
Argonauts: A Working System for Motivated
Cooperative Agents

Daniel Hölzgen, Thomas Vengels, Patrick Krümpelmann,
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Abstract. This paper presents the Argonauts multi-agent framework
which was developed as part of a one year student project at Technische
Universität Dortmund. The Argonauts framework builds on a BDI ap-
proach to model rational agents that act cooperatively in a dynamic and
indeterministically changing environment. However, our agent model ex-
tends the traditional BDI approach in several aspects, most notably by
incorporating motivation into the agent’s goal selection mechanism. The
framework has been applied by the Argonauts team in the 2010 version
of the annual multi-agent programming contest organized by Technische
Universität Clausthal. In this paper, we present a high-level specification
and analysis of the actual system used for solving the given scenario. We
do this by applying the GAIA methodology, a high-level and iterative
approach to model communication and roles in multi-agent scenarios.
We further describe the technical details and insights gained during our
participation in the multi-agent programming contest.

1 Introduction

Formal approaches for representing the mental state of an intelligent agent
mostly employ the BDI model [3], a framework that originated in psychology
and describes intelligent behavior such as decision making, deliberation, and
means-end reasoning in rational beings. This model divides a mental state into
beliefs, desires, and intentions and gives a formal account for their interactions.
Beginning with the work of Rao and Georgeff [13] many researchers in the field
of artificial intelligence and intelligent agents applied this (informal) framework
to formalize autonomous intelligent behavior [16, 15]. Most modern computa-
tional frameworks implementing the BDI approach such as Jadex [12] or Jason
[2] allow for a declarative specification of an agent and leave the actual execu-
tion of the agent to some BDI interpreter. This approach allows for a flexible
representation that is easy to comprehend.

This paper deals with a working system that implements the BDI approach
and makes use of many ideas and technologies developed for rational agents and
multi-agent systems in the past years. This system has been realized during a
one year lasting student project at the Technische Universität Dortmund [1].



The system is based on AgentSpeak [14] and builds on top of Jason [2],
an interpreter for an extended version of AgentSpeak. In order to provide
for a more sophisticated knowledge representation and reasoning facility the
beliefs of the agents are represented as extended logic programs and inference
is performed using the answer set semantics [8, 9]. We further benefit from this
kind of representation by using the planning language K [5] which bases on
logic programming as well and allows a tight integration of belief representation,
reasoning and planning components. The system also incorporates motivations
[11] into the agent’s mental model, thus enhancing the agent’s desire handling
and goal selection mechanism.

The Argonauts framework has been applied in the annual multi-agent con-
test1 which provided for a complex scenario and gave the opportunity to test,
evaluate, and improve the developed framework. There, two opposing teams con-
sisting of 20 agents each have to compete against each other in the task of cow
herding in a discrete but incomplete and indeterministic grid environment. Due
to the cows unpredictable behavior and with each agent having a limited field
of vision it is necessary to perform this task in a cooperative manner. Besides
obstacles the environment can contain fences which can be opened by an agent
stepping on the corresponding switch field. While opening a fence for others
an agent cannot walk through the fence by itself and more importantly such a
switch field must not necessarily exist on both sides of a fence. Thus, complex
plan construction is mandatory given the demanding maps of the contest. The
team having the most cows in its own corral in average wins the match.

The rest of this paper is organized as follows. In Section 2 we give some nec-
essary technical preliminaries. In Section 3 we give an overview on the abstract
agent architecture and cooperation model employed in the Argonauts system.
We continue in Section 4 with a brief description of the concrete system de-
sign and afterwards in Section 5 we present some highlights of the implemented
system. We have a closer look at the scenario specific requirements for the multi-
agent contest and the team strategy in Section 6. In Section 7 we discuss some
technical details of the implemented system and we conclude in Section 8.

2 Preliminaries

In this section we give a brief overview on answer set programming [8, 9] which
is used for knowledge representation and reasoning throughout the Argonauts
system. Afterwards, we present the basics of both the AgentSpeak language
[14] which is used as a foundation for our system and of the planning language
K [5] which is based on logic programming. Finally, we give a brief overview on
the GAIA methodology [17] for multi-agent system design.

1 http://www.multiagentcontest.org



2.1 Answer Set Programming

We consider extended logic programs which distinguish between classical and
default negation [8, 9] and use a first-order language without function symbols
except constants, so let L be a set of literals, where a literal h is an atom A or
a (classical) negated atom ¬A. The symbol is used to denote the complement
of a literal with respect to classical negation, i. e. it is p = ¬p and ¬p = p for a
ground atom p.

Definition 1 (Extended logic program). An extended logic program P is
a finite set of rules of the form r : h ← a1, . . . , an, not b1, . . . , not bm where
h, a1, . . . , an, b1, . . . , bm ∈ L. We denote by head(r) the head h of the rule r and
by body(r) the body {a1, . . . , an, not b1, . . . , not bm} of the rule r. The set of all
extended logic programs is denoted by P.

If the body of a rule r is empty (body(r) = ∅), then r is called a fact, abbreviated
h instead of h←.

Given a set X ⊆ L of literals, then r is applicable in X, iff a1, . . . , an ∈ X and
b1, . . . , bm /∈ X. The rule r is satisfied by X, if h ∈ X or if r is not applicable in
X. X is a model of an extended logic program P iff all rules of P are satisfied by
X. The set X ⊆ L is consistent, iff for every h ∈ X it is not the case that h ∈ X.
An answer set is a minimal consistent set of literals that satisfies all rules. This
can be characterized as follows.

Definition 2 (Reduct). Let P be an extended logic program and X ⊆ L a set of
literals. The X-reduct of P , denoted PX , is the union of all rules h← a1, . . . , an
such that h← a1, . . . , an, not b1, . . . , not bm ∈ P and X ∩ {b1, . . . , bm} = ∅.

