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Abstract. Semantics for formal models of probabilistic reasoning rely
on probability functions that are defined on the interpretations of the un-
derlying classical logic. When this underlying logic is of relational nature,
i. e. a fragment of first-order logic, then the space needed for representing
these probability functions explicitly is exponential in both the number
of predicates and the number of domain elements. Consequently, proba-
bilistic reasoning becomes a demanding task. Here, we investigate lifted
inference in the context of explicit model representation with respect to
an inference operator that satisfies prototypical indifference, i. e. an in-
ference operator that is indifferent about individuals for which the same
information is represented. As reasoning based on the principle of maxi-
mum entropy satisfies this property we exemplify our ideas by compactly
characterizing the maximum entropy model of a probabilistic knowledge
base in a relational probabilistic conditional logic. Our results show that
lifted inference is no longer exponential in the number of domain elements
when we restrict the language to unary predicates but is still infeasible
for the general case.

1 Introduction

Applying probabilistic reasoning to relational representations of knowledge is a
topic that has been mostly investigated within the fields of statistical relational
learning and probabilistic inductive logic programming [3]. Those areas have put
forth a variety of approaches that deal with combining traditional probabilis-
tic models of knowledge like Bayes nets or Markov nets [10] with first-order
logic, see e. g. Bayesian logic programs (BLPs) [3, Ch. 10] and Markov logic
networks (MLNs) [3, Ch. 12]. Those frameworks employ knowledge-based model
construction techniques [16] to reduce the problem of probabilistic reasoning in a
relational context to probabilistic reasoning in a propositional context by appro-
priately grounding the parts of the knowledge base that are needed for answering
a particular query.

In this paper we continue work on relational probabilistic conditional logic
(RPCL) [6,15] which is a formalism for relational probabilistic knowledge repre-
sentation that is apt for default reasoning as well. In RPCL uncertain knowledge
is represented using probabilistic conditionals, i. e. if-then rules. Consider the
following conditionals which represent both generic and specific rules of how



elephants like their keepers (the example is inspired by [2]):

r1 =def (likes(X,Y) | elephant(X) ∧ keeper(Y))[0.6]

r2 =def (likes(X, fred) | elephant(X) ∧ keeper(fred))[0.4]

r3 =def (likes(clyde, fred) | elephant(clyde) ∧ keeper(fred))[0.7]

In many approaches to statistical relational learning such as BLPs relational
rules are grounded, and the probability is attached to each instance. There, r1
becomes the set {(likes(a, b) | elephant(a) ∧ keeper(b))[0.6] | a, b ∈ U} where
U is some pool of constant symbols. As one can see, using naive grounding
approaches renders the set of probabilistic conditionals from above inconsistent
as there are instances of r1 which contradict instances of r2 and r3. In [6] two
novel semantics for relational probabilistic conditionals are introduced that avoid
this problem. Further, by employing the principle of maximum entropy [9] one
obtains a commonsense reasoning behavior [15].

Probabilistic reasoning in relational domains is, in general, a demanding task
and there has been some efforts to speed up inference by exploiting structural
equivalence in probabilistic knowledge [11]. This so-called lifted inference has
been applied to e. g. parametrized belief networks and performed well in empiri-
cal experiments, cf. [13,8]. In this paper, we investigate lifted inference in RPCL.
Our approach relies on the property of prototypical indifference which is satisfied
by the maximum entropy approaches proposed in [6,15]. Basically, this property
states that if a knowledge base R contains exactly the same information for con-
stants c1 and c2 then reasoning with R is indifferent with respect to c1 and c2.
Consequently, the maximum entropy models of [6,15] carry a lot of redundant
information. We introduce condensed probability functions as a compact way
to represent those probability functions. Condensed probability functions are de-
fined on reference worlds which subsume a whole set of first-order interpretations
that model the same situation modulo exchanging equivalent constants. Using
reference worlds and condensed probability functions we rephrase the maximum
entropy models of [6,15] in a computationally feasible way.

The rest of this paper is organized as follows. In Section 2 we briefly review
the semantical and inferential approaches of [6,15]. In Section 3 we introduce
condensed probability functions as a compact way to represent prototypically
uniform probability functions. Afterwards, we propose our approach to lifted
inference in Section 4 and analyze its advantages in Section 5. In Section 6 we
briefly discuss the issue of extending our approach to non-unary languages. In
Section 7 we review related work and in Section 8 we conclude. All proofs of
technical results can be found in an online appendix1.

2 Relational Probabilistic Conditional Logic and
Inductive Reasoning

In the following, we give a brief overview on the syntax of relational probabilistic
conditional logic (RPCL) and averaging and aggregating semantics, see [6] for a
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discussion. We consider only a fragment of a first-order language, so let Σ be a
first-order signature consisting of a finite set of predicate symbols and without
functions of arity greater than zero. We also assume that Σ contains some fixed
and finite set of constant symbols UΣ , i. e. functions of arity zero. An atom is a
predicate together with some terms (variables or constant symbols), e. g., if a/3
is a predicate of arity three, a, b ∈ UΣ and X is a variable then a(a,X, b) is an
atom. Let LΣ be the corresponding first-order language over the signature Σ that
is generated in the usual way using negation, conjunction, and disjunction, but
without quantifiers. If appropriate we abbreviate conjunctions φ ∧ ψ by φψ and
negation ¬ψ by ψ. We denote constants with a beginning lowercase, variables
with a beginning uppercase letter, and vectors of these with ~a resp. ~X.

