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Abstract

It seems to be a common view that in order to interpret proba-
bilistic first-order sentences, either a statistical approach that
counts (tuples of) individuals has to be used, or the knowl-
edge base has to be grounded to make a possible worlds se-
mantics applicable, for a subjective interpretation of probabil-
ities. In this paper, we propose novel semantical perspectives
on first-order (or relational) probabilistic conditionals that are
motivated by considering them as subjective, but population-
based statements. We propose two different semantics for re-
lational probabilistic conditionals, and a set of postulates for
suitable inference operators in this framework. Finally, we
present two inference operators by applying the maximum
entropy principle to the respective model theories. Both op-
erators are shown to yield reasonable inferences according to
the postulates.

Introduction
Applying probabilistic reasoning methods to relational1,
resp. first-order representations of knowledge is a very ac-
tive and controversial area of research. During the past few
years the fields of probabilistic inductive logic programming
and statistical relational learning have put forth a lot of
proposals that deal with combining traditional probabilis-
tic models of knowledge like Bayes nets or Markov nets
(Pearl 1998) with first-order logic, cf. (Getoor and Taskar
2007). The relational structure of many real-world problems
such as telecommunication networks, citation analysis, hu-
man sciences, bioinformatics, and logistics as well as the
presence of uncertainty in these problems demand sophisti-
cated reasoning and learning methods employing both these
concepts, see e. g. (Lodhi and Muggleton 2004; Cocura et
al. 2006) for some applications. Two of the most promi-
nent approaches for extending propositional approaches to
the relational case are Bayesian logic programs (Getoor and
Taskar 2007, Ch. 10) and Markov logic networks (Getoor
and Taskar 2007, Ch. 12), extending Bayes nets and Markov
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1We will use the term “relational” to emphasize that the respec-
tive framework is not necessarily full-fledged first-order logic, but
a fragment thereof, which, however, allows at least for the expres-
sion of statements on objects.

nets, respectively. Both frameworks employ knowledge-
based model construction techniques (Wellman, Breese, and
Goldman 1992) to reduce the problem of probabilistic rea-
soning in a relational context to probabilistic reasoning in
a propositional context. In both frameworks—and also
in most other approaches—this is done by appropriately
grounding the parts of the knowledge base that are needed
for answering a particular query and treating this grounded
parts as a propositional knowledge base.

Most of these approaches, however, are primarily con-
cerned with machine learning problems, and do not care
about logical or formal properties of relational probabilistic
reasoning. The following example (inspired by (Delgrande
1998)) illustrates that even defining a proper semantics for
first-order probabilistic knowledge bases is not an easy task.
Let el(X) denote that X is an elephant, ke(X) means that
X is a keeper, and likes(X,Y ) denotes that X likes Y .

r1 : (likes(X,Y ) | el(X) ∧ ke(Y ))[0.6]

r2 : (likes(X, fred) | el(X) ∧ ke(fred))[0.4]

r3 : (likes(clyde, fred) | el(clyde) ∧ ke(fred))[0.7]

Rule r1 expresses that in some given population, choosing
randomly an elephant-keeper-pair, we would expect that the
elephant likes the keeper with probability 0.7. However,
keeper Fred and elephant Clyde are exceptional—mostly,
elephants do not like Fred, but Clyde likes (even) Fred.
Maybe Clyde is a particularly good-natured elephant, maybe
he is as moody as Fred and likes only him. So, Clyde is def-
initely exceptional with respect to r2, but maybe even with
respect to r1.

However, the example is ambiguous, and its formal inter-
pretation via probabilistic constraints is intricate. Rule r1

seems to express a belief an agent may hold about a popula-
tion, while r3 clearly expresses individual belief: Consider-
ing all situations (possible worlds) involving Clyde and Fred
which are imaginable, in 70 % of them Clyde likes Fred. So,
we might think of applying different techniques to r1 and
r3, but r2 obviously mixes the two types of knowledge, how
should r2 be dealt with?

In many approaches, e. g. in Bayesian logic programs and
for Markov logic networks, the relational rules are grounded,
and the probability is attached to each instance. For r1, this
means: (likes(a, b) | el(a) ∧ ke(b))[0.6] for all a, b ∈ U.



Here U is a properly (or arbitrarily) chosen universe. Be-
sides the question, how U should be chosen, there are two
other problems. First, grounding turns the relational state-
ment r1 into a collection of statements of the same type
as r3, i.e. statements about individual beliefs. The popu-
lation aspect gets lost, more precisely: r1 is no longer a
statement describing a generic behaviour in a population of
(possibly very) individualistic individuals, but is understood
to be a statement on lemmings which all behave the same.
Secondly, naive grounding techniques make the knowledge
base inconsistent, as then r3 collides with the respective in-
stances of r1 and r2. So, grounding has to take further con-
straints into account, to return a consistent knowledge base
(cf. (Finthammer, Loh, and Thimm 2009)).

In this paper, we will propose two approaches to giving
formal semantics to relational probabilistic knowledge bases
that aim at catching properly the common sense intuition and
resolving ambiguities. We will focus on model-based infer-
ence operators for each of these semantics, in order to im-
prove inferences from knowledge bases which usually repre-
sent only partial knowledge. We will make explicit what rea-
sonable inference in this extended framework of relational
probabilistic logic means by setting up a set of postulates.
Of course, all this should be clearly related to work on prob-
abilistic reasoning in the propositional case. In particular,
we expect our semantics to coincide with propositional ap-
proaches, if the knowledge base is ground.

Moreover, we will present a model-based inference op-
erator that is based on the principle of maximum entropy
for each of the two semantics. This principle is known to
ensure several desirable properties for commonsense rea-
soning in the propositional framework (Grove, Halpern, and
Koller 1994; Kern-Isberner 2001). The idea of application
is quite simple and similar to the propositional case: Having
defined the set of models of a relational probabilistic knowl-
edge base (according to each of the semantics), one chooses
the unique probability distribution among these models that
has maximal entropy, if possible, and therefore allows us to
reason precisely (i.e. with precise probabilities, not based on
intervals), but in a most cautious way (see (Grove, Halpern,
and Koller 1994; Kern-Isberner 2001) for the theoretical
foundations). Examples will illustrate in which respects
these inference operators differ, but we will show that both
inference operators comply with all postulates.

This paper continues and extends work begun in (Thimm
2009) while the main innovations of the present paper lie in
the introduction of the novel aggregating semantics, a more
elaborate discussion of desirable properties, and a more thor-
ough evaluation of the inference operators.

The outline for the present paper is as follows. First, we
formalize the syntactical details of a probabilistic first-order
conditional logic, and propose two different semantics for
it, the averaging and the aggregating semantics. Afterwards
we discuss the problem of inference in this logic by devel-
oping several desirable properties of rational inference op-
erators. We continue by presenting model-based inference
operators that employ the principle of maximum entropy in
both semantical frameworks, giving rise to two different in-
ference operators which are exemplified and evaluated by

means of the previously stated properties. We conclude with
a brief summary and some discussions on related and further
work. Proofs of results can be found in the appendix.

Syntax and Semantics of First-Order
Conditional Logic

In the following we give an extension of probabilistic con-
ditional logic to the relational case similar as in (Fisseler
2009).

