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Abstract. In this paper, we investigate the problem of contraction in
Defeasible Logic Programming (DeLP), a logic-based approach for defea-
sible argumentation. We develop different notions of contraction based on
both, the different forms of entailment implicitly existent in argumenta-
tion-based formalisms and the influence literals exhibit in the reasoning
process. We give translations of widely accepted rationality postulates
for belief contraction to our framework. Moreover we discuss on the ap-
plicability of contraction for defeasible argumentation and the role of
influence in this matter.

1 Introduction

While most of the past work in argumentation has been done on the study of rep-
resentation and inferential properties of different frameworks, the problem of be-
lief change—one of the most important problems in knowledge representation—
has not been investigated in depth so far, see [3] for a survey. Revision and the
dynamics of beliefs in general have been studied for classical logics since the sem-
inal paper [1]. There are also some proposals for dealing with belief change in
non-classical logics, e. g. for defeasible logic in [2]. Here we consider the problem
of contraction in the framework of Defeasible Logic Programming (DeLP) [4].

In DeLP, using a dialectical procedure involving arguments and counterar-
guments, literals can be established to be warranted, meaning that there are
considerable grounds to believe the literal being true. The straightforward ap-
proach to define the success of contracting a defeasible logic program P by a
literal l is to demand that l is not warranted anymore. This is similar to the
approaches taken for classical theories [1] where success is defined in terms of
non-entailment. In DeLP, however, there are three basic notions of “entailment”:
derivation (there are rules in P that allow to derive l), argument (there is an
argument for l), and warrant (there is an undefeated argument for l). These
notions lead to different alternatives of defining the success of a contraction.
In addition to these notions of entailment, we also investigate the notion of in-
fluence in order to gain more insights into the problem of contraction. Due to
the dialectical nature of the reasoning process employed in DeLP a literal can



exhibit influence on the warrant status of other literals independently of its own
warrant status. Contracting a program P by a literal l using the notion of war-
rant to define success still allows the dialectical procedure to use arguments for
l in changing the warrant status of another literal.

This paper is organized as follows. In Section 2 we give a brief overview on
the basic notions of Defeasible Logic Programming and continue with a thorough
investigation of the notion of influence in Section 3. We apply the developed
notions thereafter for investigating rationality postulates for contraction in our
framework in Section 4. In Section 5 we conclude with a discussion of related
and further work.

2 Defeasible Logic Programming

A single atom h or a negated atom ∼h is called a literal or fact. Rules are divided
into strict rules h ← B and defeasible rules h —< B with a literal h and a set
of literals B. A literal h is derivable from a set of facts and rules X, denoted
by X|∼ h, iff it is derivable in the classical rule-based sense, treating strict and
defeasible rules equally. A set X is contradictory, denoted X|∼ ⊥, iff both X|∼ h
and X|∼ ∼h holds for some h. A literal h is consistently derivable by X, denoted
by X|∼c h, iff X|∼ h and X 6|∼ ⊥. A defeasible logic program (de.l.p.) P is a
tuple P = (Π,∆) with a non-contradictory set of strict rules and facts Π and a
set of defeasible rules ∆. We write P|∼ h as a shortcut for Π ∪∆|∼ h.

Definition 1 (Argument, Subargument). Let h be a literal and let P =
(Π,∆) be a de.l.p. Then 〈A, h〉 with A ⊆ ∆ is an argument for h iff Π ∪A|∼c h
and A is minimal wrt. set inclusion. A 〈B, q〉 is a subargument of 〈A, h〉 iff
B ⊆ A.

〈A1, h1〉 is a counterargument to 〈A2, h2〉 at literal h, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such that Π ∪ {h, h1} is contradictory.

In order to deal with counterarguments, a formal comparison criterion among
arguments is used. Our results are independent of its choice, but as en example
we use the generalized specificity relation � [4]. Then, 〈A1, h1〉 is a defeater of
〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 is a
counterargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉 � 〈A, h〉 (proper
defeat) or 〈A1, h1〉 6� 〈A, h〉 and 〈A, h〉 6� 〈A1, h1〉 (blocking defeat).

