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Abstract

For first-order probabilistic knowledge representation,
grounding is an important means to define a semantics for
knowledge bases which extends the propositional semantics.
However, naive approaches to grounding may give rise to
conflicts and inconsistencies, in particular, if the formalism
involves point probabilities, in contrast to using approx-
imative or interval-based probabilities. In this paper, we
formulate properties that can guide the search for suitable
grounding operators. Moreover, we present three operators
the most sophisticated of which implements a stratified use
of a specificity relation so that more specific information on
objects is given priority over less specific information.

Introduction
Probabilistic reasoning in relational representations of
knowledge is a very active and controversy research area. In
the past few years the fields of probabilistic inductive logic
programming and statistical relational learning put forth a
lot of proposals that deal with combining traditional proba-
bilistic models of knowledge like Bayes nets or Markov nets
(Pearl, 1998) with first-order logic, see (Getoor and Taskar,
2007) for an introduction. In most of these proposals this
is done by appropriately grounding the parts of the knowl-
edge base that are needed for answering a particular query
and treating this grounded parts as a propositional knowl-
edge base. In this paper, we address the general problem
of grounding relational knowledge bases in order to apply
a propositional probabilistic reasoner. In particular, we are
interested in finding strategies that yield consistent ground
knowledge bases for problematic relational representations
of knowledge. To this end we employ a relational extension
of probabilistic conditional logic.

In (propositional) probabilistic conditional logic knowl-
edge is captured using conditionals of the form (φ |ψ)[α]
with some formulas φ, ψ of a given propositional language
and α ∈ [0, 1]. A probabilistic conditional of this form par-
tially describes an (unknown) probability distribution P ∗ by
stating that P ∗(φ |ψ) = α holds. In contrast to Bayes nets
probabilistic conditional logic does not demand to fully de-
scribe a probability distribution but only to state constraints
on it. Reasoning can be performed in probabilistic con-
ditional logic by performing model-based inference based
on the one probability distribution with maximum entropy

(Kern-Isberner, 2001) which satisfies several desirable prop-
erties for commonsense reasoning.

The contribution of this paper is threefold. First, we intro-
duce a relational extension of probabilistic conditional logic
and define its semantics. Second, we employ the principle
of maximum entropy to reason within this relational exten-
sion of probabilistic conditional logic. The final and most
significant contribution of this paper lies in investigating the
problem of grounding relational knowledge bases and thus
in filling the gap between the first two contributions. Usu-
ally, applying universal instantiation on probabilistic first-
order knowledge bases yields an inconsistent ground knowl-
edge base that is useless for reasoning. Consider the prob-
abilistic knowledge base {(likes(X,Y ) | elephant(X) ∧
keeper(X))[0.9], (likes(X, fred) | elephant(X))[0.3]} rep-
resenting the commonsense knowledge that elephants usu-
ally like their keeper, but they mostly do not like keeper
Fred. When instantiating variable X with any elephant, and
variable Y with fred, then a contradiction arises, as the
probabilities of the corresponding rules are not compatible.
Our approach here lies in constraining the instantiations of
probabilistic rule schemata in order to prevent the grounded
knowledge base from becoming inconsistent. To this end,
we develop a list of desirable properties of such “grounding
operators” that capture the idea that the grounding of a re-
lational knowledge base should be consistent and maximal.
We propose three strategies that aim at removing instances
of conditionals that are problematic for consistency in some
sense. The final of these applies an implicit specificity or-
dering of conditionals to prioritize their instantiations, thus
realizing the possibility to model default rules with excep-
tions.

The rest of this paper is organized as follows. In the
next section we introduce a first-order conditional logic and
present our semantical approach. After that, we discuss the
problem of grounding knowledge bases by first developing
a list of desirable properties of grounding operators and then
propose three different variants of grounding operators. Fi-
nally, we briefly review some related work and conclude.

First-Order Probabilistic Conditional Logic
As a base of our probabilistic language, we use a fragment L
of a first-order language over a signature Σ containing only
predicates and constants, the formulas of which are well-



formed according to the usual standards, but without any
quantifiers. L may be sorted, i. e. the constants U = UL
and the variables V = VL of L are partitioned into differ-
ent sorts, and the arguments of the predicates may be sorted
as well, so that only part of all possible instantiations via
grounding substitutions are allowed. A grounding substi-
tution θ : VL → UL instantiates variables with constants.
It is extended to formulas in the usual way, e. g. we define
θ(p(X,Y )∧q(X)) = p(θ(X), θ(Y ))∧q(θ(X)). A ground-
ing substitution θ is legal if any variable of sort S in r is
mapped to a constant of sort S. We extend this relational
language L to a probabilistic conditional language by intro-
ducing conditionals and probabilities.