The central notion of RPCL is the probabilistic conditional, see also [12].

Definition 1. Let ψ, φ ∈ LΣ be some formulas and d ∈ [0, 1]. Then (ψ |φ)[d] is
called a probabilistic conditional.

A probabilistic conditional (ψ |φ)[d] is meant to represent the uncertain rule “if
φ then ψ with probability d”. If φ is tautological, i. e., if φ ≡ >, we abbreviate
(ψ |φ)[d] by (ψ)[d] and call (ψ)[d] a probabilistic fact. A knowledge base R is a
finite set of probabilistic conditionals.

For a formula φ ∈ LΣ let Const(φ) ⊆ UΣ denote the set of constant symbols
appearing in ψ and let Var(ψ) denote the set of variable symbols appearing in
ψ. The operators Const(·) and Var(·) are extended to probabilistic condition-
als and knowledge bases in the usual way. Let now x be either a formula, a
probabilistic conditional, or a knowledge base. If Var(x) = ∅ then x is called
ground. Furthermore, let gndΣ(x) denote the set of ground instances of x with
respect to the constant symbols in UΣ . For example, if UΣ = {c1, c2, c3} and
a(X) ∈ LΣ then gndΣ(a(X)) = {a(c1), a(c2), a(c3)}. Note that for ground x we
have gndΣ(x) = {x}.

In order to interpret the classical formulas within conditionals we use Her-
brand interpretations, i. e. sets of ground atoms of Σ. Let Ω(Σ) denote the set
of all Herbrand interpretations for the signature Σ. If φ ∈ LΣ is ground then
ω ∈ Ω(Σ) satisfies φ, denoted by ω |=F φ, by the usual definition. Note that
every ω ∈ Ω(Σ) is finite and Ω(Σ) is finite as well as Σ contains only finitely
many predicate and constant symbols. Semantics are given to relational proba-
bilistic conditionals by means of probability functions P : Ω(Σ) → [0, 1], so let
PF(Σ) denote the set of all these probability functions. A probability function
P ∈ PF(Σ) is extended to ground formulas φ ∈ LΣ via

P (φ) =def

∑
ω∈Ω(Σ), ω|=Fφ

P (ω) . (1)

The approach of averaging semantics interprets a probabilistic conditional r =
(ψ |φ)[d] with variables by imposing that the average conditional probability of
the instances of (ψ |φ)[d] matches d. For a probability function P ∈ PF(Σ) we
abbreviate with gndPΣ(r) =def {(φ′ |ψ′)[d] ∈ gndΣ(r) | P (ψ′) > 0} the set of
ground instances of r for which the premise has a non-zero probability in P .



Then P ∅-satisfies r = (ψ |φ)[d] (P |=pr
∅ r) iff |gndPΣ(r)| > 0 and∑

(ψ′ |φ′)[d]∈gndPΣ((ψ |φ)[d])
P (ψ′ |φ′)

|gndPΣ((ψ |φ)[d])|
= d . (2)

The interpretation behind the above equation is that a probability function P
∅-satisfies a probabilistic conditional (ψ |φ)[d] if the average of probabilities
of the individual instances of (ψ |φ)[d] is d. By considering only those ground
instances where the premise has probability greater zero we average only over
the probabilities of ground instances that are relevant for the open conditional.

Example 1. Consider the probabilistic conditional r = (b(X) | a(X))[0.7] and UΣ =
{c1, c2, c3}. Let P be a probability function with P (a(c1)) > 0, P (a(c2)) > 0, and
P (a(c3)) > 0. If e. g. P (b(c1) | a(c1)) = 0.9, P (b(c2) | a(c2)) = P (b(c3) | a(c3)) =
0.6 then P |=pr

∅ r.

The similar approach of aggregating semantics is defined as follows2. A prob-
ability function P �-satisfies a probabilistic conditional r = (ψ |φ)[d] (P |=pr

�
(ψ |φ)[d]) iff

∑
(ψ′ |φ′)[d]∈gndPΣ((ψ |φ)[d]) P (φ′) > 0 and∑

(ψ′ |φ′)[d]∈gndΣ((ψ |φ)[d])
P (ψ′φ′)∑

(ψ′ |φ′)[d]∈gndΣ((ψ |φ)[d])
P (φ′)

= d .

For a knowledge base R it holds that P |=pr
∅ R (P |=pr

� R) iff P |=pr
∅ r (P |=pr

� r)
for all r ∈ R. A knowledge base R is ∅-consistent (�-consistent) if there is
a probability function P with P |=pr

∅ R (P |=pr
� R). Both averaging and ag-

gregating semantics are extensions of the standard semantics for propositional
probabilistic conditional logic. More precisely, if r = (ψ |φ)[d] is a ground prob-
abilistic conditional, i. e. Var(r) = ∅, then P |=pr

∅ r iff P |=pr
� r iff P (φ) > 0 and

P (ψ |φ) = P (ψφ)/P (φ) = d. However, the semantics are quite different in general,
see [14] for a discussion.