We consider only a fragment of a first-order language, so
let Σ = 〈Pred, D〉 be a first-order signature consisting of
a (finite) set of predicate symbols Pred, a finite set of con-
stants D and without functions with arity greater zero. A
predicate declaration P/n with a natural number n means
that P is a predicate of arity n. Let LΣ be a first-order lan-
guage over the signature Σ = 〈Pred, D〉 that is generated
in the usual way using negation, conjunction, and disjunc-
tion, but without quantifiers. If appropriate we abbreviate
conjunctions A ∧ B by AB. We denote variables with a
beginning uppercase, constants with a beginning lowercase
letter, and vectors of these with ~X resp. ~a.

A formula that contains no variable is called
ground. Let groundC(A) denote the set of ground
instances of A with respect to a set of con-
stants C ⊆ D, e. g. ground{a,b}(A(X,Y )) is
{A(a, a), A(a, b), A(b, a), A(b, b)}.
Definition 1 (Probabilistic Conditional). An expression of
the form (B |A)[α] with A,B ∈ LΣ (not necessarily
ground) and a real number α ∈ [0, 1] is called a probabilistic
conditional. A probabilistic conditional (B |A)[α] is ground
if both A and B are ground. Let (L|L)prob be the set of all
probabilistic conditionals over LΣ.

If the premise of A of a conditional (B |A)[α] is ground
and tautological, i. e. A ≡ >, we abbreviate (B | >)[α] by
(B)[α]. A conditional of the form (B)[α] is also called a
probabilistic fact. Let groundC((B |A)[α]) denote the set
of all grounded probabilistic conditionals of a conditional
(B |A)[α] with respect to the set of constants C ⊆ D.

Definition 2 (Knowledge base). A finite setR of probabilis-
tic conditionals is called a knowledge base. A knowledge
base R is ground if every probabilistic conditional in R is
ground. Let R denote the set of knowledge bases.

Introducing relational aspects in probabilistic statements
raises some ambiguity on the understanding of these state-
ments. We illustrate this problem on the example mentioned
in the introduction (cf. also (Delgrande 1998)).

Example 1. Consider the knowledge base R = {r1, r2, r3}
with

r1 : (likes(X,Y ) | el(X) ∧ ke(Y ))[0.6]

r2 : (likes(X, fred) | el(X) ∧ ke(fred))[0.4]

r3 : (likes(clyde, fred) | el(clyde) ∧ ke(fred))[0.7]

The knowledge base R describes the relationships between
keepers and elephants in a zoo, thereby stating both subjec-
tive degrees of belief on the relationship between Clyde and



Fred (r3), as well as population-based probabilities that in-
volve all elephants and keepers (r1, r2). So, r3 should be
interpreted via a possible worlds semantics, whereas r2, r3

seem to need some statistics (cf. e.g. (Bacchus et al. 1996)).
As these two approaches are deemed substantially different,
this dilemma is not easily resolved. In this paper, we pro-
pose thoroughly subjective approaches to probability even
for the relational case, using a possible worlds semantics
for all three statements above. This allows an intuitive and
coherent interpretation of relational probabilistic statements
that takes into account both informations on specific objects
and informations on a population.

Formal semantics for first-order probabilistic conditional
logic will be given by probability distributions that are de-
fined over possible worlds of the given first-order language
LΣ. Here, we use Herbrand interpretations for possible
worlds. The Herbrand base H is the set of all ground atoms
that can be built using the predicate symbols and constants
in Σ = 〈Pred, D〉, and a Herbrand interpretation is a subset
of H. A Herbrand interpretation ω satisfies a ground atom
A, denoted by ω |= A, if A ∈ ω. The satisfaction relation
|= is extended to arbitrary ground formulas in the usual way.
While we assume Pred to be fixed, we will allow the set of
constants D to vary, in order to be able to investigate the in-
fluence of the universe (or respectively, its size) on the prob-
abilistic evaluation of statements. So, we parametrize the
set ΩD of possible worlds by the set of constants, i. e. ΩD

is the set of all Herbrand interpretations on a signature with
domain D. Likewise, we will write LD and (LD|LD)prob,
to make the set of constants explicit.

Let P : ΩD → [0, 1] be a probability distribution over
ΩD, and let ProbD be the set of all such probability dis-
tributions. P ∈ ProbD is extended on ground formulas A
by setting P (A) =

∑
ω|=A P (ω). For the propositional case

(Grove, Halpern, and Koller 1994; Kern-Isberner 2001) sat-
isfaction of a conditional is defined via conditonal proba-
bilities. Let (B |A)[α] be a ground conditional. Then a
probability distribution P satisfies (B |A)[α], denoted by
P |= (B |A)[α], if the following condition holds P |=
(B |A)[α] iff P (B |A) = α and P (A) > 0. It remains to
define a satisfaction relation for conditionals with variables
(see Example 1). Taking a naı̈ve approach by grounding
all conditionals in R universally and taking this grounding
R′ as a propositional knowledge base, we can (usually) not
determine any probability distribution that satisfies R′ due
to its inherent inconsistency (Finthammer, Loh, and Thimm
2009).

In the following, we propose two different approaches for
semantics of LΣ that coincide with the propositional case
above on ground conditionals but differ on the interpretation
of population-based statements.

Averaging Semantics

Our first approach gives semantics to probabilistic condi-
tionals by averaging conditional probabilities. The entail-
ment relation |=cp

∅ between distributions from ΩD and rela-

tional probabilistic conditionals over L is defined by

P |=cp
∅ (B( ~X) |A( ~X))[α] iff

∑
(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X)))

P (B(~c) | A(~c))

|groundD(B( ~X) | A( ~X))|
= α .

(1)

Intuitively spoken, a probability distribution P ∅-satisfies
a conditional (B |A)[α] if the average of the individual in-
stantiations of (B |A)[α] is α.

Remark 1. For a ground conditional (G2 |G1)[α] the oper-
ator |=cp

∅ indeed coincides with the propositional case due to
groundD(G2 | G1) = {(G2 | G1)}.
As usual, a probability distribution P ∅-satisfies a knowl-
edge baseR, denoted P |=cp

∅ R, if P ∅-satisfies every prob-
abilistic conditional r ∈ R. We say that R is ∅-consistent
iff there is at least one P with P |=cp

∅ R, otherwise R is
∅-inconsistent.

Aggregating Semantics
Our second semantical approach is inspired by statistical ap-
proaches. However, instead of counting objects, or tuples of
objects, respectively, that make a formula true, we sum up
the probabilities of the correspondingly instantiated formu-
las. The entailment relation |=cp

� between distributions from
ΩD and relational probabilistic conditionals over L is de-
fined by

P |=cp
� (B( ~X) |A( ~X))[α] iff

∑
(B((~c)|A(~c))∈groundD((B( ~X)|A( ~X)))

P (A(~c)B(~c))∑
(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X)))

P (A(~c))
= α .

(2)

If P is a uniform distribution, we end up with a statistical in-
terpretation of the conditional. However, the probabilities in
this paper will be subjective, so |=cp

� mimicks the statistical
view from a subjective perspective.