Definition 2 (Acceptable Argumentation Line). Let Λ = [〈A1, h1〉, . . . ,
〈Am, hm〉] be a finite sequence of arguments. Λ is called an acceptable argu-
mentation line, iff 1.) every 〈Ai, hi〉 with i > 1 is a defeater of 〈Ai−1, hi−1〉
and if 〈Ai, hi〉 is a blocking defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists,
then 〈Ai+1, hi+1〉 is a proper defeater of 〈Ai, hi〉, 2.) Π ∪A1 ∪A3 ∪ . . . is non-
contradictory, 3.) Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory, and 4.) no 〈Ak, hk〉
is a subargument of some 〈Ai, hi〉 with i < k.

In DeLP a literal h is warranted, if there is an argument 〈A, h〉 which is non-
defeated in the end. To decide whether 〈A, h〉 is defeated or not, every acceptable
argumentation line starting with 〈A, h〉 has to be considered.



Definition 3 (Dialectical Tree). Let P = (Π,∆) be a de.l.p. and let 〈A0, h0〉
be an argument. A dialectical tree for 〈A0, h0〉, denoted T 〈A0, h0〉, is defined as
follows: The root of T 〈A0, h0〉 is 〈A0, h0〉. Let 〈An, hn〉 be a node in T 〈A0, h0〉
and let [〈A0, h0〉, . . . , 〈An, hn〉] be a sequence of nodes. Let 〈B1, q1〉, . . . , 〈Bk, hk〉
be the defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k such that
[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is an acceptable argumentation line, the node
〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉, 〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree
is defeated or not, it is necessary to perform a bottom-up-analysis of the tree.
Every leaf of the tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “undefeated”. Otherwise
it is marked “undefeated”. Let T ∗〈A0, h0〉 denote the marked dialectical tree of
T 〈A0, h0〉. We call a literal h warranted in a DeLP P, denoted by P|∼wh, iff there
is an argument 〈A, h〉 for h in P such that the root of the marked dialectical
tree T ∗〈A, h〉 is marked “undefeated”. Then 〈A, h〉 is a warrant for h.

We will need some further notation in the following. Let P = (Π,∆) and
P ′ = (Π ′, ∆′) be some programs and let r be a rule (either defeasible or strict). P
is a subset of P ′, denoted by P ⊆ P ′, iff Π ⊆ Π ′ and ∆ ⊆ ∆′. It is r ∈ P if either
r ∈ Π or r ∈ ∆. We also define P∪r =def (Π,∆∪{r}) and P∪A =def (Π,∆∪A)
for an argument A.

3 Influence in Defeasible Logic Programs

It may be the case that an argument A for l is defeated in its own dialectical
tree and not defeated in another tree [6]. Thus, these undefeated arguments for
l may exhibit some influence one the marking status of arguments for another
literal. Hence, by employing a contraction operation that bases its success only
on the warrant status of the literal under consideration, it should be kept in
mind that this literal might still have influence on the reasoning behavior in the
contracted program. We therefore continue by investigating different notions of
influence in more depth. Our first approach bases on an observation made when
considering the removal of arguments for the literal l that has to be contracted.

Definition 4 (Trimmed Dialectical Tree). Let T be some dialectical tree
and l a literal. The l-trimmed dialectical tree T \t l is the same as T but every
subtree T ′ of T with root 〈A1, h〉 and A2 ⊆ A1 such that 〈A2, l〉 is an argument
for l is removed from T .

Note, that a trimmed dialectical tree is not a dialectical tree (as it is not com-
plete) but that the marking procedure is still applicable in the same way.

Proposition 1. Let l be a literal and T a dialectical tree. If T \t l is not empty
and the marking of the root of T ∗ differs from the marking of the root of (T \t l)∗
then there is an argument 〈A, k〉 with A′ ⊆ A such that 〈A′, l〉 is an argument l
and 〈A, k〉 is undefeated in T ∗.