For any extended logic program P and a set X of literals, the X-reduct of P is a
logic program P ′ without default-negation and therefore has a minimal model.
If P ′ is inconsistent, then its unique model is defined to be L.

Definition 3 (Answer set). Let P be an extended logic program. A consistent
set of literals S ⊆ L is an answer set of P , iff S is a minimal model of PS.

Example 1. Listing 1 shows an excerpt of an actual belief base of an agent in the
cows and herders scenario. It models how an agent can decide wether to herd
cows or scout to find new cows. Whenever the agent does not perceive any cow
at a given point in time he knows he cannot herd and should scout.

2.2 AgentSpeak and Jason

AgentSpeak allows for the specification of agents by a set of beliefs and a set
of plans. Both beliefs and plans are represented in a declarative language similar
to logic programs. Compared to logic programs, beliefs are represented as facts,
and plans look similar to rules, but with different syntax and semantics. Besides
beliefs and plans another important concept is that of goals. In AgentSpeak, a
goal is a state of the system an agent wants to become true. This can be thought



Listing 1 A logic programming snippet for reasoning over actions

time(7).

percept(cow5,4).

percept(cow4,7).

see_cow :- percept(C,T), cow(C), time(T).

herd :- see_cow.

scout :- not see_cow.

of as a desire from classical BDI architecture an agent has chosen to become true.
There are two types of goals, achievement goals and test goals. In the following
we restrict our attention to achievement goals, see [2] for a full account in both
achievement and test goals. In general, achievement goals !g(t) describe states
where a belief g(t) becomes true.

In order to express how an agent can achieve a goal, plans are used. A plan
consists of three elements: a triggering event, a context, and a body. A triggering
event e is an expression in the form +b(t) or −b(t), if b(t) is a belief, or +!g(t),
−!g(t) if g(t) is a goal. The context is a formula b1, ...bn over belief literals bi. A
plan body is a sequence hi of goals or actions, delimited by “;”. So a plan is an
expression of the following form:

e : b1, ..., bn ← h1; ...;hn.

Triggering events denoted by a “+” prefix refer to plans handling belief addi-
tions or achievement goals. A “−” prefix denotes plans handling belief loss or
achievement failures.

Informally, the triggering event marks which plans an agent could adopt as
an intention whenever it tries to react to the event. The context determines if a
plan is consistent with an agent’s beliefs, this allows an agent to apply different
plans for handling the same event in different situations, based upon its beliefs.
The plan chosen to handle an event is adopted as an intention. In Jason, each
intention is a stack of statements from a plan body that are executed sequentially
by the interpreter.

Another feature provided by Jason is the concept of internal actions. An
internal action is a java class, and instances of those classes can be invoked
directly from plans. The syntax resembles that of an atom, prefixed with a
java package name, or a ”.” denoting the default library name space. Internal
actions do not modify the environment, instead they can be used to alter an
agent’s internal state. Parameters are expressed as terms, and in case of variables,
internal actions can be used as oracles to ground those variables beyond the
possibilities provided by Jason’s procedural reasoning engine.

Example 2. Listing 2 shows a simplified AgentSpeak plan which is used to de-
clare the leader’s behavior for driving cows. The triggering event +!drivencow(C)
marks that this plan is used to handle an achievement goal drivencow. As the



Listing 2 An AgentSpeak plan for driving cows

+!drivencow(C) : true

<- ?ison(C,CX,CY,_)[source(percept)];

?corralcenter(OX,OY);

argonauts.createDrivingPlan(CX,CY,OX,OY);

!execDrivingPlan.

context of the plan is set to true there is no limitation for when the plan can be
used. The agent will first determine the position of the cow C and the position
of its own corral. Afterwards an internal action is executed to generate a plan,
which is added to the agent’s plan library as a plan for the execDrivingP lan
goal. Thus, the dynamically generated plan can be executed by adding another
achievement goal in the last line of the plan.

2.3 Language K

The language K [5] is a logic-based planning language used for describing tran-
sitions between states of knowledge. It is based on extended logic programs and
makes use of default negation to deal with incomplete knowledge. In this section
we give a brief overview on some key aspects of this language, see [5, 6] for a
complete description and formal definition.

In K, the static background knowledge of the planning problem is represented
by a normal stratified logic program, defining the predicates that are not sub-
ject to change. Contrary to this, the dynamic knowledge consists of fluents and
actions that are subject to change and are denoted via

p(X1, ..., Xn) requires t1, ..., tm

where p is a positive action literal, X1, ..., Xn are variable symbols and t1, ..., tm
are type literals in form of positive literals of the static background knowledge.
The main construct of K are causation rules, defining static and dynamic de-
pendencies. This rules are of the form

caused f

if b1, ..., bk, not bk+1, ..., not bl

after a1, ..., am, not am+1, . . . , not an

where f is a literal or false, b1, ..., bl are fluents or types, and a1, ..., an are
literals. These rules state that if the “if” part of the rule is known to be true
in the current state, and the “after” part is known to be true in the previous
state, then f is known to be true in the current state. The default negation
“not” can be used in both the “if” and the “after” part of the rule, to deal
with incomplete knowledge similar to answer set semantics. To specify whether
or not it is possible to execute an action, execution rules are specified as follows:

executable a if b1, ..., bm, not bm+1, ..., bn



Listing 3 A K-plan for driving cows

fluents: at(C,L) requires cow(C), location(L).

actions: drive(C,L) requires cow(C), location(L).

always: executable drive(C,N) if connected(N,L), at(C,L).

caused at(C,L) after drive(C,L).

initially: at(cow1,location4).

noConcurrency.

goal: at(cow1,corral)? (4)

With a being an action literal and b1, ..., bn literals. This rule states that if
the “if” part of the rule is known to be true in the current state, action a
can be executed. Besides these rules there are several other constructs such
as constraints and safety restrictions which we omit here. After specifying the
planning domain plans can be requested by querying goals of the form

g1, ..., gm not gm+1, ..., gn ? (i)

where g1, ..., gm are ground fluent literals forming the goal, and i being the length
of the requested plan. A plan is a sequence of action literals whose execution
leads from an initial state to a desired goal state.