Remark 2. As for |=cp
∅ , for a ground conditional

(B2 |A1)[α] the operator |=cp
� coincides with the proposi-

tional case due to groundD(B2 | A1) = {(B2 | A1)}.
As above, a probability distribution P �-satisfies a knowl-
edge baseR, denoted P |=cp

� R, if P �-satisfies every prob-
abilistic conditional r ∈ R. We say that R is �-consistent
iff there is at least on P with P |=cp

� R, otherwise R is �-
inconsistent.

Comparing the Semantics
Due to remarks 1 and 2, both semantics agree on ground
conditionals. Furthermore, it is straightforward to show that
|=cp

∅ and |=cp
� also agree on probabilistic facts (that may con-

tain variables).

Proposition 1. Let P ∈ ProbD be a probability distribution
and (B)[α] ∈ (LD|LD)prob a probabilistic fact. Then it
holds that P |=cp

∅ (B)[α] iff P |=cp
� (B)[α].



For general conditionals in (LD|LD)prob, however, the two
semantics turn out to be different, as the following example
shows.
Example 2. Let A/1 and B/1 be two predicates, let the
D consist of the five elements a1, . . . , a5, and consider the
following (ground) knowledge base R:

(A(a1))[0.5] (A(a2))[0.1]

(A(a3))[0.9] (A(a4))[0.6]

(A(a5))[0.4] (B(a1)A(a1))[0.5]

(B(a2)A(a2))[0.1] (B(a3)A(a3))[0.9]

(B(a4)A(a4))[0.4] (B(a5)A(a5))[0.1]

In addition, consider the conditional r =
(B(X) |A(X))[0.8]. On the one hand, any probabil-
ity distribution P with P |=cp

� R also obeys P |=cp
� r

as

P (B(a1)A(a1)) + · · ·+ P (B(a5)A(a5))

P (A(a1)) + · · ·+ P (A(a5))

=
0.5 + 0.1 + 0.9 + 0.4 + 0.1

0.5 + 0.1 + 0.9 + 0.6 + 0.4
= 0.8

On the other hand, every probability distribution P with
P |=cp

∅ R does not obey P |=cp
∅ r due to

1/5 (P (B(a1) | A(a1)) + · · ·+ P (B(a5) | A(a5)))

=

(
0.5

0.5
+

0.1

0.1
+

0.9

0.9
+

0.4

0.6
+

0.1

0.4

)
/5 = 0.783 6= 0.8

As P |=cp
� R is equivalent to P |=cp

∅ R due to Proposi-
tion 1 the different semantics may lead to different infer-
ences. Furthermore, the two semantics feature a different
notion of consistency as R ∪ {r} is ∅-inconsistent but �-
consistent.

Inference in First-Order Conditional Logic
We are interested in finding a “good” probability distribu-
tion P that satisfies all probabilistic conditionals of a given
knowledge baseR given one of the two proposed semantics.
More specifically, we are interested in an operator I(R,D)
that takes a knowledge base R and as set of constants D as
input and returns a probability distribution P = I(R,D) ∈
ProbD as output such that P describes R “best” in a com-
monsensical manner. In particular, the resulting distribution
should be a model of R. So, let |=cp

◦ be any entailment re-
lation between distributions from ΩD and relational prob-
abilistic conditionals from (LD|LD)prob. In this section,
we state some properties that a reasonable model-based I
operator should observe. In the following section, we will
present two operators that comply with all postulates.

In order to ease notation and presentation, we will im-
plicitly assume that R is defined over a language LD the
predicate symbols of which are held fixed, and the set D of
constants is to contain all constants appearing in R.

Our first demand for an operator I to be appropriate is
its well-definedness. As an inconsistent knowledge base R
has no models and therefore an operator I cannot determine
any model of R for reasoning, let undef be a new sym-
bol for this case. Let D be the set of all sets of constants;

for each knowledge base R, let DR contain all sets of con-
stants that contain all constants from R. Let I : R ×D →
ProbD∪{undef} be an operator that maps a knowledge base
R ∈ R and a set D ∈ DR of constants onto a probability
distribution P ∈ ProbD, or to undef.

(Well-Definedness) It is I(R,D) ∈ ProbD such that
I(R,D) |=cp

◦ R iffD ∈ DR andR ⊆ LD is ◦-consistent.

We need some further notation to go on. For a formula A
let A[d/c] denote the formula that is the same as A except
that every occurrence of the term c (either a variable or a
constant) is substituted with the term d. More generally, let
A[d1/c1, . . . , dn/cn] denote the formula that is the same as
A except that every occurrence of ci is substituted with di
for 1 ≤ i ≤ n simultaneously. Furthermore, letA[c↔ d] be
an abbreviation forA[c/d, d/c]. The substitution operator [·]
is extended on sets of formulas, conditionals, and knowledge
bases in the usual way.

When considering knowledge bases based on a relational
language the beliefs one obtains for specific individuals is of
special interest. An important demand to be made is that for
indistinguishable individuals, the same information should
be obtained. Here, indistinguishability is defined with re-
spect to the information expressed by R. More specifically,
if the explicit information encoded in R for two different in-
dividuals c1, c2 ∈ D is the same, the probability distribution
P = I(R,D) should treat them as indistinguishable. We
formalize this indistinguishability by introducing an equiva-
lence relation on constants.
Definition 3 (Syntactical Equivalence). Let R be a knowl-
edge base. The constants c1, c2 ∈ D are syntactically
equivalent with respect to R, denoted by c1 ≡R c2, iff
R = R[c1 ↔ c2].
Observe that ≡R is indeed an equivalence relation, i. e., it is
reflexive, transitive, and symmetric. The equivalence classes
of ≡R are called R-equivalence classes and the set of all R-
equivalence classes is denoted by SR. Note, that the notion
of syntactical equivalence bears a resemblance with the no-
tion of reference classes (Bacchus et al. 1996) but on a pure
syntactical level.

Using syntactical equivalence we can state our demand
for equal treatment of indistinguishable individuals as fol-
lows.

(Prototypical Indifference) Let R be a knowledge base on
LD and A a ground sentence. For any c1, c2 ∈ D with
c1 ≡R c2 it is I(R,D)(A) = I(R,D)(A[c1 ↔ c2]).

Even more basically, renaming an individual should have no
impact on the information that can be derived for it.

(Name Irrelevance) Let R be a knowledge base on LD,
d /∈ D a new constant, and A ∈ LD a ground sen-
tence. For every c ∈ D, it holds that I(R,D)(A) =
I(R[d/c], (D ∪ {d}) \ {c})(A[d/c]) where R[d/c] is a
knowledge base on L(D∪{d})\{c}.

As can easily be seen, every function I satisfying (Name
Irrelevance) also satisfies (Prototypical Indifference).
Proposition 2. If I satisfies (Name Irrelevance) then I sat-
isfies (Prototypical Indifference).



It is clear that (Prototypical Indifference) can be verified by
considering all Herbrand interpretations, respectively. Thus,
the following proposition is given without proof.
Proposition 3. I satisfies (Prototypical Indifference) iff for
all knowledge basesR ∈ R, and for all constants c1, c2 ∈ D
that do not occur in R, and for all interpretations ω ∈ ΩD,
I(R,D)(ω) = I(R,D)(ω[c1 ↔ c2]).
On the other hand, from (Prototypical Indifference) some
generalizations follow immediately.
Proposition 4. Let I satisfy (Prototypical Indifference). Let
R be a knowledge base on LD.

