
A Logic Programming Framework for Reasoning about Know-How

Patrick Krümpelmann and Matthias Thimm
Information Engineering Group, Technische Universität Dortmund, Germany

Abstract

The BDI model is a well accepted architecture for the repre-
sentation of rational agents, both at theoretical and practical
levels. The beliefs component in this model is focused on the
representation of beliefs about the world and other agents and
widely independent of an agent’s intentions. We argue that
also the logical representation of an agent’s intentions and its
know-how, which captures the beliefs about actions and pro-
cedures, has to be taken into account when modeling rational
agents. With a declarative rather than procedural represen-
tation of know-how we obtain the possibility to reason with
these procedural beliefs in the same way as with any other
logical beliefs. Using the notion of know-how as introduced
by Singh we formalize a usable and concrete agent architec-
ture that benefits from this representation of procedural be-
liefs in multiple ways. To model both, the agent’s logical be-
liefs as well as its know-how, we make use of extended logic
programs under the answer set semantics that are capable of
handling uncertain information. This way we are lifting the
limitations imposed by the use of different forms of repre-
sentation. We define a general algorithm that uses this repre-
sentation for means-end reasoning. Furthermore, we present
diverse ways of reasoning under uncertainty about know-how
that are enabled by our framework and show relations to ex-
isting approaches.

Introduction
Planning and agency are two closely related fields in the
research of multiagent systems and artificial intelligence in
general. While planning (Ghallab, Nau, and Travers 2004)
deals with solving problems by constructing sequences of
atomic actions that lead to a solution, the theory on agents
(Weiss 1999) is concerned with how to exhibit rational be-
havior in complex interaction scenarios. From the perspec-
tive of knowledge representation and reasoning under un-
certainty a proper mutual integration is desirable but not
yet available. The most prominent example paradigm for
representing rational agents is the BDI model (Weiss 1999)
which is widely known and used. This model divides the
mental state of an agent into beliefs, desires, and inten-
tions. Informally speaking, beliefs comprise the agent’s be-
liefs about the world and the current situation, desires rep-
resent what it wishes to achieve and hence represent possi-
ble goals, whereas intentions model the agent’s immediate
(sub-) goals. Intentions thus focus on the next actions the

agent should undertake in order to achieve the current goal.
In modern formalizations of the BDI model or other agent
architectures for planning and reasoning (Bordini, Hübner,
and Vieira 2005; Bordini et al. 2006; Lifschitz 2002;
Thielscher 2004) planning and belief components are mostly
kept separate. Although beliefs do (of course) influence
intention deliberation and goal generation, the other way
round cannot be formalized in a natural way in these sys-
tems. In particular, in most systems it is not possible to rea-
son about the current intentions or capabilities of the agent
on the same level where the classic logical reasoning of the
agent takes place.

Singh introduced an abstract notion of know-how in
(Singh 1999) and argued that on a descriptive layer an ex-
plicit distinction between beliefs about the world (know-
that) and beliefs about how to achieve certain intentions
(know-how) is indispensable in order to model agents and
their behavior properly. But as know-how is a form of be-
lief, an agent should be able to reason about these beliefs
and to revise them. Singh (Singh 1999) claims, that “since
rational agency is intimately related to actions and proce-
dures, it is important also to consider the form of knowledge
that is about actions and procedures”. Particularly, the pure
knowledge of the possibility to achieve a certain intention
is crucial for the agent in order to determine if the intention
can be pursued or has to be dropped. We argue that in many
practical scenarios with uncertain information it is neces-
sary and advisable for the agent to reason about its planning
capabilities on the object-level, while in modern agent archi-
tectures (Bordini et al. 2006) this can at most be done on a
meta-level.
Example 1. Imagine a cleaner robot that pursuits two goals,
namely cleaning all rooms in a certain area and maintaining
a high battery level. It is crucial for the robot that it knows
how to reach the charging station before beginning to clean
the rooms at any time. Likewise, to efficiently do its task
the robot should be able to consider if it can return to the
charging station in time when planning more than one step
ahead.
To our knowledge the concept of know-how has not been
developed further since Singh’s publications in the late
1990s while planning and intention generation are active
fields (Lesperance, Giacomo, and Ozgovde 2008; Brenner
2008). Current research includes some ideas of how to com-



bine state-of-the-art knowledge representation and reason-
ing techniques with problem solving and planning, e. g. us-
ing logic programming (Lifschitz 2002). Here, we take a
look at the planning capabilities of an agent from the per-
spective of knowledge representation. By modeling know-
how in a declarative rather than procedural manner we en-
able the agent to reason about and revise these beliefs in the
same way as any other of its logical beliefs. To this end
we facilitate extended logic programs under the answer set
semantics (Gelfond and Leone 2002). Extended logic pro-
grams proved to be very suitable for knowledge representa-
tion and reasoning and are widely used in a variety of ap-
plications which qualifies them as a powerful basis for our
approach.