In the following, let ◦ ∈ {∅,�} be one of the semantics presented above.
One can define a model-based inductive reasoning operator I◦—which maps a
knowledge base R onto a “suitable” probability function I◦(R) with I◦(R) |=pr

◦
R—as follows, cf. [9]. Let the entropy H(P ) of a probability function P ∈ PF(Σ)
be defined via H(P ) = −

∑
ω∈Ω(Σ) P (ω)ldP (ω).3 The entropy measures the

amount of indeterminateness of a probability function P . By selecting a model
of a knowledge base R that has maximal entropy one gets a probability function
that both satisfies all conditionals in R and adds as less additional information
(in the information-theoretic sense) as possible [9].

Definition 2. Let R be ◦-consistent. Then the maximum entropy model I◦(R)
of R is defined via

I◦(R) = arg max
P |=pr◦ R

H(P ) . (3)

2 For a justification for the aggregating semantics see [6,14].
3 ldx is the binary logarithm of x with 0 ld 0 = 0.



Note that I∅(R) has not yet proven to be well-defined in general, see [14] for a
discussion. But—as this issue is not the topic of the current work—we assume
in the following that (3) is always well-defined.

Inference via I◦ satisfies a series of rationality postulates such as the System
P properties [15] and several properties for relational probabilistic reasoning [14].
One of this properties is prototypical indifference which can be exploited for our
purpose of lifted inference. In order to state this property we need some further
notation. If x is either a formula, a probabilistic conditional, or a knowledge base
and c1, c2 ∈ UΣ then x[c1 ↔ c2] is the same as x except that every occurrence
of c1 is replaced with c2 and vice versa.

Definition 3. Let R be a knowledge base. The constants c1, c2 ∈ UΣ are R-
equivalent (c1 ≡R c2) iff R = R[c1 ↔ c2].

Observe that ≡R is indeed an equivalence relation. Two R-equivalent constants
c1 and c2 are indistinguishable with respect to knowledge base R. That is, R
models exactly the same knowledge on both c1 and c2. Also note that every two
c1, c2 ∈ UΣ with c1, c2 /∈ Const(R) are R-equivalent.

Definition 4. A set S = {c′ | c′ ≡R c} ⊆ UΣ for c ∈ UΣ is called R-equivalence
class and S(R) is the set of all R-equivalence classes.

In [6] it has been shown that I◦ satisfies the following property of prototypical
indifference.

Theorem 1 (Prototypical indifference). If R is ◦-consistent then c1 ≡R c2
implies I◦(R)(ψ) = I◦(R)(ψ[c1 ↔ c2]) for every ground formula ψ.

The above theorem implies that the probability function I◦(R) carries a lot of
redundant information. Consider the following example.

Example 2. Let UΣ =def {tweety, huey, dewey, louie} be a set of constant sym-
bols and let Rbirds =def {(flies(X))[0.8], (flies(tweety))[0.3]} be a knowledge base
stating that 80 % of all birds fly and that Tweety flies only up to a degree of
belief of 0.3. Consider now the probability function P ∗ = I◦(Rbirds) which is
defined on the set of Herbrand interpretations Ω(Σ) = {ω0, . . . , ω15} with e. g.

ω5 =def {flies(tweety),flies(huey)} ω6 =def {flies(tweety),flies(dewey)}
ω7 =def {flies(tweety),flies(louie)} ω8 =def {flies(huey),flies(dewey)}
ω9 =def {flies(huey),flies(louie)} ω10 =def {flies(dewey),flies(louie)}

The R-equivalence classes S(R) = {S1, S2} of R are given by S1 = {tweety}
and S2 = {huey, dewey, louie} and due to Theorem 1 it follows that e. g. P ∗(ψ) =
P ∗(ψ[huey ↔ dewey]) for every ground sentence ψ. In particular, as every ω ∈
Ω(Σ) can be understood as a ground conjunction we obtain P ∗(ω5) = P ∗(ω6) =
P ∗(ω7). Therefore, it suffices to represent P ∗ by only eight Herbrand interpreta-
tions as the other eight contain only redundant information.

For the rest of this paper we elaborate on the idea suggested in the above example.



3 Condensed Probability Functions

In the previous section the notion ofR-equivalence has been introduced as a rela-
tion among constant symbols, cf. Definition 3. We can generalize this relation to
be applicable on Herbrand interpretations as follows. Let S(R) = {S1, . . . , Sn}.

Definition 5. Let ω1, ω2 ∈ Ω(Σ). Then ω1 and ω2 are R-equivalent, denoted
by ω1 ≡R ω2, if there is some G ∈ N and a set T = {(c11, c12), . . . , (cG1 , c

G
2 )}

⊆ S1 × S1 ∪ . . . ∪ Sn × Sn such that ω1 = ω2[c11 ↔ c12] . . . [cG1 ↔ cG2 ].

Basically, ω1 and ω2 are R-equivalent if we can permute elements within each R-
equivalence class such that ω2 becomes ω1, e. g. in Example 2 we have ω5 ≡Rbirds

ω6 ≡Rbirds
ω7. It is also easy to see that ≡R is an equivalence relation and,

therefore, both the R-equivalence class [ω] =def {ω′ ∈ Ω(Σ) | ω ≡R ω′} and the
quotient set Ω(Σ)/≡R =def {[ω] | ω ∈ Ω(Σ)} are well-defined.