Example 3. A plan in K is shown in Listing 3. It demonstrates the basic idea for
generating plans to drive cows into the own corral. Therefore, the cow’s position
is declared as a fluent and driving a cow from one location to another is declared
as an action. The executable rule says that it is only possible to drive a cow if
a connection exists between both locations, followed by a rule saying that after
driving, the cow is located at the new location. The goal asks for a plan to locate
the cow inside the own corral. The resulting plan must not contain concurrent
actions, which is stated by noConcurrency.

2.4 The GAIA methodology

GAIA [17] is a high-level methodology for analysis and design of agent-based
systems. It divides the development into an analysis- and a design phase with
different levels of abstraction. During analysis, roles and their interactions are
derived as abstract entities. These are used during design to develop concrete
models of agents, the services they offer depending on the roles they implement,
and the acquaintances among the different types of agents. We will now give a
short overview of the different models shown in Figure 1.

First, the key-roles are identified and defined in a roles model, providing an
abstract description of its function. A roles model defines the role’s permissions
to access all kinds of resources, its responsibilities and available activities, and
interaction protocols. The interaction protocols are defined in an interactions
model, describing the communication between roles. This includes which roles
initiate and respond to the interaction as well as which information is used or
supplied during the course of the interaction.



Fig. 1. Models in GAIA

Both the roles model and the interactions model are now used to derive the
concrete models during design. The agent model describes the different agent
types present in the system. It is defined which roles are implemented by an
agent type and how many agents of this type exist. The services model iden-
tifies the services provided by each role and documents its properties in terms
of inputs, outputs, pre-conditions and post-conditions. Finally, an acquaintance
model defines the communication links between the agent types in form of a
directed graph. It is primarily used to identify bottlenecks in the communica-
tion structure. Although the models developed during design-phase are concrete
enough to have direct counterparts in the implemented system they are not
meant to be directly implemented but rather act as a foundation so that tradi-
tional design methodologies can be applied.

3 System Analysis and Specification

In this section, we will first describe the cows and herders scenario provided by
the multi-agent contest, followed by an analysis and specification of our multi-
agent system. We did not follow a specific methodology for the analysis of re-
quirements but observed requirements arising immediately from the given cows
and herders scenario, and designed and implemented a cooperative system of
rational agents accordingly. Therefore, our analysis consists of the following ar-
tifacts we investigate: the overall agent architecture, a cooperation model, and
a scenario analysis. The agent architecture is presented by a formal model for
describing the internal structure of individual agents. The cooperation model
describes which steps an agent should undertake for solving problems in a group
of agents. The scenario analysis results in necessary conventions like roles and



communication protocols each agent has to comply with. We start with a brief
topical survey on the scenario and the task to be accomplished.

3.1 Cows and Herders

As shown in Figure 2, the environment used in the multi-agent programming
contest is a grid-like world, containing cows and the agents of both teams. Beside
empty cells and impassable obstacle cells, there are fences that can be opened by
placing an agent on a cell adjacent to a switch cell which has to be part of every
fence. Due to the possibility that these cells could be blocked by obstacles, it is
possible that fences can be opened from only one side of the fence or not at all.
The simulation is processed in discrete steps, giving every agent the opportunity
to send its next action to the server, i. e. either to move towards one of the eight
possible directions or stay at its current position.

Fig. 2. A map used in the multi-agent programming contest

The behavior of the cows can only be controlled indirectly: They will move
away from agents if these come close enough, and tend to prefer to move towards
cells near other cows. Thus, by placing one or more agents in appropriate posi-
tions near the herd, the cows are likely to move in the desired direction. Since
cows are quite fast, and due to their indeterministic behavior while moving, the
task of driving cows should be done by a coordinated groups of agents.



The agents have a limited field of vision, in addition to this their percep-
tions might be false. In each step, every agent gets its perceptions in form of
contents of the grid cells in its field of vision. However, communicating is not
done through the environment, so every agent can communicate with any other
agent of the team independent of the respective distance or simulation steps. At
the beginning, all agents are provided with information about their own corral’s
position, which does not include any information about the fields surrounding
it, so it is not necessarily clear in which way the corral can be accessed. At the
end of the simulation, the team with the highest average amount of cows during
the whole simulation wins the match.

3.2 Agent Architecture

We developed an agent architecture based on the BDI model [13]. In the BDI
approach the mental model of an agent consists of the following three major com-
ponents: beliefs, desires and intentions. Beliefs represent an agent’s subjective
beliefs about the world and itself. They should be consistent but not necessary
objectively true. Desires describe world states the agent wants to become true
and thereby reflect the wishes of the agent. Intentions comprise possible actions
the agent is capable of and decided to commit. They can be viewed as sequences
of actions, or plans, that are based on certain desires an agent decided to achieve
as goals.

Since the desires have an important impact on the possible intentions that an
agent will pursue, our approach focuses on refining the way desires are generated.
Therefore, we extended our BDI model by a motivation component. Motives
allow an agent to generate desires based upon its personality, and not only
upon the current beliefs about the world. They are used to not only generate
desires according to the current situation, but also to equip them by a degree of
intensity that helps to select one as a goal. This degree of intensity can slowly
be adjusted according to the agent’s situation. This results in a less reactive and
more autonomous way in which an agent acts.

Moreover, we also specified a planning component so that intentions are
not only based upon static, predefined plans. Instead, a planner can generate
a sequence of actions dynamically based upon the goal to be achieved and the
environmental state an agent has in mind.