Definition 1. A relational probabilistic conditional r is
an expression of the form r = (φ |ψ)[α] with formulas
φ, ψ ∈ L and α ∈ [0, 1]. The conditional and the prob-
abilistic parts of r are denoted by Cnd(r) = (φ |ψ) and
Pr(r) = α, respectively.

Conditionals r = (φ |ψ)[α] and r′ = (φ′ |ψ′)[α′] are qual-
itatively equivalent, denoted by Cnd(r) ≡ Cnd(r′), if both
ψ ≡ ψ′ and ψ∧φ ≡ ψ′∧φ′ hold, cf. (Kern-Isberner, 2001).

A conditional r is called ground iff r contains no vari-
ables. Non-ground conditionals can be grounded by legal
grounding substitutions. The language of all relational prob-
abilistic conditionals is denoted by (L |L), and the restricted
language on all ground conditionals using constants from U
is denoted as (L |L)U . A set R of relational probabilistic
conditionals is called a knowledge base.

Example 1. As a running example in this pa-
per, we consider the language Lzoo with a set
of constants U = UElephant ∪ UKeeper with
UElephant = {dumbo, clyde, tuffi}, UKeeper =
{fred , hank} and predicates likes(Elephant ,Keeper) and
givesPeanuts(Keeper ,Elephant), the arguments of which
have to be of the proper sort. Then both likes(dumbo, hank)
and ¬likes(dumbo, fred) ∨ likes(clyde, hank) are formu-
las in Lzoo while likes(hank , hank) is not. Moreover,
likes(X,Y ) with X ∈ VElephant and Y ∈ VKeeper is a
formula of the language.

Let us assume that usually elephants like their keepers.
But if a keeper does not give his elephant peanuts on a regu-
lar basis he makes himself unpopular. Then our knowledge
base can be given as

R = {(likes(X,Y ) | ¬givesPeanuts(Y,X))[0.1],

(likes(X,Y ))[0.9], (givesPeanuts(hank , X))[1.0]}

Ground conditionals r ∈ (L |L)U can be interpreted as in
the propositional case, i. e. P |= (φ|ψ)[α] iff P (φ|ψ) = α
and P (ψ) > 0, where P is a probability distribution over
the Herbrand base of L, and P (φ) =

∑
ω∈Ω,ω|=φ P (ω) for

any classical ground formula φ. Here Ω is the set of all Her-
brand interpretations of L and provides a possible worlds
semantics for the classical part of L. Non-conditional for-
mulas (φ)[α] can be considered consistently as conditionals
with tautological premise (φ | >)[α], so that no explicit dis-
tinction between conditionals and flat formulas is necessary
in the following. In the general case, if r contains variables,

different groundings may yield different conditional prob-
ability values. This could be handled by assigning prob-
abilistic intervals to open conditionals, as is done e. g. in
(Kern-Isberner and Lukasiewicz, 2004). In our framework,
however, we stick to pointwise probabilities, so basically, all
groundings of a relational conditional should hold with the
same probability. But this may give rise to conflicts among
the formulas of a knowledge base, as the following example
shows.
Example 2. We consider the knowledge base R from
Ex. 1 and extend R with the specific information about
the keeper Fred. We observed that Fred is not that pop-
ular among the elephants. Therefore we add the con-
ditional (likes(X, fred))[0.3] to the knowledge base R.
But instantiations of this new conditional for elephants
X conflict with instantiations of (likes(X,Y )[0.9] for
Y = fred . For instance, for X = dumbo, the con-
straints in R imply P (likes(dumbo, fred)) = 0.3 and
P (likes(dumbo, fred)) = 0.9, which can not hold at the
same time.
In the example above, obviously, Fred is an exceptional
keeper, and a plain grounding is not able to handle such
exceptions appropriately. Hence we need more elaborate
grounding strategies to base semantics for the first-order
probabilistic language (L |L) on propositional grounding.
For any set S, let P(S) denote the power set of a S.
Definition 2. A grounding operator (GOP) G is a function
G : P((L |L))→ P((L |L)U ).
A GOP G takes a general relational knowledge base R and
maps it to a ground one G(R) by instantiating variables ac-
cording to the language of the knowledge base and some
strategy. By doing so we may use the propositional proba-
bilistic semantics for the first-order case. If P is a probabil-
ity distribution over the Herbrand base of L and r is a rela-
tional probabilistic conditional, then we define P |=G r iff
P |= r∗ for all r∗ ∈ G({r}). This is a common method in re-
lational probabilistic knowledge representation, cf. e. g. the
Markov logic networks (Getoor and Taskar, 2007; Ch. 12),
or (Fisseler, 2009). However, in our framework of using
declarative probabilistic conditionals as constraints, we have
to find reasonable grounding strategies. The actual defini-
tion of a GOP relies on grounding substitutions for vari-
ables. For a conditional r let Γ(r) denote the set of a legal
grounding substitutions for r. The most simple approach to
ground a knowledge base is universal instantiation which
naively instantiates every variable with any constant of the
same sort.
Definition 3. The naive grounding operator GU is defined
as GU (R) := {θ(r) | r ∈ R, θ ∈ Γ(r)}.
Although the universal instantiation may give rise to con-
flicts, as Ex. 2 shows, it will serve as a foundation for other
grounding strategies to be developed in the next section.

