisseler, Gabriele Kern-Isberner, Christoph Beierle, Andreas Koch, and Christian Müller.

Algebraic Knowledge Discovery using Haskell. In Practical Aspects of Declarative Languages,
9th International Symposium. Springer, 2007.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[17] Michael Gelfond and Nicola Leone. Logic Programming and Knowledge Representation - The
A-Prolog Perspective. Artificial Intelligence, 138(1–2):3–38, June 2002.

[18] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Tasker. Learning Probabilistic Models

of Relational Structure. In C. E. Brodley and A. P. Danyluk, editors, Proceedings of the 18th
International Conference on Machine Learning (ICML 2001). Morgan Kaufmann, 2001.

An Integrated Development Environment for Probabilistic Relational Reasoning 39

[19] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, third edition, 2005.

[20] Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. Random worlds and maximum entropy.

Journal of Artificial Intelligence Research (JAIR), 2:33–88, 1994.

[21] Manfred Jaeger. Relational Bayesian Networks: A Survey. Electronic Transactions in Artificial
Intelligence, 6, 2002.

[22] Manfred Jaeger. Model-Theoretic Expressivity Analysis. In Luc De Raedt, Paolo Frasconi,

Kristian Kersting, and Stephen Muggleton, editors, Probabilistic Inductive Logic Programming:
Theory and Application, volume 4911 of Lecture Notes in Computer Science, pages 325–339.

Springer, 2008.

[23] Dominik Jain, Lorenz Mösenlechner, and Michael Beetz. Equipping Robot Control Programs

with First-Order Probabilistic Reasoning Capabilities. In International Conference on Robotics
and Automation (ICRA), pages 3130–3135, 2009.

[24] Gabriele Kern-Isberner. Conditionals in nonmonotonic reasoning and belief revision. Number

2087 in Lecture Notes in Computer Science. Springer, 2001.

[25] Gabriele Kern-Isberner and Jens Fisseler. Knowledge Discovery by Reversing Inductive Knowl-

edge Representation. In Proceedings of the Ninth International Conference on the Principles of

Knowledge Representation and Reasoning, KR-2004, pages 34–44. AAAI Press, 2004.

[26] Kristian Kersting and Luc De Raedt. Basic Principles of Learning Bayesian Logic Programs.
Technical report 174, Institute for Computer Science, University of Freiburg, Germany, 2002.

[27] Kristian Kersting and Luc De Raedt. Bayesian Logic Programming: Theory and Tool. In Lise

Getoor and Ben Taskar, editors, An Introduction to Statistical Relational Learning. MIT Press,
2007.

[28] Kristian Kersting and Uwe Dick. Balios – The Engine for Bayesian Logic Programs. In Pro-

ceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD-2004), pages 549–551, Sepember 2004.

[29] Nikhil S. Ketkar, Lawrence B. Holder, and Diane J. Cook. Comparison of Graph-based and

Logic-based Multi-Relational Data Mining. SIGKDD Explorations Newsletter, 7(2):64–71, 2005.

[30] Stanley Kok and Pedro Domingos. Learning the structure of Markov logic networks. In Pro-
ceedings of the 22nd international conference on Machine learning (ICML’05), pages 441–448.

ACM Press, 2005.

[31] Stanley Kok, Parag Singla, Matthew Richardson, Pedro Domingos, Marc Sumner, Hoifung Poon,

Daniel Lowd, and Jue Wang. The Alchemy System for Statistical Relational AI: User Manual.
Department of Computer Science and Engineering, University of Washington, 2008.

[32] Vladimir Lifschitz. Foundations of Logic Programming. In Gerhard Brewka, editor, Principles

of Knowledge Representation, pages 69–127. CSLI Publications, 1996.

[33] Sebastian Loh, Matthias Thimm, and Gabriele Kern-Isberner. On the Problem of Grounding a
Relational Probabilistic Conditional Knowledge Base. In Proceedings of the 14th International

Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada, May 2010.

[34] Thomas Lukasiewicz and Gabriele Kern-Isberner. Probabilistic Logic Programming under Max-
imum Entropy. In Proceedings of the Fifth European Conferences on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU-99), pages 279–292, 1999.