Figure 3 shows our extended BDI model with its components, and how an
agent is connected to the environment. The given figure also shows process and
information flow. Process flow is indicated by solid lines, i. e. solid lines indicate
the order in which single components work with internal data and how single
components depend on each other. Data flow is indicated by dashed lines, i. e.
dashed lines indicate which information is relevant to and updated by single
components. Below we give a brief description how the agent interacts with an
environment, and how the internal structure works. The environment provides
an agent with perceptions which in our case include both “visual” percepts and
messages from other agents. From an external point of view the environment



Fig. 3. The Argonauts BDI model. Dashed lines indicate data flow, solid lines indicate
process flow.

receives actions from an agent which can be both messages for communica-
tions or actions modifying the state of the environment the agent is situated
in. The architecture of the agent itself is based on the BDI model, extended by
a motivation-driven desire generation and a planning component. We describe
the extended BDI cycle in more detail: First, the agent gets its perception from
the environment, including information communicated by other agents. This in-
formation is used to revise the agent’s beliefs. After this, desires are generated
according to the agent’s current situation and its motivation, representing ob-
jectives the agents would like to accomplish. In the next step, a deliberation
component selects which desires should be selected as goals the agent will pur-
sue in terms of concrete intentions. To generate the intentions, the deliberation
component makes use of a plan library, or, if no existing plan is applicable, a
plan generator to dynamically generate a plan in order to fulfill the selected goal.
At the end of the cycle, an action selection component determines the action to



be executed by the agent, according to its current intention. In the following, we
will give a simplified example on how the architecture works.

Example 4. Suppose that a single agent named alice is placed in a scenario
similar to the cows and herders example. Its (relevant) current beliefs are as
follows:

cow(cow1). iam(alice).

ison(cow1, 5, 5, 1).

ison(alice, 1, 1, 1).

Informally, the agent alice knows who it is, that there is a cow cow1, and knows
where in the grid world it and the cow are located (on grid cells (1,1) and (5,5),
respectively). The last argument of the ison predicate represents the last time
the position was updated and is used to support the revision of the beliefs. We
additionally assume that alice currently has two desires, one to scout and one
to drive cow1 into the corral, with the scouting desire being currently annotated
with a higher degree of intensity as the other desire. Now, the agent gets the
percept ison(cow1,4,4,2). Because the cow cannot be on both cells at the
same time, the belief revision function will revise the old information about the
cow with the new one.

After revising the agent’s beliefs the agent’s desires are generated. In order
to win the scenario alice is equipped with a motive that aims at driving cows
into the corral. Now that the cow has come closer the degree of intensity of this
desire is raised. Thus, in the next step the deliberation component detects that
the degree of intensity of the cow driving desire is now greater than the one to
scout. A goal change is performed, selecting the cow driving desire as the new goal
of the agent. The deliberation component now makes use of the planner which
generates a plan for driving the cow. This plan is selected as the new intention of
the agent and is refined until it consists of at least one atomic intention, in this
example moving one step towards the cow. Those atomic intentions are precise
enough to be executed by performing suitable actions which are selected by the
action selection component. Here, the agent performs one step towards the cow.

3.3 Cooperation model

One important aspect of multi-agent systems is cooperation. In the cows and
herders scenario, we are faced with a team of agents that has to compete against
another team of agents. The reward of each game is given to a team, not to
individual agents. Since each agent only plays for its team, agents should behave
cooperative instead of self-interested, because they cannot gain individual re-
wards. Additionally, problems that agents encounter and have to solve are often
too complex to be solved by a single agent. In this way, cooperation means that
agents have to work together to solve a problem. Therefore, some formalism or
guidelines are required how to specify and implement a cooperative agent.

In order to get a better understanding what cooperation means in the cows
and herders scenario, consider the following example.



Example 5. Two agents, Alice and Bob, intend to cross a fence. Since fences are
only crossable if an agent operates a switch associated with a fence, one agent
has to stand next to the switch, for example Bob. This will cause the fence to
open, but only Alice can now cross the fence because a switch operator, like
Bob, cannot cross a fence while operating the switch to keep it open. After Alice
passed the fence, the same procedure has to be repeated, but with Alice and
Bob switching their roles.

The example above shows that certain tasks have to be evaluated and performed
by more than one agent. When distributing a given problem solution among
multiple agents, each agent can solve a particular part of the problem, which
results in a team solution for problems completely unachievable by single agents.

We now describe how we specified cooperation among agents on an abstract
level. To this end we adapted ideas from various planning paradigms presented
in [16], and created a phase model that maps different stages of distributed
planning to BDI cycles. Whenever an agent tries to achieve a goal that is only
achievable by working together in a group, it performs the following steps:

1. Grouping: In a first step the agent sends a help request with a description
of the goal that has to be achieved. Each agent of the team can now accept
the request and become a helper, or reject the request. If too many agents
accept the request, the initiator sends rejections to dispensable agents.

2. Task Decomposition: This phase consists of dividing a goal into subgoals.
The division process continues until tasks are found that can be achieved by
single agents. The subgoals found are assumed to be achievable in parallel.
The division is done by the initiator of the previous grouping request.

3. Task Allocation: In this phase, the results of the task decomposition phase,
i. e. the subgoals, are assigned to agents that agreed to cooperate in the
grouping phase. Subgoals that arise directly from the same goal can either
be independent, in which case the order of achieving a subgoal does not mat-
ter. Otherwise, subgoals have to be achieved in parallel by different agents,
and therefore are assigned to different agents. This results in a distributed
contribution of multiple agents for a solution, and therefore gives rise to a
local cooperation of several agents of the team.