As a (consistent) knowledge base R usually specifies in-
complete information, one often is interested in applying
inductive representation techniques that help computing a
single probability distribution which describes R in a most
appropriate way, giving a complete description of the prob-
lem area at hand. This can be done using methods based



on maximum entropy, which feature several nice properties
(Kern-Isberner, 2001). The entropy H is an information-
theoretic measure on probability distributions and is defined
as H(P ) = −

∑
ω∈Ω P (ω) logP (ω). By employing the

principle of maximum entropy one can determine the sin-
gle probability distribution that is the optimal model for a
knowledge base R in an information-theoretic sense:

PME
R = arg max

P |=R
H(P )

This principle can also be applied to consistent ground re-
lational knowledge bases G(R), therefore PME

G(R) can be cal-
culated in this case. So, putting together the grounding strat-
egy employed by an operator G and the maximum entropy
principle, we obtain the expressive relational maximum en-
tropy semantics (RME) for conditional probabilistic knowl-
edge bases: A conditional q ∈ (L |L) is RME-entailed by
the knowledge baseR under the GOP G iff

R |=ME
G q iff PME

G(R) |=G q, (1)

i. e. iff for all q∗ ∈ G({q}), it holds that PME
G(R) |= q∗.

Reasoning under RME semantics can be divided into
three steps: 1.) ground the knowledge base with a GOP G,
2.) calculate the probability distribution PME

G(R) with maxi-
mum entropy for the grounded instance G(R), and 3.) cal-
culate whether the grounding of a given query is fulfilled by
the distribution PME

G(R). An overview of this process is given
in Fig. 1.

Relational KB:
R ⊆ (L |L)

Query:
q ∈ (L |L)

Grounding operator:
G : P((L |L)) → P((L |L)U )

ME-Inference:
PME
G(R) = arg max

P |=G(R)
H(P ) PME

G(R) |= G({q}) ?

qR

G(R) G({q})

PME
G(R)

Figure 1: The RME inference process

Grounding Relational Knowledge Bases
In this section we investigate several possibilities for
grounding relational knowledge bases. We already intro-
duced the most simple grounding strategy—the universal
instantiation—in the previous section. But when dealing
with uncertain and incomplete information, universal instan-
tiation might not always be an appropriate means to treat re-
lational probabilistic conditionals. As in default logic, one
often wants to be able to represent exceptions to rules and
universal instantiation often yields an inconsistent and there-
fore useless ground knowledge.

Example 3. We continue Ex. 2 and consider the knowledge
base R = {r1, r2, r3} with r1 = (likes(X,Y ))[0.9], r2 =
(likes(X, fred))[0.3], and r3 = (likes(clyde, fred))[1]. Ob-
viously, the naive grounding of R is inconsistent. In the
following, we will use this example to evaluate our GOPs.

Grounding a relational knowledge base with a specific
grounding strategy is of crucial concern as the result, i. e.
the ground knowledge base, directly influences the possible
inferences of the original knowledge base via |=ME

G . In the
following, we develop several common sense properties a
meaningful GOP G should satisfy. To this end, letR denote
a knowledge base and let G : P((L |L))→ P((L |L)U ) be
a GOP.

