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Abstract. Probabilistic conditional logic is a knowledge representation
formalism that uses probabilistic conditionals (if-then rules) to model
uncertain and incomplete information. By applying the principle of max-
imum entropy one can reason with a set of probabilistic conditionals in an
information-theoretical optimal way, provided that the set is consistent.
As in other fields of knowledge representation, consistency of probabilis-
tic conditional knowledge bases is hard to ensure if their size increases
or multiple sources contribute pieces of information. In this paper, we
discuss the problem of analyzing and measuring inconsistencies in prob-
abilistic conditional logic by investigating inconsistency measures that
support the knowledge engineer in maintaining a consistent knowledge
base. An inconsistency measure assigns a numerical value to the severity
of an inconsistency and can be used for restoring consistency. Previous
works on measuring inconsistency consider only qualitative logics and
are not apt for quantitative logics because they assess severity of incon-
sistency without considering the probabilities of conditionals. Here, we
investigate continuous inconsistency measures which allow for a more
fine-grained and continuous measurement.

1 Introduction

Inconsistencies arise easily when experts share their beliefs in order to build
a joint knowledge base. Although these inconsistencies often affect only a lit-
tle portion of the knowledge base or emerge from only little differences in the
experts’ beliefs, they cause severe damage. In particular, for knowledge bases
that use classical logic for knowledge representation, inconsistencies render the
whole knowledge base useless, due to the well-known principle ex falso quodlibet.
Therefore reasoning under inconsistency is an important field in knowledge rep-
resentation and reasoning and there are basically two paradigms for approaching
this issue. On the one hand one can live with inconsistencies and develop reason-
ing mechanisms that allow for consistent inference in the presence of inconsistent
information, cf. e. g. paraconsistent and default logics [8]. On the other hand one
can rely on classical inference mechanisms and ensure that knowledge bases are
consistent, cf. e. g. approaches to belief revision and information fusion [2]. In
this paper we employ probabilistic conditional logic [5] for knowledge represen-
tation. The basic notion of probabilistic conditional logic is that of a probabilistic



conditional which has the form (ψ |φ)[d] with the commonsense meaning “if φ
is true then ψ is true with probability d”. A popular choice for reasoning with
sets of probabilistic conditionals is model-based inductive reasoning based on the
principle of maximum entropy [6, 5]. However, a prerequisite for applying this
principle is the consistency of the set, i. e. the existence of at least one probability
function that satisfies all probabilistic conditionals.

In this paper we investigate the issue of inconsistency in probabilistic condi-
tional logic from an analytical perspective. One way to analyze inconsistencies
is by measuring them. For the framework of classical logic, several approaches
to analyze and measure inconsistency have been proposed—see e. g. [3]—and
it is straightforward to apply those measures to the framework of probabilistic
conditional logic [11]. However, those approaches do not grasp the nuances of
probabilistic knowledge and allow only for a very coarse assessment of the sever-
ity of inconsistencies. In particular, those approaches do not take the crucial role
of probabilities into account and exhibit a discontinuous behavior in measuring
inconsistency. That is, a slight modification of the probability of a conditional
in a knowledge base may yield a discontinuous change in the value of the in-
consistency. In this paper, we consider measuring inconsistency in probabilistic
conditional logic and continue previous work [10] in several aspects. First, we
propose several novel principles for inconsistency measurement. Second, we pick
up an extended logical formalization [7] of the inconsistency measure proposed
in [10] and define a family of inconsistency measures based on minimizing the
p-norm distance of a knowledge base to consistency. Third, we propose a novel
compound measure that solves an issue with the previous measure and investi-
gate its properties.

The rest of this paper is organized as follows. In Sec. 2 we give a brief overview
on probabilistic conditional logic and continue in Sec. 3 with presenting a set of
rationality postulates for continuous inconsistency measurement. We propose a
family of inconsistency measures and a compound measure in Sec. 4 and analyze
their properties in Sec. 5. We briefly review related work in Sec. 6 and conclude
with a summary in Sec. 7.

2 Probabilistic Conditional Logic

Let At be a propositional signature, i. e. a finite set of propositional atoms. Let
L(At) be the corresponding propositional language generated by the atoms in At
and the connectives ∧ (and), ∨ (or), and ¬ (negation). For φ, ψ ∈ L(At) we ab-
breviate φ ∧ ψ by φψ and ¬φ by φ. The symbols > and ⊥ denote tautology and
contradiction, respectively. We use possible worlds, i. e. syntactical representa-
tions of truth assignments, for interpreting sentences in L(At). A possible world
ω is a complete conjunction, i. e. a conjunction that contains for each a ∈ At
either a or ¬a. Let Ω(At) denote the set of all possible worlds. A possible world
ω ∈ Ω(At) satisfies an atom a ∈ At, denoted by ω |= a if and only if a positively
appears in ω. The entailment relation |= is extended to arbitrary formulas in



L(At) in the usual way. Formulas ψ, φ ∈ L(At) are equivalent, denoted by φ ≡ ψ,
if and only if ω |= φ whenever ω |= ψ for every ω ∈ Ω(At).