4. Individual Planning: In this phase, an agent creates a plan for a given goal
from the previous task decomposition and allocation phases. This results in
a sequence of actions the agent will commit to in order to achieve its goal.

5. Conflict Resolution: If conflicts arise due to the concurrent nature of
working together and interdependencies between subgoals, the initiator, or
leader, is responsible to provide a solution.

6. Execution and Monitoring: This phase refers to the final execution of
single actions determined by a plan and the observance of effects of those
actions. For conflicts that occur during plan execution, e. g. some position
is blocked by a cow, an agent might choose to solve conflicts locally by
choosing the next optimal cell to move to. Whenever a fatal error occurs
an agent reports the error to the initiator. Then the initiator has to decide
whether the task can still be achieved or if it is mandatory to re-plan.



Of course, these phases only describe planning and cooperation on a very ab-
stract level. For tasks solvable by single agents on their own the same model is
applied and both “grouping” and “parallel task allocation” phases are omitted.

3.4 Scenario Analysis

We analyzed the cows and herders scenario and used it for testing our agent
system. Following the GAIA methodology mentioned in section 2.4, the analysis
phase results in two major artifacts: a role model and an interactions model.
The first step is to identify the key roles in the multi-agent system. This first
role model is only a prototypical list of key roles with informal descriptions. We
identified the following keys roles:

Cowbot The cowbot role defines all common interactions and attributes for all
our agents. Every agent adopts this role which can be understood as a base
role.

Driver The driver is responsible for driving cows towards a target location.
A driver can drive a single cow or a herd of many cows. We assume that
multiple drivers collaborate to drive cows.

Scout The scout role is adopted to explore the environment. Its main purpose is
to find cows. Another important aspect implicitly addressed is the discovery
of environmental details like walls or fences while searching for cows.

Leader The leader role is adopted by agents that are responsible for solving
problems not already processed by agents, and allocating agents to tasks for
solving a problem. This role involves the coordination of other roles.

Door Opener The door opener is responsible for opening fences. Therefore,
the door opener has to operate the switch associated with a fence.

After identifying these key roles an interaction model is created. An interaction
model contains all protocols relevant for the multi-agent system. Here, a protocol
is a pattern of an interaction between various roles. While a coarse role model
reflects the entities found in a system, an interaction model specifies which inter-
actions occur between these roles. We identified the following protocols within
our system:

Broadcast Information This protocol is used to relay relevant information
that should become common knowledge, in particular perceptions and the
positions of the agents are communicated via this protocol.

Request Help This protocol is used to ask other agents for help whenever a
leader cannot accomplish a task on its own. The request is addressed to
various roles and the respective agents.

Task Monitoring This protocol is used by agents executing a task coopera-
tively to inform their leader about the current progress. The protocol is not
only used to allow a leader to control a plan progress, but also to assign new
tasks to fulfill a goal if the situation changes.

After identifying the key roles and interactions within our multi-agent system,
the role model can be finalized. This results in an elaborated role model in which
key roles are described in detail with their attributes and protocols.



4 System Design and Architecture

In this section, we describe the design and architecture both of the framework for
executing extended BDI agents and the MAS built on it, according to the insights
gained during the analysis phase. We start with a more detailed description of
the extended BDI architecture, followed by a closer look at the belief revision
and desire generation. Afterwards, we will go into the design of the MAS, with
a focus on interaction and communication.

4.1 The extended BDI architecture

As mentioned in Section 3, our agent is based on an extended BDI architecture.
Its beliefs are represented as extended logic programs [9]. All percepts received
by the environment or communications are transformed into facts that are used
to revise the current beliefs about the world. Beside these, the agent is provided
with base knowledge which can be both facts and rules represented in the form of
extended logic programs. This can be useful to support adherence to conventions
as well as to deduce additional knowledge, like the connection of switches to
fences.

Based on the approach described by Meneguzzi and Luck [11], we decided
to refine the way desires are generated by using motivation, to result in truly
proactive instead of reactive behavior. As an abstract moving power, each agent
is equipped with a set of motives, representing its propensity to achieve certain
goals. These motives are used to generate concrete desires together with para-
meters that represent a degree of intensity of the respective desire according to
the agents current situation. Both the generation of new desires and the assign-
ment of parameters are specified by extended logic programs. Using the intensity
parameter as a level of motivation supports the deliberation component when
deciding which desire should be selected as a goal. It should be mentioned that
a single abstract motive can result in different concrete desires. The motive of
having cows in the corral in order to win, for example, can result in desires for
driving different herds of cows with varying intensities. Likewise, the motive of
helping other team members in order to be social can result in different desires,
according to the information an agent has about other agents needing help.

Beside selecting which desire the agent should raise to a goal, the deliberation
component has to determine the agents intentions in order to fulfill these goals.
For that purpose, static and dynamically generated plans are used to cover
different cases. In order to adhere to conventions and the phase model described
in Section 3.3, static AgentSpeak plans are used to specify roughly the agents’
behavior. To generate dynamic plans depending on the agents current situation,
the deliberation component makes use of a dynamic planner which is based on
K (see Section 2.3).

At the end of each BDI cycle, if the current intention contains at least one
atomic intention, the action selection sends this atomic intention to the environ-
ment. In this case, the intention is translated into the corresponding action that
can be sent to the simulation server.



4.2 Belief Revision

One particular important component in our extended BDI architecture is the
belief revision function. A belief revision function has to integrate new informa-
tion received from the environment or other agents into an agent’s beliefs, while
keeping an agent’s beliefs consistent. In our BDI model, shown in Figure 3, the
belief revision component consists of a function labelled BRF and an epistemic
state labelled Beliefs, where an epistemic state is a structure that holds all nec-
essary data to derive a belief set (a consistent set of facts represented by literals
in this case).

