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Abstract. The handling of uncertain information is of crucial impor-
tance for the success of expert systems. This paper gives an overview
on logic-based approaches to probabilistic reasoning and goes into more
details about recent developments for relational, respectively first-order,
probabilistic methods like Markov logic networks, and Bayesian logic
programs. In particular, we will feature the maximum entropy approach
as a powerful and elegant method that combines convenience with re-
spect to knowledge representation with excellent inference properties.
We briefly describe some systems for probabilistic reasoning, and go into
more details on the KReator system as a versatile toolbox for proba-
bilistic relational learning, modelling, and inference. Moreover, we will
illustrate applications of probabilistic logics in various scenarios.

1 Introduction

Real world applications of expert systems (and other computational systems,
too) usually have to struggle with the problem that both background knowledge
and information on the situation at hand are neither complete nor certain. For
instance, in a medical domain, the physician may know that most patients suf-
fering from appendicitis also complain about abdominal pain, but in some cases,
the patients show other atypical symptoms; however, these relationships can not
be further specified in a satisfactory way. In the special case of the patient she is
just facing, she is not even sure whether he feels abdominal pain as he is a boy
of three years of age.

Probabilistic logics offer a rich framework to represent and process uncertain
information, and are linked to statistics and machine learning in a natural way.
Knowledge can be extracted from data, expressed in a suitable probabilistic for-
malism like Bayesian networks [26], and used for uncertain reasoning by applying
inference mechanisms. Completeness of knowledge can be achieved by presup-
posing additional assumptions like conditional independence of variables, like in
most probabilistic networks [26], or by making use of the information-theoretical
principles of optimum entropy [16]. In both ways, a full probability distribution
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is generated from partial knowledge, on the base of which probabilities for arbi-
trary queries can be computed.

Most of the standard probabilistic approaches applied today make use of
some type of probabilistic networks and propositional logic. While network tech-
niques are of major importance to allow for local computations, the restriction to
propositional logic makes probabilistic knowledge representation inadequate for
domains in which relationships between objects are in the focus of investigation.
So, especially in the last decade, a multitude of probabilistic approaches based
on first-order logic have been brought forth. Markov logic networks [5], Bayesian
logic programs [19], and similar relational probabilistic approaches [11] aim at
generalising established propositional probabilistic methods to first-order knowl-
edge representation. This turns out to be not an easy task, as the complexity of
knowledge representation raises substantially, so that new inference techniques
have to be devised. Moreover, the probabilistic semantics of open formulas is
not at all clear. For example, the following conditional probabilistic formulas
express commonsense knowledge about the relationships between elephants and
their keepers which are usually good (elephants like their keepers), but also take
exceptions into regard – elephants tend not to like keeper fred, except for the
good natured elephant clyde:

(likes(X,Y ) | elephant(X), keeper(Y )) [0.8]
(likes(X, fred) | elephant(X)) [0.3]
likes(clyde, fred)[0.9]

A schematic grounding of all rules of this knowledge base would cause conflicts
with respect to elephant clyde and keeper fred. Moreover, both statistical (or
population-based, respectively) information and subjective views are addressed,
as the first two formulas involve all elephants (and keepers), while the third one
only considers situations involving clyde and fred.

With many interesting new applications like social networks, hard compu-
tational problems, and challenging theoretical questions, the area of relational
probabilistic knowledge representation has witnessed very active research work
recently, providing a lot of new approaches and techniques. However, compar-
isons between approaches and evaluations with respect to computational and
representational issues are not easily done, since each approach uses its own log-
ical framework. Hence, there is an increasing demand for tools that support the
investigation of different approaches in example or real world scenarios.

This paper aims to give an overview on the area of probabilistic knowledge
representation, starting with standard propositional approaches and introducing
into relational probabilistic knowledge representation by sketching some major
approaches. As a special focus of the paper, we feature approaches that are based
on the principle of maximum entropy as an elegant and powerful methodology
that provides an excellent framework for commonsense and uncertain reasoning.
Suitable systems are described briefly, and their use for applications in medical
and biochemical domains is illustrated.



This paper is organized as follows. Sec. 2 provides details on Markov and
Bayesian networks, and on the maximum entropy approach, both in proposi-
tional and first-order frameworks. In Sec. 3, the systems SPIRIT, MEcore,
Alchemy, ProbCog, and KReator are presented, and applications of these sys-
tems are illustrated in Sec. 4. Finally, Sec. 5 concludes this paper.

2 Approaches

According to these approaches, Popular propositional approaches to probabilis-
tic logic use probabilistic networks, heavily relying on the notion of conditional
independence. According to these approaches, Probabilistic conditional logic em-
ploys the principle of maximum entropy and is also based on propositional logic,
while Bayesian logic programs, Markov logic networks, and relational maximum
entropy approaches support a relational setting.

2.1 Propositional Approaches

Probabilistic Networks Conditional probabilities are often used in knowledge
representation to describe causal or diagnostic dependencies [25]. A well-known
framework which relies heavily on the notions of conditional probability and
conditional independence are Bayesian networks. A Bayesian network BN for a
set of propositions A is a tuple BN = (A,E, P ) such that (A,E) is a directed
acyclic graph and P is a probability function that obeys

{a}⊥⊥Pnd(a) | pa(a) (for every a ∈ A), (1)

expressing that each vertex a is conditionally independent of its non-descendants
nd(a), given the values of its parents pa(a). Condition (1) is also called the
local Markov property . Due to this property, the probability function P can be
decomposed into conditional probability functions for each node a ∈ A.