Proposition 1. If ω1 ≡R ω2 then I◦(ω1) = I◦(ω2).

The above proposition states that the probability function I◦ carries a lot of
redundant information stemming from the R-equivalence of certain ω ∈ Ω(Σ).
In the following, we exploit this observation by using Ω(Σ)/≡R instead of Ω(Σ)
for redefining I◦. To do so, we go on by developing a method that enumerates
the elements of Ω(Σ)/≡R in an effective way.

For the rest of this section we restrain our attention to signatures containing
only unary predicates. Therefore, let Pred =def {p1, . . . , pP } be the set of unary
predicates of Σ. We discuss the issue of generalizing our approach in Section 6.

Definition 6. A truth configuration t for Pred is an expression t =def ṗ1 . . . ṗP
with ṗi ∈ {pi, pi} for i = 1, . . . , P . Let Θ denote the set of all truth configurations.

A truth configuration is meant to characterize the state of a constant c in some
interpretation as it enumerates which predicates apply for c and which do not.
For a constant c and a truth configuration t = ṗ1 . . . ṗP define t∧(c) =def ṗ1(c)∧
. . . ∧ ṗP (c). Furthermore, for a ground sentence φ and constants c1, . . . , cn let

Θ(φ, c1) =def {t ∈ Θ | t∧(c1) ∧ φ 6|=F⊥}
Θ(φ, c1, . . . , cn) =def Θ(φ, c1)× . . .×Θ(φ, cn) .

The set Θ(φ, c1) contains all those truth configurations t for a constant c1 that
are compatible with some sentence φ. The set Θ(φ, c1, . . . , cn) extends this notion
to tuples of constants.

Example 3. Let Pred =def {p1/1, p2/1} and let ψ =def p1(c) ∧ (p2(c) ∨ p2(d)).
Then it holds that Θ(φ, c) = {p1p2, p1p2}.

Definition 7. An instance assignment I is a function I : S(R) → N0 with
I(Si) ≤ |Si| for all i = 1, . . . , n. Let I denote the set of all instance assignments.

An instance assignment I assigns to each R-equivalence class the number of
constants that are part of the current instance, see below.



Definition 8. A reference world ω̂ is a function ω̂ : Θ → I that satisfies∑
t∈Θ

ω̂(t)(Si) = |Si| (for all i = 1, . . . , n) . (4)

Let Ω̂ be the set of all reference worlds.

Basically, a reference world is a function that maps a truth configuration to the
number of constants of each R-equivalence class that satisfy this truth configu-
ration. As we show later, a reference world is a compact representation of [ω] for
some ω ∈ Ω(Σ).

Example 4. We continue Example 2. The set of truth configurations Θ = {t1, t2}
with respect to Σ and Rbirds is given via t1 = flies and t2 = flies. Consider
I, I ′ ∈ I with I(S1) = 0, I(S2) = 2, I ′(S1) = 1, I ′(S2) = 1 and ω̂ ∈ Ω̂ with
ω̂(t1) = I and ω̂(t2) = I ′. The intuitive description of ω̂ is that ω̂ represents a
state where the one element of S1 does not fly and two elements of S2 do fly.

In the following we show that Ω̂ is indeed a characterization of the quotient set
Ω(Σ)/≡R . For that, consider the following definition.

Definition 9. The equivalence mapping κ is the function κ : Ω(Σ)→ Ω̂ defined
as κ(ω) =def ω̂ with ω̂(ṗ1 . . . ṗP )(Si) =def |{c ∈ Si | ω |=F ṗ1(c) ∧ . . . ∧ ṗP (c)}|
for every ṗ1 . . . ṗP ∈ Θ and i = 1, . . . , n.

The function κ maps a ω ∈ Ω(Σ) onto a reference world ω̂ ∈ Ω̂ with the intended
meaning that κ(ω) is the (unique) reference world that represents ω. It holds that
κ(ω) = ω̂ whenever ω̂ assigns the same number of elements of an R-equivalence
class Si to some truth configuration t as ω contains specific instances of this
truth configuration for elements in Si. Also note that κ is surjective.

Let the span number ρω̂ of a reference world ω̂ ∈ Ω̂ be defined as4

ρω̂ =def

n∏
i=1

(
|Si|

ω̂(t1)(Si), . . . , ω̂(tT )(Si)

)
withΘ = {t1, . . . , tT }. Note that ρω̂ is well-defined as ω̂(t1)(Si)+. . .+ω̂(tT )(Si) =
|Si| for every ω̂. The span number of ω̂ is exactly the number of Herbrand
interpretations that are subsumed by ω̂.

Proposition 2. It holds that |κ−1(ω̂)| = ρω̂ for every ω̂ ∈ Ω̂.

The following proposition states that Ω̂ indeed characterizes Ω(Σ)/≡R .

Proposition 3. The function ι : Ω(Σ)/≡R → Ω̂ with ι([ω]) = κ(ω) is a bijec-
tion.

After having established the equivalence of Ω(Σ)/≡R and Ω̂ we now turn to the
issue of representing I◦ on the basis of Ω̂.