The central notion of probabilistic conditional logic [5] is that of a probabilistic
conditional.

Definition 1. If φ, ψ ∈ L(At) with d ∈ [0, 1] then (ψ |φ)[d] is called a proba-
bilistic conditional.

A probabilistic conditional c = (ψ |φ)[d] is meant to describe a probabilistic
if-then rule, i. e., the informal interpretation of c is that “If φ is true then ψ
is true with probability d” (see below). If φ ≡ > we abbreviate (ψ |φ)[d] by
(ψ)[d]. Further, for c = (ψ |φ)[d] we denote with head(c) = ψ the head of c, with
body(c) = φ the body of c, and with prob(c) = d the probability of c. Let C(L(At))
denote the set of all probabilistic conditionals with respect to L(At).

Definition 2. A knowledge base K is an ordered finite multi-subset of C(L(At)),
i. e. it holds that K = 〈c1, . . . , cn〉 for some c1, . . . , cn ∈ C(L(At)).

We impose an ordering on the conditionals in a knowledge base K only for tech-
nical convenience. The order can be arbitrary and has no further meaning other
than to enumerate the conditionals of a knowledge base in an unambiguous way.
For similar reasons we allow a knowledge base to contain the same probabilis-
tic conditional more than once. We come back to the reasons for these design
choices later. For knowledge bases K = 〈c1, . . . , cn〉, K′ = 〈c′1, . . . , c′m〉 and a
probabilistic conditional c we define c ∈ K via c ∈ {c1, . . . , cn}, K ⊆ K′ via
{c1, . . . , cn} ⊆ {c′1, . . . , c′m}, and K = K′ via {c1, . . . , cn} = {c′1, . . . , c′m}. The
union of belief bases is defined via concatenation.

Semantics are given to probabilistic conditionals by probability functions on
Ω(At). Let F denote the set of all probability functions P : Ω(At) → [0, 1]. A
probability function P ∈ F is extended to formulas φ ∈ L(At) via

P (φ) =
∑

ω∈Ω(At),ω|=φ

P (ω) .

If P ∈ F then P satisfies a probabilistic conditional (ψ |φ)[d], denoted by P |=pr

(ψ |φ)[d], if and only if P (ψφ) = dP (φ). Note that we do not define probabilistic
satisfaction via P (ψ |φ) = P (ψφ)/P (φ) = d in order to avoid a case differentiation
for P (φ) = 0, cf. [6]. A probability function P satisfies a knowledge base K (or
is a model of K), denoted by P |=pr K, if and only if P |=pr c for every c ∈ K.
Let Mod(K) be the set of models of K. If Mod(K) = ∅ then K is inconsistent.

Example 1. Consider the knowledge base

K = 〈(f | b)[0.9], (b | p)[1], (f | p)[0.1]〉

with the intuitive meaning that birds (b) usually (with probability 0.9) fly (f),
that penguins (p) are always birds, and that penguins usually do not fly (only



with probability 0.1). The knowledge base K is consistent as for e. g. P ∈ F with

P (bfp) = 0.005 P (bfp) = 0.49 P (bfp) = 0.045 P (bfp) = 0.01

P (bfp) = 0.0 P (bfp) = 0.2 P (bfp) = 0.0 P (bfp) = 0.25

it holds that P |=pr K as e. g. P (b) = P (bfp)+P (bfp)+P (bfp)+P (bfp) = 0.55
and P (bf) = P (bfp) + P (bfp) = 0.495 and therefore P (f | b) = P (bf)/P (b) = 0.9.

A probabilistic conditional (ψ |φ)[d] is normal if and only if there are ω, ω′ ∈
Ω(At) with ω |= ψφ and ω′ |= ψφ.1 In other words, a probabilistic conditional c
is normal if it is satisfiable but not tautological.

Example 2. The probabilistic conditionals c1 = (> | a)[1] and c2 = (a | a)[0.1] are
not normal as c1 is tautological (there is no ω ∈ Ω(At) with ω |= >a as >a ≡⊥)
and c2 is not satisfiable (there is no ω ∈ Ω(At) with ω |= aa as aa ≡⊥)

As a technical convenience, for the rest of this paper we consider only normal
probabilistic conditionals, so let K be the set of all knowledge bases of C(L(At))
that contain only normal probabilistic conditionals.

Proposition 1. If (ψ |φ)[d] is normal then (ψ |φ)[x] is normal for every x ∈
[0, 1].

The proof of the above proposition is easy to see as the definition of normality
does not depend on the probability of a conditional.

Knowledge bases K1,K2 are extensionally equivalent, denoted by K1 ≡e K2,
if and only if Mod(K1) = Mod(K2). Note that the notion of extensional equiva-
lence does not distinguish between inconsistent knowledge bases, i. e. for incon-
sistent K1 and K2 it always holds that K1 ≡e K2. Consequently, we also consider
another equivalence relation for knowledge bases. Knowledge bases K1,K2 are
semi-extensionally equivalent, denoted by K1 ≡s K2, if and only if there is a
bijection ρK1,K2 : K1 → K2 such that c ≡e ρK1,K2(c) for every c ∈ K1. Note that
K1 ≡s K2 implies K1 ≡e K2 but the other direction is not true in general.