We will first give the abstract specifications of belief revision functions and
epistemic states and go into structural details afterwards. This specification is
loosely inspired by [10]. The atomic piece of information we consider is called an
information object. An information object I is a tuple (P,Meta), where P is an
extended logic program and Meta contains additional informations like a source
identifier and a time stamp. Let IO denote the set of all information objects.

Definition 4 (Belief Base). A belief base BB is a sequence of information
objects I: BB = {I0, . . . , In}, n ∈ N . The set of all belief bases is denoted by BB.

Definition 5 (Belief Change Operator). A belief change operator is a func-
tion BB × IO → BB.

For example, our common belief change operation is to add the program of
an information object to the current belief base and ignoring the extra-logical
information. Hence. it would be a function like

fexpand(B, (P,Meta)) = B ∪ {P}

for a belief base B and an information object I = (P,Meta).

Definition 6 (Argonauts Epistemic State). An epistemic state is a tuple
(BB,P ∗, BS) where BB is a belief base, P ∗ is a consistent extended logic pro-
gram, and BS is a belief set.

Let Bel be the set of all epistemic states and Per the set of all perceptions.

Definition 7 (Belief Revision Function). A belief revision function is a
function Bel × Per → Bel.

The Argonauts belief revision function transforms an agent’s epistemic state
into another epistemic state. In our approach, beliefs are represented basically
by extended logic programs, hence perceptions are logic programs, and belief
operations are carried out on logic programs. In order to resolve conflicts be-
tween programs, our belief revision operations are based on update sequences as
proposed by Eiter et. al [7]. As shown in Figure 4, different functions and data
structures are involved in updating an agent’s epistemic state and revising its
beliefs. We distinguish between belief change operations which are responsible



Fig. 4. A detailed view of the belief revision component, showing the functions and
data structures involved in revising an agent’s beliefs

for storing new information, and inference operations which generate a (new)
consistent belief set.

Whenever new pieces of information P ∈ Per are received, the annotator
transforms these into information objects. These information objects are inte-
grated into an agent’s belief base by a belief change operator.

Besides belief change operations which modify an agent’s belief base our
agents are capable of performing advanced epistemic operations to generate their
beliefs. This is done in two steps: first, a belief state P ∗ is constructed from
information objects stored inside the belief base. Since extended logic programs
are the basic ingredients for information objects, belief states are modeled by
(consistent) extended logic programs as well. The construction of a consistent
extended logic program involves a transformation of each extended logic program
from any information object. Basically, each rule from any program used to
derive a literal A is rewritten to not fire in the presence of ¬A derived from
some other rule. For more details and examples, see [7]. The decision which rule
ri to suppress in presence of a conflicting rule rj from two programs from two
different information objects is based on a priority index. This priority index is
based on a total order assigned to all information objects in a belief base, and
newer information is prioritized over older information. Second, an answer set
solver is used to generate answer sets of P ∗, and one answer set is propagated
to the agent’s belief set. This is done by operators called inductive inference
operators. This process is computational expensive, as the computation of an
answer set of an extended logic program is in general NP-complete. This can
lead to problems, as an agent might not be able to keep up with the change of
world because his belief computations consume too much time.

Definition 8 (Belief State Construction). A belief state construction is a
function BB → P.

Definition 9 (Inductive Inference). An inductive inference operator is a
function P → 2L.



Note that our belief change operators can be simple (as the common change
operator which only expands a belief base in a set theoretical way) since the
complex revision procedure is principally performed by state construction and
inductive inference.

4.3 Motivated Desire Generation

The desire generation, named DesGen in Figure 3 is based on the approach
described in [11]. It uses an agent’s specific but static set of motives to generate
new desires and adjust the degrees of intensity of both the new and the existing
ones.

Definition 10 (Desire Generation). Let Bel be the set of all epistemic states,
Des be the set of all desire states, and Mot be the set of all motive sets. The
desire generation is a function of the form Bel ×Mot×Des→ Des.

Basically, the desire generation is processed in two steps. First, based on the cur-
rent beliefs, all motives in the agent’s motive set are evaluated, to generate new
desires which arise as instantiated literals according to the agent’s belief state.
These new desires are added to the agent’s desire state if necessary. Afterwards,
the degrees of intensity of all desires the agent currently holds in its state are
adjusted due to the current situation of the agent.

Definition 11 (Motive). Let Bel be the set of all epistemic states and Des be
the set of all desire states. A motive is a tuple of the form < n, fdgen >, with
n being the representation of the motive by a unique name and fdgen being a
function of the form Bel→ Des.

Representing its abstract moving power, the motive set contains all motives of
an agent. To generate concrete desires given this abstract power, the function
fdgen is used. The desires generated this way are defined as follows:

Definition 12 (Desire). Let Bel be the set of all epistemic states. A Desire
is a tuple of the form < id, i, u,m >, with id being the unique name of the
desire, i ∈ N indicating the degree of intensity, and functions u, m : Bel → N
computing updating and mitigation of the desire. The function u is called the
intensity update function and m is called mitigation function.

The two functions u and m are used to adjust a desire’s degree of intensity i as its
level of motivation. The motivation induces a complete preorder over the desires
in the agents desire state. The function u is used to increase or decrease the
degree of intensity based on the agents current situation. The second function, m,
mitigates substantially the intensity in case of the fulfillment of the corresponding
goal. In order to prevent the execution of nearly unmotivated desires, those with
an intensity below a given threshold can be removed from the desire state.