Our first property relates the relational case of probabilis-
tic reasoning to the propositional case.

(Compatibility) If r is ground then G({r}) = {r}.
Property (Compatibility) ensures that ground knowledge
should always be preserved when grounding a knowledge
base.

The rationale behind the next property is that ground
knowledge represents factual knowledge on specific individ-
uals and should not be neglected.

(Stability) If r ∈ R is ground then r ∈ G(R).

Notice the difference between the properties (Compatibil-
ity) and (Stability). While (Compatibility) is only concerned
with the behavior of a single ground rule, (Stability) en-
sures that ground probabilistic knowledge is preserved in the
whole knowledge base.

The following property constrains our investigation to
natural GOPs, in the sense that conditionals are just instan-
tiated but no probabilities are modified.

(Structural Preservation) For each r∗ ∈ G(R) there is an
r ∈ R and θ ∈ Γ(r) such that r∗ = θ(r).

Satisfaction of (Structural Preservation) ensures that the
qualitative part of a conditional is only modified by instanti-
ating variables and the quantitive part is not modified under
the grounding process. If (Structural Preservation) is ful-
filled for G each ground conditional in G(R) can be traced
back to at least one relational conditional from which it was
instantiated. In this case, we denote by r →RG r∗ that con-
ditional r∗ ∈ G(R) has been instantiated from conditional
r ∈ R (there may be multiple r satisfying this property).

Our first three properties are related as follows.

Proposition 1. If G satisfies (Stability) and (Structural
Preservation), then G satisfies (Compatibility).

While the above properties are concerned with minimality
conditions on the result of grounding the next property deals
with a maximum condition.

(Upper Bound) It holds that G(R) ⊆ GU (R).

The property (Upper Bound) ensures that the universal in-
stantiation is an upper bound for any reasonable GOP. In
particular, this means that no new conditional is “invented”
by G. One can see there is a trivial relationship between the
property (Upper Bound) and (Structural Preservation).



Proposition 2. A GOP G satisfies (Structural Preservation)
if and only if G satisfies (Upper Bound).
Grounding a knowledge base makes only sense when there
is a chance that the resulting ground knowledge base is con-
sistent. An obvious flaw of a knowledge base is the exis-
tence of direct conflicts, i. e. conditionals that are qualita-
tively equivalent but differ in their probabilities.
Definition 4. Two conditionals r, r′ are in direct conflict,
denoted by r ⊥ r′, if Cnd(r) ≡ Cnd(r′) and Pr(r) 6=
Pr(r′).
For example, the two conditionals (p(X) | q(X))[0.3] and
(p(Y ) | q(Y ))[0.4] are in direct conflict. A knowledge base
R has a direct conflict if there are two conditionals r, r′ ∈ R
that are in direct conflict. The existence of conditionals that
are in direct conflict renders these two conditionals useless
and we require any GOP to map such corrupt knowledge
bases to the empty knowledge base.

(Rationality) IfR has a direct conflict then G(R) = ∅.
The demand for (Rationality) makes clear that we do not ad-
dress merging problems here, our strategies aim at avoiding
syntactical conflicts.

A crucial property of a GOP G is that it achieves a con-
sistent grounding, i. e. a ground knowledge that has at least
one model.

(Consistency) G(R) is consistent for anyR.

However, consistency is hard to achieve as it does not only
depend on the grounding strategy but on the probabilistic
structure of the knowledge base itself. Consider the follow-
ing example.
Example 4. LetR = {(a | b)[1], (a)[0], (b)[1]}. R does not
contain any predicates with arity greater zero. So any GOP G
that satisfies at least (Stability) yields R ⊆ G(R). Further-
more, R is inherently inconsistent and without neglecting
one (ground) conditional or manipulating the probabilities,
consistency cannot be achieved in G(R).
Example 4 suggests that the demand for general consistency
is too hard for reasonable GOPs. In the following we pro-
pose two weakened forms of consistency that are more ra-
tional for a meaningful GOP. The first property ensures that
there are no direct conflicts in the ground knowledge base,
i. e. conditionals that have the same qualitative structure but
differ in their quantitative structure. Obviously, any ground
knowledge base that has a direct conflict is inherently incon-
sistent.

(Conflict Freeness) G(R) has no direct conflicts.