1. Let G1, G2 be two ground sentences. For c1, c2 ∈ D with
c1 ≡R c2 it holds I(R,D)(G2|G1) = I(R,D)(G2[c1 ↔
c2] | G1[c1 ↔ c2]).

2. Let S ∈ SR, c1, . . . , cn ∈ S, and σ : S → S a permu-
tation on S, i. e. a bijective function on S. Then it holds
I(R,D)(A) = I(R,D)(A[σ(c1)/c1, . . . , σ(cn)/cn]).

The following postulate focusses on the implications that
a population-based statement r = (B( ~X) |A( ~X))[α]
should have for the probability of a proper instantiation
P (B(~c)|A(~c). Our intention about r is that in general,
the conditional probability of B(~c) given A(~c) “should” be
(around) α. But surely, we cannot guarantee that every pos-
sible instantiation r′ of r will conform to a strict interpreta-
tion of this demand. This follows mainly from the fact, that
using ground conditionals we should be able to give excep-
tions to this rule, cf. Example 1. What we are really want to
describe when representing a population-based statement r
is that given an adequate large domain, the respective condi-
tional probability for constant tuples that may serve as pro-
totypes will converge towards α. This behavior resembles
the intuition behind the “Law of Large Numbers”.
(Conditional Probability in the Limit (CPL)) Let D be a

set of constants that contain all constants from R, and as-
sume an increasing sequence of sets of constants D =
D1 ⊂ D2 ⊂ . . .. Let R be a ◦-consistent knowl-
edge base on LD; then R can also be considered as
a knowledge base on LD1 ,LD1 , . . .. For a conditional
r = (B( ~X) |A( ~X))[α] ∈ R, let (B(~c) |A(~c))[α] be a
proper instantiation of r with constants ~c that do not ap-
pear in R. Then it holds that

lim
i→∞

I(R,Di)(B(~c) | A(~c)) = α .

The important aspect of population-based statements is their
capability of expressing a general behaviour within a popu-
lation while allowing for exceptions. So, population-based
statements are to reflect some kind of expected value over
the set of individual instantiations that aggregates individual
behaviours. As such, if the probability of one instantiation
of a population-based statements lies below the probability
assigned to the statement there has to be another instantia-
tion with a probability higher than this probability value in
order to compensate for the other exception (remember that
the universe D is assumed to be finite).
(Compensation) Let R be a ◦-consistent knowledge base

and (B( ~X) |A( ~X))[α] ∈ R a non-ground conditional

with 0 < α < 1. If ~c1 is a vector of constants such that
I(R,D)(B(~c1) | A(~c1)) < α then there is another vector
of constants ~c2 with I(R,D)(B(~c2) | A(~c2)) > α.

On the other hand, when considering non-ground condition-
als (B( ~X) |A( ~X))[α] with α ∈ {0, 1} no compensation for
exceptions is possible thus requiring direct inference (Bac-
chus et al. 1996) for this particular case.

(Strict Inference) Let R be a ◦-consistent knowledge base
and (B( ~X) |A( ~X))[α] ∈ R a non-ground conditional
with α ∈ {0, 1}. Then for any (B(~c) | A(~c)) ∈
groundD(A( ~X) | B( ~X)), I(R,D)(B(~c) | A(~c)) = α.

In the following section, we present two operators that sat-
isfy all postulates given above.

Relational Maximum Entropy Reasoning
In the propositional case, ME-inference (Maximum En-
tropy) has proven to be a suitable approach for common-
sense reasoning as it features several nice properties (Grove,
Halpern, and Koller 1994; Kern-Isberner 2001). The entropy
H(P ) of a probability distribution P is defined as H(P ) =
−
∑

ω∈ΩV
P (ω) logP (ω), and measures the amount of in-

determinateness inherent in P . By selecting the unique
probability distribution P ∗ among all probabilistic models
of a (propositional) set of formulas S that has maximal en-
tropy, i. e. by computing the solution to the optimization
problem P ∗ := ME(S) = arg maxP |=S H(P ), we get the
one probability distribution that satisfies S and adds as lit-
tle information as necessary. For further details, we refer to
(Grove, Halpern, and Koller 1994; Kern-Isberner 2001).

As we are interested in generalizing the propositional ME-
operator to the first-order case, we will postulate a proper
form of compatibility to the propositional ME-inference,
in addition to the postulates stated for general inference
operators in the previous section. For ground knowledge
bases (which can be considered as propositional knowledge
bases), the operation I should coincide with the ME opera-
tor on propositional knowledge bases.

(ME-Compatibility) Let R be a ground knowledge base
and D the constants appearing in R. If A is a ground
sentence then it is ME(R)(A) = I(R,D)(A).

After having introduced the averaging and the aggregating
semantics for relational probabilistic knowledge bases, now
we apply the maximum entropy principle to the respective
model sets to single out “best” models.

Relational Maximum Entropy Inference by
Averaging Probabilities
In the following we define our first variant of an ME-
inference I∅ : R ×D → ProbD ∪ {undef} in a relational
context, that is based upon the semantics |=cp

∅ . A prelimi-
nary discussion of this operator can also be found in (Thimm
2009). As (1) yields a set of non-convex constraints we de-
fine I∅(R,D) as

I∅(R,D)=

{
arg max

P |=cp
∅ R

H(P ) if unique
and D ∈ DR

undef otherwise
(3)



The second case catches scenarios where either R is ∅-
inconsistent or the optimization problem of the first case is
not uniquely solvable. Obviously, I∅ is a model-based in-
ference operator using semantics |=cp

∅ . In particular, if R
is ∅-consistent there is at least one probability distribution
with maximum entropy that can be chosen in Equation (3).

Example 3. We continue Example 1. Let LD be a first-
order language with predicates el/1, ke/1, and likes/2 and
domainD = {clyde, dumbo, giddy, fred, dave}. LetR be
given by

(el(clyde))[1] (el(giddy))[1]

(ke(fred))[1] (ke(dave))[1]

(likes(X,Y ) | el(X) ∧ ke(Y ))[0.6] (4)
(likes(X, fred) | el(X) ∧ ke(fred))[0.4] (5)
(likes(clyde, fred) | el(clyde) ∧ ke(fred))[0.7] (6)

Notice, that we have no knowledge of Dumbo being an ele-
phant. In the following we give the probabilities of several
instantiations of likes in I∅(R,D).