We formalize the idea of know-how in logic programming
and develop a general algorithm, which enables an agent
to make use of complex know-how structures. Moreover,
we show how agents can reason about know-how facilitat-
ing the possibilities opened by our framework. Thus, we
present a full-fledged framework for advanced representa-
tion and handling of as well as reasoning about structural
knowledge.

This paper is organized as follows. In Section 2 we give
some background on extended logic programs under the an-
swer set semantics, know-how and a short overview on the
overall agent architecture. We continue in Section 3 with the
description of the main framework which comprises the rep-
resentation of know-how in extended logic programs and a
general algorithm for means-end reasoning. Section 4 gives
some hints on the versatility of the framework with respect
to reasoning. In particular, we show how to determine sound
and reliable know-how and how to apply belief revision on
know-how. In Section 5 we conclude and discuss our ap-
proach in the context of related work.

Background
For our framework we make use of extended logic programs
under the answer set semantics (Gelfond and Leone 2002)
which distinguish between classical negation “¬” and de-
fault negation “not ” and which are capable of dealing with
incomplete information in open environments. Let At be a
set of atoms and L the corresponding set of literals, i. e., for
every a ∈ At it is a ∈ L and ¬a ∈ L. Whenever neces-
sary we use first-order predicates and terms, i. e. constants
(starting with a lowercase letter) and variables (starting with
an uppercase letter), to build atoms and literals in the usual
way. An extended logic program P is a finite set of rules of
the form

r : h← a1, . . . , an, not b1, . . . , not bm.

where h, a1, . . . , an, b1, . . . , bm ∈ L. We de-
note by H(r) the head h and by B(r) the body
{a1, . . . , an, not b1, . . . , not bm} of a rule r. If the
body of a rule r is empty (B(r) = ∅), then r is called a
fact, abbreviated h instead of h ←. Given a set X ⊆ L of
literals, then r is applicable in X , iff a1, . . . , an ∈ X and
b1, . . . , bm /∈ X . The rule r is satisfied by X , if H(r) ∈ X
or if r is not applicable in X . X is a model of an extended
logic program p iff all rules of P are satisfied by X . The set

X ⊆ L is consistent, iff for every a ∈ At it is not the case
that a ∈ X and ¬a ∈ X .

An answer set is a minimal consistent set of literals
that satisfies all rules. Let P be an extended logic pro-
gram and X ⊆ L a set of literals. The X-reduct of P ,
denoted PX , is the union of all rules h ← a1, . . . , an.
such that h ← a1, . . . , an, not b1, . . . , not bm. ∈ P and
X ∩ {b1, . . . , bm} = ∅. For any extended logic program
P and a set X of literals, the X-reduct of P is a logic pro-
gram P ′ without default negation and therefore has a min-
imal model. If P ′ is inconsistent, then its unique model is
defined to be L. Let P be an extended logic program. A
consistent set of literals S ⊆ L is an answer set of P , iff S
is a minimal model of PS .

We extend the syntax of extended logic programs with
lists as in Prolog. A list is a sequence of terms enclosed by
squared brackets, e. g. [a, b, c], that can appear as a param-
eter for predicates like any other term. We use the notion
[H|B] to divide the list in the first element H and the re-
maining list B. This is a shorthand to simplify presentation
and does not extend the answer set semantics. In fact, under
some conditions (that are fulfilled in the context used here) it
can be shown, that extended logic programs with lists can be
rewritten in extended logic programs without lists, such that
the answer sets of the rewritten program can be appropri-
ately rewritten to answer sets with lists (Lin and Wang 2008;
Thimm and Krümpelmann 2009).