Example 1. We adapt an example on medical diagnosis, cf. [25]. Consider the
propositions A = {a, b, c, d, e} with the informal interpretations

a cancer b increased serum calcium level

c brain tumor d coma

e headache

and a Bayesian network BNmed = (A,E, P ) with (A,E) given as depicted
in Fig. 1. It follows that P has to adhere to the conditional independence
{b}⊥⊥P{c} | {a} (among others). Moreover, the probability of a possible world
such as abcde can be written as

P (abcde) = P (e | c) · P (d | bc) · P (c | a) · P (b | a) · P (a).



Therefore, P can be completely described by e. g. the following assignments1:

P (a) = 0.20

P (b | a) = 0.80 P (b | a) = 0.20

P (c | a) = 0.20 P (c | a) = 0.05

P (e | c) = 0.80 P (e | c) = 0.60

P (d | b ∧ c) = 0.80 P (d | b ∧ c) = 0.90

P (d | b ∧ c) = 0.70 P (d | b ∧ c) = 0.05

Note that the probabilities of negated variables derive from the above equations
via e. g. P (e | c) = 1−P (e | c). By only defining the above conditional probabilities
the function P can be compactly stored.

a

b c

d e

1

Fig. 1. The graph (A,E) from Ex. 1

Probabilistic Conditional Logic and Maximum Entropy Conditional
logic [22] is a knowledge representation formalism that concentrates on the role
of conditionals or if-then-rules. A conditional of the form (ψ |φ) connects some
detached pieces of information φ, ψ and represents a rule “If φ then (usually,
probably) ψ”. A probabilistic conditional is an expression of the form (ψ |φ)[d]
with propositional formulas φ and ψ and d ∈ [0, 1].

Example 2. The well-known penguin example that illustrates the problem of
exceptions in subclasses can be represented as a knowledge base R with R =
{r1, r2, r3} with

r1 = (bird | peng)[1.0] r2 = (fly | bird)[0.9] r3 = (fly | peng)[0.01].

A probability function P satisfies a probabilistic conditional

P |= (ψ |φ)[d] if and only if P (ψ |φ) = d and P (φ) > 0. (2)

1 The numbers have been arbitrarily chosen and may not describe the real world.



Reasoning in probabilistic conditional logic can be performed by maximizing
entropy. The entropy H(P ) of a probability function P is defined via H(P ) =
−
∑

ω P (ω) logP (ω) with 0 · log 0 = 0. By selecting P ∗ = arg maxP |=RH(P )
as the (unique) model of the knowledge base R with maximal entropy, one
obtains a probability function that both satisfies all conditionals in R and adds
as few additional information (in the information-theoretic sense) as possible.
For a consistent knowledge base R the maximum entropy model P ∗ is uniquely
determined, cf. [16]. Model-based probabilistic inference via P ∗ shows excellent
logical properties [16], and has been proved to be most adequate for commonsense
reasoning [24].

2.2 Relational Approaches

Bayesian Logic Programs Bayesian logic programming combines logic pro-
gramming and Bayesian networks [19]. The basic structure for knowledge rep-
resentation in Bayesian logic programs are Bayesian clauses which model prob-
abilistic dependencies between Bayesian atoms as in the following BLP corre-
sponding to an example given in [4]:

c1 : (likes(X,Y ) | elephant(X), keeper(Y ))
c2 : (likes(X, fred) | elephant(X))

c3 : likes(clyde, fred)

For each Bayesian clause c, a function cpdc must be defined, expressing the condi-
tional probability distribution P (head(c) | body(c)) and thus partially describing
an underlying probability distribution P . For instance, cpdc1(true, true, true) =
0.8 would express our subjective belief that likes(X,Y ) is true with probability
0.8 if elephant(X) and keeper(Y ) are true. In order to aggregate probabilities
that arise from applications of different Bayesian clauses with the same head,
BLPs make use of combining rules. Semantics are given to Bayesian logic pro-
grams via transformation into propositional forms, i. e. into Bayesian networks
[25] (see [19] for details).

Markov Logic Networks Markov logic [5] establishes a framework which
combines Markov networks [25] with first-order logic to handle a broad area
of statistical relational learning tasks. The Markov logic syntax complies with
first-order logic where each formula is quantified by an additional weight value,
e.g.

(elephant(X) ∧ keeper(Y )⇒ likes(X,Y ), 2.2)
(elephant(X)⇒ likes(X, fred), −0.8)

(likes(clyde, fred), ∞)

Semantics are given to sets of Markov logic formulas by a probability distribution
over propositional possible worlds that is calculated as a log-linear model over
weighted ground formulas. The fundamental idea in Markov logic is that first-
order formulas are not handled as hard constraints (which are indicated by weight
∞), but each formula is more or less softened depending on its weight. A Markov



logic network (MLN) L is a set of weighted first-order logic formulas (Fi, wi)
together with a set of constants C. The semantics of L is given by a ground
Markov network ML,C constructed from Fi and C [6]. The standard semantics
of Markov networks [25] is used for reasoning, e.g. to determine the consequences
of L (see [6] for details).