I∅(R,D)(likes(clyde, dave)) ≈ 0.723 (7)
I∅(R,D)(likes(dumbo, dave)) ≈ 0.642 (8)
I∅(R,D)(likes(giddy, dave)) ≈ 0.723 (9)
I∅(R,D)(likes(clyde, fred)) = 0.7 (10)
I∅(R,D)(likes(dumbo, fred)) ≈ 0.387 (11)
I∅(R,D)(likes(giddy, fred)) ≈ 0.36 (12)

I∅(R,D)(el(dumbo)) ≈ 0.312 (13)

Notice, how the deviations brought about by the exceptional
individuals Clyde and Fred have to be balanced out by the
other individuals. For example, the probabilities of the in-
dividual elephants liking Dave are greater than conditional
(4) specified them to be. This is because the probabilities
of the elephants liking Fred is considerably smaller as de-
manded by conditional (5). Nonetheless, the average of the
conditional probabilities do indeed satisfy the conditionals
in R. Notice furthermore, that the probability of Dumbo be-
ing an elephant is very small—see (13)—considering that
maximum entropy is achieved by deviating only as little as
possible from the uniform distribution. But due to the in-
teraction of the conditionals in R, a smaller probability of
Dumbo being an elephant is necessary in order to achieve
the correct average conditional probabilities defined in the
knowledge base. Thus, the belief of Dumbo being an ele-
phant alleviates due to the premise of believing in the de-
fined conditionals.

In the following we give some theoretical results that the
proposed operator I∅ indeed fulfills the desired proper-
ties discussed in in the previous section. Due to the non-
convexity of the optimization problem defined by (3) I∅
satisfies (Well-Definedness) only for the case that (3) is
uniquely solvable. However, all examples considered so far
were indeed uniquely solvable.

In order to show that I∅ satisfies (CPL) we need the fol-
lowing lemma.

Lemma 1. Let R be a knowledge base on LD such that
I∅(R,D) 6= undef. Then for any D′ with D ⊆ D′ it is
I∅(R,D′) 6= undef.

Proposition 5. I∅ satisfies (Name Irrelevance), (Prototyp-
ical Indifference), (ME-Compatibility), (Conditional Proba-
bility in the Limit), (Compensation), and (Strict Inference).

Relational Maximum Entropy Inference by
Aggregating Probabilities
In a similar manner, we define the ME-inference operator
I� : R × D → ProbD ∪ {undef} that is based upon the
semantics |=cp

� . Let

I�(R,D)=

{
arg max

P |=cp
� R

H(P ) if R �-consistent
and D ∈ DR

undef otherwise
(14)

Obviously, I� is a model-based inference operator using se-
mantics |=cp

� . In this semantical context, the conditionals
from R induce linear constraints on the probabilities of the
possible worlds so that the set of probability distributions
satisfying R forms a convex set. This makes the solution to
the optimization problem (14) unique (if a solution exists).
The following lemma is given without proof.

Lemma 2. Let r = (B( ~X) |A( ~X))[α] be a probabilistic
conditional and Solr the set of probability distributions that
satisfy r, i. e. it is Solr = {P | P |=cp

� (B( ~X) |A( ~X))[α]}.
Then Solr is convex.

Proposition 6. The probability distribution defined by (14)
is uniquely determined if R is �-consistent.

Example 4. We apply I� onto the knowledge base in Ex-
ample 3. This yields the following inferences:

I�(R,D)(likes(clyde, dave)) ≈ 0.8 (15)
I�(R,D)(likes(dumbo, dave)) ≈ 0.64 (16)
I�(R,D)(likes(giddy, dave)) ≈ 0.8 (17)
I�(R,D)(likes(clyde, fred)) = 0.7 (18)
I�(R,D)(likes(dumbo, fred)) ≈ 0.356 (19)
I�(R,D)(likes(giddy, fred)) ≈ 0.196 (20)

I�(R,D)(el(dumbo)) ≈ 0.475 (21)

The results are similar to those computed by using I∅ in the
example above. In particular, with regard to liking Dave,
both approaches calculate very similar probabilities for all
individuals mentioned in the queries. Here, Dumbo—the
individual not known to be an elephant—likes Dave with a
lower probability than the elephants Clyde and Giddy, cf.
(15), (16), and (17). More substantial differences can be no-
ticed with respect to the elephants’ liking the moody keeper
Fred. For Giddy liking Fred, I� returns a considerably
lower probability than I∅, see (20). On the other hand, I�
is more cautious when processing information on Dumbo,
its probability of being an elephant is nearly 0.5 (21), while
I∅ suggests that Dumbo is not an elephant.

We will now show that I� satisfies all postulates listed in
the previous Section.



Proposition 7. I� satisfies (Well-Definedness), (Name Ir-
relevance), (Prototypical Indifference), (ME-Compatibility),
(Conditional Probability in the Limit), (Strict Inference),
and (Compensation).

Discussion – Related and Further Work
In this paper, we developed a first-order conditional logic
and proposed two different semantics for it. We deviced a set
of desirable properties of inference operators on this logic,
and for each of the semantics we proposed an inference oper-
ator that extends proposition inference on maximum entropy
to the relational case. Both operators fulfill in principle the
catalogue of desired properties.

From a computational point of view the operator, I� and
thus the semantics |=cp

� seems to be the favorable choice
for reasoning in first-order conditional logic. Although, for
a straightforward implementation of the optimization prob-
lems (3) and (14), both operators need an exponential trans-
formation (as the probabilities for all Herbrand interpreta-
tions have to be considered). But for solving the (convex)
optimization problem (14) efficient algorithms are available
(Boyd and Vandenberghe 2004). However, except for these
computational issues, both semantics seem to be reasonable
choices for interpreting first-order conditional logic. Part of
our current research is an even deeper investigation and com-
parison of the proposed semantical approaches. Another in-
teresting issue for future work lies in investigating the pos-
sibility if fast algorithms for computing the ME-distribution
in propositional frameworks, such as SPIRIT (Rödder and
Meyer 1996), can be adapted to the relational case.

Some approaches to define a proper probabilistic logic for
first-order fragments have been proposed in previous works,
and some of them even apply the principle of maximum en-
tropy for inferences. The papers by Halpern and colleagues
(Bacchus et al. 1996; Grove, Halpern, and Koller 1994) aim
at bridging statistical and subjective views on probabilistic
beliefs by showing how subjective beliefs arise from sta-
tistical information by considering approximative probabil-
ities and limits. The principle of maximum entropy plays
a prominent role in these frameworks, too, but the authors
mention problems when applying this principle to knowl-
edge bases with n-ary predicates with n > 1. As our seman-
tical approaches are thoroughly subjective by choosing sub-
jective probabilities throughout, we did not encounter most
of the problems that those authors have to struggle with. For
instance, in statistical approaches to probabilities, the size
of the universe determines the probabilities that can be real-
ized, so approximations of probabilities have to be consid-
ered. This is not the case in our approaches, as no frequentis-
tic interpretation underlies the probabilities. Moreover, the
application of the maximum entropy principle to knowledge
bases with arbitrary predicates seems to be unproblematic,
but this has to be investigated in more detail in further work.