In our framework we use extended logic programs to rep-
resent beliefs, intentions and the know-how of an agent.
Although our overall agent architecture is based on a BDI
model we neglect the desires of an agent here to simplify
presentation. Therefore, we consider only a single top-level
goal that is initially the only element of the agent’s inten-
tions and reduce the complexity of the deliberation process,
cf. Figure 1. Whenever needed we refer to the agent’s inten-
tions as a stack where the topmost intention is the intention
currently pursued by the agent and subgoals are stacked on
top of their super-goals. Some intentions, called atomic in-
tentions, can be directly fulfilled by executing a correspond-
ing action in the environment.

An agent is situated in an infinite loop of perception, de-
liberation and action, as Figure 1 illustrates. At the begin-
ning of the loop the agent integrates newly perceived infor-
mation into its beliefs and correspondingly updates its in-
tentions, cf. (Krümpelmann et al. 2008; Krümpelmann and
Kern-Isberner 2008). After having integrated newly per-
ceived information the agent deliberates about its current
status using information about what it knows (beliefs), what
it wants to achieve (intentions), and its capabilities (know-
how). Eventually it executes an action in the environment. A
comprehensive integration of the techniques described here
into a complete BDI model can be found in (Thimm and
Krümpelmann 2009).

We presuppose that the agent’s knowledge about proce-
dures, i. e. its know-how, can be structured into atomic state-
ments σ of the form

σ = (a, (s1, . . . , sn), {c1, . . . , cm})

with abstract labels a (the goal of the statement), s1, . . . , sn



perception action

perceive deliberate

Beliefs Intentions Know-How

1

Figure 1: A simplified representation of the agent model.
(The control flow is depicted with solid lines and the data
flow with dashed lines.)

(the sub-goals of the statement), and c1, . . . , cm (the con-
ditions of the statement). The informal meaning of such
a statement σ is as follows: In order to achieve the inten-
tion a the agent can try to achieve the intentions s1, . . . , sm,
if the conditions c1, . . . , cm are fulfilled with respect to the
agent’s beliefs. Roughly, this kind of representation follows
the usual form of procedures as in, e. g., STRIPS (Ghallab,
Nau, and Travers 2004).

Example 2. We continue Example 1. Suppose the robot has
the top-level goal (desire) to clean all rooms in its area which
is represented by cleaned all. Suppose now that there are
two rooms in its area, a hallway and a lounge, and that the
robot shall verify that its battery is full before it starts clean-
ing these rooms. This knowledge can be captured by the
statement:

σ = (cleaned all, (cleaned hallway, cleaned lounge),

{battery full})

With the use of these statements the agent can break down
complex intentions into simpler ones which leads to the ex-
ecution of an action. We give a more detailed description
of this procedure and the actual representation of know-how
and intentions using logic programs in the following sec-
tions.

Know-How in Logic Programming
In the following we develop a framework for the represen-
tation of beliefs, intentions, and know-how in the sense de-
scribed above using extended logic programming. Before
stating the definitions of know-how, we need some more no-
tation. Let C be a set of constant symbols with C = Ckh∪̇ Cs.
For what is coming constants from Ckh are used to identify
know-how statements using reification and constants from
Cs are used to represent logical statements, e. g. conditions
or intentions. KB denotes the (logical) belief base of an
agent which is an extended logic program. As outlined in
the previous section, a know-how statement is comprised of
an identifier σ, a goal a, a sequence of subgoals s1, . . . , sn,
and a set of conditions c1, . . . , cm.

Definition 1 (Know-How Statement). A know-how state-

ment is a logic program of the form:

khStatement(σ, a).

khSubgoal(σ, 1, s1). . . . khSubgoal(σ, n, sn).

khCondition(σ, c1). . . . khCondition(σ, cm).

with constant symbols σ ∈ Ckh, a, s1, . . . , sn, c1, . . . , cm ∈
Cs and m,n ∈ N.
Besides the know-how statements a know-how base also
contains information about the atomicity of intentions,
which is captured by facts using the predicate is atomic.
Definition 2 (Know-How Base). Let {K1, . . . ,Kn} be a
set of know-how statements. A know-how base Σ is an ex-
tended logic program defined as

Σ =
⋃k

i=1Ki ∪ {is atomic(int). | int ∈ Cs,
int is an atomic intention}.