Relational Maximum Entropy The syntax of relational probabilistic con-
ditional logic (RPCL) [33] has already been used in the representation of the
elephant-keeper-example from the introduction and employs conditionals of the
form (B |A)[x] with first-order formulas A,B and x ∈ [0, 1]. A conditional
(B |A)[x] represents a constraint on a probability distribution P : Ω → [0, 1]
on the set of possible worlds Ω and expresses that the conditional probability of
B given A is x. In order to interpret conditionals containing free variables several
relational semantics have been proposed, see [33, 21]. The grounding semantics
[21] uses a grounding operator G, e. g. universal instantiation, that translates a
set R of conditionals with free variables into a set of ground conditionals. Then,
a probability distribution P G-satisfies R, denoted by P |=G R, iff P (B′ |A′) = x
for every ground (B′ |A′)[x] ∈ G(R). Both averaging and aggregating semantics
[18, 33] do not require a grounding operator but interpret the intended probabil-
ity x of a conditional with free variables only as a guideline for the probabilities of
its instances, but the actual conditional probabilities of the instantiated formu-
las may differ from x. More precisely, for the averaging semantics, a probability
distribution P ∅-satisfies R, denoted by P |=∅ R, iff for every (B |A)[x] ∈ R
it holds that P (B1 |A1) + . . . + P (Bn |An) = nx where (B1 |A1), . . . , (Bn |An)
are the ground instances of (B |A). In the aggregating semantics, a probability
function P �-satisfies R, denoted by P |=� R, iff for every (B |A)[x] ∈ R it
holds that P (B1 ∧ A1) + . . . + P (Bn ∧ An) = x(P (A1) + . . . + P (An)) where
(B1 |A1), . . . , (Bn |An) are the ground instances of (B |A). Note that all these
three semantics are extensions of classical probabilistic semantics for proposi-
tional probabilistic conditional logic [15]. Based on any of these semantical no-
tions the principle of maximum entropy ([23, 15], see also Sec. 2.1), can be used
for reasoning. By employing this principle one can determine the unique proba-
bility distribution that is the optimal model for a consistent knowledge base R
in an information-theoretic sense via

PME◦
R = arg max

P |=◦R
H(P ) (3)

with ◦ being one of G, ∅, or �. We abbreviate the approaches of reasoning
based on the principle of maximum entropy with grounding, averaging, and
aggregating semantics with MEG , ME∅, and ME�, respectively. We say that a
formula (B |A)[x] is ◦-inferred from R iff PME◦

R |=◦ (B |A)[x] with ◦ being one
of G, ∅, or �.



3 Systems

There are various implementations of probabilistic logic. In the following, we give
brief overviews on a selection of systems and toolboxes for probabilistic logics
based on a propositional or a relational setting.

3.1 SPIRIT and Probabilistic Reasoning under Maximum Entropy

Reasoning in probabilistic conditional logic by employing the principle of maxi-
mum entropy [23, 15] requires solving the numerical optimization problem P ∗ =
arg maxP |=RH(P ) (cf. Sec 2.1). SPIRIT [29] is an expert system shell2 imple-
menting maximum entropy reasoning and solving this optimization problem. In
order to tame the complexity of the optimization task which grows exponen-
tially in the number of variables, SPIRIT generates a junction-tree of variable
clusters, allowing to represent the global probability distribution by a product of
marginal distributions. SPIRIT has been used successfully in various application
domains, like medical diagnosis, project risk management, or credit scoring.

MEcore [8] is another system implementing reasoning for propositional prob-
abilistic conditional logic under maximum entropy. While it does not employ a
junction-tree modelling, but a straight-forward representation of the complete
probability distribution, its focus is on flexibly supporting different basic knowl-
edge and belief management functions like revising or updating probabilistic
beliefs, or hypothetical reasoning in what-if mode.

3.2 Alchemy

Markov logic is implemented in the Alchemy system3 [20]. Alchemy provides a
wide range of functionalities for statistical relational learning and probabilistic
logic inference. In particular, the consequences of a Markov logic network L
defined via the ground Markov network ML,C (cf. Sec. 2.2) can be determined.
With respect to learning, both weight learning as well as learning the structure
of an MLN is supported. Applications of MLN realized with Alchemy include
classifications tasks and social network modelling. In Sec. 4, we will report on
some experiments using MLNs and Alchemy in medical diagnosis.

3.3 ProbCog

The ProbCog (Probabilistic Cognition for Cognitive Technical Systems) sys-
tem4 [13] is a software suite for statistical relational learning. ProbCog currently
supports three knowledge representation approaches: Bayesian Logic Networks
(BLNs), Adaptive Markov Logic Networks (AMLNs), and Markov Logic Net-
works (MLNs). For each approach, ProbCog provides several learning and in-
ference algorithms, implemented either in Java or Python. ProbCog provides a

2 http://www.fernuni-hagen.de/BWLOR/spirit/index.php
3 http://alchemy.cs.washington.edu/
4 http://ias.cs.tum.edu/research-areas/knowledge-processing/probcog



sophisticated framework for relational data, which features, amongst others, a
unified data model (which allows data conversion for all integrated approaches )
and the generation of synthetic data (for learning experiments). The main focus
of the ProbCog suite is on providing a comprehensive library of algorithms and
powerful data structures for statistical relational learning, but it also includes
some graphical interfaces for learning and querying, respectively.