(Conflict Freeness) is a strictly weaker property as (Consis-
tency) as the following proposition shows.
Proposition 3. If G satisfies (Consistency) then G satisfies
(Conflict Freeness).
The other direction is not always true as Ex. 4 showed.
There, G(R) has no direct conflict but still is inconsistent.

(Maximality) Let G satisfy (Conflict Freeness). For all
r ∈ GU (R) \ G(R) it holds that G(R) ∪ {r} has a di-
rect conflict.

The property (Maximality) further refines the notion of con-
flict freeness as we further impose the grounding to be max-
imal.

The above properties are reasonable demands for a GOP.
In the rest of this subsection, we will discuss further proper-
ties that appear reasonable at first sight. One of the simplest
properties for functions in general is monotonicity.

(Monotonicity) For anyR ⊆ R′ it holds G(R) ⊆ G(R′).

For the same reasons as in default logic, (Monotonicity) is
not a desirable property when dealing with rules with excep-
tions. A GOP that satisfies (Monotonicity) is not able to ap-
propriately reason, e. g., with the knowledge base in Ex. 3.
There, a knowledge base just consisting of the conditional
(likes(X,Y ))[0.9] should yield the universal instantiation as
grounding for any rational GOP. As a consequence, any op-
erator fulfilling (Monotonicity) and at least (Conflict Free-
ness) must completely neglect the exceptional knowledge of
any extension of this knowledge base. This discussion also
leads to the consideration of the following property.

(Minimality) Let G satisfy (Structural Preservation). For
each conditional r ∈ R there exists an r∗ ∈ G(R) with
r →RG r∗.

(Minimality) ensures that no conditional is ignored when
grounding a knowledge base. In general, this demand seems
appropriate but highly depends on the population under con-
sideration. As a counterexample to this demand (taken from
(Delgrande, 1998)) consider the conditional “Lemons are
yellow”. But due to a rare disease, every lemon in our do-
main is actually green and thus an exception to the condi-
tional. Although the conditional represents default knowl-
edge the actual population might not lead to any true in-
stance.

Cautious Grounding
Recalling Ex. 3 one can see that the instantiations of differ-
ent conditionals using the constants clyde and fred are in
direct conflict. As Clyde and Fred are exceptional individ-
uals the instantiation of conditionals r1 and r2 using these
constants should be prohibited. Our first approach to achieve
this is to completely ignore individuals that already appear
within the knowledge base when instantiating the condition-
als. By doing so, only conditionals that mention these in-
dividuals in the first place are carried over to the ground
knowledge base. We formalize this intuition by defining the
cautious grounding operator as follows. For this let im(f)
denote the image of a function f and Con(R) the set of
constants that appear in a knowledge baseR.
Definition 5. The cautious grounding operator Gca is de-
fined as

Gca(R) = {θ(r) | r ∈ R, θ ∈ Γ(r), im(θ)∩Con(R) = ∅}
ifR has no direct conflicts, and Gca(R) = ∅ otherwise.
The cautious GOP is very rigorous in the selection of suit-
able instantiations for the individual conditionals as no con-
stant is instantiated in any other conditional, even if these
conditionals might not cause conflicts in the final ground
knowledge base.



Example 5. We continue Ex. 3. When grounding R with
the cautious GOP Gca this yields the ground knowledge base
Gca(R) depicted in the right column of Tab. 1. Note, that
predicates and constants have been abbreviated by their first
letters, respectively.

R Gca(R)

r1 : (l(X,Y ))[0.9] →RGca (l(d, h))[0.9]

(l(g, h))[0.9]

r2 : (l(X, f))[0.1] →RGca (l(d, f))[0.3]

(l(g, f))[0.3]

r3 : (l(c, f))[1] →RGca (l(c, f))[1]

Table 1: Cautious grounding

Theorem 1. The cautious GOP Gca satisfies (Compatibil-
ity), (Stability), (Structural Preservation), (Upper Bound),
(Rationality), and (Conflict Freeness).

Obviously, Gca does not satisfy (Consistency), cf. Ex. 4.
Furthermore, Gca does not satisfy (Maximality) as in Ex. 5
the instance (likes(c, h))[0.9] of (likes(X,Y ))[0.9] can be
added to Gca(R) without violating (Conflict Freeness). The
operator Gca also does not satisfy (Monotonicity) and (Min-
imality).

