
Ranking RDF with Provenance via Preference
Aggregation

Renata Dividino, Gerd Gröner, Stefan Scheglmann, and Matthias Thimm

Institute for Web Science and Technologies (WeST), University of Koblenz-Landau, Germany
{dividino,groener,schegi,thimm}@uni-koblenz.de

draft – 2012-06-27

Abstract. Information retrieval on RDF data benefits greatly from additional
provenance information attached to the individual pieces of information. Prove-
nance information such as origin of data, certainty, and temporal information on
RDF statements can be used to rank search results according to one of those
dimensions. In this paper, we consider the problem of aggregating provenance
information from different dimensions in order to obtain a joint ranking over all
dimensions. We relate this to the problem of preference aggregation in social
choice theory and translate different solutions for preference aggregation to the
problem of aggregating provenance rankings. By exploiting the ranking order-
ings on the provenance dimensions, we characterize three different approaches
for aggregating preferences, namely the lexicographical rule, the Borda rule and
the plurality rule, in our framework of provenance aggregation.

1 Introduction

When querying the Web we are faced with highly varying quality of information. Tech-
niques to find the relevant information out of the Web data should include ways to in-
vestigate the value of information. Provenance provides knowledge that can be used to
quantify this value, and may come in different forms, e. g., trustworthiness of a source,
time of validity, certainty and vagueness. Determining the top-k answers of a query that
includes provenance information is an emerging problem.

Recent works [7, 22, 8, 19] have proposed frameworks for representing provenance
structures. Provenance is associated to RDF statements in form of annotations and the
different forms of provenance, denoted as annotation dimensions, are captured by an al-
gebraic structure [11], which enables annotation propagation through query evaluation.
Given a set of query results where each tuple is associated with annotations, we con-
sider the problem of ranking the tuples according to the annotation dimensions. Usually,
determining the top-k results when considering only one annotation dimension, for in-
stance the temporal dimension, is done by sorting the results according to all the time
values in order of importance (increasing or decreasing order). Ranking query results
when an aggregation of many annotation dimensions is necessary, e. g., temporal and
fuzzy, poses a variety of further challenges.

In this paper, we relate the problem of ranking stemming from an aggregation of dif-
ferent annotation dimensions to the problem of preference aggregation (or judgement



ID Statement Time
#1 [Cinemark Palace plays The Grey] 05.05.12
#2 [Cinemark Palace plays Man on a Ledge] 05.05.12
#3 [Prado Cinema Cafe plays Underworld: Awakening] 06.06.12
#4 [Deerfield Cinema plays Man on a Ledge] 02.03.12
#5 [The Grey hasGenre Action] 05.05.12
#6 [Man on a Ledge hasGenre Action] 02.03.12
#7 [Underworld: Awakening hasGenre Action] 02.03.12

Table 1. The set of annotated RDF statements in Ex. 1

aggregation) in social choice theory [15]. By adopting methods from preference aggre-
gation, we formulate a general framework for annotation dimension aggregation that is
based on solid formal grounds. We translate different solutions for preferences aggre-
gation to the problem of aggregating provenance rankings. By exploiting the ranking
orderings on the provenance dimensions, we characterize three different approaches
for aggregating preferences, namely the lexicographical rule, the Borda rule, and the
plurality rule, in our framework of provenance aggregation.

The combination of provenance has been considered before in e. g. [17] where the
focus is on the representation of the combined annotation dimensions based on their
possible dependency interactions. In [24], the aggregation of results from two specific
dimensions is presented, but, to our knowledge, the problem of a general aggregation
approach of multiple dimensions for top-k ranking has not been considered yet.

This paper is organized as follows. Section 2 describes foundations of representing
and querying RDF with provenance. Section 3 presents the formal framework for rank-
ing taking into consideration all annotation dimensions. In Section 4, we discuss how
the aggregation is applied in an offline setting and for streaming data. We compare our
work with related ones in Section 5 and conclude with a summary in Section 6.

2 Foundations

We follow the representation for annotated RDF used in [8]. Let p be some annotation
dimension (such as time) andΩp its set of possible values, e. g., the set of all valid dates.
Then, an annotated RDF statement is a quadruple α : θ where α is an RDF statement
and θ ∈ Ωp the attached annotation.