In order to use the logical beliefs of the agent to check for ap-
plicability of know-how statements a translation mechanism
is needed. The conditions of know-how statements are mod-
eled with constants using reification, while the logical be-
liefs of the agent are modeled by means of literals and rules.
For example, the representation of the statement in Exam-
ple 2 as a know-how statement contains besides others the
logical fact khCondition(σ, battery full), while the logi-
cal beliefs of the agent may contain the fact BatteryFull.
In order to use the logical beliefs to check for conditions, we
assume that for each constant c ∈ Cs there is also the rule

holds(c)← L.

in the logical beliefs where L is the corresponding literal,
that is identified with the constant c. For example, for the
constant battery full we add the rule

holds(battery full)← BatteryFull.

to the agents beliefs. We only introduce these rules for liter-
als of arity zero as we only allow conditions to be constants.
For literals with arity greater zero these mechanism can be
extended in order to allow conditions as well as goals and
sub-goals to be parametrized. But to keep our presentation
simple we omit this extended mechanism and assume that
all conditions of know-how statements can only appear as
propositional literals in the agent’s beliefs.

We continue by constructing an algorithm in logic pro-
gramming which works on the representation developed
above. This algorithm takes an agent’s mental state, re-
turns the next atomic action as output and, as a side effect,
modifies the agent’s intentions according to its deliberations.
The agent’s mental state is represented as a collection of ex-
tended logic programs which comprises the agent’s (logi-
cal) beliefs KB, the agent’s know-how base Σ, and the logic
programs defined below. We define a logic program I that
represents the intentions of the agent and keeps track of the
current deliberation step. The program contains a set of facts
for each step of its deliberation as follows:
• istack(is): is captures the intention stack of the agent

as a list, the first intention being the currently pursued
intention.



• khstate(ks): ks is a list that represents the current stack
of know-how statements corresponding to the intention
stack.

• act(ai): if the agent determined an atomic intention, ai,
to be executed, in the previous step of plan deliberation,
this fact is added to I .

• khFailed(kf): kf is a list indicating, that the first know-
how statement failed in the context of the rest of kf due
to unsatisfied conditions.

• khPerformed(kh): this fact is added to I if all sub-
goals of the specified know-how statement were fulfilled
in the previous step of plan deliberation.

• state(s): describes the current state of plan deliberation
by summarizing the operation of the last step. Accord-
ingly, s is one of

– actionPerformed (an action has been performed)
– intentionAdded (an intention has been added to istack)
– khAdded (a know-how statement has been added to
khstate)

– noop (no operation has been performed)

The facts istack, khstate and khFailed are the main com-
ponents of I and describe the agent’s current deliberation
process. Initially the logic program I of an agent has the
structure

istack([initial intention]).

khstate([]).

state(intentionAdded).

with a given initial intention initial intention. Given a
know-how base Σ and the logic program I , the logic pro-
gram NextAction defined below uses these programs by
generating a new state for I as part of the answer sets. Using
these programs the algorithm depicted in Figure 2 computes
the next action for the agent by repeatedly computing the
intersection1 of all answer sets of the union of I , the know-
how base Σ, the (logical) belief base KB and the rules in
NextAction.

do
Compute the intersection ans of all

answer sets of I ∪ Σ ∪KB ∪NextAction
Adjust I according to ans

until I contains a fact act(A)
execute the action corresponding to A.

Figure 2: The algorithm for plan deliberation

Definition 3. Let NextAction be the logic program that
contains rules (r1) to (r15):

1We base our algorithm on a skeptical inference process. One
can also imagine an algorithm based on credulous inference, i. e.
taking a specific answer set as result.

Rules for State intentionAdded:

(r1) new act(A) ← istack([A|H]),
is atomic(A), state(intentionAdded).

(r2) new khstate([KH|K]) ← khstate(K),
khStatement(KH, I), istack([I| ]),
not khConditionsFail(KH),
not kh failed([KH|K]),
state(intentionAdded), not new act( ).

(r3) new khFailed([KH|K]) ←
state(intentionAdded), not new act( ),
not new khState( ), khState([KH|K]).

(r4) toParent ← new khFailed( ).

Rules for State actionPerformed:

(r5) new istack([C|B]) ←
khstate([KH| ]), state(actionPerformed),
istack([A|B]), khSubgoal(KH, I,A),
J = I + 1, khSubgoal(KH,J,C).

(r6) new khPerformed(KH) ←
khstate([KH| ]), state(actionPerformed),
istack([A| ]), khSubgoal(KH, I,A),
J = I + 1, not khSubgoal(KH,J, ).

(r7) toParent ← new khPerformed( ).