Example 3. Consider the two knowledge bases K1 = 〈(a)[0.7], (a)[0.4]〉 and K2 =
〈(b)[0.8], (b)[0.3]〉. Both K1 and K2 are inconsistent and therefore K1 ≡e K2. But
it holds that K1 6≡s K2 as both (a)[0.7] 6≡e (b)[0.8] and (a)[0.7] 6≡e (b)[0.3].

One way for reasoning with knowledge bases is by using model-based inductive
reasoning techniques [6]. For example, reasoning based on the principle of max-
imum entropy selects among the models of a knowledge base K the one unique
probability function with maximum entropy. Reasoning with this model satisfies
several commonsense properties, see e. g. [6, 5]. However, a necessary require-
ment for the application of model-based inductive reasoning techniques is the
existence of at least one model of a knowledge base. In order to reason with
inconsistent knowledge bases the inconsistency has to be resolved first. In the
following, we discuss the topic of inconsistency measurement for probabilistic
conditional logic as inconsistency measures can support the knowledge engineer
in the task of resolving inconsistency.

1 I thank an anonymous reviewer for pointing this formalization out to me.



3 Principles for Inconsistency Measurement

An inconsistency measure I is a function that maps a (possibly inconsistent)
knowledge base onto a positive real value, i. e. a function I : K → [0,∞). The
value I(K) for a knowledge base K is called the inconsistency value for K with
respect to I. Intuitively, we want I to be a function on knowledge bases that
is monotonically increasing with the inconsistency in the knowledge base. If
the knowledge base is consistent, I shall be minimal. In order to formalize this
intuition we give a list of principles that should be satisfied by any reasonable
inconsistency measure. For that we need some further notation.

Definition 3. A set M is minimal inconsistent if M is inconsistent and every
M′ (M is consistent.

Let MI(K) be the set of the minimal inconsistent subsets of K.

Example 4. Consider the knowledge base K = 〈(a)[0.3], (b)[0.5], (a ∧ b)[0.7]〉.
Then the set of minimal inconsistent subsets of K is given via

MI(K) = { {(a)[0.3], (a ∧ b)[0.7]}, {(b)[0.5], (a ∧ b)[0.7]} } .

The notion of minimal inconsistent subsets captures those conditionals that are
responsible for creating inconsistencies. Conditionals that do not take part in
creating an inconsistency are free.

Definition 4. A probabilistic conditional c ∈ K is free in K if and only if c /∈M
for all M∈ MI(K).

For a conditional or a knowledge base C let At(C) denote the set of atoms
appearing in C.

Definition 5. A probabilistic conditional c ∈ K is safe in K if and only if
At(c) ∩ At(K \ c) = ∅.

Note that the notion of safeness is due to Hunter and Konieczny [4]. The notion
of a free conditional is clearly more general than the notion of a safe conditional.

Proposition 2. If c is safe in K then c is free in K.

The proof of Proposition 2 can be found in [11].

Definition 6. Let K ∈ K be a knowledge base with K = 〈c1, . . . , cn〉 and ci =
(ψi |φi)[di] for i = 1, . . . , n. The function ΛK : [0, 1]n → K with ΛK(x1, . . . , xn) =
〈(ψ1 |φ1)[x1], . . . , (ψn |φn)[xn]〉 is called the characteristic function of K.

Due to Proposition 1 the function ΛK is well-defined. The above definition is
also the justification for imposing an order on the probabilistic conditionals of a
knowledge base.



Definition 7. Let I be an inconsistency measure and let K be a knowledge
base. The function θI,K : [0, 1]|K| → [0,∞) with θI,K = I ◦ ΛK is called the
characteristic inconsistency function of I and K.

Consider now the following properties from [10]. Let K,K′ be knowledge bases
and c a probabilistic conditional.

Consistency. K is consistent if and only if I(K) = 0
Monotonicity. I(K) ≤ I(K ∪ {c})
Super-additivity. If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)
Weak independence. If c ∈ K is safe in K then I(K) = I(K \ {c})
Independence. If c ∈ K is free in K then I(K) = I(K \ {c})
Penalty. If c ∈ K is not free in K then I(K) > I(K \ {c})
Continuity. θI,K is continuous

The property consistency demands that I(K) is minimal for consistent K. The
properties monotonicity and super-additivity demand that I is non-decreasing
under the addition of new information. The properties weak independence and
independence say that the inconsistency value should stay the same when adding
“harmless” information. The property penalty is the counterpart of independence
and demands that adding inconsistent information increases the inconsistency
value. The final property continuity describes our main demand for continuous
inconsistency measurement, i. e., a “slight” change in the knowledge base should
not result in a “vast” change of the inconsistency value.