Example 1. Table 1 shows some RDF statements about movie theaters and films. Each
statement is annotated with an element from the temporal annotation dimension. In the
first column, we represent the statements in a simplified textual syntax. The second
column shows the annotation value θ ∈ Ωp assigned to the statement. For example, the
statement #1 states that the movie theater Cinemark Palace plays the film The Grey.
The annotation value assigned to this statement is the timestamp 05.05.12. saying that
this information has been published on this date.

We assume that annotation dimensions are represented in form of commutative semi-
rings [11]. Let Kp = (Ωp,⊗p,⊕p,>p,⊥p) be a commutative and idempotent semiring



of an annotation dimension p where Ωp is the value domain of p, ⊗p, ⊕p are custom
user-defined binary functions on Ωp, and >p and ⊥p are top and bottom elements. On
Kp we can define a partial order �p on the values in Ωp. For all θ1, θ2 ∈ Ωp, θ1 �p θ2
(θ1 precedes θ2) if and only if there is θ3 ∈ Ωp such that θ1 ⊕ θ3 = θ2. We write θ1 ≡ θ2
if both θ1 � θ2 and θ2 � θ1. For technical convenience, we only consider annotation
dimensions p such that the order �p is a total preorder.

Example 2. Let Ωp be the set of all possible dates, ⊗p be the minimum function and
⊕p the maximum function, then we obtain the natural linear order �p for dates, i. e., for
θ1, θ2 ∈ Ωp it holds that θ1 �p θ2 if and only if the date represented by θ1 is not later
than the date represented by θ2.

There are various query languages [8, 24] for annotated RDF graphs that have been
developed on top of SPARQL [21]. Those languages extend the algebra operators of
SPARQL to compute annotation values of results, i. e., enable annotation propagation
through queries using the algebraic operators of the underlying annotation structure. Ba-
sically, annotation values for some annotation dimension p can be propagated through
query evaluation along how-provenance [11], i. e., annotation values derived from the
individual derivation trees used to assign the variables. For a query q and an RDF graph
G, we define Φ(r) ∈ Ωp to be the annotation value for a query result r in the result set
res(G, q). We refer to [8] for a complete formalization of how Φ(r) is determined.

Example 3. Let q be a query that asks for all movies theaters that play some action
movie1. Querying the (annotated) RDF graph G from Ex. 1 with query q yields the result
set res(G, q) = {r1, r2, r3} where r1 = 〈Cinemark Palace〉, r2 = 〈Prado Cinema Cafe〉,
and r3 = 〈Deerfield Cinema〉. Given the semantics of the semirings operators ⊕ and
⊗ in Ex. 2 and since r1 is derived by joining the statements #1 and #5 or #1 and #6,
its the provenance value is be obtained by evaluating the respective annotation values
(05.05.12 ⊗ 05.05.12) ⊕ (05.05.12 ⊗ 02.03.12) = 05.05.12, which corresponds to the
most cautious but valid timestamp r1 bases upon.

Finally, the order �p on the annotation values of the annotation dimension p can be
exploited to obtain a (partial) ranking on the results res(G, q) for some query q. To do
so, we extend the order �p on res(G, q) by defining

r �p r′ if and only if Φ(r) �p Φ(r′)

for all r, r′ ∈ res(G, q).

Example 4. In Ex. 3 {r1, r2, r3} are returned in the order 〈r3, r1, r2〉, which reflects the
recency of the statements those results are based upon.

3 Multiple Annotation Dimensions and the Aggregation Problem

Now we extend the concept of annotated RDF to allow for more than a single annotation
dimension. As ranking according to various annotation dimensions may lead to different
ranking orderings of answers, we formulate the problem of ranking aggregation.