Most approaches that make use of a subjective, possi-
ble worlds semantics for first-order probabilistic logic, as
e. g. (Kern-Isberner and Lukasiewicz 2004; Fisseler 2009;
Finthammer, Loh, and Thimm 2009), but also Markov logic
networks (Getoor and Taskar 2007, Ch. 12) and Bayesian
logic programs (Getoor and Taskar 2007, Ch. 10), apply

their techniques to a grounded version of the knowledge
base. Grounding probabilistic relational conditionals with
precise probabilities and using them as a set of constraints,
however, may give rise easily to conflicts and inconsisten-
cies. Such problems were circumvented by the approaches
cited above by considering imprecise, interval-valued prob-
abilities, by restricting syntactically the grounding of the
formulas, by using external combination functions for dif-
ferent instantiations of conditionals, or by not considering
the knowledge base as a set of constraints. Our approaches
aim at reflecting an overall behaviour within a population to
which each individual contributes, while at the same time al-
lowing individuals to defer drastically from that behaviour.
In this way, both class knowledge and individual, maybe
exceptional knowledge can be represented and processed
within one framework. As the satisfaction of the (CPL) pos-
tulate shows, the overall behaviour might also be interpreted
as a prototypical behaviour in universes which are large
enough. Nevertheless, in a companion paper (Loh, Thimm,
and Kern-Isberner 2010), we propose different grounding
strategies for relational probabilistic knowledge bases that
avoid inconsistencies, and apply the maximum entropy prin-
ciple to the arising propositional knowledge bases. A thor-
ough comparison with the results from this work is also part
of our ongoing research.
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Proofs of Results
Proposition 1. Let P be a probability distribution and
(B)[α] a probabilistic fact. Then it holds P |=cp

∅ (B)[α]
iff P |=cp

� (B)[α].

Proof. It holds P |=cp
∅ (B)[α] iff∑

B′∈groundD(B) P (B′)

|groundD(B)|
= α

by definition and furthermore due to P (>) = 1 it holds

P |=cp
� (B)[α] ⇔

∑
B′∈groundD(B) P (B′)∑
B′∈groundD(B) P (>)

= α

⇔
∑

B′∈groundD(B) P (B′)

|groundD(B)|
= α

Proposition 2. If I satisfies (Name Irrelevance) then I
satisfies (Prototypical Indifference).

Proof. Let R be a knowledge base on LD and d1, d2 /∈ D.
Let furthermore c1, c2 ∈ D with c1 ≡R c2 and c1 6= c2.
Then it holds for a ground sentence A:

I(R,D)(A)

= I(R[d1/c1], (D ∪ {d1}) \ {c1})(A[d1/c1])

= I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})
(A[d1/c1, d2/c2])

As R[d1/c1, d2/c2] is a knowledge base on
L(D∪{d1,d2})\{c1,c2} and c1, c2 /∈ (D ∪ {d1, d2}) \ {c1, c2}
it holds

I(R[d1/c1, d2/c2], (D ∪ {d1, d2}) \ {c1, c2})
(A[d1/c1, d2/c2])

= I(R[d1/c1, d2/c2][c2/d1, c1/d2],

(((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2})
(A[d1/c1, d2/c2][c2/d1, c1/d2]) .

Due to

R[d1/c1, d2/c2][c2/d1, c1/d2] = R[c2/c1, c1/c2] = R

(((D ∪ {d1, d2}) \ {c1, c2}) ∪ {c1, c2}) \ {d1, d2} = D

and

A[d1/c1, d2/c2][c2/d1, c1/d2] = A[c1/c2, c2/c1]

this yields I(R,D)(A) = I(R,D)(A[c1/c2, c2/c1]).

Proposition 4. Let I satisfy (Prototypical Indifference).
Let R be a knowledge base on LD.

1. Let G1, G2 be two ground sentences. For c1, c2 ∈
D with c1 ≡R c2 it holds I(R,D)(G2 | G1) =
I(R,D)(G2[c1 ↔ c2] | G1[c1 ↔ c2]).

2. Let S ∈ SR, c1, . . . , cn ∈ S, and σ : S → S a permu-
tation on S, i. e. a bijective function on S. Then it holds
I(R,D)(A) = I(R,D)(A[σ(c1)/c1, . . . , σ(cn)/cn]).

Proof.

1. Because of (Prototypical Indifference) it is
I(R,D)(G1) = I(R,D) (G1[c1 ↔ c2]) and
I(R,D)(G2∧G2) = I(R,D)((A1∧A2)[c1 ↔ c2]) and
hence

I(R,D)(G2 | G1)

=
I(R,D)(G2 ∧G1)

I(R,D)(G1)

=
I(R,D)((G2 ∧G1)[c1 ↔ c2])

I(R,D)(G1[c1 ↔ c2])

= I(R,D)(G2[c1 ↔ c2] | G1[c1 ↔ c2])

due to (G2 ∧ G1)[xi/yi]i=1,...,n = G2[xi/yi]i=1,...,n ∧
G1[xi/yi]i=1,...,n.



2. This follows from the fact that every permutation can
be represented as a product of transpositions (Beachy
and Blair 2005), i. e. permutations that exactly trans-
pose two elements. Let σ1, . . . , σm be these transpo-
sitions of σ and let σ1...i = σi ◦ . . . ◦ σ1 for i =
1, . . . ,m. Note, that σ1...1 = σ1 and σ1...m = σ.
Due to (Prototypical Indifference) it holds I(R,D)(A) =
I(R,D)(A[σ1(c1)/c1, . . . , σ1(cn)/cn]) and for any i =
2, . . . ,m it is

I(R,D)(A[σ1...i−1(c1)/c1, . . . , σ1...i−1(cn)/cn])

= I(R,D)(A[σ1...i(c1)/c1, . . . , σ1...i(cn)/cn]) .

Via transitivity and σ1...m = σ it follows I(R,D)(A) =
I(R)(A[σ(c1)/c1, . . . , σ(cn)/cn]).

We only give a proof sketch for Lemma 1.

Lemma 1. Let R be a knowledge base on LD such that
I∅(R,D) 6= undef. Then for any D′ with D ⊆ D′ it is
I∅(R,D′) 6= undef.

Proof. (Sketch) Let P0 = I∅(R,D). Consider the (ground)
knowledge base R′ that consists of all ground conditionals
(B′ |A′)[x] such that R contains a conditional (B |A)[y],
(B′ |A′)[y] is an instantiation of (B |A)[y] with respect to
D, and x = P0(B′ |A′). So, R′ contains all instances of
conditionals in R with their actual probabilites in the ME-
model of R. Then, clearly, P0 = ME(R′) in the proposi-
tional sense. Let now C0 ⊆ D be the set of constants that do
not appear in R, let d /∈ D be a new constant, and let D1 =
D ∪ {d}. The set C0 is also an R-equivalence class and
introducing d into the language of R obviously yields that
C0 ∪{d} is an R-equivalence class under the new language.
Let S = {(B1 |A1)[x1], . . . , (Bn |An)[xn]} ⊆ R′ be a
maximal subset of R′, such that (Bi |Ai)[xi][c1 ↔ c2] =
(Bj |Aj)[xj ] for any 1 ≤ i < j ≤ n and some c1, c2 ∈ C0.
This means that S contains all ground conditionals of equiv-
alent structure that just differ in prototypical elements ofC0;
in the following we call S an equivalence set. Due to (Pro-
totypical Indifference) it follows x1 = . . . = xn. For any
such set S let S1 = {(B1 |A1)[y], . . . , (Bn+m |An+m)[y]}
be the corresponding set with respect to C0 ∪ {d} and set
y = n ∗ x/(n + m). By extending D to D1 this yields a
balancing out of the probabilities that are distributed over
the prototypical elements of C0. Let now R′1 be a knowl-
edge base that is the same as R′ except that equivalence set
S is replaced by S1. Then P1 = ME(R′1) is a distribution
on LD1

and with a similar argumentation as above it follows
P1 = I∅(R,D1). This extends iteratively to arbitrary D′
with D ⊆ D′.