We also consider the following novel properties. If f is a function f : [0, 1]n →
[0,∞) then ∇f : K → Rn with ∇f(x1, . . . , xn) = (∂f/∂x1, . . . , ∂f/∂xn) is its
gradient with partial derivatives ∂f/∂x1, . . . , ∂f/∂xn. There, K ⊆ [0, 1]n is the
subset of the domain of f where f is differentiable with respect to all directions.

Irrelevance of syntax. If K1 ≡s K2 then I(K1) = I(K2)
MI-separability. If MI(K1 ∪ K2) = MI(K1) ∪MI(K2) and MI(K1) ∩MI(K2) = ∅

then I(K1 ∪ K2) = I(K1) + I(K2)
Differentiability. θI,K is differentiable in (0, 1)|K|

Weak differentiability. θI,K is differentiable almost everywhere in (0, 1)|K|

Sub-linearity. Im ∇θI,K ⊆ [−1, 1]|K|

We define the property irrelevance of syntax in terms of the equivalence relation
≡s as all inconsistent knowledge bases are equivalent with respect to ≡e. For
an inconsistency measure I, imposing irrelevance of syntax to hold in terms of
≡e would yield I(K) = I(K′) for every two inconsistent knowledge bases K,K′.
The property MI-separability—which has been adapted from [3]—states that
determining the value of I(K1 ∪K2) can be split into determining the values of
I(K1) and I(K2) if the minimal inconsistent subsets of K1 ∪K2 are partitioned
by K1 and K2. The property differentiability strengthens the property continuity
and expects I to behave even more smoothly. The property weak differentiability
allows I to be non-differentiable on a null set. Finally, the property sub-linearity
demands that the value I(K) changes at most linearly in the change of K. This



means, for example, that if one changes the probability of a conditional in K by
some value α, then the difference between the corresponding values of I should
not be more than α.

Some relationships between the above properties are as follows.

Proposition 3. Let I be an inconsistency measure and let K,K′ be some knowl-
edge bases.

1. If I satisfies super-additivity then I satisfies monotonicity.
2. If I satisfies independence then I satisfies weak independence.
3. If I satisfies MI-separability then I satisfies independence.
4. If I satisfies differentiability then I satisfies continuity.
5. If I satisfies differentiability then I satisfies weak differentiability.
6. K ⊆ K′ implies MI(K) ⊆ MI(K′).
7. If I satisfies independence then MI(K) = MI(K′) implies I(K) = I(K′).
8. If I satisfies independence and penalty then MI(K) ( MI(K′) implies I(K) <
I(K′).

The proofs of 1.)-3.) and 6.)-8.) can be found in [11]. The proofs of 4.) and 5.)
are obvious.

Previous research on inconsistency measurement focuses on inconsistency
measurement on propositional logic, see e. g. [3]. Adopting those measures for
probabilistic conditional logic is straightforward [11]. For example, consider the
following definition.

Definition 8. The function I# : K → [0,∞) defined via I#(K) = |MI(K)| is
called the MI cardinality measure.

The MI cardinality measure determines the inconsistency value of a knowledge
base K as the number of minimal inconsistent subsets of K.

Example 5. We continue Ex. 4. There it holds that I#(K) = 2.

Although I# is a rather simple inconsistency measure it already complies with
many principles.

Proposition 4. The function I# satisfies consistency, monotonicity, super-
additivity, weak independence, independence, MI-separability, and penalty.

The proof of Proposition 4 can be found in [11]. However, as the following exam-
ple shows, the MI cardinality measure—and other inconsistency measures that
were developed for propositional logic—does not satisfy continuity which is a
major drawback for the probabilistic setting.

Example 6. Consider the knowledge base K = 〈(b | a)[1], (a)[1], (b)[0]〉 which
models strongly inconsistent information. Clearly, it holds that I#(K) = 1.
Consider now the two modifications K′,K′′ of K given via

K′ = 〈(b | a)[0.6], (a)[0.6], (b)[0.3599]〉
K′′ = 〈(b | a)[0.6], (a)[0.6], (b)[0.36]〉 .



It is also clear that I#(K′) = 1 and I#(K′′) = 0. By comparing K′ and K′′ one
can discover only a minor difference of the modeled knowledge. From a practical
point of view, whether b has probability 0.3599 or 0.36 may not matter for the
intended application. Still, a knowledge engineer may not grasp the harmlessness
of the inconsistency in K′ as K′ and K have the same inconsistency value.

In the following, we discuss inconsistency measures that are more apt for the
probabilistic setting.

4 Measuring Inconsistency by Distance Minimization

As can be seen in Ex. 6 the probabilities of conditionals play a crucial role in
creating inconsistencies. In order to respect this role we propose a family of
inconsistency measures that is based on the distance to consistency. Afterwards
we propose a compound measure that uses this measure and behaves well with
the desired properties.