Example 6. We now demonstrate how the desire generation works using the
example of driving cows into the corral. The abstract motive stands for the force
animating the agent to drive cows into its own corral in order to win the match.
This motive is defined as

< cowsInCorral, fdgen(Bel) >,

where fdgen(Bel) =< drivenCow(X), 0, u,m > for some variable X with cow(X)∧
¬inCorral(X) ∈ Bel. For each such cow X for which the agent knows that is not
in the agent’s corral, a desire is generated. The desire’s update function u is used
to higher the intensity in case the cow comes close enough, and to slowly lower
it if it gets to far away.

u(Bel) =

{
5 if close(X) ∈ Bel for the given X

−3 if faraway(X) ∈ Bel for the given X

In case the cow was driven into the agent’s corral the intensity of the correspond-
ing desire has to be mitigated by the function m which is defined as follows:

m(Bel) = −30 if inCorral(X) ∈ Bel for the given X

If the agent sees a cow, the motive is used to generate a desire to drive this cow
into the corral. Once generated, the functions for updating and mitigating the
desires intensity are evaluated each time the desire generation is executed during
the BDI cycle. The intensity will rise as the agent comes close enough, and sink
if it gets to far away. In case the cow is driven into the corral, the intensity will
be mitigated since the desire has been satisfied.

4.4 Interaction and Communication

As in the analysis phase, we also made use of the GAIA methodology in the
designing phase of the multi-agent system. In order to obtain maximal flexibil-
ity our first approach was to implement all roles in only one single agent type.
Unfortunately, this led to limited benefit from using GAIA, especially the rela-
tionship model became useless. However, it helped to build a list of services each
role should provide, which came in use while building the static plans mentioned
above.

Since the overall task is to drive herds of cows into the own corral which
due to the speed of the cows should be done by more than only a single agent,
all tasks are done by a group of agents. This should avoid unnecessary waste of
time while waiting for other agents when a herd was found by a smaller scouting
group or a single agent. Nevertheless, each agent acts autonomously, driven by
its motives. To perform tasks, the agents form dynamic groups and negotiate
about the leader role. During task execution, all agents can adopt all other roles,
according to the current needs communicated by the group leader.

All communication is done by sending facts to one or more agents. There is no
explicitly used speech act theory, yet this is implicitly determined by the seman-
tics of the communicated information. For instance, a communicated meeting
point can be understood as the request to achieve the adjustment of an agent’s
current position.



5 Programming Language and Execution Platform

In this section we describe the methods and tools we employed for the implemen-
tation of our agents and our multi-agent system. We first describe how individual
agents are implemented within our MAS and then describe the overall system.

We used Java as the common programming language for our agent frame-
work, with Eclipse2 being the development environment. In addition, Jason [2]
was used as the foundation to our agent framework. As we made use of extended
logic programs for knowledge representation and reasoning, we incorporated an
answer set solver into our framework, in this case DLV [4].

Each agent consists of two parts: at least one AgentSpeak plan, and a set
of extended logic programs. The plans are mainly used to allow an agent to be
executed within Jason and to make use of our modifications and extensions
to Jason written in Java. The extended logic programs are used to describe
and implement belief operations an agent is capable of. In Jason, agents are
realized in form of AgentSpeak files. Such files consist of a number of beliefs
and goals, that represent plans that can be executed in some iterative way. This is
called an intention in Jason. We use those plans to specify which coarse actions
agents should commit to based upon their motivations. So for every desire which
induces a certain role, a plan with an achievement goal matching that desire is
processed. In terms of mutual exclusive goals the lesser, or no longer, desired
goal is dropped.

Using the AgentSpeak constructs provided by Jason only allows a reactive
behavior, because each plan relies on some external caused belief change events.
However, instead of simply invoking plans directly depending on belief changes
(through perception or communication), we generate intentions based on moti-
vations. Therefore, the motives of each agent are used to generate desires with a
certain intensity based on its beliefs. This intensity allows the deliberation com-
ponent to decide to raise a desire to a goal. Hereby, we achieve a more proactive
behavior. In addition to plans determining the course of action for motivations,
we use fixed plans according to the protocols specified before. In particular, at
the beginning of every simulation turn, each agent broadcasts its perceptions to
every other agent in the agent society. This behavior is independent of any moti-
vation since we see it as a basic ability every cowbot agent possesses. Predefined
AgentSpeak plans are only used to create a coarse skeleton for our agent be-
haviors. We use Jason mainly for communication and environment interaction
purposes among agents. Most static plans are in general short and intended to
call an internal planner like the K front end of DLV to dynamically generate
plans.

Another important part of each agent is the set of extended logic programs.
Each extended logic program represents its beliefs about the world in form of
facts and rules. For every percept, an agent stores that percept in the extended
logic program belief base (not to be confused with the Jason belief base). Then,
the belief revision function is applied. The belief revision function uses some

2 http://www.eclipse.org



Listing 4 Pathfinding Algorithm

1: while Q 6= ∅
2: take first entry (c, d c) from queue Q
3: check four adjacent cells c nb of cell c with distance value d c
4: for every c nb:
5: if c nb has distance value of 0 and is not an obstacle

6: put (c nb, d c + 1) into Q

kind of transformation of all extended logic programs within the belief base to
generate one consistent logic program. Calling an answer set solver like DLV
allows an agent to gain a new set of beliefs, which is mapped to Jason’s internal
belief base.

6 Agent Team Strategy

Since we consider only a single type of agent in the cows and herders scenario
every single agent can adopt every needed role. By doing so it can be part of a
dynamically formed group that is either looking for or driving a herd of cows.

For both the agents navigation and calculating the herds path to the corral,
we implemented a flood fill pathfinding algorithm, which starts filling at the
destination of the path. The pathfinding algorithm consists of two steps: setting
up a data structure for the search space, and then performing the search itself.
In the first step, we setup a distance map, where each entry corresponds to a
grid world cell. Each entry contains a number. The number value represents the
distance towards a target location, or a special value indicating that there is no
distance available. The distance is measured in four-way axis-parallel steps an
entity has to walk to reach a certain target location. That target location is the
reference point for setting up distance values for other cells, and is initialized
with 1. All other entries are set to zero, which indicates that no path to a target
location exists. All obstacles are initialized with a very high distance value, which
can never be achieved in cycle-free paths over the map. Then, the target location
coordinate and distance value is put into a FIFO queue. The algorithm sketched
in Listing 4 to compute a distance value for each cell.