4
(

n
k1,...,kr

)
=def

n!
k1!···kr !

is the multinomial coefficient indexed by n and k1, . . . , kr with

n = k1 + . . .+ kr and
(

n
k1,...,kr

)
=def 0 if any ki < 0 for i = 1, . . . , n.



Definition 10. A probability function P : Ω(Σ)→ [0, 1] is called prototypically
uniform wrt. R iff for ω1, ω2 ∈ Ω(Σ) with ω1 ≡R ω2 it follows that P (ω1) =
P (ω2).

Note that I◦(R) is prototypically uniform wrt. R. Prototypically uniform prob-
ability functions can be be concisely represented as follows.

Definition 11. Let P be a probability function P : Ω(Σ)→ [0, 1] that is proto-
typically uniform wrt. R. Then the condensed probability function P̂ for P is the
probability function P̂ : Ω̂ → [0, 1] defined via P̂ (ω̂) =def P (ω) for some ω with

κ(ω) = ω̂ and for all ω̂ ∈ Ω̂. Let P̂ denote the set of all condensed probability
functions.

As κ(ω1) = κ(ω2) implies P (ω1) = P (ω2) for prototypically uniform P the
function P̂ is well-defined. It also holds that the mapping between prototypically
uniform probability functions and condensed probability functions is bijective.

Proposition 4. Let P1, P2 be prototypically uniform probability functions wrt.
R. It holds that P1 = P2 iff P̂1 = P̂2.

For a prototypically uniform probability function P , its condensed probability
function P̂ , and a ground sentence ψ it follows directly by definition that

P̂ (ψ) =def P (ψ) =
∑

ω∈Ω(Σ), ω|=Fψ

P̂ (κ(ω)) . (5)

As one can see, one can determine the probability of any ground sentence using
P̂ instead of P . However, the sum in the above equation still considers every
ω ∈ Ω(Σ). In the next section we consider the question of how to determine the
probability of ψ without considering Ω(Σ) but only Ω̂ instead.

4 Lifted Inference

Looking closer at Equation (5) one can see that the probability of a ω̂ ∈ Ω̂ may
occur more than once within the sum as for different ω, ω′ ∈ Ω(Σ) with ω |=F ψ
and ω′ |=F ψ it may hold that κ(ω) = κ(ω′). Therefore, (5) can be rewritten to

P̂ (ψ) =
∑
ω̂∈Ω̂

Λ(ω̂, ψ)P̂ (ω̂) . (6)

with Λ(ω̂, ψ) = |{ω ∈ Ω(Σ) | κ(ω) = ω̂ ∧ ω |=F ψ}| ∈ N0, i. e., Λ(ω̂, ψ) is the
number of ω ∈ Ω(Σ) in (5) that satisfy ψ and are mapped by κ to ω̂. Note, how-
ever, that determining Λ(ω̂, ψ) by its definition above still requires considering
all ω ∈ Ω(Σ). By exploiting combinatorial patterns within the structure of Ω(Σ)
we can avoid considering Ω(Σ) as a whole and characterize Λ(ω̂, ψ) as follows.

Proposition 5. Let ψ be a conjunction of ground literals, let Const(ψ) = {c1,
. . . , cm}, and let Θ = {t1, . . . , tT }. Then

Λ(ω̂, ψ) =
∑

(t′1,...,t
′
m)∈Θ(ψ,c1,...,cm)

n∏
i=1

(
|Si \ Const(φ)|

αt1i (t′1, . . . , t
′
m), . . . , αtTi (t′1, . . . , t

′
m)

)
with αti(t

′
1, . . . , t

′
m) =def ω̂(t)(Si)− |{k | t′k = t ∧ ck ∈ Si}|.



Note that there is no more reference to Ω(Σ) in the above characterization of
Λ(ω̂, ψ).

In order to determine P̂ (ψ) for an arbitrary ground sentence ψ remember
that ψ can be rewritten to be in disjunctive normal form. Assume ψ to be in
disjunctive normal form and let c(ψ) denote the set of conjuncts of ψ. Then we
can write

P̂ (ψ) =
∑

ψ′∈c(ψ)

P̂ (ψ′)−
∑

(ψ′,ψ′′)∈c(ψ)2, ψ′ 6=ψ′′
P̂ (ψ′ ∧ ψ′′) .

As for P̂ , for every ψ′, ψ′′ ∈ c(ψ) the terms P̂ (ψ′) and P̂ (ψ′∧ψ′′) are well-defined
by Equation (6) and Proposition 5.

So far, we have shown how that P̂ ∗ compactly represents P ∗ = I◦(R) and
that P̂ ∗ can be used for reasoning just as P ∗. Nonetheless, in order to determine
P̂ ∗ one needs to compute P ∗ first using Equation (3). In the following, we show
that we can modify (3) in a straightforward fashion to determine P̂ ∗ directly.
Note, although the approach of condensed probability distributions is applicable
to any inductive inference mechanism that obeys prototypical indifference we
restrain our attention to I◦.

For a condensed probability function P̂ we define the entropy H(P̂ ) of P̂ to
be the entropy of P , i. e. H(P̂ ) =def H(P ), which is equivalent to

H(P̂ ) = −
∑
ω̂∈Ω̂

ρω̂P̂ (ω̂)ld P̂ (ω̂)

and thus can be determined by just considering Ω̂.