Conservative Grounding
The cautious grounding is very rigorous in removing in-
stances of conditionals as Ex. 5 illustrates. A major draw-
back of this strategy is that it fails to model exceptions ade-
quately. As Ex. 3 shows, the major culprit for an inconsis-
tent ground knowledge base are instances that are in direct
conflict. In contrast to the cautious grounding strategy the
conservative grounding strategy is not founded on the han-
dling of exceptional constants of the knowledge base but on
direct conflicts of instances of conditionals itself.
Definition 6. Let R be a knowledge base. The conflict set
�(R) ofR consists of all conditionals ofR that are in direct
conflict: �(R) = {r ∈ R | ∃r′ ∈ R : r ⊥ r′}.
The conservative grounding strategy simply removes all di-
rect conflicts from the universal instantiation.
Definition 7. The conservative grounding operator Gco is
defined as

Gco(R) = GU (R) \ �(GU (R))

ifR has no direct conflicts, and Gco(R) = ∅ otherwise.
Example 6. We continue Ex. 3. When grounding R with
the conservative GOP Gco this yields the ground knowledge
base Gco(R) depicted in the right column of Tab. 2.
Theorem 2. The conservative GOP Gco satisfies (Compati-
bility), (Structural Preservation), (Upper Bound), (Rational-
ity), and (Conflict Freeness).

In contrast to the cautious grounding, the conservative
grounding does not satisfy (Stability) as can be seen in Ex. 6.

R Gco(R)

r1 : (l(X,Y ))[0.9] →RGco (l(c, h))[0.9]

(l(d, h))[0.9]

r2 : (l(X, f))[0.3] →RGco –

r3 : (l(c, f))[1] →RGco –

Table 2: Conservative grounding

Specificity Grounding
Our final approach for a rational GOP takes a more sophis-
ticated direction when determining instances of condition-
als that should be neglected in the final ground knowledge
base. More precisely, we employ specificity (Delgrande
and Schaub, 1997) as a means to sort out conditionals that
carry outdated information when more specific information
is available. Our understanding of specificity relies on the
subset relation of the universal instantiations of different
conditionals. A knowledge base R is a qualitative subset
of a knowledge base R′, denoted by R v R′, if for every
r ∈ Rwe can find an r′ ∈ R′ such that Cnd(r) ≡ Cnd(r′).
R is a strict qualitative subset ofR′, denoted byR @ R′, if
R v R′ andR′ 6v R.
Definition 8. A conditional r is less specific than a condi-
tional r′, denoted by r ≺ r′, if and only if GU ({r′}) @
GU ({r}).
Notice that the relation ≺ is both asymmetric and transitive.
If r is no less specific than r′ and r′ is no less specific than
r, then r and r′ are incomparable, denoted by r � r′.
Example 7. We continue Ex. 3. There, the con-
ditional (likes(X, fred))[0.3] is less specific than
(likes(clyde, fred))[1] and (likes(X,Y ))[0.9] is less
specific than (likes(X, fred))[0.3].
Our aim is to define the specificity GOP to prefer in-
stances of more specific conditionals over instances of less
specific conditionals. For instance, in Ex. 3 we want
to remove all instances of the least specific conditional
(likes(X,Y ))[0.9] that are in conflict with instances of the
conditional (likes(X, fred))[0.3]. However, some condi-
tionals cannot be compared by the specificity relation but
their instances might still be conflicting.
Example 8. Consider the conditionals r′1 =
(likes(clyde, Y ))[α] and r′2 = (likes(X, fred))[β] with
α 6= β. It holds r′1 � r′2 but there are also conflicting in-
stances (likes(clyde, fred))[α] and (likes(clyde, fred))[β].
To deal with incomparable conditionals we choose a con-
servative approach. When instances of conditionals are in
conflict we choose the instance of the more specific condi-
tional, if possible, and otherwise use the conservative GOP
and remove all conflicting instances. Thus, the problematic
cases are instances which directly conflict and whose origi-
nal conditionals are incomparable.
Definition 9. Let r1 →RG r∗1 and r2 →RG r∗2 . If r1 � r2 and
r∗1 ⊥ r∗2 we say the instance r∗1 is incomparably conflicting
to the instance r∗2 , denoted by r∗1 × r∗2 .