3.4 KReator

KReator [32] is a toolbox for representing, learning, and automated reasoning
with various approaches combining relational first-order logic with probabilities5.

The implementation of KReator is done in Java and mirrors its objective
to support different approaches to relational probabilistic knowledge represen-
tation and reasoning. It strictly separates the internal logic and the user in-
terface, employing an abstract command structure allowing easy modifications
on both sides. In order to support the implementation of other approaches,
KReator features a large library on first-order logic and basic probabilistic
methods. Among others this library contains classes for formulæ, rules, condi-
tionals, and various methods to operate on these. There is also a rudimentary
implementation of Prolog available that can be used for specifying background
knowledge as e. g. in BLPs. This integrated library is designed to support a fast
implementation of specific approaches to statistical relational learning. The task
of integrating a new approach into the KReator system is supported by a small
set of interfaces that have to be implemented in order to be able to access the
new approach from the user interface. There are interfaces for knowledge bases
(which demands e. g. support for querying), file writers and parsers (for read-
ing and writing the specific syntax of an approach), and learner. One thing to
note is that both file writers and parsers have to work on strings only, all the
cumbersome overhead of file operations and I/O is handled by KReator. With
the help of a plugin-like architecture the developer of a new approach only has
to be concerned with connecting her approach to KReator using these inter-
faces. Then all the benefits of an integrated development environment as pro-
vided by KReator are immediately accessible. Currently, KReator supports
knowledge representation using BLPs, MLNs, the relational maximum entropy
approach RME, as well as Relational Bayesian Networks [12], and Probabilistic
Prolog [27]; support for Logical Bayesian Networks [7], Probabilistic Relational
Language [10], and Relational Bayesian Networks [14] is in preparation.

Performing inference on MLNs is done using the Alchemy software package
[20], a console-based tool for processing Markov logic networks. For BLPs, a
reasoning component was implemented within KReator. To process ground
MEG knowledge bases, KReator uses a so-called ME-adapter to communicate
with a MaxEnt-reasoner. Currently, such adapters are supplied for the SPIRIT
reasoner [29] and for MEcore [8] which are tools for processing (propositional)
conditional probabilistic knowledge bases using maximum entropy methods.

5 http://kreator.cs.tu-dortmund.de/



Fig. 2. Graphical user interface of the KReator system

ProbCog and KReator share some similarities with respect to their general
approach to gather different knowledge representation approaches within one
software framework, e. g. both systems feature some sort of unified data model
for evidence or sample data. But the primary application focus of both systems
differs significantly: ProbCog is developed for its intended practical application
and integration in cognitive technical systems. So its primary focus is on pro-
viding a versatile and efficient framework for that specific purpose, therefore
some sort of unified graphical user interface to the framework is not needed. In
contrast, KReator’s focus is on the typical workflow of a knowledge engineer,
researcher, or developer. Therefore, KReator collects different approaches in
an integrated graphical development environment (see Fig. 2 for a screenshot of
the KReator user interface) to provide easy access to typical tasks and provides
a plugin interface to support the study and development of further approaches.

4 Applications

In the following subsections, we will present three practical application scenarios
of some of the afore described systems. All three applications cover settings from



the medical domain. The first one illustrates ME-reasoning using a fictitious
example, whereas the other ones describe learning experiments involving Markov
logic networks and real-world data from medical studies.

4.1 Knowledge Processing with the MEcore system

In this section, we will illustrate how MEcore can process incomplete, uncertain
knowledge expressed by a probabilistic knowledge base using a fictitious example
from the medical domain. This example is taken from [8] and discusses the
general treatment of a patient who suffers from a perilous bacterial infection.
The infection will probably cause permanent neurological damage or even death
if it is not treated appropriately. There are two antibiotics available that might
be capable of ending the infection, provided that the bacteria are not resistant
to the specific antibiotic. It must also be considered that each antibiotic might
cause a life-threatening allergic reaction that could be especially dangerous for an
already weakened patient. The resistance of the bacteria to a specific antibiotic
can be tested, but each test is very time-consuming.

Building Up the Knowledge Base The construction of the knowledge base
starts with the definition of some binary variables that describe aspects concern-
ing antibiotic A:

med A: The patient is treated with antibiotic A.
effect A: Antibiotic A is effective against the bacteria.
allergic A: The patient is allergic to antibiotic A.
resistance A: The bacteria are resistant to antibiotic A.
posResT A: The test result suggests a resistance to antibiotic A.

Analogously, there are also five variables concerning antibiotic B. A three-valued
variable outcome describes the three possible outcomes of the treatment:

outcome=healthy: The infection is treated successfully and the patient is
healthy again.
outcome=impaired: The patient overcomes the infection but suffers a per-
manent damage to the nervous system.
outcome=dead: The infection is not treated effectively and the patient dies.

The available knowledge summarizing the previously made experiences about
the infection and the two antibiotics is modeled by the knowledge base medKB =
{R1, . . . , R22} consisting of the probabilistic rules given in Fig. 3.