1 In SPARQL syntax:“SELECT ?x WHERE {?x plays ?y . ?y hasGenre ′Action′.}”



ID Statement Time Source Certainty
#1 [Cinemark Palace plays The Grey] 05.05.12 City Guide 0.8
#2 [Cinemark Palace plays Man on a Ledge] 05.05.12 City Guide 0.8
#3 [Prado Cinema Cafe plays Underworld: Awakening] 06.06.12 Movie Today 0.6
#4 [Deerfield Cinema plays Man on a Ledge] 02.03.12 Cinema On 0.7
#5 [The Grey hasGenre Action] 05.05.12 City Guide 0.7
#6 [Man on a Ledge hasGenre Action] 02.03.12 Cinema On 0.7
#7 [Underworld: Awakening hasGenre Action] 02.03.12 Movie Today 0.7

Table 2. The set of annotated RDF statements in Ex. 5

3.1 Annotated RDF with Multiple Dimensions

Until now, we only consider a single annotation for each RDF statement. However,
statements may be annotated along multiple dimensions such as source, time, and cer-
tainty. Assume Γ = {p1, . . . , pγ} is a fixed set of independent annotation dimensions
with |Γ| = γ and let Kpi = (Ωpi ,⊗pi ,⊕pi ,>pi ,⊥pi ), for i = 1, . . . , γ, be the corresponding
annotation structures. We extend the definition of an annotated RDF statement accord-
ingly. An annotated RDF statement is a tuple S = α : θ1, . . . , θγ with α being an RDF
statement and θi ∈ Ωpi an annotation. Similarly, the function res(G, q) is extended to
return tuples annotated with multiple annotations, where the annotation value in each
dimension is determined separately using the approach from the previous section.

Example 5. We extend the annotations of the set of RDF statements from Table 1 along
the independent dimensions Γ = {source, time, certainty}, cf. Table 2. The first row
states that the movie theater Cinemark Palace plays the film The Grey, and that this
statement was received from ‘City Guide’, has been published on ‘05.05.12’ and the
certainty value of the statement is 0.8.

Each single annotation dimension of an annotated RDF graph can be exploited for rank-
ing results as discussed above. In general, those rankings do not coincide and depend
on the chosen dimension. We are interested in a joint ranking taking all annotation
dimensions into account.

Example 6. We assume that the RDF statements presented in Table 2 represent all infor-
mation available on the Web. The query and query results presented in Ex. 3 correspond
to the search request and its results respectively. We can exploit the orders �p to obtain
(partial) ranking ordering on the results. Suppose �time corresponds to the natural linear
order on dates, �certainty corresponds to the order on (fuzzy) certainty values, and for
the source dimension, Movie Today, Cinema On, and City Guide represents the set of
all the possible values and we assume that Movie Today �source City Guide, Cinema On
�source City Guide and both Movie Today, Cinema On are equally reliable. The ranking
ordering of the results considering the temporal dimension is 〈r3, r1, r2〉, which reflects
the recency of the statements those results are based upon. For the certainty dimension
we have 〈r3, r2, r1〉, which reflects the vagueness of the statements, and for the source
dimension we have 〈(r2, r3), r1〉, which reflects the reliability of the sources.



3.2 Aggregating Annotation Rankings

In the following, we consider the problem of how results of a query should be ranked
according to an aggregation of independent annotation dimensions. Therefore, we wish
to aggregate the annotation rankings into a single ranking ordering. This is a well-
known problem in the field of judgement aggregation (or preference aggregation) [2,
15]. There, the problem under consideration is to aggregate interests or votes in order to
come up with a decision that is favorable in the light of the individual interests. A well-
known application for social choice theory is the problem of voting, i. e., of constructing
a voting mechanism that is, in some sense, fair. In order to relate our approach to those
works, we borrow some properties that were originally stated for social choice theory
and investigate them in our framework of aggregating annotation rankings.

Let G be an annotated RDF graph, Γ = {p1, . . . , pγ} a set of annotation dimensions,
and q some query for G. As discussed above, querying G with q yields a set of tuples
res(G, q), and each tuple is annotated with some annotation value for every annotation
dimension in Γ. Using the rankings �p1 , . . . ,�pγ the set res(G, q) can be ordered in
different ways. We call P = {�p1 , . . . ,�pγ } the annotation profile of res(G, q).