Notice that × is symmetric as both ⊥ and � are symmetric.
To be able to order instances of conditionals by specificity

of these conditionals we start by considering the universal
instantiation GU (R) of a knowledge baseR and remove any
incomparably conflicting instances.
R× = GU (R) \ {r ∈ GU (R) | ∃r′ ∈ GU (R) : r × r′}

Now, we can partitionR× by specificity as follows.
Definition 10. Let R be a knowledge base. A legal parti-
tioning A ofR× is a partitioning A = {A1, . . . , An} ofR×
such that the following condition holds: for any r∗1 ∈ Ai and
r∗2 ∈ Aj and any r1 →RGU r∗1 resp. r2 →RGU r∗2 and r1 ≺ r2,
it holds that i < j.
A legal partitioning of R× ensures that instances of excep-
tional rules are placed in a higher indexed partition than the
instances of its less specific general rules.
Example 9. We extend the knowledge baseR of Ex. 3 with
the additional conditional r4 = (likes(dumbo, Y ))[0.8] to
demonstrate how the specificity GOP handles incompara-
bly conflicting conditionals. The extended knowledge base
S contains the four conditionals r1 = (likes(X,Y ))[0.9],
r2 = (likes(X, fred))[0.3], r3 = (likes(clyde, fred))[1],
and r4 = (likes(dumbo, Y ))[0.8]. Since r2 and r4

are incomparable (r2 � r4), S× does not contain their
two conflicting instances (likes(dumbo, fred))[0.3] and
(likes(dumbo, fred))[0.8]. However, S× does contain the
instance of r1 (likes(dumbo, fred))[0.9], because there does
not exist a conditional in S that is incomparably conflicting
to r1. Figure 2 shows the two possible legal partitions of S×.
A directed edge from a node ri to rj indicates the specificity
relation between ri and rj , i. e. rj ≺ ri. The node ri repre-
sents each instance r∗i of ri (ri →SG r∗i ) that occurs in S×.

A0

A1

A2

r1

r2

r3

r4

A′0

A′1

A′2

r1

r2

r3r4

Figure 2: Two legal partitions of S×

Now we are able to define the specificity GOP which favors
instances of more specific conditionals to instances of less
specific conditionals.
Definition 11. Let R be a knowledge base and let A =
{A1, . . . , An} be a legal partitioning ofR×. The specificity
grounding operator GAsp is inductively defined as follows

Gn,Asp (R) = An

Gi−1,A
sp (R) = Gi,Asp (R) ∪ (Ai \ �(Ai ∪ Gi,Asp (R)))

(1 < i < n)

GAsp(R) = G1,A
sp (R),

ifR has no direct conflicts, and GAsp(R) = ∅ otherwise.

S Gsp(S)

r1 : (l(X,Y ))[0.9] →SGsp (l(c, h))[0.9]

(l(d, f))[0.9]

(l(t, h))[0.9]

r2 : (l(X, f))[0.3] →SGsp (l(t, f))[0.3]

r3 : (l(c, f))[1] →SGsp (l(c, f))[1]

r4 : (l(d, Y ))[0.8] →SGsp (l(d, h))[0.8]

Table 3: Specificity grounding

The specificity GOP takes a legal partitioning of R× and
starts by considering all instances of all most specific con-
ditionals. Any instance of any less specific conditional is
added only if it does not directly conflict with an instance
already included.

Example 9 shows that there may be more than one legal
partitioning for a given knowledge base R and Def. 11 sug-
gests that the actual legal partitioning used in the join pro-
cess may influence the outcome of the grounding. This is
not the case as the following theorem shows.
Theorem 3. The R be a knowledge base. Then for any two
legal partitionings A,A′ of aR× it is GAsp(R) = GA′