Proposition 6. Let S be a set of prototypical uniform probability functions wrt.
R and

Ŝ =def {P̂ | P ∈ S} .

If the probability function P1 = arg maxP∈S H(P ) is uniquely determined so is
Q̂ = arg maxP̂∈Ŝ H(P̂ ) and it holds that Q̂ = P̂1.

Proposition 7. Let S =def {P | P |=pr
◦ R} and let S ′ ⊆ S be its subset of

prototypical uniform probability functions with respect to R. If arg maxP∈S H(P )
is uniquely determined then it holds that

arg max
P∈S′

H(P ) = arg max
P∈S

H(P ) .

The implications of the above two propositions are as follows. Instead of de-
termining first P ∗ = I◦(R) via (3) and then determining P̂ ∗ we can directly
determine P̂ ∗ by rewriting (3) to

Î◦(R) = arg max
P̂∈P̂ and P̂ |=pr∅ R

H(P ) (7)

Note that P̂ |=pr
◦ R can be checked directly for P̂ by employing Equation (6)

and Proposition 5.



5 Analysis

We now analyze the computational benefits of using P̂ ∗ instead of P ∗ = I◦(R).
In particular, we are interested in the question how the cardinality of Ω̂ com-
pares to the cardinality of Ω(Σ) with respect to the number of constants |UΣ |
considered. It is easy to see that |Ω(Σ)| = 2|UΣ ||Pred| (remember that Pred is
the set of (unary) predicates in Σ) and therefore the space needed to represent
P ∗ is exponential in both |UΣ | and |Pred |. We do not expect to avoid an expo-
nential blow-up in the number of predicates in Pred but we show that |Ω̂| is not
exponential in |UΣ | any more. Remember that each ω̂ ∈ Ω̂ satisfies∑

t∈Θ
ω̂(t)(Si) = |Si| (for all i = 1, . . . , n) .

This means, that for each ω̂ the constants of each Si are distributed among the
truth configurations in Θ. Note that |Θ| = 2|Pred|. A distribution of constants
of Si among Θ can be combined with any distribution of constants of Sj for
every i 6= j, yielding a single reference world ω̂. In order to count the number
of reference worlds we need to multiply the number of combinations one can
distribute the constants of Si onto the truth configurations in Θ with the number
of combinations for every other Sj (i 6= j). Then we get

|Ω̂| =
n∏
i=1

|{(l1, . . . , l2|Pred|) ∈ N2|Pred|

0 | l1 + . . .+ l2|Pred| = |Si|}| . (8)

Each factor in the product of the above equation represents the number of com-
binations the constants of a single R-equivalence class can be distributed among
the possible truth configurations in Θ. The condition l1 + . . . + l2|Pred| = |Si|
ensures that each constant is exactly assigned one truth configuration in every
combination. Still, Equation (8) gives no direct hint on the space needed to rep-
resent Ω̂ in terms of |UΣ | and |Pred |. But it is possible to rewrite (8) as follows.

Definition 12. The cardinality generator gc is the function gc : N2
0 → N0 de-

fined via

gc(n1, n2) =def


∑n2

i=0 gc(n1 − 1, n2 − i) if n2 > 0 and n1 > 0
1 if n2 = 0
0 otherwise

.

The intuition behind using gc to enumerate the number of reference worlds is as
follows. The first argument of gc is meant to represent the number of truth con-
figurations and the second the number of constants in an R-equivalence class. By
defining gc(n1, n2) = gc(n1−1, 0)+ . . .+gc(n1−1, n2) we say that the number of
combinations to distribute n2 constants on n1 truth configuration is equal to the
number of combinations to distribute zero constants on n1 − 1 truth configura-
tions plus the number of combinations to distribute one constant on n1−1 truth
configurations, and so on. The first case describes a setting where we assign all



n2 constants to the n1th truth configuration and as there are no remaining con-
stants left this amounts to the number of gc(n1 − 1, 0) remaining combinations.
The second case describes a setting where we assign n2−1 constants to the n1th
truth configuration and the remaining single constant to the remaining n1 − 1
truth configurations. The final case describes the setting of assigning no constant
the n1th truth configuration and the remaining n2 constants to the remaining
n1 − 1 truth configurations. Consider gc(1, 3) as the number of combinations to
distribute three constants on one truth configuration. Applying the first case of
the definition of gc yields gc(1, 3) = gc(0, 0) + gc(0, 1) + gc(0, 2) + gc(0, 3) and
therefore the number of combinations to distribute three constants on one truth
configuration is to assign all three constants to the one truth configuration, or
to assign zero, one, or two to it. Obviously, the latter cases are not valid and
the only valid assignment is that three constants are assigned to the one truth
configuration. Due to the third case in the definition of gc the terms gc(0, 1),
gc(0, 2), and gc(0, 3) are set to zero.

Proposition 8. It holds that

|Ω̂| =
n∏
i=1

gc(2
|Pred|, |Si|) . (9)

Still, Equation (9) does not allow to get an idea of the size of |Ω̂|. However, the
function gc can be bounded from above as follows.

Lemma 1. It holds that gc(n1, n2) ≤ (n2 + 1)n1 for every n1, n2 ∈ N0.