The first four rules express very obvious correlations between the variables:
R1 and R2 say that if a certain antibiotic is not administered or the bacteria
are resistent to it, then this antibiotic has no effect. R3 and R4 assure that if
the bacteria are not resistant to a certain antibiotic, then this antibiotic is effec-
tive if—and only if—it is administered. The facts R5 to R9 integrate statistical
information available for antibiotic A and antibiotic B, i. e. some a priori prob-
abilities, into the knowledge base: antibiotic B is twice as likely as antibiotic
A to cause an allergic reaction (R5, R6); and the resistance to antibiotic B is



R1 : (¬effect A | ¬med A ∨ resistance A)[1.00]
R2 : (¬effect B | ¬med B ∨ resistance B)[1.00]
R3 : (effect A ⇔ med A | ¬resistance A)[1.00]
R4 : (effect B ⇔ med B | ¬resistance B)[1.00]
R5 : (allergic A)[0.10]
R6 : (allergic B)[0.20]
R7 : (resistance A)[0.01]
R8 : (resistance B)[0.09]
R9 : (med A ∧ med B)[0.00001]
R10: (outcome=dead | ¬med A ∧ ¬med B)[0.10]
R11: (outcome=healthy | ¬med A ∧ ¬med B)[0.10]
R12: (posResT A | resistance A)[0.97]
R13: (¬posResT A | ¬resistance A)[0.99]
R14: (posResT B | resistance B)[0.90]
R15: (¬posResT B | ¬resistance B)[0.80]
R16: (outcome=dead | med A ∧ allergic A)[0.99]
R17: (outcome=dead | med B ∧ allergic B)[0.40]
R18: (outcome=healthy | effect A)[0.8]
R19: (outcome=healthy | effect B)[0.7]
R20: (allergic A | med A)[0.10]
R21: (outcome=dead | effect B)[0.09]
R22: (outcome=healthy | med B ∧ allergic B)[0.001]

Fig. 3. Probabilistic rules in the knowledge base medKB

nine times higher compared to antibiotic A (R7, R8). It has occurred very rarely
that somebody administers both antibiotics to the patient (R9). R10 and R11

model the prognosis for the patient if no antibiotic is administered. The result
of a resistance-test, testing the resistance of the bacteria to an antibiotic, always
includes some error, but the test regarding antibiotic A is very reliable (R12,
R13); whereas the test concerning antibiotic B has a somewhat lower sensitivity
(R14) and a considerably lower specificity (R15).

The rules R16 to R19 express special knowledge about antibiotic A and an-
tibiotic B, respectively: The allergic reaction caused by antibiotic A is most
likely lethal (R16), whereas the chance of surviving an allergy to antibiotic B is
more likely than to die of it (R17). If antibiotic A is effective, then the patient
has a good chance to become healthy again (R18), whereas the effectiveness of
antibiotic B is somewhat lower (R19). The following knowledge is available for
antibiotic A only: R20 makes clear that the a priori probability of an allergy
to antibiotic A (expressed by R5 with equal probability) is not affected by the
administration of antibiotic A. There is also some exclusive knowledge about
antibiotic B: If antibiotic B is effective, there still remains some risk to die of the
infection (R21). If the patient survives an allergic reaction caused by antibiotic
B, it is very unlikely that he will become healthy again (R22).



Computing an Initial Epistemic State In MEcore, the computation of an
epistemic state incorporating the knowledge expressed by the knowledge base
medKB can be initiated by the command:

(1) currState := epstate.initialize(medKB);

The calculated epistemic state currState represents the incomplete knowledge
expressed by medKB inductively completed in an entropy-optimal way.

A closer look at medKB reveals that some additional rules can be logically de-
duced from the existing rules since they hold in all models satisfying medKB. For
instance, a literal of the three-valued variable outcome makes up the conclusion
of several rules. Hence, two rules with identical premise and an outcome literal
as conclusion directly imply a corresponding third rule, e. g. R10 and R11 imply
(outcome=impaired | ¬med A ∧ ¬med B)[0.8]. Appropriate queries to MEcore
in currState yield these expected probabilities since reasoning at optimum en-
tropy is compatible with classical probabilistic consequences.

Query Suppose we want to know the patient’s chances in each case of treat-
ment, i. e. for each of the four possible options of medical administration: no
antibiotic, antibiotic A only, antibiotic B only, both antibiotics. This can be
expressed by a set of twelve query formulas (i. e. conditionals of the form e. g.
(outcome=healthy | med A ∧ ¬med B)) which we will denote by medQueries.
While using classical probabilistic consequences does not yield informative an-
swers for medQueries, MEcore infers the following probabilities from currState:

healthy impaired dead
no antibiotic 0.10 0.80 0.10

only A 0.79 0.06 0.15
only B 0.65 0.23 0.12

A and B 0.94 0.02 0.04

These results clearly suggest that the combined administration of both antibi-
otics would be the best treatment. It offers a high chance of healing accompanied
by a minimal risk of permanent neurological damage or death. However, a closer
look at the knowledge base reveals that it implies that there is almost no possible
drug interaction. For instance, asking for the degree of belief for the conditional

Cint : (dead | med A ∧ med B ∧ ¬allergic A ∧ ¬allergic B)

in currState yields the inferred drug interaction probability 0.01.