Before defining the measure we need some further notation. Knowledge bases
K1,K2 are qualitatively equivalent, denoted by K1

∼=q K2, if and only if there is
a bijection σK1,K2 : K1 → K2 such that body(c) ≡ body(σ(c)) and head(c) ∧
body(c) ≡ head(σ(c)) ∧ body(σ(c)) for every c ∈ K1. Note that the function
σK1,K2

might not be uniquely determined.

Example 7. Consider the knowledge bases K1 = 〈(a)[0.2], (a)[0.8]〉 and K2 =
〈(a)[0.3], (a)[0.9]〉. It holds that K1

∼=q K2 but there are two bijections σ1
K1,K2

and σ2
K1,K2

given via

σ1
K1,K2

((a)[0.2]) = (a)[0.3] σ1
K1,K2

((a)[0.8]) = (a)[0.9]

σ2
K1,K2

((a)[0.2]) = (a)[0.9] σ1
K1,K2

((a)[0.8]) = (a)[0.3]

that establish the qualitative equivalence of K1 and K2.

If K1
∼=q K2 let SK1,K2

be the set of bijections between K1 and K2 with the
above property. Note that SK1,K2 is finite as both K1 and K2 are finite. Let N+

denote the set of positive integers.

Definition 9. Let K1,K2 be some knowledge bases and let p ∈ N+. Then the
p-norm distance dp(K1,K2) of K1 to K2 is defined via

dp(K1,K2) =

 min
σ∈SK1,K2

{
p

√∑
c∈K1

|prob(c)− prob(σ(c))|p
}

if K1
∼=q K2

∞ otherwise
.

Note that dp is indeed a distance measure, i. e., it is positive definite, symmetric,
and satisfies the triangle inequality. This measure assigns an infinite distance to
two knowledge bases K1,K2 iff K1,K2 are not qualitatively equivalent. Otherwise
it is equivalent to the standard p-norm distance by interpreting probabilities of
conditionals as coordinates and selecting a bijection σ ∈ SK1,K2

that minimizes
this distance.



Example 8. For K1 and K2 as given in Ex. 7 it holds that d1(K1,K2) = 0.2 and
d2(K1,K2) ≈ 0.1414. Note that σ1

K1,K2
is used for determining dp(K1,K2) as

σ2
K1,K2

yields values 1.2 and ≈ 0.8602, respectively.

The following definition has been rephrased from [10, 7].

Definition 10. Let K be a knowledge base and let p ∈ N+. Then define the
dp-measure Ip via

Ip(K) = min{dp(K,K′) | K′ consistent} (1)

for a knowledge base K.

The value Ip(K) is the minimal distance to a knowledge base K′ that is both
qualitatively equivalent to K and consistent. Now we can also justify repre-
senting knowledge bases as multi-sets. Considering the knowledge base K =
〈(a)[0.2], (a)[0.6]〉, it holds that K′ = 〈(a)[0.4], (a)[0.4]〉 minimizes the p-norm
distance to K.

The above definition presupposes that the minimum in Equation (1) exists.
The following proposition shows that this is indeed the case.

Proposition 5. The function Ip is well-defined.

Proof. Let K = 〈(ψ1 |φ1)[d1], . . . , (ψn |φn)[dn]〉 be a knowledge base and let P0

be the uniform probability function on Ω(At), i. e, it holds that P0(ω) = 1/|Ω(At)|

for every ω ∈ Ω(At) (note that Ω(At) is finite as At is finite). Let K′ be the
knowledge base defined via

K′ = 〈(ψ1 |φ1)[P0(ψ1 |φ1)], . . . , (ψn |φn)[P0(ψn |φn)]〉

As P0 is a positive probability function and every c ∈ K is normal it follows that
K′ is well-defined and P0 |=pr K′. As K ∼=q K′ it follows that Ip(K) is finite.
Furthermore, observe that the set

DK = {〈x1, . . . , xn〉 | 〈(ψ1 |φ1)[x1], . . . , (ψn |φn)[xn]〉 is consistent }

is compact (bounded and closed) as probabilistic satisfaction is defined via the
equation P (ψφ) = dP (φ) (for a probabilistic conditional (ψ |φ)[d]). As the func-
tional mapping

〈x1, . . . , xn〉 7→ p
√
|d1 − x1|p + . . .+ |dn − xn|p

is continuous it follows that the set {dp(K,K′) | K′ consistent} is closed. There-
fore, the minimum of this set and the value of Ip is well-defined. ut

In [7] it has been shown that for every p, p′ ∈ N+ with p 6= p′ the two measures
Ip and Ip′ are not equivalent, i. e., there are knowledge bases K1 and K2 such
that Ip(K1) > Ip(K2) but Ip′(K1) < Ip′(K2).



Example 9. We continue Ex. 6. There, the knowledge base K∗ = 〈(b | a)[1],
(a)[0.5], (b)[0.5]〉 satisfies Ip(K) = dp(K,K∗) for every p. In particular, it holds
that Ip(K) = p

√
2 · 0.5p. For example, it holds that I1(K) = 1 and I2(K) ≈ 0.707.

Furthermore, it holds that I1(K′) = 0.0001 and I2(K′) ≈ 0.00006, and clearly
I1(K′′) = I2(K′′) = 0.