In the second step, the path finding is performed, based on information stored
in the distance map. If the starting position has a value of 0, no path exists
and search is over. Otherwise, a path exists. The path calculation is rather
simple. For a given starting location, look at all cells directly reachable by allowed
movements (eight-way directions in common, or four-way if an agent is adjacent
to a switch). Choose the cell with the smallest distance value smaller than the
current location, and continue until a cell with a distance value of one is found.
Since the algorithm does not destroy information stored in the distance map,
it can also be used for a fast look-up of distances between cows and the corral
center, and cluster nearby cows to herds.



Thus, it can easily be determined which herd is closest to the corral and
which agent is closest to a herd or a switch. To avoid unnecessary movements if
the agents walk in close formation, agents are not seen as obstacles. Fences are
not seen as obstacles neither as having the intention to cross the fence implies
that another group member will open it. This is ensured by the group leader
during the task decomposition. Whenever it turns out that the group has to
pass a fence, the group leader will, according to the information other team
members communicated, send the agent closest to the switch to open it. In
addition to that, the group leader will also try to keep the group together by
sending another agent to open the fence on the other side, since it is not possible
for a single agent to open a fence and pass it at the same time. To drive a herd of
cows, the agents simply align in a row behind the herd in a distance causing the
cows to walk in the desired direction. Therefore, a simple formation algorithm
is used which takes care of obstacles. We do not provide for an explicit action to
obstruct opponent agents or to steal cows from the opponent team. Nevertheless,
we decided to modify the motives of some agents, causing them to prefer cows
in the enemy corrals. This led to a group of agents trying to steal the opponents
cows if in range.

As mentioned above, a group is coordinated by a group leader who is respon-
sible for decomposing the current task into subgoals and assigning them to the
other group members while considering which agent can fulfill each goal at the
lowest effort. Since the situations are subject to frequent change, only the very
next step the group will take is planned. The subgoals assigned to the single
agents require individual planning. For instance, an agent given the goal to open
a fence has to plan if and where to look for a switch and which way should be
taken to the destination. There is no coordination among the individual groups
which led to problems especially when two herding groups cross their ways.

Figure 5 shows a snapshot of four agents which currently pursue the goal to
drive a herd of cows into their own corral. They passed the first of two fences
in their way. Due to the fact that other fences are lying between the agents and
the cows a second agent adopted the door-opener role to keep the fence open
from the other side. Hence, the first door-opener can close up to the rest of the
group. The agent closest to the switch of the second fence is sent to open it. The
other agents line up in a row behind the herd of cows to drive them towards the
desired direction as mentioned earlier. In this special case, the last fence between
the agents and the cow is the same one that crosses the desired way the cows
should take. Therefore, the fence will be kept open from only one side without
trying to keep the group together by sending a second door opener from the
other side.

Initially we planned to exchange only relevant information on team level and
even less information on global level. It turned out that far to often important
information was missing which resulted in poor plans and behavior of the agents.
This is aggravated by the fact that every agent uses its own knowledge to calcu-
late paths, so we decided to exchange all new information an agent gets by its
own perceptions.



Fig. 5. Four agents working in a group to drive a herd of cows.

For future work, besides the coordination within the group, a global coor-
dination should be developed to avoid conflicts between the actions of different
groups and to take advantage of side effects caused by several groups with similar
goals.

7 Technical Details

During development, we used ordinary personal computers for coding and testing
the framework. Since our general and open approach required large times for
computing, for evaluation purposes, we had to either reduce the number of agents
or expand the time intervals during game steps. During the contest we used a
dedicated eight-core linux machine that was still not fast enough to ensure that
all agents would send their actions during the given interval. Although this had
not affected the correct execution of every agents BDI cycle, it would have led to
very slowly acting agents especially during group forming, being not competitive
in any case. On these grounds, we made a few decisions to increase our systems
speed. First, we replaced some generic logical parts of our framework by scenario-
specific Java equivalents, like a specialized way to handle the agents knowledge
of the world. Secondly, we striped off some complex parts in the agents team
strategy, like the dynamic group forming, which was replaced by static groups



with designated leaders. This led to an decreased amount of logical rules, and so
decreased the execution time of the answer set solver mentioned in Section 4.2.

Apart from these speed issues which will likely be subject to our future work
we had no technical problems with the framework. It ran stable during the whole
contest, not least because of the possibility to reset each agent’s connection to
the simulation without restarting the agent itself.

8 Discussion and Conclusion

During the first half of our project we designed and implemented a framework for
executing extended BDI agents. Although the requirements taken into account
during development were partially generated by the cows and herders scenario,
it was not tailored for the contest, but rather provides customizability in most
components. Using the GAIA methodology we designed a multi-agent system for
participating in the contest that builds on top of this framework. Due to the
abstract nature of the GAIA methodology we experienced no restrictions for the
development of the system.

The contest was not only a great way to fix many bugs and benchmark the
framework it was also a great opportunity to design a multi-agent system that
has to be competitive. During the matches against other teams with different
strategies we gained deep insights into our own framework. Intense discussions
on how to improve both the framework and the multi-agent system were set off
by the matches. It was a motivating way to learn about multi-agent systems
and knowledge engineering. Besides some technical bugs and inconsistencies in
the agents strategy the major issue we faced was the insufficient speed of our
implementation which to increase will be part of our future work. Since this was
the first time we participated in the contest we were happy with the complexity
of the scenario. However, we think it could be improved by requiring more long
term planning. Furthermore, it should not be possible to harm the opponent so
much by simply patrolling in its corral.
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