Proposition 1 establishes that only an argument for l that is undefeated in T ∗
can possibly exhibit some influence. This leads to our first and most general
definition of influence.

Definition 5 (Argument Influence IA). A literal l has argument influence
in P, denoted by l  A P, if, and only if there is an argument 〈A1, h〉 with
A2 ⊆ A1 such that 〈A2, l〉 is an argument for l and 〈A1, h〉 is a node in a
dialectical tree T ∗ and 〈A1, h〉 is marked “undefeated” in T ∗.

However, it is not the case that every argument that contains a subargument
for l and is undefeated in some dialectical tree necessarily exhibits reasonable
influence. This leads to our next notion of influence that only takes arguments
into account which, on removal, will change the marking of the root.

Definition 6 (Tree Influence IT ). A literal l has tree influence in P, denoted
by l  T P, if and only if there is a dialectical tree T ∗ such that either 1.) the
root’s marking of T ∗ differs from the root’s marking of (T \t l)∗ or 2.) the root
of T ∗ is marked “undefeated” and (T \t l)∗ is empty.

In order to establish whether a literal l exhibits tree influence every dialectical
tree is considered separately. But recall, that for a literal h being warranted only
the existence of a single undefeated argument is necessary. These considerations
result in our final notion of warrant influence.

Definition 7 (Warrant Influence Iw). A literal l has warrant influence in
P, denoted by l  w P, if and only if there is a literal h such that either 1.) h
is warranted in P and for every dialectical tree T ∗ rooted in an argument for h
it holds that the root of (T \t l)∗ is “defeated” or (T \t l)∗ is empty, or 2.) h
is not warranted in P and there is a dialectical tree T ∗ with the root being an
argument for h and it holds that the root of (T \t l)∗ is “undefeated”.

We conclude this section by providing a formal result that follows the iterative
development of the notions of influences we gave above.

Proposition 2. Given a de.l.p. P it holds that if l  w P then l  T P, and if
l T P then l A P.

4 Rationality Postulates for Contraction in DeLP

The classic contraction operation K − φ for propositional logic is an operation
that satisfies two fundamental properties, namely φ 6∈ Cn(K−φ) and K−φ ⊆ K.
Hereby, the strong consequence operator of propositional logic and the resulting
set of consequences Cn(K) is the measure for the success of the contraction
operation and therefore the scope of the considered effects of the operation.
Given that we are dealing with a logic very different from propositional logic
that is based on a dialectical evaluation of arguments we also have to consider
a different scope on the effects for an appropriate contraction operation in this
setting. For a de.l.p. P its logical scope is a set of literals that are relevant in a
contraction scenario, i. e. that can be derived from P in some way, or that has
some influence on P.



Definition 8 (Logical Scope). For P we define a class of logical scopes S∗(P)
via Sd(P) = {l | P |∼ l}, Sw(P) = {l | P |∼wl}, SIA(P) = {l | l  A P},
SIT (P) = {l | l T P}, and SIw(P) = {l | l w P}.

Proposition 3. For any d.e.lp. P it holds that Sw(P) ⊆ SIw(P) ⊆ SIT (P) ⊆
SIA(P) ⊆ Sd(P).

Based on the notion of scopes we propose specifications of contraction operators
with different scopes by sets of postulates that resemble the rationality postulates
for contraction in classic belief change theory.