Rules for State khAdded:

(r8) new istack([I|B]) ←
istack(B), khSubgoal(KH, 1, I),
state(khAdded), khstate([KH|K]).

State transition rules:

(r9) new state(actionPerformed) ← new act(A).
(r10) new state(intentionAdded) ←

new istack( ), not new khPerformed( ).
(r11) new state(khAdded) ←

new khState( ), not new khPerformed( ).
(r12) new state(intentionAdded) ←

new khFailed( ), not istack([]).
(r13) new state(noop) ← new istack([]).

Auxiliary rules:

(r14) new istack(B) ← toParent, istack([ |B]).
(r15) new khState(K) ← toParent, khState([ |K]).
(r16) khConditionsFail(KH) ←

khCondition(KH,X), not holds(X).

Due to the single instantiation of state(·) in the initial pro-
gram I and the structure of the rules for literals of the form
new action(·), new istack(·), new khstate, etc. it holds:
if one of these literals appears in an answer set, then it ap-
pears in all answer sets (given that the logical beliefs in KB
do not influence this derivation in an undesired manner). In
the algorithm depicted in Figure 2 these literals are extracted
from the intersection, their “new ” prefixes are stripped off
and they are set as the new program I .

The following propositions show that the program
NextAction, the interaction of the rules, and the iter-
ative computation of answer sets behave well. Let Ω =



(KB,Σ, I) denote the mental state of an agent.

Proposition 1. It holds:

1. For every mental state Ω of an agent, there is not more
than one new mental state Ω′ induced by the answer sets
of NextAction ∪ Ω.

2. For every mental state Ω of an agent—except a mental
state with state(noop) ∈ I—there is a valid mental state
Ω′ induced by the answer sets of NextAction ∪ Ω.

Proof sketch. Given some mental state with
state(intentionAdded) ∈ I one of the rules (r1)-
(r3) is applicable. These are mutual exclusive as for each
pair of rules the head of one rule is contained in the negative
body of the other. If rule (r1) is applicable then rule (r9)
is also automatically applicable and the applicability of
(r2) leads to the applicability of (r11) which conducts
the state change as desired. The failure of the check for
applicability of know-how statements in (r2) will lead to
the applicability of (r3), if (r1) is not applicable. At this
point, no applicable know-how statement for the current
intention is available and therefore the current know-how
statement failed. Hence, (r4) is applicable which resembles
a toParent operation by means of the applicability of rules
(r14) and (r15). At this point (r12) will be applicable in
the same iteration and marks the successor mental state
by deriving state(intentionAdded). Thus, in the next
iteration the applicability of (r2) is checked again on the
parent intention of the intention that just proved to be not
achievable. The know-how statement which failed has been
marked as failed and is not taken into consideration again.
The described application of rules (r3), (r4), (r14), (r15)
and (r12) initiates a loop if (r3) is applicable again and
terminates if (r2) is finally applicable or if the intention
stack is empty and (r13) is satisfied and the state noop is
reached. If state(actionPerformed) ∈ I one of the rules
(r5) − (r6) can be applicable which are mutual exclusive
again. If (r5) is applicable the subsequent subgoal is
placed on the list and by means of (r9) the state changes to
actionPerformed. In the case that (r6) is applicable, (r7)
will be applicable as well and a toParent operation will
be executed by means of rules (r14) and (r15). The state
transition rules are blocked at this point as the state stays
the same and the parent intention will be considered in the
next iteration. If state(khAdded) ∈ I then (r8) will be
applicable and adds the first subgoal of the added know-how
statement to the intention stack which again leads to the
applicability of (r10). The other subgoals are captured by
the khSubgoal(·, ·, ·) predicate and that they will be added
by means of the rules (r5).

Proposition 2. Every iterated determination of a mental
states terminates in a mental state with state(noop) ∈ I .

A more comprehensive description on the algorithm and the
complete proofs can be found in (Thimm and Krümpelmann
2009). This representation of know-how and the algorithm
for means-end reasoning constitute the basis of a versatile
framework for know-how that we illustrate in the following.

Reasoning about Know-How
One of the main motivations for the explicit representation
of know-how and intentions in a declarative manner is that
this enables the agent to reason about these components.
Moreover, the agents awareness of its procedural knowl-
edge can deeply influence the behaviour of its means-end
reasoning. The structure of know-how reveals information
about the involved conditions and subgoals of the achieve-
ment of goals and this information enables the agent to rea-
son about the feasibility and effort as well of the reliability
of the achievement of goals, as we will demonstrate in this
section.