We also propose the following compound measure that explicitly considers the
crucial role of minimal inconsistent subsets.

Definition 11. Let K be a knowledge base and let I be an inconsistency mea-
sure. Then define the MI-measure IIMI(K) of K and I via

IIMI(K) =
∑

M∈MI(K)

I(M) .

The MI-measure is defined as the sum of the inconsistency values of all mini-
mal inconsistent subsets of the knowledge base under consideration. In the next
section, we investigate the properties of the measures proposed above.

5 Analysis and Comparison

We first investigate the properties of the dp-measure. We can extend a result
from [10] as follows.

Theorem 1. If p ∈ N+ then Ip satisfies consistency, monotonicity, weak inde-
pendence, independence, irrelevance of syntax, continuity, weak differentiability,
and sub-linearity.

Proof.

Consistency. As K is consistent and dp(K,K) = 0 it follows directly Ip(K) = 0.
Monotonicity. Let K = 〈c1, . . . , cn〉 and let K′ be consistent and dp(K,K′) =
Ip(K). Let furthermore σK,K′ ∈ SK1,K2

be the bijection used to determine
dp(K,K′). It follows that K′′ = K′ \ {σK,K′(cn)} is consistent as well and
K \ {cn} ∼=q K′′. It follows that Ip(K \ {cn}) ≤ dp(K \ {cn},K′′). Setting
ai = |prob(ci)− prob(σK,K′(ci))| for i = 1, . . . , n we get

Ip(K) = dp(K,K′) = p

√
ap1 + . . .+ apn

≥ p

√
ap1 + . . .+ apn−1 = dp(K \ {c},K′′) ≥ Ip(K \ {cn})

Independence. In [11] it has been shown that Ip for p = 1 satisfies indepen-
dence. This result can be extended to arbitrary p in a straightforward fashion.

Irrelevance of syntax. Let K1 and K2 be knowledge bases with K1 ≡s K2. Let
K′1 be consistent such that Ip(K1) = dp(K1,K′1). It follows that K1

∼=q K′1.
As K1 ≡s K2 there is a consistent K′2 such that K′1 ≡s K′2 and K2

∼=q K′2.
It follows that Ip(K2) ≤ dp(K2,K′2) = dp(K1,K′1) = Ip(K1). Similarly we
obtain Ip(K1) ≤ Ip(K2) and therefore the claim.



Continuity. In [11] it has been shown that Ip for p = 1 satisfies continuity.
This result can be extended to arbitrary p in a straightforward fashion.

Weak differentiability. We only give a proof sketch for weak differentiability.
Let ~x ∈ (0, 1)|K| such that there is an open ε-ball Bε with ~x ∈ Bε and
θIp,K(~y) > 0 for every ~y ∈ Bε. Then θIp,K is differentiable on Bε as the p-
norm distance is a differentiable function if the distance does not equal zero.
Furthermore, let now ~x ∈ (0, 1)|K| be such that there is an open ε-ball Bε with
~x ∈ Bε and θIp,K(~y) = 0 for every ~y ∈ Bε. Then θIp,K is differentiable on Bε
as it is a constant function. Note furthermore that the set C ⊆ (0, 1)|K| such
that for every ~y ∈ C it holds that θIp,K(~y) = 0 is the finite union of pair-wise
disjoint closed convex sets F1, . . . , Fm, cf. [11]. Without loss of generality,
let F1, . . . , Fk with k ≤ m be the sets with dimension |K| and Fk+1, . . . , Fm
be the sets with a dimension less than |K|. Let bd S denote the boundary of
a set S. Note that bd Fi has dimension |K|− 1 for i = 1, . . . , k. Then the set
F = bd F1 ∪ . . . bd Fk ∪ Fk+1 ∪ . . . Fm is a null set in (0, 1)|K| and θIp,K is
differentiable on (0, 1)|K| \ F .

Sub-linearity. We only give a proof sketch for sub-linearity. Let K be the knowl-
edge base K = 〈(ψ1 |φ1)[d1], . . . , (ψn |φn)[dn]〉 and let ~x ∈ [0, 1]|K| such that
θI,K is differentiable in ~x = (x1, . . . , xn). Note that(

p
√
g(x)

)′
=

1

p

1

g(x)p−1
g′(x)

for differentiable g and that |(|x|)′| = 1 for x 6= 0. Then consider the function

f(~x) = p
√
|d1 − x1|p + . . .+ |dn − xn|p (2)

and the following bound on the absolute value of its partial derivatives (i =
1, . . . , n)

∣∣∣∣ ∂f∂xi
∣∣∣∣ =

∣∣∣∣∣∣∣
1

p

1(
p
√
|d1 − x1|p + . . .+ |dn − xn|p

)p−1 · p · |di − xi|p−1
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
(

|di − xi|
p
√
|d1 − x1|p + . . .+ |dn − xn|p

)p−1∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

p

√
|di − xi|p

|d1 − x1|p + . . .+ |dn − xn|p

)p−1∣∣∣∣∣∣
≤ 1

The above means that dp(K,K′) is sub-linear in K′ for fixed K. Assume now
that there is an open ε-ball Bε with ~x ∈ Bε and θIp,K(~y) > 0 for every
~y ∈ Bε. Then |∂θIp,K/∂xi| ≤ 1 directly from above (as θIp,K behaves like f in
the worst case). Furthermore, let now ~x ∈ (0, 1)|K| be such that there is an
open ε-ball Bε with ~x ∈ Bε and θIp,K(~y) = 0 for every ~y ∈ Bε. Then clearly
|∂θIp,K/∂xi| = 0 ≤ 1.