We illustrate the argumentation in the proof of Lemma 1 by
means of a simple example.
Example 5. Let R be given by

r1 : (flies(X))[0.7]

r2 : (flies(tweety)[0.9]

and consider the constants D = {tweety, huey, dewey}.
There are two R-equivalence classes, T1 =

{huey, dewey} and T2 = {tweety}. It follows that
I∅(R,D)(flies(huey)) = I∅(R,D)(flies(dewey)) =
0.6 and obviously I∅(R,D)(flies(tweety)) = 0.9. By
assigning these probabilities to the grounded versions of the
conditionals we yield R′ with

r1,1 : (flies(huey))[0.6]

r1,2 : (flies(dewey)[0.6]

r1,3 : (flies(tweety))[0.9]

r2 : (flies(tweety)[0.9]

Observe that r1,3 and r2 are equivalent and that r1,3 is just
added to illustrate the general approach of the argumenta-
tion in the proof of Lemma 1. Now let D1 = D ∪ {louie},
so T1 becomes T ′1 = T1 ∪ {louie} and T ′1 and T2 are the
R-equivalence classes with respect to D1. Neglecting con-
ditional r1,3 we have two equivalence sets in R′, namely
S1 = {r1,1, r1,2} and S2 = {r2}. While S2 = S1

2 because
S2 does not mention any element in T1, for S1 we get S1

1
with

r′1,1 : (flies(huey))[y]

r′1,2 : (flies(dewey)[y]

r′1,3 : (flies(louie))[y]

and y = 0.6 ∗ 2/3 = 0.4. Let R′1 = S1
1 ∪ S1

2 . It follows that
ME(R′1) |=cp

∅ R with respect to D1 and due to the strategy
applied when modifying the probabilities it is ME(R′1) =
I∅(R,D1).

Proposition 5. I∅ satisfies (Name Irrelevance), (Pro-
totypical Indifference), (ME-Compatibility), (Conditional
Probability in the Limit), (Compensation), and (Strict Infer-
ence).

Proof.

(Name Irrelevance) This is obvious as the principle of
maximum entropy is unbiased to renaming of constants,
cf. (Shore and Johnson 1980).

(Prototypical Indifference) This follows from Proposi-
tion 2.

(ME-Compatibility) Let R be a ground knowledge base.
Due to Remark 2 the operator |=cp

∅ is equivalent to |=
in the propositional case. Then Equation (3) also be-
comes equivalent to the propositional case and is in par-
ticular uniquely solvable. Hence, it is ME(R′)(A) =
I∅(R,D)(A) for any ground sentence A.

(Conditional Probability in the Limit) Let R be a knowl-
edge base on LD such that P ∗ := I∅(R,D) 6= undef.
Let r = (B( ~X) |A( ~X))[α] ∈ R with ~X = (X1, . . . , Xh)
and c1, . . . , cn the constants that appear in R. Let fur-
thermore {d1, . . . , dm} = D \ {c1, . . . , cn}, so it is
|D| = n + m. Let ~d1, . . . , ~dk be all vectors of con-
stants of d1, . . . , dm with length h such that for any ~di
with 1 ≤ i ≤ k no two elements are the same. Let
~c1, . . . ,~cl be all remaining vectors of constants in D. It
follows that (l+k) = (|D|)h = (n+m)h and k = mh =



m(m− 1) . . . (m− h+ 1) (the falling factorial) and thus
l = (n + m)h − mh. Let P ∗~c denote P ∗(B(~c) | A(~c))
for a vector ~c. In order to have P ∗ |=cp

∅ r it must hold
P ∗~c1 + . . . + P ∗~cl + P ∗~d1

+ . . . + P ∗~dk
= α · (k + l). From

(Prototypical Indifference) and Proposition 4 it follows
that P ∗~d1

= . . . = P ∗~dk
. Define P ∗k := P ∗~d1

, so it is
P ∗~d1

+ . . .+ P ∗~dk
= kP ∗k . It follows

P ∗k =
α · (k + l)− P ∗~c1 − . . .− P

∗
~cl

k

≤ α · (k + l)

k

= α
(n+m)h

mh︸ ︷︷ ︸
m→∞→ 1

m→∞→ α

Similarly it holds

P ∗k =
α · (k + l)− P ∗~c1 − . . .− P

∗
~cl

k

≥ α · (k + l)− l
k

= α
(n+m)h

mh︸ ︷︷ ︸
m→∞→ 1

− (n+m)h −mh

mh︸ ︷︷ ︸
m→∞→ 0

m→∞→ α .

Due to Lemma 1 the probability distributions P ∗k are well-
defined for any k and it follows P ∗k → α for m→∞.

(Compensation) Let R be a knowledge base and
(B( ~X) |A( ~X))[α] ∈ R a non-ground conditional
with α ∈ (0, 1). Suppose I∅(R,D)(B(~c) | A(~c)) < α
for all (B(~c) |A(~c))[α] ∈ groundD(B(~c) | A(~c)). Then
(for finite D) it is∑

(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (B(~c) | A(~c))

|groundD(B( ~X) | A( ~X))|

<
α · |groundD(B( ~X) | A( ~X))|
|groundD(B( ~X) | A( ~X))|

= α

contradicting I∅(R,D) |=cp
∅ R.

(Strict Inference) Let R be a knowledge base and
(B( ~X) |A( ~X))[α] ∈ R a non-ground conditional with
α = 1 (the case of α = 0 can be shown analo-
gously). Suppose I∅(R,D)(B(~c) | A(~c)) < 1 for some
(B(~c) |A(~c))[α] ∈ groundD(B(~c) | A(~c)). Then (for fi-
nite D) it is∑

(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (B(~c) | A(~c))

|groundD(B( ~X) | A( ~X))|

<
|groundD(B( ~X) | A( ~X))|
|groundD(B( ~X) | A( ~X))|

= 1

contradicting I∅(R,D) |=cp
∅ R.

Proposition 6. The probability distribution defined by (14)
is uniquely determined if R is �-consistent.

Proof. For any knowledge base R the set of probability dis-
tributions that satisfy R is a convex set due to Lemma 2 and
the fact that the intersection of two convex sets is again a
convex set. The entropy is a strict concave function and
maximization of a strict concave function over a convex set
has a unique solution (Boyd and Vandenberghe 2004).

Proposition 7. I� satisfies (Well-Definedness), (Name
Irrelevance), (Prototypical Indifference), (Compatibility),
(Conditional Probability in the Limit), (Strict Inference),
and (ME-Compensation).

Proof.

(Well-Definedness) This is true due to Proposition 6.
(Name Irrelevance) This is obvious as the principle of

maximum entropy is unbiased to renaming of constants,
cf. (Shore and Johnson 1980).

(Prototypical Indifference) This follows directly from
Proposition 2.

(ME-Compatibility) For ground conditional knowledge
basesR, the semantics is the same as for the propositional
case, so ME(R) = I�(R,D).