Sound Know-How
Under most circumstances it is reasonable that an agent can
determine if it has the means to achieve a given intention
before it starts acting towards its fulfillment. One simple re-
alization of this idea is captured by the following definition.
Definition 4 (Sound Know-How). Let Σ be a know-how
base. An intention i ∈ Cs is achievable in Σ if
• i is an atomic intention or
• there is at least one σ ∈ Ckh with khStatement(σ, i) ∈

Σ and every s with khSubgoal(σ, ·, s) ∈ Σ is achievable.
Σ is called sound if every intention i ∈ Cs is achievable.
Given an know-how base Σ the rules stated in Figure 3 de-
termine whether an intention is achievable. If these rules
are added to the agent’s beliefs the agent is aware of its ca-
pabilities at any time and can use this information to avoid
unnecessary actions.

achievable(I) ← is atomic(I).
achievable(I) ← khStatement(KH, I),

not ¬sound(KH).
¬sound(KH) ← khSubgoal(KH,J, SI),

not achievable(SI).

Figure 3: Determination of sound know-how

The definition of sound know-how and the corresponding
logic program do not take the conditions of a know-how
statement into consideration when determining if an inten-
tion is achievable. We will discuss a notion called reliable
know-how in the next subsection which will take these con-
ditions into consideration.

Reliable Know-How
Singh states that reliable know-how should meet some form
of natural language understanding and defines a very strong
notion of reliable know-how in (Singh 1999). He also notes
that alternative, less strict, versions of reliability might be
formulated. A similar notion is the one of secure planning
(Eiter et al. 2000), which captures the intuition of a know-
how statement or an intention, that can always be fulfilled
no matter what the circumstances are. Due to uncertainty
of the agent’s beliefs, one might be interested if the agent
is able to fulfill a given intention even if its beliefs are in-
complete or if the environment changes due to other agents’



reliablyAchievable(I, C) ← is atomic(I).
reliablyAchievable(I, C) ← khStatement(KH, I),

not ¬reliable(KH,C).
¬reliable(KH,C) ← khCondition(KH,Cond),

notin(Cond,C).
notin(X, []).
notin(X, [H|B]) ← X 6= H,notin(X,B).
¬reliable(KH,C) ← khSubgoal(KH, I, Int),

context(C2, C,KH, I),
not reliablyAchievable(Int, C2).

context(C,C,KH, 1).
context([Int|C2], C,KH, I) ← I 6= 1, J = I − 1,

context(C2, C,KH, J),
khSubgoal(KH,J, Int).

Figure 4: Determination of reliable know-how

actions. Reliable know-how is know-how which is known
not to fail given the incomplete information available. In
particular this means that literals which are neither known
to be true nor false are irrelevant for the success of the appli-
cation of know-how. For simplicity, we assume that actions
cannot fail, so atomic intentions are reliably achievable by
definition. For complex intentions reliability is recursively
defined using the reliability of its subcomponents and a con-
text C, i. e. a subset of Cs.
Definition 5 (Reliability). Let Σ be a know-how base,
i ∈ Cs an intention and C ⊆ Cs. The inten-
tion i is reliably achievable in C if i is an atomic
intention or if there is at least one σ ∈ Ckh with
khStatement(σ, i) ∈ Σ and σ is reliable in C. A σ ∈ Ckh
with khSubgoal(σ, 1, s1) . . . khSubgoal(σ, n, sn) ∈ Σ is
reliable in context C iff 1.) each si (1 ≤ i ≤ n) of σ is reli-
ably achievable in C∪{s1, . . . , si−1} and 2.) the conditions
of σ are fulfilled in C.
Note that the intentions of previous sub-goals are added to
the context of a sub-goal as well. This is being done as pre-
vious actions may be requisite for application of later in-
tentions. Our notion of reliable know-how is implemented
through the addition of the rules depicted in Figure 4 to
the agent’s beliefs. These rules enable the agent to always
have knowledge about which of its know-how is reliable and
which is not. Thus, the knowledge about the reliability of
know-how influences the behaviour of the agent as it can
take care of some tasks as long as it reliably knows how to
achieve some important intentions. In the example of the
cleaner robot this means that it keeps on cleaning as long as
it reliably knows how to get to the charging station.