Theorem 2. It holds that |Ω̂| ≤ (|Const(R)|+ 1)(|UΣ |+ 1)2
|Pred|

.

The obvious observation to be made when comparing |Ω(Σ)| to the upper bound
of |Ω̂| is that the latter is not exponential in the number of constants |UΣ |.
But note that the complexity increases with respect to |Pred |. While |Ω(Σ)| is
exponential in |Pred |, the above bound for |Ω̂| is exponential in 2|Pred|. However,
we believe that this is due to a very coarse estimation in Lemma 1. Experiments
suggest that gc can be much better estimated.

Conjecture 1. It holds that gc(n1, n2) ≤ (n2 + 1)2ldn1 (with ld 0 = 0).

The above conjecture would result in an upper bound of (|Const(R)|+ 1)(|UΣ |+
1)2|Pred| which is far more beneficial than the result of Theorem 2. However, until
now no formal proof for the above conjecture has been found.

Table 1 shows some exemplary cardinalities of Ω(Σ) and Ω̂ for different
values of |UΣ | and |Pred |. The knowledge base R used to determine the R-
equivalences classes in Ω̂ mentions a single constant yielding S(R) = {{c}, UΣ \
{c}} for Const(R) = {c}. Table 1 shows that especially for this kind of scenarios
employing Ω̂ rather than Ω(Σ,D) is computationally beneficial. The numbers
in Table 1 also justify the belief in Conjecture 1.

6 Generalizing Lifted Inference

In contrast to the case without non-unary predicates there is no simple and com-
pact representation of Ω(Σ)/≡R if Σ contains at least one non-unary predicate



|Pred | |UΣ | |Ω(Σ)| |Ω̂| |Pred | |UΣ | |Ω(Σ)| |Ω̂|
1 2 4 4 2 2 16 16
1 8 256 16 2 4 256 64
1 32 4294967296 64 2 8 65536 256

Table 1. Comparison of |Ω(Σ)| and |Ω̂| with respect to a knowledge base R with
|Const(R)| = 1

and, in particular, no compact way to enumerate the elements of Ω(Σ)/≡R .
Consider a predicate p/2 and R-equivalence classes S1 and S2. Then there are
six different instantiations of p that have to be considered as essentially differ-
ent with respect to R-equivalence. For constants c1 ∈ S1 and c2 ∈ S2 we have
the variants p(c1, c2) and p(c2, c1); for c1 ∈ Si we have p(c1, c1) for i = 1, 2;
for c1, c2 ∈ Si with c1 6= c2 we have p(c1, c2) for i = 1, 2. An extended notion
of truth configuration must adhere to this combinatorial observation and also
take the relations into account that arise by transitivity. In the unary case, we
used truth configurations to be able to enumerate the elements of Ω(Σ)/≡R in
an effective way without considering Ω(Σ) itself. In the non-unary case there
seems to be no simple way to extend the concept of truth configuration. This
observation has also been made by Grove et. al. in [5] when they attempted to
generalize the notion of entropy of an interpretation to non-unary languages, see
[5] on page 67 for a discussion.

However, the approach of lifted inference developed in this chapter can be
applied for non-unary languages by determining first Ω(Σ) and afterwards (by
pair-wise comparisons) merge R-equivalent interpretations to reference worlds
(yielding the quotient set Ω(Σ)/≡R). Note that we lose the computational ad-
vantage of avoiding to consider the full set Ω(Σ) in this approach. It is also
questionable whether using Ω(Σ)/≡R instead of Ω(Σ) for inference is beneficial.
Table 2 shows the cardinalities of both Ω(Σ) and Ω(Σ)/≡R , depending on the
size of UΣ and with respect to a signature containing a single binary predicate
and a knowledge base R with Const(R) = ∅. As R mentions no constants there
is only one single R-equivalence class which makes this scenario the simplest
imaginable. Nonetheless, the cardinality of Ω(Σ)/≡R—although being signifi-
cantly smaller than the cardinality of Ω(Σ)—still seems to grow exponentially
in the number of constants considered. Until now, no formal proofs for lower or
upper bounds on the growing behavior of |Ω(Σ)/≡R | have been found. However,
Table 2 gives reason to believe that there is no polynomial upper bound for
|Ω(Σ)/≡R | in |UΣ |. As a consequence, lifted inference in RPCL can be doubted
to be beneficial at all for non-unary languages.

7 Related Work

The notion of lifted inference used in this paper has been adopted from the works
[11,13,8] which also use this notion to describe effective reasoning procedures for



|UΣ | |Ω(Σ)| |Ω(Σ)/≡R | |UΣ | |Ω(Σ)| |Ω(Σ)/≡R |
1 2 2 3 512 244
2 16 10 4 65536 12235

Table 2. Comparison of |Ω(Σ)| and |Ω(Σ)/≡R | with respect to a signature that con-
tains a single binary predicate and a knowledge base R with Const(R) = ∅