Definition 1 (Profile aggregator). Let P = {�p1 , . . . ,�pγ } be an annotation profile of
res(G, q). A mapping �p1 , . . . ,�pγ 7→�, such that � is a partial order on res(G, q), is
called an annotation aggregator.

In the field of judgement aggregation, desirable properties and different mechanisms for
defining the aggregation of multiple orderings have been investigated for more than 50
years. One of the most important technical results is Arrow’s impossibility theorem [2],
which states that there is no such thing as a fair voting mechanism or “every voting
mechanism is flawed”. More precisely, there is no mapping 7→ satisfying the following
three properties (let � be defined via the mapping �p1 , . . . ,�pγ 7→�):

Pareto-efficiency For every r, r′ ∈ res(G, q), if r �pi r′ for all i = 1, . . . , γ then r � r′.
Non-dictatorship There is no i ∈ {1, . . . , γ} such that �pi=� for every profile.
Independence of irrelevant alternatives If for two sets {�p1 , . . . ,�pγ } and {�′p1

, . . . ,�′pγ
} and every i = 1, . . . , γ it holds r �pi r′ whenever r �′pi

r′ then r � r′ whenever
r �′ r′ (with �p1 , . . . ,�pγ 7→� and �′p1

, . . . ,�′pγ 7→�
′).

In the following, we consider three examples of profile aggregators, which are inspired
by approaches to solve the problem of judgement aggregation in social choice theory.
A simple profile aggregator (that fails to satisfy non-dictatorship) is the lexicographi-
cal aggregator. The lexicographical aggregator assumes some given total order on the
annotation dimensions, e. g., the temporal information may be more important than the
source information. Given this, a result item r′ is preferred to r if r′ is preferred to r
wrt. the given timestamps (r �time r′) or r and r′ have equal timestamps (r ≡time r′)
but r′ is preferred to r wrt. the source information (r �source r′). Note, that this kind of
annotation aggregator order is heavily biased by the given ordering of dimensions.

Definition 2 (Lexicographical aggregator). Let {�p1 , . . . ,�pγ } be an annotation pro-
file on res(G, q), and assume w.l.o.g. that 〈�p1 , . . . ,�pγ〉 is the order of importance of



the annotation profile (�p1 being the most important ranking). Then the lexicographical
aggregation �l of �p1 , . . . ,�pγ is defined via

r �l r′ iff ¬∃k ∈ {1, . . . , γ} :
(
r �pk r′ ∧ ∀i ∈ {1, . . . , γ} : i < k ⇒ r �pi r′ ∧ r′ �pi r

)
for all r, r′ ∈ res.

Example 7. Given the annotation profiles presented in Ex. 6, and we assume that 〈�certainty

,�time,�source〉 is the order of importance of the annotation profiles. Then the lexico-
graphic ordering of r1, r2, and r3 corresponds to r3 �l r2 �l r1. This represents exactly
the ranking ordering when considering just the certainty dimension. Now, we assume
that 〈�source,�time,�certainty〉 is the order of importance of the annotation profiles, then
r1, r2, and r3 are ordered in r2 �l r3 �l r1.

Another popular aggregation method from voting theory is the Borda rule. The Borda
rule defines preferences by assigning a value to each tuple according to its positions in
the domain order. The sum of all the values of a tuple represents its score.

Definition 3 (Borda aggregator). Let {�p1 , . . . ,�pγ } be an annotation profile on res(G, q).
For each r ∈ res(G, q) define sc(r) via2

sc(r) =
∑

j

∑
r′∈res(G,q)\{r}

[r′ �p j r]

for all r ∈ res(G, q). Then the Borda aggregation �b of �p1 , . . . ,�pγ is defined via

r �b r′ iff sc(r) ≤ sc(r′)

for all r, r′ ∈ res.

Example 8. Given the annotation profiles presented in Ex. 6, then the Borda ordering
corresponds to r2 �b r3 �b r1. The Borda score of r1 is 5 (at the temporal dimension
score 1, at the certainty dimension score 2, and at the source dimension 2, since r1
is derived from the most reliable source). The Borda score of r3 is 3 (2, 0, and 1 at
temporal, certainty, and source dimension respectively) and of r2 is 2 (0, 1, and 1 at
temporal, certainty, and source dimension).