Revision and Update of Know-How
Communicating agents in a dynamic environment need the
capability to adopt their beliefs when they acquaint new in-
formation. Usually these changes of beliefs are limited to
logical beliefs. In terms of belief dynamics, the logical rep-
resentation of know-how comes with the benefit that know-
how can be subject to dynamic changes by use of the same
operators as for logical beliefs. The agent can revise its
know-how when it receives new know-how statements and

thus can incorporate them into the existing know-how base
while maintaining consistency. Due to the representation on
the same level with other beliefs, the dynamics of logical
beliefs and of know-how are processed at the same time us-
ing the same mechanism and thus respecting interactions of
both. Moreover, updates of subgoals or conditions of know-
how statements are automatically performed if new subgoals
or conditions are added for a given know-how statement.
This is due to conflicts which can be a direct one which is
handled by update mechanisms directly. Also, indirect con-
flicts can be used for revision as they can easily be made
obvious by use of integrity constraints of the form

← khSubgoal(KH, I, Int1),

khSubgoal(KH, I, Int2),

Int1 6= Int2.

as these impose conflicts in the sense of answer set seman-
tics which need to be solved. Some modifications of up-
date mechanism for logic programs like (Krümpelmann and
Kern-Isberner 2008) towards the consideration of conflicts
induced by constraints have to be made for this matter which
we do not explicate here due to space restrictions. We will,
however, exemplify some of the possibilities in the follow-
ing example.
Example 3. Building on Example 2 we can consider dif-
ferent types of new information the cleaner robot might ac-
quire. For instance, assume that the robot’s assignment has
been changed so that it now has to clean the kitchen instead
of the lounge. This results in the addition of a new fact of
the form khSubgoal(σ, 2, cleaned kitchen) into the (pro-
cedural) beliefs of the robot. This fact will lead to a conflict
induced by the constraint defined above. Assuming a change
operator for logic programming based on causal rejection
(Krümpelmann and Kern-Isberner 2008) this will lead to the
rejection of the older piece of information in conflict, in this
case the fact khSubgoal(σ, 2, cleaned lounge).

The agent might also receive the information that it
has to consider the status of its bag in form of the fact
khCondition(σ, bag empty). This resembles a pure ex-
pansion, as the addition of this fact does not lead to any
conflict. In case the agent realizes that there is enough light
for its solar panels it might want to stop caring about its bat-
tery status and the fact ¬khCondition(σ, battery status)
is added to its beliefs. This induces a direct conflict with the
fact khCondition(σ, battery status) which is the less re-
cent information and will thus be rejected. The strict negated
predicate ¬khCondition(σ, battery status) is out of the
scope of the know-how statement σ and therefore this oper-
ation resembles a contraction in terms of know-how.

More complex change operations to know-how state-
ments can be implemented by simply adding some rules
which will take care of the effects of initiated changes, like
keeping the numbering of know-how subgoals in a consis-
tent state. Updates of know-that will instantaneously lead
to changes to the reliability of know-how which again will
influence other components of the agent as has been laid out
earlier. Another aspect in this manner is the communica-
tion and transfer of know-how (Krümpelmann et al. 2008).



Agents can ask other agents how to achieve certain inten-
tions and as know-how is represented as beliefs, the answer-
ing of these queries can be handled analogue to other beliefs
in a straightforward fashion. Know-how, as represented in
our framework, can easily be subject to dynamic changes
just like any other logical beliefs of a rational agent in a dy-
namic multiagent environment.

Discussion
In this paper we took on the work of Singh on the formal-
ization and representation of know-how and focused on the
realization of rational agents implementing this abstract no-
tion. In particular, we use extended logic programs for the
representation of the agents beliefs extended by declarative
knowledge of know-how. Through this, the agent acquires
the capability to reason about its current state of plan delib-
eration within its logical beliefs and enables it to treat this
kind of beliefs in the same way as its other beliefs. We pre-
sented a realization of know-how and its treatment in logic
programming and illustrated the advantages that come with
this representation.