relational probabilistic knowledge, see also [1,4] for some recent work.. Although
the knowledge representation formalisms of those approaches differ to our ap-
proach, the motivation and ideas of those approaches are similar to ours. The
work [13]—which extends work begun in [11]—develops an algorithm for lifted
probabilistic inference in parametrized belief networks. The basic idea of [11,13]
is the observation that in order to determine the probability of some query the
information used to infer the probability can be partitioned with respect to the
information we have for specific individuals. This approach uses the technique
of variable elimination to simplify computation of probabilities with respect to
equivalencies of undistinguishable constants. We do not give a formal description
of the algorithms developed in [11,13] but rather give an idea of the approach
by means of an example. Consider the clause c =def (p(X) | q(X,Y), r(Y)) and
a function cpdc (conditional probability distribution) which maps each possible
truth configuration to a probability, e. g. cpdc(true, true, false) = 0.7 states that
the probability of observing p(c1) given that q(c1, c2) is true and r(c2) is false
is 0.7 (for all constant symbols c1, c2). Note that c can be instantiated using
different assignments for Y but with the same X. In this case, one can employ a
combining rule such as noisy-or [10] to aggregate probabilities, i. e., the noisy-or
of two probabilities p1 and p2 is defined as 1−(1−p1)(1−p2). Let now En,m =def

{q(c, d1), . . . , q(c, dn+m)} ∪ {r(d1), . . . , r(dn),¬r(dn+1), . . . ,¬r(dn+m)} be some
observed evidence with n,m ∈ N and consider determining the probability
P (p(c) |E). In e. g. ordinary BLPs [3, Ch. 10] one has to instantiate a ground
Bayesian network for the node p(c) with parents q(d1), . . . , q(dn+m), r(c, d1), . . . ,
r(c, dn+m), and combine the probabilities using noisy-or. This amounts to

P (p(c) |E) = 1− (1− P (p(c) | q(c, d1), r(d1))) · . . . ·
(1− P (p(c) | q(c, dn+m), r(dn+m))) .

Note that we have the same information for the constant symbols d1, . . . , dn and
dn+1, . . . , dm, respectively. It follows that

P (p(c) | q(c, d1), r(d1)) = . . . = P (p(c) | q(c, dn), r(dn))

= cpdc(true, true, true)

P (p(c) | q(c, dn+1), r(dn+1)) = . . . = P (p(c) | q(c, dn+m), r(dn+m))

= cpdc(true, true, false)

and therefore

P (p(c) |E) = 1− (1− cpdc(true, true, true))
n(1− cpdc(true, true, false))

m .



As one can see, we can avoid grounding the full BLP by just considering pro-
totypical groundings for c. In [11,13] this idea is elaborated and a series of al-
gorithms is developed that apply this approach to general parametrized belief
networks (or BLPs). Obviously, the ideas of [11,13] are very similar to ours and
differences lie mainly on the framework used for knowledge representation and
the technical implementation. The work [11] uses parametrized belief networks
and inference bases on Bayesian networks and [13] uses a framework similar to
MLNs [3, Ch. 12]. However, note that both formalisms are first-order extensions
of probabilistic networks but we use RPCL and inference based on the princi-
ple of maximum entropy. Furthermore, we developed an explicit computational
model for representing prototypical uniform probability functions and showed
that the use of this model is beneficial in terms of computational complexity.
In [11] no hints on the computational advantages of applying first-order variable
elimination are given but [13] gives an experimental evaluation that resembles
our observations from Conjecture 1.

8 Summary and Conclusion

We developed a computational account for effective probabilistic inference with
relational probabilistic conditionals. In particular, we introduced the notions of
reference worlds and condensed probability functions which allow for a compact
representation of probability functions that arise from the application of inference
operators satisfying prototypical indifference. Condensed probability functions
are defined on the set of reference worlds and exhibit the same reasoning behavior
as the original probability functions, given that those are indifferent with respect
to constants from the sameR-equivalence class. Furthermore, we showed that the
inference operators from [6] can be modified in order to compute the condensed
maximum entropy function in a single step without considering the Herbrand
interpretations at all. We analyzed the computational benefits of our approach
and concluded that we avoid the exponential blow-up in the number of constants
that have to be considered. Our approach is—using the given formalization—only
applicable for unary languages and we briefly discussed the issues that arise when
considering non-unary languages.

The approach developed in this paper gives some first directions for efficient
implementation of reasoning based on the principle of maximum entropy. How-
ever, the work reported is only a first step towards this goal and suffers from
two major discrepancies. Firstly, we restricted lifted inference to the case of
unary languages which, in practice, is a demand that cannot be easily fulfilled.
One of the main advantages of first-order extensions of probabilistic reasoning
is the capability to reason over relations. However, note that even by restrict-
ing attention to unary languages we do not get the equivalence to propositional
probabilistic models due to our semantical notions. For example, the knowledge
base R =def {(flies(X))[0.9], (flies(tweety))[0.3]} cannot be represented using
a propositional probabilistic model that exhibits the same inference behavior.
Secondly, in order to determine the (condensed) maximum entropy model of a
knowledge base R we have to solve a complex optimization problem. However,



there are approaches to avoid solving problems like (3) for the propositional case.
For example, in [7] an approximate algorithm for computing the maximum en-
tropy model for propositional probabilistic conditional logic is developed. The
algorithm of [7] benefits from several characteristic properties of the maximum
entropy model in the propositional case and it is to investigate if these prop-
erties (or similar ones) can be found for our semantical approaches which may
lead to the development of algorithms for approximate inference in relational
probabilistic conditional logic.
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