sp (R).
Due to Th. 3 we can omit the actual partitioning used for
defining the specificity grounding. Hence, in what follows
we will write Gsp instead of GAsp with a partitioning A.
Example 10. We consider the knowledge base S from Ex. 9.
When grounding S with the specificity GOP this yields
Gsp(S) shown in the right column of Tab. 3. Notice, that the
instance (l(d, f))[0.9] of r1 is preferred over (l(d, f))[0.8]
and (l(d, f))[0.4] because the last two came from two in-
comparable conditionals r2 and r4 and therefore left out ac-
cording to the conservative conflict solution.
Theorem 4. The specificity GOP Gsp satisfies (Compatibil-
ity), (Stability), (Structural Preservation), (Upper Bound),
(Rationality), and (Conflict Freeness).
In general, the specificity GOP does not satisfy (Maximal-
ity). But this is not very surprising considering the following
example.
Example 11. LetR = {(p(X))[α], (p(X))[β]} be a knowl-
edge base with α 6= β and let U = {a} a singleton set of
constants. As the conditionals in R are incomparable with
respect to specificity and both instances are in direct conflict
it follows Gsp(R) = ∅. Obviously, Gsp(R) is not maximal
as any one of the two instances of the conditionals might be
added to Gsp(R) without violating (Conflict Freeness).
Without any external means of preference ordering besides
specificity knowledge bases of the type as in Ex. 11 cannot
be maximally grounded. However, excluding these classes
of knowledge bases shows that the specificity GOP satisfies
(Maximality).
Theorem 5. If R contains no two incomparable condi-
tionals then Gsp(R) is maximal, i. e., it holds for all r ∈
GU (R) \ Gsp(R) the set Gsp(R) ∪ {r} has a direct conflict.



Related Work
Many proposals like Bayesian Logic Programs and Markov
Logic Networks (Getoor and Taskar, 2007) have been de-
veloped that extend propositional probabilistic models like
Bayes Nets and Markov Networks (Pearl, 1998) to the re-
lational case. However, up to now only few approaches on
extending probabilistic conditional logic and ME-inference
to first-order logics are available. The approach devel-
oped here bases on notions introduced in (Fisseler, 2009)
where a first-order probabilistic conditional logic is pro-
posed and also inference based on maximum entropy is em-
ployed. Contrary to our approach here, however, in that
paper meta-constraints are used to avoid conflicts between
grounded rules; so the process of strategic grounding is of
no concern in (Fisseler, 2009). The approach presented in
(Thimm, 2009) combines relational knowledge representa-
tion and ME-inference within a novel semantics for first-
order conditional logic. In that paper, open conditionals are
interpreted not as a schema for their instances but as a state-
ment that should “in average” hold for all its instantiations.
In this way, (Thimm, 2009) circumvents the problem of in-
consistent knowledge bases with respect to universal instan-
tiations.

The paper (Kern-Isberner and Lukasiewicz, 2004) com-
bines logic programming with probabilistic reasoning and
ME-inference. It also takes a more subjective view on prob-
abilities, but applies a closed world assumption and assigns
interval-valued probabilities to conditionals, hereby aiming
at covering all probabilities that arise during instantiations.
One of the most important papers on the role of the princi-
ple of maximum entropy in first-order probabilistic logic is
(Bacchus et al., 1996); however, probabilities are assigned a
statistical reading there, reflecting properties of populations
whereas in this paper, we make use of a possible world se-
mantics and focus on information on individuals within a
population.

Please note that by making use of the maximum entropy
principle—in our approach as well as in the approaches
above—there is no need to define external strategies for
combining rules, as in e. g. Bayesian Logic Programs
(Getoor and Taskar, 2007; Ch. 10). Once a consistent prob-
abilistic knowledge base is provided, the maximum entropy
principle internally combines information in an optimal way.

Summary and Conclusion
This paper presents an approach to first-order probabilistic
reasoning by exploring techniques from the propositional
context. So, first-order knowledge bases are seen as schemas
encoding information on (typical) individuals, and are used
in a ground form to which the principle of maximum en-
tropy can be applied for inference (RME reasoning). How-
ever, conflicts may arise when different conditionals suggest
different probabilities for the same individual. We proposed
solutions to solve these conflicts by applying different strate-
gies for grounding. We presented three GOPs that we eval-
uated with the help of a set of properties. The specificity
operator, being the most advanced of these operators, en-
sures that most specific information on an individual is used

for reasoning.
An implementation of the RME framework and the

GOPs presented in this paper is integrated into the
KREATOR workbench for relational knowledge representa-
tion (Finthammer, Loh, and Thimm, 2009).

This paper deals with appropriate grounding strategies
for probabilistic conditionals, i. e., from a knowledge base,
specific instances of formulas are derived. In some way,
this process can be seen as being inverse to generalization
processes in concept learning (Mitchell, 1997) or inductive
logic programming (Muggleton, 1991). As part of our future
work, we will combine the ideas presented in this paper with
the work of (Fisseler, 2009) by deriving meta-constraints
from the grounding strategies so that the generic constraints
equipped with meta-constraints can be seen as least general
generalizations of conditionals in the grounded knowledge
base.
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