Our approach of breaking down meta-level reasoning on
intention deliberation to the object level is similar to the ap-
proach undertaken in (Meneguzzi and Luck 2007). There,
the abstract notion of motivation is used to connect declara-
tive properties of an agent, i e. its motivation, to its compo-
nent for meta-level reasoning. While this approach allows a
powerful control mechanism for the meta-level component it
does not enable the agent to reason about this component on
the object-level itself. There is also a wide range of agent ar-
chitectures that built on the BDI model (Bordini et al. 2006).
All these architectures do not inherently support the notion
of know-how nor reasoning about intentions and plan de-
liberation in the way we present here. The system Jason
(Bordini, Hübner, and Vieira 2005), also, allows a simple
treatment of revision of plans in the sense, that plan frag-
ments may be added or deleted from the agent program. We
believe that our proposal can by adapted for several agent
architectures in order to enrich them with a notion of know-
how and reasoning capabilities about this. Extended logic
programming has been extensively used as a language for
plan deliberation. For example, in (Lifschitz 2002) Lifschitz
uses extended logic programming in order to to provide so-
lutions for the blocks world problem. In contrast to (Lifs-
chitz 2002), our use of extended logic programming is much
more general, as our algorithm is universal enough to handle
a wide range of problems given a suitable know-how base.
The system K (Eiter et al. 2000) also makes use of extended
logic programs as representation technique and features a
notion of reliability called secure plans as well. But like
in other agent systems, K does not allow the treatment of
structural knowledge about planning capabilities as ordinary
logical beliefs.

We see our proposal as a first step to the full support of
the notion of know-how (Singh 1999) in a concrete logic-
based agent architecture. This constitutes an enhancement
of the agents reasoning capabilities as well as it improves
the interplay of the agents components. For future work, we

plan to exploit and extend the new possibilities opened by
our work in terms of reasoning with and about know-how.

References
Bordini, R. H.; Braubach, L.; Dastani, M.; Seghrouchni, A.
E. F.; Gomez-Sanz, J. J.; Leite, J.; O’Hare, G.; Pokahr, A.;
and Ricci, A. 2006. A survey of programming languages
and platforms for multiagent systems. Informatica 30.
Bordini, R. H.; Hübner, J. F.; and Vieira, R. 2005. Ja-
son and the golden fleece of agent-oriented programming.
In Bordini, R. H.; Dastani, M.; Dix, J.; and Seghrouchni,
A. E. F., eds., Multi-Agent Programming Languages, Plat-
forms and Applications. Kluwer. chapter 1, 3–37.
Brenner, M. 2008. Continual collaborative planning for
mixed-initiative action and interaction. In Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2000. Planning under incomplete knowledge. In Proc. of
the First Int. Conf. on Computational Logic, 807–821.
Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation — the A-Prolog perspective.
Artificial Intelligence 138(1–2):3–38.
Ghallab, M.; Nau, D.; and Travers, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Krümpelmann, P., and Kern-Isberner, G. 2008. Propagat-
ing credibility in answer set programs. In Proc. of the 22nd
Workshop on (Constraint) Logic Programming (WLP08).
Krümpelmann, P.; Thimm, M.; Ritterskamp, M.; and Kern-
Isberner, G. 2008. Belief operations for motivated BDI
agents. In Proc. of the 7th Int. Conf. on Autonomous Agents
and Multiagent Systems, 421–428.
Lesperance, Y.; Giacomo, G. D.; and Ozgovde, A. 2008. A
model of contingent planning for agent programming lan-
guages. In Proceedings of AAMAS’08, 477–484.
Lifschitz, V. 2002. Answer set programming and plan
generation. Artif. Intel. 138(1-2):39–54.
Lin, F., and Wang, Y. 2008. Answer set programming with
functions. In Proc. of the Eleventh Int. Conf. on Principles
of Knowledge Representation and Reasoning, 454–464.
Meneguzzi, F. R., and Luck, M. 2007. Motivations as an
abstraction of meta-level reasoning. In Proc. of the Fifth
Int. Central and Eastern European Conference on Multi-
Agent Systems, 204–214.
Singh, M. P. 1999. Know-how. In Rao, A. S., and
Wooldridge, M. J., eds., Foundations of Rational Agency,
Applied Logic Series. Kluwer. 105–132.
Thielscher, M. 2004. Flux: A logic programming method
for reasoning agents. Theory And Practice of Logic Pro-
gramming.
Thimm, M., and Krümpelmann, P. 2009. Know-how for
Motivated BDI Agents (Extended version). Technical Re-
port 822, TU Dortmund, Dpt. of Computer Science.
Weiss, G., ed. 1999. Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence. Cambridge,
MA, USA: MIT Press.