Incorporation of New Knowledge Suppose that later on, the doctors learn
to know from an outside source that there is a severe risk (0.25) of a deadly drug
interaction between both antibiotics. Executing

(2) currState.update(medKB, Cint[0.25]);

incorporates this new knowledge into the current epistemic state as if it had
been available already in medKB. In fact, this kind of belief change is a genuine
revision (cf. [17]) which in MEcore can also be more easily expressed by



(2’) currState.revise(Cint[0.25]);

Now, asking the medQueries again, the probabilities have changed considerably
(cf. Fig. 4(a)): With the knowledge about a deadly drug interaction, the prob-
abilities show that the administration of antibiotic A maximizes the patient’s
chance to become healthy again.

(a) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.79 0.06 0.15
only B 0.65 0.23 0.12

A and B 0.70 0.02 0.28

(b) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.79 0.06 0.15
only B 0.69 0.21 0.10

A and B 0.76 0.02 0.22

(c) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.43 0.15 0.42
only B 0.65 0.23 0.12

A and B 0.32 0.05 0.63

(d) healthy impaired dead

no antibiotic 0.10 0.80 0.10
only A 0.43 0.15 0.42
only B 0.54 0.26 0.20

A and B 0.20 0.04 0.76

Fig. 4. Probabilities for medQueries infered by MEcore

What-If-Analysis It has to be noticed that the knowledge used for generating
the epistemic state currState says that no resistance tests have been performed,
i. e. for neither of the antibiotics any resistance test results are available. A
what-if-analysis can be used to analyze what changes would occur if a negative
resistance-test result concerning antibiotic B was known. That is, could this test
result make antibiotic B the better choice for treatment? In MEcore, such a
what-if-analysis is accomplished by

(3) currState.whatif((¬posResT B)[1.0], medQueries);

delivering the results shown in Fig. 4(b). The probabilities show that even a
negative resistance-B test would not change the general decision to administer
antibiotic A. This result is, amongst others, caused by the low resistance-B test
specificity.

Another what-if-analysis revealing the effects of a positive resistance-A-test

(4) currState.whatif((posResT A)[1.0], medQueries);

yields the probabilities given in Fig. 4(c). This shows that a test-result sug-
gesting the resistance to antibiotic A would change the situation: In this case,
a treatment with antibiotic B becomes the only that offers a realistic healing
chance. This is not surprising, because a resistance-test result concerning antibi-
otic A is very reliable. So it is clearly advisable to perform the time-consuming
resistance-A test.

In case of a positive resistance-A-test result, would it also be helpful to test
the resistance to antibiotic B? That is, could an additional positive resistance-
B-test change the decision to administer antibiotic B? Hypothetical reasoning



(5) currState.whatif(((posResT A)[1.0], (posResT B)[1.0]), medQueries);

yields the results shown in Fig. 4(d), indicating that even a positive resistance-
B-test would not change the decision to administer antibiotic B. So it is not
helpful to perform a resistance-B test in any situation, since its result would
never change the decision that had been made without knowing the test result.

4.2 Diagnosis of Lung Cancer

This section is based on [9], reporting on a case study of using probabilistic
relational modelling and learning as provided by MLNs and the MLN system
Alchemy [20] in the field of biomedical diagnosis. The idea behind this diag-
nostical setting is to support diagnosis of bronchial carcinoma on the basis of
the substances a person exhales [2, 1]. In this setting, the focus is on the early
detection of bronchial carcinoma by ion mobility spectrometry, a non-invasive
diagnostic method which delivers results within a few minutes and can be applied
at low costs.

Ion Mobility Spectrometry In order to determine chemical substances in
gaseous analytes, ion mobility spectrometry (IMS) can be used [2]. This method
relies on characterizing substances in gases by their ion mobility. Figure 5 illus-
trates the working principle of an ion mobility spectrometer. After ionisation, ion
swarms enter the drift region through an ion shutter. The time needed to pass
the drift region is called drift time, and the ion mobility is inversely proportional
to the drift time. An ion mobility spectrum is obtained by mapping the drift
time to the signal intensity measured at the Faraday plate (cf. Fig. 5). If the
gaseous analyte contains various substances, they may reach the Faraday plate
at the same time. In order to avoid this, a multi capillary column is used for
the pre-separation of different substances [2] so that they enter the spectrometer
at different time points, called retention times; for more detailed descriptions of
ion mobility spectrometry and its working principle we refer to [1] or [2].

Thus, applying ion mobility spectrometry to gaseous analytes yields IMS
spectra where a peak in such a spectrum corresponds to a particular substance.
The determination of peaks in a measurement requires sophisticated processing
of the raw spectra, see [2, 3] for details. Peak objects taken from two different
measurements that correspond to the same substance occur at corresponding
areas in their respective so-called heat maps, and in order to identify such cor-
responding peaks, they can be mapped to peak clusters [2, 9]. In our case study,
we investigated an IMS database consisting of 158 measurements obtained from
screening the breath of 158 patients out of which 82 had lung cancer (bronchial
carcinoma, bc), yielding a database Dbc with 33 peak clusters, in the following
referred to by the identifiers pc0 , . . . , pc32 . For each peak cluster pci, P (bc|pci)
denotes the conditional probability that a measurement having a peak belonging
to pci stems from a person having bronchial carcinoma. For applying methods of
probabilistic relational modelling and learning to Dbc , we use a logic represen-
tation of Dbc (for convenience, also referred to as Dbc) involving the predicates



Fig. 5. Schematic overview of an ion mobility spectrometer (from [2])

bc(M) indicating that measurement M belongs to a person having lung cancer
and pcInM (PC ,M ) stating that peak cluster PC occurs in measurement M .