At last, we consider the plurality aggregation method, which defines the preferred el-
ement to be the tuple in the result set with the most votes (plurality), i. e., the tuple r
which is the most preferred considering all annotation profiles.

Definition 4 (Plurality aggregator). Let�p1 , . . . ,�pγ be an annotation profile on res(G, q).
Then the plurality aggregation �m of �p1 , . . . ,�pγ is defined via

r �m r′ iff |{i | r �pi r′}| ≥ |{i | r′ �pi r}|

for all r, r′ ∈ res.

2 Note that [A] is the Iverson bracket defined via [A] = 1 if A is true and [A] = 0 otherwise.



Note that the plurality aggregator defined above suffers from the Condorcet paradox if
more than two rankings are to be aggregated [10]. That is, even if �1, . . . ,�γ are partial
orders, the relation �m may contain cycles.

Example 9. Let res = {r1, r2, r3} and consider �1, �2, and �3 defined via

r1 �1 r2 �1 r3 r2 �2 r3 �2 r1 r3 �3 r1 �3 r2

and observe that r1 �m r2, r2 �m r3, and r3 �m r1.

Example 10. Given the annotation profiles of the certainty and source dimensions pre-
sented in Ex. 6, then the plurality ordering for r1, r2, and r3 corresponds to r2 �b r3 �b r1
since r2 �p r1 and r3 �p r1 for all the dimensions and r2 �certainty r3, and r2 ≡source r3.

4 Ranking of Stream Data

The proposed profile aggregators can be applied in offline and online settings. Offline
setting means that the whole set of results is completely available, while online setting
refers to the aggregation of streaming data. In the following, both settings are exten-
sively discussed.

4.1 Offline Setting

First, we perform top-k querying on locally stored annotated RDF graphs rather than
on-the-fly, i. e., the whole result set res(G, q) of a query q is known a priori. As one or
multiple annotation dimensions can be used for ranking, in the following, we shortly
describe how ranking on annotated RDF can be done:
One-dimensional Approach. Providing top-k results when considering only one an-
notation dimension, for instance the temporal dimension, is done straightforward by
sorting the results in order of importance (increasing or decreasing order).
Multi-dimensional Approach. A top-k ranking over multiple annotation dimensions
requires an aggregation of the top-k rankings from each dimension. According to Sec. 3.2,
the profile aggregators offer a variety of aggregation means with respect to individ-
ual preferences among the different annotation dimensions. Therefore, to obtain a joint
ranking taking all annotation domains into account, we use one of the described anno-
tation aggregators (e. g., the lexicographical rule, the Borda rule, or the plurality rule)
to aggregate results from multiple annotation dimensions into a single ordering.

4.2 Online Setting

In contrast to offline ranking, in stream ranking res(G, q) is not available at once, we
rather receive the result tuples r ∈ res(G, q) continuously whereas rt is the tuple re-
ceived at time t. We want to start presenting results up the first available tuple. Such a
stream ranking mechanism could not decide upon receipt if a result tuple rt is part of
final the top-k results. It could only decide if a tuple rt is part of the top-k results at time
t because there could be better results not received at time t.



One-dimensional Approach. A simple approach for ranking over streams starts with
an empty top-k result set resk. New result tuples rt are added to rest until the result set
is full (k tuples in resk). We suppose that the k tuples are sorted wrt. a given criteria, for
instance, in decreasing order. Let rb, denoted as the border-tuple, be the lowest/smallest
(the k-th) tuple. All tuples rt received from this point have to be compared with the
border-tuple rb. If rt � rb, the tuple rt could be ignored otherwise rb is removed and rt

is added to resk. In this case, a new border-tuple has to be computed.
Multi-dimensional Approach. For the aggregation over multiple dimensions, the stream-
ing algorithm remains the same if the ordering of the elements in resk does not change
when additional elements are received, i.e., if the independence of irrelevant alterna-
tives holds. This property holds for several aggregators, e.g., for the lexicographic ag-
gregator. The Borda aggregator, however, is an example where is is not possible to
determine an aggregation without considering the whole set of results.