(Conditional Probability in the Limit) Let R be a rela-
tional conditional knowledge base on 〈Pred , D = CR ∪
C0〉, where CR contains all constants occurring in R, and
C0 = D\CR. Let r = (B( ~X) |A( ~X))[α] ∈ R be a
relational conditional in R with free variables, and let
rg = (B(~c) |A(~c))[α] be a proper instantiation of r with
constants ~c from C0. Let Dn = CR ∪ C0 ∪ Cn with
Cn ⊂ Cn+1 and |C0 ∪ Cn| = n, n ∈ N, n ≥ |C0|, be
a sequence of sets of constants. Let P ∗n = I�(R,Dn)
be the ME-distribution of R that takes the constants from
Dn into account. Due to (Prototypical Indifference),
any constant from C0 can be replaced by any constant
from Cn when calculating P ∗n(B(~a)|A(~a)), since neither
of them appears in R. So, all probabilities of instan-
tiations P ∗n(B(~a)|A(~a)) are given by instantiations over
CR∪C0, but we have to take proper multiplicities into re-
gard. Let (B(~x)|A(~x)) have arity s, and let (B(~a)|A(~a))
be a proper instantiation. Then ~a is a vector of arity s
that might have m components from En = C0 ∪ Cn,
0 ≤ m ≤ s, and s−m components fromCR. W.l.o.g., we
assume t = |CR|, |C0| ≥ s. Since the positions of these
components can make a difference, we have

(
s
m

)
non-

indifferent instantiations (B( ~amkm,lm
)|A( ~amkm,lm

)), 1 ≤
km ≤

(
s
m

)
, 1 ≤ lm ≤ ts−m, with vectors amkm,lm

over
CR∪C0 such that P ∗n(B( ~amkm,lm

)|A( ~amkm,lm
)) occurs nm

times among the instantiations over Dn. In particular, for
m = s, all ns instantiations over En are individually in-
different with respect to P ∗n , one of them being the instan-
tiation for ~c, so P ∗n(B(~c)|A(~c)) can serve as a representa-
tive for these ns probabilities. Similar statements hold
for all instantiations of P ∗n(A(~x)B(~x)) and P ∗n(A(~x)).



P ∗n |=
cp
� R, so in particular, P ∗n |=

cp
� r, which means

that

α =

∑
(B(~a)|A(~a))∈groundDn

((B( ~X)|A( ~X)))

P (A(~a)B(~a))∑
(B(~a)|A(~a))∈groundDn

((B( ~X)|A( ~X)))

P (A(~a))

=
Σ(A(~a)B(~a), Cn)

Σ(A(~a), Cn)
.

For the nominator, we obtain∑
(A(~a)B(~a), Dn)

=

ts∑
l0=1

P ∗n(A(~al0)B(~al0)) +

n

s∑
k1=1

ts−1∑
l1=1

P ∗n(A(~a1
k1,l1)B(~a1

k1,l1)) +

n2

(s
2)∑

k2=1

ts−2∑
l2=1

P ∗n(A(~a2
k2,l2)B(~a2

k2,l2)) + . . .+

ns−1

( s
s−1)∑

ks−1=1

t∑
ls−1=1

P ∗n(A(~as−1
ks−1,ls−1

)B(~as−1
ks−1,ls−1

)) +

+nsP ∗n(A(~c)B(~c))

= ns[
1

ns

ts∑
l0=1

P ∗n(A(~al0)B(~al0)) +

1

ns−1

s∑
k1=1

ts−1∑
l1=1

P ∗n(A(~a1
k1,l1)B(~a1

k1,l1)) +

1

ns−2

(s
2)∑

k2=1

ts−2∑
l2=1

P ∗n(A(~a2
k2,l2)B(~a2

k2,l2)) + . . .+

1

n

( s
s−1)∑

ks−1=1

t∑
ls−1=1

P ∗n(A(~as−1
ks−1,ls−1

)B(~as−1
ks−1,ls−1

)) +

P ∗n(A(~c)B(~c)) ] = ns[ ε1(n) + P ∗n(A(~c)B(~c)) ]

with ε1(n) ≤ 1
ns t

s + 1
ns−1 st

s−1 + 1
ns−2

(
s
2

)
ts−2 + . . . +

1
nst = O( 1

n ). In the same way, for the denominator, we
have Σ(A(~a), Cn) = ns[ε2(n)+P ∗n(A(~c))] with ε2(n) =
O( 1

n ). This shows that for n → ∞, P ∗n(A(~c)B(~c))
and P ∗n(A(~c)) are the dominant terms, hence α =

limn→∞
P∗n(A(~c)B(~c))

P∗n(A(~c)) = limn→∞ P ∗n(B(~c)|A(~c)), what
was to be shown.

(Compensation) Let R be a knowledge base and
(B( ~X) |A( ~X))[α] ∈ R a population-based statement
with α ∈ (0, 1), and let ~c1 be a vector of constants such
that I�(R,D)(B(~c1) | A(~c1)) < α. Let P ∗ = I�(R).

From the presupposition (B( ~X) |A( ~X))[α] ∈ R
and P ∗ |=cp

� R, in particular, we have P ∗ |=cp
�

(B( ~X) |A( ~X))[α], which means

α =

∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a)B(~a))∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a))
.

Assume that for all (proper) instantiations ~a 6= ~c1,
P ∗(B(~a) | A(~a)) ≤ α. Then we had∑

(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a)B(~a))

= P ∗(A(~c1)B(~c1)) +∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X))),~a6=~c1

P ∗(A(~a)B(~a))

< αP ∗(A(~c1)) + ∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X))),~a6=~c1

αP ∗(A(~a))

= α
∑

(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a)),

hence ∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a)B(~a))∑
(B(~a)|A(~a))∈groundD((B( ~X)|A( ~X)))

P ∗(A(~a))
< α,

which contradicts P ∗ |=cp
� (B( ~X) |A( ~X))[α]. So, there

must be another vector of constants ~c2 with P ∗(A(~c2) |
B(~c2)) > α.

(Strict Inference) Let R be a ◦-consistent knowledge
base and (B( ~X) |A( ~X))[α] ∈ R a non-ground con-
ditional with α ∈ {0, 1}. Let (B(~c) | A(~c)) ∈
groundD(A( ~X) | B( ~X)). It is to be shown that
I(R,D)(B(~c) | A(~c)) = α.
Suppose that α = 0. Since P ∗ = I�(R,D)
is a model of R, in particular, we have
P ∗ |=cp

� (B( ~X) |A( ~X))[0]. This implies that∑
(B((~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (B(~c)∧A(~c)) = 0,

so for all (B(~c) | A(~c)) ∈ groundD((B( ~X) | A( ~X))),
P (B(~c) ∧A(~c)) = 0.
In case that α = 1, P ∗ |=cp

� (B( ~X) |A( ~X))[1] yields∑
(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (B(~c) ∧ A(~c)) =∑
(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (A(~c)). If there

were ~c such that P (B(~c)| ∧ A(~c)) < 1, i.e.
P (B(~c) ∧ A(~c)) < P (A(~c)), this would result in∑

(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (B(~c) ∧ A(~c)) <∑
(B(~c)|A(~c))∈groundD((B( ~X)|A( ~X))) P (A(~c)), a contradic-

tion. Hence, (Strict Inference) is also satisfied in this case.