Due to Proposition 3 it also follows that Ip satisfies weak independence. ut

Note that Ip does not satisfy differentiability in general as the following example
shows.

Example 10. Consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉. It is easy to
see that e. g. θI1,K(x, y) = |x− y|. In particular, it holds that θI1,K(x, y) = 0 if
and only if x = y. It also also quite clear that the absolute value |x| is continuous
for all x but only differentiable for x 6= 0.

However, for p > 1 we can strengthen Theorem 1 as follows.

Theorem 2. If p ∈ N+ and p > 1 then Ip satisfies differentiability.

We omit the proof of the above theorem due to space restrictions but note that
this follows from the differentiability of the p-norm distance for p > 1. Observe
that Ip does not satisfy penalty which has been mistakenly claimed in [10].
Consider the following counterexample.

Example 11. Consider the knowledge base K = 〈(a)[0.7], (a)[0.3]〉 and the prob-
abilistic conditional (a)[0.5]. Then (a)[0.5] is not free in K′ = K ∪ {(a)[0.5]} as
{(a)[0.3], (a)[0.5]} ∈ MI(K′). However, it holds that I1(K) = I1(K′) = 0.4—as
〈(a)[0.5], (a)[0.5]〉 has minimal distance to K and 〈(a)[0.5], (a)[0.5], (a)[0.5]〉 has
minimal distance to K′—which violates penalty.

In [11] it has been show that Ip for p = 1 also satisfies MI-separability and super-
additivity. This is not true for arbitrary values of p as the following example
shows.

Example 12. Let K = 〈(a)[0.3], (a)[0.7], (b)[0.3], (b)[0.7]〉. It is easy to see that
I2(K) =

√
0.22 + 0.22 + 0.22 + 0.22 = 0.4. It also holds that

I2(〈(a)[0.3], (a)[0.7]〉) = I2(〈(b)[0.3], (b)[0.7]〉) =
√

0.22 + 0.22 ≈ 0.283 .

It follows that

I2(K) < I2(〈(a)[0.3], (a)[0.7]〉) + I2(〈(b)[0.3], (b)[0.7]〉)

violating super-additivity and MI-separability as 〈(a)[0.3], (a)[0.7]〉 and 〈(b)[0.3],
(b)[0.7]〉 partition the set of minimal inconsistent subsets of K.

We now have a look at the properties of the MI-measure.

Theorem 3. Let I be an inconsistency measure.

1. IIMI satisfies monotonicity, super-additivity, weak independence, indepen-
dence, and MI-separability.

2. If I satisfies consistency then IIMI satisfies consistency and penalty.
3. If I satisfies irrelevance of syntax then IIMI satisfies irrelevance of syntax.
4. If I satisfies continuity then IIMI satisfies continuity.



5. If I satisfies differentiability then IIMI satisfies differentiability.
6. If I satisfies weak differentiability then IIMI satisfies weak differentiability.

Proof.

1. We first show that IIMI satisfies super-additivity. If K∩K′ = ∅ then it holds
that MI(K) ∩MI(K′) = ∅ as well. Due to 6.) in Proposition 3 it follows that
MI(K) ∪MI(K′) ⊆ MI(K ∪ K′). It follows

IIMI(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) ≥
∑

M∈MI(K)

I(M) +
∑

M∈MI(K′)

I(M)

= IIMI(K) + IIMI(K′) .

Due to 1.) in Proposition 3 it also follows that IIMI satisfies monotonicity. We
now show that IIMI satisfies MI-separability. Let MI(K∪K′) = MI(K)∪MI(K′)
and MI(K) ∩MI(K′) = ∅. Then clearly

IIMI(K ∪ K′) =
∑

M∈MI(K∪K′)

I(M) =
∑

M∈MI(K)

I(M) +
∑

M∈MI(K′)

I(M)

= IIMI(K) + IIMI(K′) .

Due to 2.) and 3.) in Proposition 3 it also follows that IIMI satisfies indepen-
dence and weak independence.

2. We first show that IIMI satisfies consistency. If K is consistent then MI(K) =
∅ and IIMI(K) = 0. If K is inconsistent then there is a M ∈ MI(K) and
as I satisfies consistency it follows that I(M) > 0. Hence, IIMI(K) > 0 as
well. We now show that IIMI satisfies penalty. Let c ∈ K be a probabilistic
conditional that is not free in K. Due to 6.) in Proposition 3 it follows that
MI(K \ {c}) ⊆ MI(K). As c /∈ K \ {c} and there is at least one M ∈ MI(K)
with c ∈ M it follows that MI(K \ {c}) ( MI(K). As I satisfies consistency
it follows that I(M) > 0 and therefore IIMI(K \ {c}) < IIMI(K).