In the following, we present different setups to learn MLNs from the data set
Dbc . Our goal is to calculate the probability that a certain measurement m is
from some person with a bronchial carcinoma, given the information for each of
the 33 peak clusters whether or not it is contained in measurement m. That is,
we want to calculate the conditional probability of bc(m), given the truth values
of the literals pcInM (pc0 ,m), . . . , pcInM (pc32 ,m). This conditional probabil-
ity helps to classify patients with respect to suffering from lung cancer. The
corresponding classification task can be realized with MLNs. We use the soft-
ware package Alchemy [20] which provides several sophisticated algorithms to
perform (structure and parameter) learning and inference of MLNs. A learned
MLN is validated in terms of classification accuracy, defined as the proportion
of the correctly predicted (positive and negative) results on the total number
of measurements in a testing set; these values are determined as the average
accuracy of all tests in a 10-fold cross-validation.

Learning Logic Rules with the ILP System Aleph In a first learning setup,
we use the inductive logic programming (ILP) system Aleph [31] for learning first-
order logic rules from the data set. Besides other parameters, Aleph allows to
make detailed specifications about which atoms may appear in the body or head
of a rule. As we want to predict whether or not the measurement M belongs to
a patient having bronchial carcinoma, we require that heads of the rules learned
by Aleph must contain the bc predicate, whereas their body must consist of one
or more atoms of the pcInM predicate, with a constant in the first argument.



This way, the rules predict the value of bc(M), given the values of some of the
pcInM (pci ,M ). The two rules

R1: pcInM (pc5 ,M ) ∧ pcInM (pc8 ,M ) ⇒ bc(M)
R2: pcInM (pc7 ,M ) ∧ pcInM (pc17 ,M ) ∧ pcInM (pc31 ,M )⇒ bc(M)

are examples of the 11 rules learned with Aleph [9]. The premises of all 11 rules
consist of conjunctions of at most three positive pcInM literals. From the 33
different peak clusters found in the data set, only 18 occur in the rule set, so the
other 15 peak clusters seem to carry no useful information with regard to lung
cancer according to the Aleph result.

Learning Weights of Aleph Formulas with Alchemy In a subsequent step,
we take the Aleph implications as logical base structure of an MLN and learn
appropriate weights for them from the data set using Alchemy. For instance, the
resulting weights for the rules R1 and R2 above are 4.596 and 6.004, respectively.
Evaluating the MLN prediction performance results in an accuracy of 78%.

If we take the implications as if-then-rules, we can determine the condi-
tional probabilities of these rules under the distribution induced by the MLN,
i. e. we use Alchemy to calculate the conditional probability of a rule’s conse-
quent ground atom given its premise ground atoms as evidence. E. g., for rule R1,
Alchemy determines the probability P (bc(m)|pcInM (pc5 ,m)∧pcInM (pc8 ,m)) =
0.9800 in the MLN; for R2 we get 0.996. In fact, the conditional probabilities of
all rules are not exactly 1.0, as expected, but rather close to it (see [9]). This is
due to the fact that Alchemy performs approximate inference and thereby, as a
side-effect, prevents overfitting.

The learned MLN allows to draw some conclusions between peak clusters
(i. e. the occurrence of substances in a measurement) and bronchial carcinoma.
E. g., formula R2 relates the combined occurrence of peak clusters pc7 , pc17 ,
and pc31 in a measurement M to the presence of bronchial carcinoma. Because
of the positive (and relative high) weight of this formula, the combined occur-
rence of these peak clusters can be interpreted as an indicator for bronchial
carcinoma. Likewise, there are also formulas relating the combined occurrence
of peak clusters to the absence of bronchial carcinoma.

Simple Classification with MLNs In a further learning setup, we prede-
fine the formula structure of a quite simple MLN: The MLN consists of the 33
implications pcInM (pc0 ,M) ⇒ bc(M), . . . , pcInM (pc32 ,M) ⇒ bc(M). Since
the Alchemy syntax allows to express such ”partially grounded” formulas in a
compact way, the whole predefined structural Alchemy input merely consists of
a single line. With this MLN structure, we follow a straightforwardly modelled
classification approach: To classify the bc state of a measurement, we consider
each peak cluster separately, leaving out any connections or dependencies among
them. To some extent, this approach resembles Naive Bayes classification, where
explicit independence assumptions among classifying attributes are made. The
evaluation of the learned MLN revealed quite a high accuracy of 88% [9], al-
though the enforced MLN structure lacks any connections between peak clusters,



suggesting that those connections are not of great importance for classifying the
measurements regarding bc.