Example 11. In Ex. 8 〈r1, r3, r2〉 corresponds to the top-3 result with respect to the
Borda aggregator. As already mentioned, pairwise element comparison is not appli-
cable to the Borda aggregator. To illustrate that, let us assume that we are looking for
the top-2 results and that the elements are received in the following order, r1, r2, r3. The
top-2 results should be r3 �b r1. Like in the one-dimensional case, we fill our result set
with the first two elements, i.e., {r1, r2}. Then we compare these elements to determine
the border element to be r2. Next, we compare this border element to our last element
r3. Since, it ranks r2 and r3 as equal, we are not able to determine if we have to replace
the border element r2 with r3 or keep it. It is not possible to determine our top-2 result
precisely, and only the top-2 result sets {r1, r2} and {r1, r3}.

5 Related Work

Ranking of query results has been considered from different perspectives in the database
research. In Agrawal et al. [1] the ranking criteria is based on a similarity measure
between terms in the query condition and terms of tuple attributes in tables. A similar
principle is applied by Fuhr [9], where ranking techniques from information retrieval
are used to rank query results on databases. This approach relies on a relevance feedback
from the user. Ilyas et al. [14, 13] give an overview of rank-aware join operations. While
in the top-k query result ranking the results are ranked according to attribute values
of result tuples, e.g,. by using order-by construct on attributes, the top-k join ranking
specifies ranking scores based on multiple relations. Natsev et al. [20]. propose a a
heuristic algorithm over multiple ranked data sources to efficient combining ranked
results from single dimensions using. None of these approaches rank over RDF data
and they do not consider the particular problem of aggregation of different independent
ranking dimensions.

From the ranking perspective, several approaches consider also the problem of com-
bining several dimensions of ranking criteria [6, 16, 23, 12]. Preferences are specified in
terms of partial orders on attributes and they can be accumulated and aggregated to
build complex preference orders. In [6], the general idea is to rank query results when
there is no exact match, but some results are similar to the query. They compute the



distance of attribute values of the relation with respect to the query attributes. In [12],
linear sums of attributes are used to rank preferences (assigned to attributes). Likewise,
Li et al. [18] presents top-k ranking for different dimensions for relational databases.
Compared to our work, none of them considers the ranking of semi-structured data like
RDF and their focus is not on ranking w.r.t. annotations of data.

In the realm of the Semantic Web, we compare our work to annotated RDF data
in general, and to aggregation principles in particular. Based on semirings [11], Bune-
man and Kostylev [7] and Straccia et al. [22] present an algebra for RDF annotations.
Their approaches are for annotations in general, but they do not consider multiple di-
mensions simultaneously. Zimmermann et al. [24] present a combination of multiple
annotation dimensions. They combine two dimensions by a composition into one di-
mension, modeled as a compounded annotation dimension. An aggregation function
maps annotation dimensions into a set of pairs of annotations. Kostylev et al. [17] also
consider the problem of combining various forms of provenance that, analogous to the
previous, map annotation dimensions into a set of vectors. They introduce restrictions
to semirings in order to define containment and equivalence of combined annotation
relations. The latter ones are different from our work since we aggregate annotation di-
mensions considering aggregation functions, which does not rely on the structure of the
annotation dimensions and can be generalized to the aggregation of every ordered set.

Ranking for streaming data is an emerging problem when querying large data col-
lections as on the Web, and it is therefore considered for RDF querying and reasoning.
For instance, SPARQL extensions allows ranking query results on streams [4, 5], as well
as general reasoning frameworks incorporate the management of streaming data [3].
However, ranking with aggregation of multiple annotation dimensions is not studied on
streaming RDF data so far.

6 Summary

We have presented a novel approach for top-k querying of RDF data with multiple
provenance dimensions. RDF data is annotated with values providing knowledge on
the origin, truthworthiness or validity of data and this knowledge should be taken into
account when answering queries. Top-k ranking becomes complicated if data have mul-
tiple provenance dimensions, and the ranking has to incorporate a holistic ordering over
all these dimensions. We have presented an aggregation approach over multiple prove-
nance dimensions, which is based on preference aggregation in social choice theory.
We have formalized three different aggregation methods, namely the lexicographical,
the Borda and the plurality rule.