[35] Stephen Muggleton and Jianzhong Chen. A Behavioral Comparison of some Probabilistic Logic
Models. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and Stephen Muggleton, editors,

Probabilistic Inductive Logic Programming: Theory and Application, volume 4911 of Lecture

Notes in Computer Science, pages 305–324. Springer, 2008.

[36] Stephen H. Muggleton. Stochastic logic programs. In Luc de Raedt, editor, Advances in Inductive
Logic Programming, pages 254–?264. IOS Press, Amsterdam, Netherlands, 1996.

[37] Donald Nute and Charles Cross. Conditional logic. In D. Gabbay and F. Guenther, editors,
Handbook of Philosophical Logic, volume 4, pages 1–98. Kluwer Academic Publishers, second
edition edition, 2002.

[38] Jeff Paris. The Uncertain Reasoner’s Companion – A Mathematical Perspective. Cambridge

University Press, 1994.

[39] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1998.

40 An Integrated Development Environment for Probabilistic Relational Reasoning

[40] Luc De Raedt and Luc Dehaspe. Clausal Discovery. Machine Learning, 26:99–146, 1997.

[41] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A Probabilistic Prolog and
its Application in Link Discovery. In Proceedings of the 20th International Joint Conference on

Artificial Intelligence, pages 2462–2467, Hyderabad, India, 2007.

[42] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1–
2):107–136, 2006.

[43] Wilhelm Rödder. Conditional logic and the principle of entropy. Artificial Intelligence, 117:83–

106, 2000.

[44] Wilhelm Rödder and Carl-Heinz Meyer. Coherent Knowledge Processing at Maximum Entropy

by SPIRIT. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
(UAI 1996), pages 470–476, 1996.

[45] Matthias Thimm and Gabriele Kern-Isberner. On probabilistic inference in relational conditional

logics. This volume, 2010.

[46] Michael P. Wellman, John S. Breese, and Robert P. Goldman. From Knowledge Bases to Decision
Models. The Knowledge Engineering Review, 7(1):35–53, 1992.

An Integrated Development Environment for Probabilistic Relational Reasoning 41

A Further Examples

In the following, formalizations of the knowledge bases used in Section 5.4 are given.
For reasons of clarity of presentation we omit giving the specification of the condi-
tional probability distributions for BLPs. These and all knowledge bases presented
in this paper can be found at http://kreator.cs.tu-dortmund.de/experiments/

igpl2011.html.

A.1 BLP formalization of colorblind

(gen carrier(A) | male(A), parent(B,A), gen carrier(B), color blind(B))

(color blind(A) | male(A), parent(B,A), gen carrier(B), color blind(B))

(color blind(A) | female(A), parent(B,A), parent(C,A), gen carrier(B),

gen carrier(C), color blind(C))

(gen carrier(A) | female(A), parent(B,A), parent(C,A), gen carrier(B),

gen carrier(C), color blind(C))

A.2 MLN formalization of colorblind

¬female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ color blind(B) ∧ A 6= B

⇒ gen carrier(A)

¬female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ color blind(B) ∧ A 6= B

⇒ color blind(A)

−1 ¬female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ ¬color blind(B) ∧ A 6= B

⇒ gen carrier(A)

−1 ¬female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ ¬color blind(B) ∧ A 6= B

⇒ color blind(A)

¬female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ A 6= B ∧ ¬gen carrier(A)

¬female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ A 6= B ∧ ¬color blind(A)

female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ gen carrier(A)

female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ color blind(A)

female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ gen carrier(A)

−1 female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ color blind(A)

female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ ¬gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ gen carrier(A)

42 An Integrated Development Environment for Probabilistic Relational Reasoning

female(A) ∧ parent(b, a) ∧ gen carrier(B) ∧ parent(C,A) ∧ ¬gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C ∧ ¬color blind(A)

female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ gen carrier(A)

female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C ∧ ¬color blind(A)

−1 female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C⇒ gen carrier(A)

female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ gen carrier(C)

∧¬color blind(C) ∧ A 6= B ∧ B 6= C ∧ A 6= C ∧ ¬color blind(A)

female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ ¬gen carrier(C)

∧A 6= B ∧ B 6= C ∧ A 6= C ∧ ¬gen carrier(A)

female(A) ∧ parent(b, a) ∧ ¬gen carrier(B) ∧ parent(C,A) ∧ ¬gen carrier(C)