MLN Structure Learning In this learning setup, we make use of Alchemy’s
structure learning feature to learn an MLN from scratch. Alchemy does not allow
to make detailed specifications about the formulas to be learned, i. e. we cannot
impose the requirement that the pcInM ( , ) atoms have a constant in the first
argument. As a consequence, Alchemy’s structure learning algorithm produces
no useful results when applied to Dbc without any further information. So we
modify the relational modelling in some aspect by replacing the binary predicate
pcInM (PC ,M ) by 33 unary predicates pc0 (M ), . . . , pc32 (M ).

Using this setup, the structure (and weight) learning with Alchemy starts
from an empty MLN and results in an MLN with 89 formulas (including 34
atomic formulas for all 34 predicates) [9]. The evaluation of this MLN shows an
accuracy of 90%. Compared to the previous results, this MLN models much more
connections among the peak clusters and their combined influence regarding
bc(M). Only 13 of the 55 non-atomic formulas involve a bc literal, so the other
42 formulas express connections among the peak clusters regardless of the bc(M)
state, and the formulas contain both positive and negative peak cluster literals.
So compared to the previous results, this MLN exhibits more complex and subtle
connections among the occurrences of peak clusters and the bc(M) state. Here
are two examples for the learned formulas:

R61: (¬pc10 (M ) ∧ pc14 (M ) ∧ ¬pc18 (M ) ∧ pc21 (M )⇒ bc(M), 7.15)
R44: (pc17 (M ) ∧ pc28 (M )⇒ pc21 (M ), 5.05)

R61 relates the combined occurrence of peak clusters pc14 and pc21 and the
explicit absence of peak clusters pc10 and pc18 in a measurement to bronchial
carcinoma. With a lower, but still relatively high weight, R44 implies that a
measurement containing peak clusters pc17 and pc28 also contains peak cluster
pc21 . In other words, the system has learned the relationship that the occurrence
of the two substances indicated by peak clusters pc17 and pc28 in a measure-
ment M leads to the presence of the substance identified by pc21 in the same
measurement. Such a relation can provide interesting insights into the general
composition of substances in typical measurements.

4.3 Predicting Allergic Diseases of Children

In this section, another application of MLNs for modelling and learning in the
medical domain is presented. In [30], MLNs were employed to analyze the cor-
relations between allergic diseases of children and certain environmental factors.
The data used in this analysis has been extracted from the KiGGS study of the
Robert Koch-Institut [28]. The KiGGS study is a long term study which covers
the health situation of 17.000 children (and adolescents) in Germany. It considers
a multitude of attributes for every child concerning medical or social aspects.
For the experiments described in [30], 13 of these attributes had been chosen
which represent well-known risk factors for allergies, e. g. ”the child has a pet at



home”, ”the child lives in an urban environment”, or ”a parent suffers from an
allergy”. Each such attribute was modelled by a corresponding MLN predicate,
e. g. hasPet(X), urban(X). Together with the information whether or not a child
is allergic (represented by an isAllergic(X) predicate) this allowed to model the
data from the study as MLN learning data, i. e. as data samples in terms of
ground atoms. The extracted and preprocessed learning data from the study
consisted of about 8.000 data samples, covering allergic respectively non-allergic
children in equal parts. In all experiments, subsets of these data samples were
used as actual training and testing data (performing a 5-fold cross-validation).

Several learning experiments were performed on this learning data using the
algorithms of the Alchemy software package [20] for learning and inference. The
goal of all experiments was to learn an MLN which can predict the risk of a child
to be allergic given the presence (or absence, respectively) of each of the 13 risk
factors. The learning experiments included parameter (i. e. weight) learning us-
ing a predefined MLN formula structure which consisted of 13 implications of the
form e. g. hasPet(X)⇒ isAllergic(X). In another experiment, Alchemy’s struc-
ture learning algorithm was applied to learn an MLN (formulas and weights)
from scratch. The evaluation of the learned MLNs was carried out by using
several of Alchemy’s (approximate) inference algorithms. Additionally, the soft-
ware PyMLNs (which is part of the ProbCog suite [13]) was used to perform
exact inference on some MLNs in order to evaluate the deviation compared to
the approximate results. The experiments showed that the results of the vari-
ous Alchemy algorithms were quite similar and that there were no significant
difference compared to the exact results.

Overall, the quality of the learned MLNs in terms of classification accuracy
turned out to be not as good a expected. For various experiment settings, the
MLNs resulting from structure as well as from parameter learning provide an
accuracy of about 61% in predicting a child to be allergic. This could be improved
by focusing on formulas the probabilities of which were significantly different
from 0.5. However, further investigations into the evaluation of the quality of
learned MLNs for prediction tasks in this domain will be necessary.

5 Summary and Conclusion

This paper gives a brief overview on the state of the art in probabilistic rea-
soning, and illustrates the relevance of probabilistic methods for expert systems
by describing their applications in various scenarios. The main advantage of
probabilistic formalisms is an accurate handling of uncertainty which pervades
all real world problems. Degrees of uncertainty can be conveniently obtained
from statistical data and processed via probabilistic networks. Moreover, we go
into more details on novel approaches combining probability theory and first-
order logic which provide more expressive frameworks for probabilistic reason-
ing. The problem of incompleteness of knowledge is addressed by describing the
information-theoretical principle of maximum entropy which might also be ap-



plied in first-order settings. Altogether, probabilistic frameworks provide suitable
and rich environments for learning, modelling, and reasoning in expert systems.
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