Additionally, we consider these aggregations in offline and online settings. For on-
line settings, we first elaborate how the aggregators deal with a continuously enlarge-
ment of the available result tuples that are considered in the aggregation. Secondly,
we explain which aggregators can be applied in online settings and which not. Further
investigations and implementations for efficient ranking on streaming data are planned.

Acknowledgments The research reported here was partially supported by the So-
cialSensor FP7 project (EC under contract number 287975).



References

1. S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated Ranking of Database Query
Results. In CIDR, 2003.

2. K. J. Arrow. A Difficulty in the Concept of Social Welfare. Journal of Political Economy,
58(4):328–346, 1950.

3. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Incremental Reasoning
on Streams and Rich Background Knowledge. In ESWC, pages 1–15, 2010.

4. D.F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An Execution Environment for C-
SPARQL Queries. In EDBT, pages 441–452. ACM, 2010.

5. A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL-extending SPARQL to process
data streams. The Semantic Web: Research and Applications, pages 448–462, 2008.

6. N. Bruno, S. Chaudhuri, and L. Gravano. Top-k Selection Queries over Relational Databases:
Mapping Strategies and Performance Evaluation. ACM Trans. Database Syst., 27(2):153–
187, 2002.

7. P. Buneman and E. Kostylev. Annotation algebras for RDFS. In SWPM. CEUR Workshop
Proceedings, 2010.

8. R. Dividino, S. Sizov, S. Staab, and B. Schueler. Querying for provenance, trust, uncertainty
and other meta knowledge in rdf. JWS, 7(3):204–219, September 2009.

9. N. Fuhr. A Probabilistic Framework for Vague Queries and Imprecise Information in
Databases. In VLDB, pages 696–707, 1990.

10. W. V. Gehrlein. Condorcet’s Paradox. Theory and Decision Library C , Vol. 40. Springer,
Berlin, Heidelberg, 2006.

11. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. In PODS, pages
31–40, 2007.

12. V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A System for the Efficient
Execution of Multi-parametric Ranked Queries. In SIGMOD, pages 259–270, 2001.

13. I. F. Ilyas, G. Beskales, and M. A. Soliman. A Survey of Top-k Query Processing Techniques
in Relational Database Systems. ACM Comput. Surv., 40(4):11:1–11:58, October 2008.

14. I. F. Ilyas, R. Shah, W. G. Aref, J. Scott Vitter, and A. K. Elmagarmid. Rank-aware Query
Optimization. In SIGMOD, pages 203–214, 2004.

15. J. Kelly. Social Choice Theory: An Introduction. Springer-Verlag, 1988.
16. W. Kießling. Foundations of Preferences in Database Systems. In VLDB, pages 311–322,

2002.
17. E. V. Kostylev and P. Buneman. Combining dependent annotations for relational algebra. In

ICDT, 2012.
18. C. Li, K. Chen-Chuan Chang, I. F. Ilyas, and S. Song. RankSQL: Query Algebra and Opti-

mization for Relational Top-k Queries. In SIGMOD, pages 131–142, 2005.
19. N. Lopes, A. Polleres, U. Straccia, and A. Zimmermann. Anql: Sparqling up annotated rdfs.

In ISWC, pages 518–533, Berlin, Heidelberg, 2010. Springer-Verlag.
20. Apostol N., Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting Incremental Join

Queries on Ranked Inputs. In VLDB, pages 281–290, 2001.
21. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. W3c recommendation,

W3C, January 2008.
22. U. Straccia, N. Lopes, G. Lukácsy, and A. Polleres. A General Framework for Representing

and Reasoning with Annotated Semantic Web Data. In AAAI, pages 1437–1442, 2010.
23. D. Xin, J. Han, H. Cheng, and X. Li. Answering Top-k Queries with Multi-Dimensional

Selections: The Ranking Cube Approach. In VLDB, pages 463–475, 2006.
24. A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general framework for repre-

senting, reasoning and querying with annotated semantic web data. JWS, 11(0):72 – 95,
2012.