∧A 6= B ∧ B 6= C ∧ A 6= C ∧ ¬color blind(A)

A.3 RME formalization of colorblind

(gen carrier(A) | gen carrier(B),¬female(A), color blind(B),

parent(B,A), A 6= B)[1.0]

(color blind(A) | gen carrier(B),¬female(A), color blind(B),

parent(B,A), A 6= B)[1.0]

(gen carrier(A) | gen carrier(B),¬female(A),¬color blind(B),

parent(B,A), A 6= B)[0.5]

(color blind(A) | gen carrier(B),¬female(A),¬color blind(B),

parent(B,A), A 6= B)[0.5]

(gen carrier(A) | ¬female(A),¬gen carrier(B),

parent(B,A), A 6= B)[0.0]

(color blind(A) | ¬female(A),¬gen carrier(B),

parent(B,A), A 6= B)[0.0]

(gen carrier(A) | gen carrier(B), female(A), parent(B,A), gen carrier(C),

parent(CA), color blind(C), B 6= C, A 6= C, A 6= B)[1.0]

(color blind(A) | gen carrier(B), female(A), parent(B,A), gen carrier(C),

parent(CA), color blind(C), B 6= C, A 6= C, A 6= B)[1.0]

(gen carrier(A) | gen carrier(B), female(A), parent(B,A),¬color blind(C),

gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[1.0]

(color blind(A) | gen carrier(B), female(A), parent(B,A),¬color blind(C),

gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[0.5]

An Integrated Development Environment for Probabilistic Relational Reasoning 43

(gen carrier(A) | gen carrier(B), female(A), parent(B,A),¬color blind(C),

¬gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[1.0]

(color blind(A) | gen carrier(B), female(A), parent(B,A),¬color blind(C),

¬gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[0.0]

(gen carrier(A) | ¬gen carrier(B), female(A), parent(B,A), gen carrier(C),

parent(CA), color blind(C), B 6= C, A 6= C, A 6= B)[1.0]

(color blind(A) | ¬gen carrier(B), female(A), parent(B,A), gen carrier(C),

parent(CA), color blind(C), B 6= C, A 6= C, A 6= B)[0.0]

(gen carrier(A) | ¬gen carrier(B), female(A), parent(B,A),¬color blind(C),

gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[0.5]

(color blind(A) | ¬gen carrier(B), female(A), parent(B,A),¬color blind(C),

gen carrier(C), parent(CA), B 6= C, A 6= C, A 6= B)[0.0]

(gen carrier(A) | ¬gen carrier(B), female(A), parent(B,A),¬gen carrier(C),

parent(CA), B 6= C, A 6= C, A 6= B)[0.0]

(color blind(A) | ¬gen carrier(B), female(A), parent(B,A),¬gen carrier(C),

parent(CA), B 6= C, A 6= C, A 6= B)[0.0]

A.4 BLP formalization of cold

(cold(X))

(cold(X) | susceptible(X))

(cold(X) | contact(X,Y), cold(Y))

A.5 MLN formalization of cold

−0.5108 contact(X,Y) ∧ cold(Y) ∧ X 6= Y ⇒ cold(X)

−2.3026 susceptible(X)⇒ cold(X)

−2.9957 cold(X)

¬contact(X,X)

contact(X,Y)⇔ contact(Y,X)

A.6 RME formalization of cold

(cold(X) | contact(X,Y), cold(Y),X 6= Y)[0.6]

(cold(X) | susceptible(X))[0.1]

(cold(X))[0.05]

(contact(X,Y) | contact(Y,X),X 6= Y)[1.0]

(contact(X,X))[0.0]

44 An Integrated Development Environment for Probabilistic Relational Reasoning

A.7 BLP formalization of randomwalk

(isLeft(X) | previous(X,Y), isLeft(Y))

A.8 MLN formalization of randomwalk

−0.3219 previous(X,Y) ∧ ¬isLeft(Y)⇒ isLeft(X)

−2.3219 previous(X,Y) ∧ isLeft(Y)⇒ isLeft(X)

A.9 RME formalization of randomwalk

(isLeft(T1) | ¬isLeft(T2), previous(T1,T2),T1 6= T2)[0.8]

(isLeft(T1) | isLeft(T2), previous(T1,T2),T1 6= T2)[0.2]