Definition 9. For a de.l.p. P and a literal l, let P−l = (Π ′, ∆′) be the result of
contracting P by l. We define the following set of postulates for different scopes
∗ with ∗ ∈ {d,w, IT , IA, Iw}.
(Success∗) l 6∈ S∗(P − l)
(Inclusion) P − l ⊆ P
(Vacuity∗) If l 6∈ S∗(P), then P − l = P
(Core-retainment∗) If k ∈ P (either a fact or a rule) and k 6∈ P−l, then there

is a de.l.p. P ′ such that P ′ ⊆ P and such that l 6∈ S∗(P ′) but l ∈ S∗(P ′∪{k})

These postulates represent the adaptation of applicable postulates from belief
base contraction [5] to de.l.p. program contraction. The first postulate defines
when the contraction is considered successful, which in our case is dependent on
the scope of the contraction. The second postulate states that we are actually
contracting the belief base. The third postulate requires that if the literal to be
contracted is out of the scope of the operator then nothing should be changed,
while the fourth postulate states that only relevant facts or rules should be erased
and hence demands for minimality of change.

Definition 10. P−l is called a ∗-contraction if and only if it satisfies (Success∗),
(Inclusion), (Vacuity∗) and (Core-retainment∗) with ∗ ∈ {d,w, IT , IA, Iw}.

In the following we are investigating constructive approaches based on kernel
sets for defining ∗-contraction operations (with ∗ ∈ {d,w, IT , IA, Iw}).

Definition 11. Let P = (Π,∆) be a de.l.p. and let α be a literal. An α-kernel H
of P is a set H = Π ′ ∪∆′ with Π ′ ⊆ Π and ∆′ ⊆ ∆ such that 1.) (Π ′, ∆′)|∼ α,
2.) (Π ′, ∆′) 6|∼ ⊥, and H is minimal wrt. set inclusion. The set of all α-kernels
of P is called the kernel set and is denoted by P |∼ α.

Note that the notion of an α-kernel is not equivalent to the notion of an argument
as an argument consists only of a set of defeasible rules while an α-kernel consists
of all rules needed to derive α, in particular strict rules and facts.

As in [5] we define contractions in terms of incision functions. A function σ
is called an incision function if (1) σ(P |∼ α) ⊆

⋃
P |∼ α and (2) ∅ ⊂ H ∈ P |∼ α

implies H∩σ(P |∼ α) 6= ∅. This general definition for an incision function removes
at least one element in every kernel set thus inhibiting every derivation of α. Such
an incision function is adequate for realizing a d-contraction but it is too strict for
our more general notions of contraction. We therefore drop the second condition
above for incision functions used in this work.



Definition 12. Let P be a de.l.p., let α be a literal, and let P |∼ α be the kernel
set of P with respect to α. A function σ is a dialectical incision function iff
σ(P |∼ α) ⊆

⋃
P |∼ α.

Using dialectical incision functions we can define a contraction operation in DeLP
as follows.

Definition 13. Let σ be a dialectical incision function for P = (Π,∆). The
dialectical kernel contraction −σ for P is defined as P−σα = (Π \σ(P |∼ α), ∆ \
σ(P |∼ α)). Conversely, a contraction operator ÷ for P is called a dialectical
kernel contraction if and only if there is some dialectical incision function σ for
P such that P ÷ α = P−σα for all literals α.

Due to lack of space we give only the definition for IT -incision function, the
other incision functions are defined analogously.

Definition 14. Let (Π,∆) be a de.l.p., α a literal, and σ be a dialectical incision
function with σ((Π,∆) |∼ α) = S. Then σ is an IT -incision function if 1.) α 6 T
(Π \ S,∆ \ S) and 2.) there is no S′ ⊂ S, such that S′ satisfies 1.).

Proposition 4. Let (Π,∆) be a de.l.p., α a literal, and let ∗ ∈ {d, IA, IT , Iw, w}.
If σ is a dialectical ∗-incision function then −σ is a ∗-contraction.

5 Conclusions

In this work we started the investigation of contraction operations in defeasible
logic programs. We identified different approaches to contraction depending on
the notion of success of the operation. Besides the notions based on entailment
and warrant we elaborated on more fine grained differences based on notions
of influence. This lead to the definition of rationality postulates for each type
of contraction. Furthermore, we showed that each contraction operation is con-
structible using kernel sets in the style of classic belief contraction.
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