3. Let it hold that K1 ≡s K2. It follows that for every M ∈ MI(K1) there is
M′ ∈ MI(K2) with M ≡s M′, and vice versa. As I satisfies irrelevance
of syntax it follows that I(M) = I(M′) for every M ∈ MI(K1). Hence, it
holds that IIMI(K1) =

∑
M∈MI(K1)

I(M′) =
∑
M′∈MI(K2)

I(M′) = IIMI(K2).

4. It is easy to see that θIIMI,K
is given via θIIMI,K

=
∑
M∈MI(K) θI,M (given an

adequate ordering of the conditionals in K). It follows directly, that θIIMI,K
is

continuous if θI,M is continuous for every M ∈ MI(K), i. e., if I satisfies
continuity.

5. This holds due to the same argument used in 4.).
6. This holds due to the same argument used in 4.). ut

As one can see the MI-measure behaves very well with respect to our rationality
postulates and even satisfies penalty, provided that the inner measure satisfies
consistency.



Example 13. We continue Ex. 11. There it is II1MI (K) = Ip(K) = 0.4 but

II
1

MI (K′) = I1(〈(a)[0.7], (a)[0.3]〉) + I1(〈(a)[0.7], (a)[0.5]〉)
+ I1(〈(a)[0.3], (a)[0.5]〉) = 0.4 + 0.2 + 0.2 = 0.8 .

Therefore, the addition of the conditional (a)[0.5] is penalized by II1MI .

The following corollary is a direct application of Theorems 1 and 3.

Corollary 1. If p ∈ N+ then IIpMI satisfies consistency, monotonicity, super-
additivity, weak independence, independence, MI-separability, penalty, irrele-
vance of syntax, continuity, and weak differentiability. If p > 1 then IIpMI also
satisfies differentiability.

Note that IIpMI does not satisfy sub-linearity in general. Consider the following
counterexample.

Example 14. Consider the knowledge baseK = 〈(a)[0.7], (a)[0.3], (¬a)[0.7]〉. Note
that for x, y, z ∈ [0, 1] there are three (potential) minimal inconsistent sub-
sets of ΛK(x, y, z): {(a)[x], (a)[y]}, {(a)[x], (¬a)[z]}, {(a)[y], (¬a)[z]}. Then θI1,K
amounts to θI1,K(x, y, z) = |x− y|+ |1− x− z|+ |1− y− z|. For x = y = 0 and
z = 1 we get θI1,K(x, y, z) = 0 and for x = y = z = 0 we get θI1,K(x, y, z) = 2.
It follows that the absolute value of the partial derivation of θI1,K with respect
to the third coordinate has to be larger than 1 for at least one point.

6 Related Work

The work reported in this paper is based on results from [10, 7]. We extended the
investigation of measuring inconsistency from [10] by introducing several novel
rationality postulates, the MI-measure, and the resulting technical discussion.
The dp-measure has been proposed initially in [10] for p = 1 and extended to
arbitrary values for p in [7]. The work [7] also contains an in-depth discussion of
the dp measure in terms of (among others) applicability and computability. The
work [7] also defines probabilistic satisfaction via P (ψ |φ) = d which requires a
more careful treatment of the case P (φ) = 0 and the necessity of introducing
infinitesimal inconsistency values. However, in [7] no evaluation of the dp-measure
in terms of rationality postulates is given.

The work [1] also investigates the problem of reasoning in inconsistent prob-
abilistic knowledge bases. There, reasoning based on the principle of maximum
entropy is extended to be applicable on inconsistent knowledge bases. By doing
so one eliminates the need for restoring consistency. Furthermore, [1] also pro-
poses a continuous inconsistency measure which rests on the notion of candidacy
functions, a “fuzzy” extension of probability functions. A thorough comparison
of the measure of [1] with our approach is outside the scope of this paper but
we refer to [11] for a comparison with the d1-measure. However, note that the
measure of [1] does not satisfy super-additivity.



In [9] another continuous inconsistency measure for probabilistic conditional
logic is proposed that is not based on the p-norm distance but on generalized
divergence which is a specific distance for probability functions. However, no
technical results and no evaluation is given in [9].

7 Summary

In this paper we investigated continuous inconsistency measures for probabilis-
tic conditional logic. We built on previous work and introduced several novel
rationality postulates for inconsistency measurement that addressed the behav-
ior of inconsistency measures with respect to continuity. It turned out that our
measures satisfy most of the desired properties and, in particular, the compound
measure also satisfies penalty.

The d1-measure has already been implemented within the Tweety library
for artificial intelligence2 and future work includes implementation of the other
measures. This will enable us to evaluate the behavior of the measures in more
depth.
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