
Using Defeasible Logic Programming for
Argumentation-Based Decision Support

in Private Law

C. BEIERLE a, B. FREUND a, G. KERN-ISBERNER b, M. THIMM b

a FernUniversität in Hagen, Germany
b Technische Universität Dortmund, Germany

Abstract. Legal reasoning is one of the most obvious application areas for compu-
tational models of argumentation as the exchange of arguments and counterargu-
ments is the established means for making decisions in law. In this paper we employ
Defeasible Logic Programming (DeLP) for representing legal cases and for giving
decision-support, exemplary for private law. We give a formalization of legal pro-
visions that can be used easily by judges for supporting their decision process and
present a working system that resembles the decision-making in legal reasoning, in
particular, with respect to the burden of proof.

draft – 2010-06-30

1. Introduction

Although AI and Law is a long-established discipline (see [3] for an overview of past
developments and present problems), the number of expert systems in actual use by
judges—if any—is very low. Instead, legal professionals use computers for writing, com-
munication, and as databases substituting their traditional libraries. There are only few
tools to support the decision-making itself. This is especially remarkable since legal rea-
soning is essentially rule-based, and therefore seems to invite automation. The low mo-
tivation of judges for using expert systems can partly be explained by a certain conser-
vatism that characterizes the legal system. But the reluctance to embrace counsel based
on computation runs deeper than tradition and nostalgia. To rely on an expert system, a
judge—more than any other kind of expert—needs to have not only a basic, but a pro-
found understanding of the formal model and inference mechanism the system is based
on. Although new forms of logic and models of argumentation have been studied in legal
theory as well (e. g. [14,15,8,19,3]), they never really affected the curriculum. Classi-
cal legal theory, based on aristotelian-scholastic reasoning, is still all the logical training
judges routinely get. It forms the core of most textbooks on legal method and lies at the
heart of legal reasoning as it is taught at law schools both in common law [2] (US) and
civil law countries [11] (China), [4] (Germany), [13] (Switzerland). It is therefore the
natural key to the comprehension and acceptance of expert systems by judges.

In this paper, we will focus on these general principles that govern judicial legal rea-
soning, and elaborate on its argumentative inference structures, in particular with respect
to the burden of proof. We will show that defeasible logic programming (DeLP) [5] suits
the judicial way of reasoning especially well, and present an argumentative system for
decision support in private law that has been implemented based on DeLP. The expert

system introduced here, LiZ, focuses on this perspective of a judge, and thus is to be
taken with a grain of salt when compared to the more sophisticated models recently used
in AI and law which have been mentioned above. In contrast to these, it does not strive to
model externally the way legal experts actually think (or argue), but it takes the internal
position of a judge. Moreover, by using DeLP to implement the model, it becomes pos-
sible to add defeasible reasoning at the level of subsuming (or classifying) cases while at
the same time respecting the classical structure of the law. The system is not confined to
material law rules, but takes into account the procedural aspects of the law paramount for
the work of a judge, particularly, the burden of proof, necessary indications to the parties,
intermediary decisions to manage the process and so on. However, we abstract as far as
possible from idiosyncratic aspects of specific jurisdictions. In line with current research
in comparative law [20] we focus on a common core of legal procedure, ensuring broader
applicability of the formal model. In general, various kinds of burden of proof can be
distinguished; for a recent and thorough analysis and survey see [7].

In Sec. 2 we give a brief introduction to legal reasoning in private law and afterwards
extract and compare its essential aspects with methods for defeasible argumentation. In
Sec. 3 we establish a model of legal reasoning by exemplifying some legal concepts, and
further refine our model by formalizing knowledge representation in Sec. 4. Section 5
recalls the relevant technical aspects of DeLP, and Sec. 6 presents our approach of an
argumentation-based decision-support system using DeLP. In Sec. 7 we conclude.

2. Legal reasoning and defeasible argumentation

Legal reasoning is rule-based. This holds true for all legal systems and all areas of law.
Moreover, the structure of the rules, whether contained in judgements, statutes, legal
literature or even in practitioners’ minds, is more ore less universal. A simple private law
case, as it might appear in a student textbook, shall help to illustrate this structure.

Example 1. Consider the following scenario: Bobby Buyer (B) has contracted with Sally
Seller (S), the local car dealer, for the delivery of a brand new car. However, at the agreed
date, S does not deliver. Can B demand delivery of the car from S?

To begin with, we need a rule to decide the case. Let’s assume B and S live in land
where the UNIDROIT Principles [9] apply. Then our case would be governed by the
following article (Art. 7.2.2 of the UNIDROIT Principles):

“Where a party who owes an obligation other than one to pay money does not per-
form, the other party may require performance, unless

(a) performance is impossible in law or in fact;
(b) performance or, where relevant, enforcement is unreasonably burdensome or

expensive;
(c) the party entitled to performance may reasonably obtain performance from an-

other source;
(d) performance is of an exclusively personal character; or
(e) the party entitled to performance does not require performance within a reason-

ably time after it has, or ought to have, become aware of the non-performance.”

Thanks to the clear-cut way in which this provision is designed, it is rather simple to
extract the rule incorporated in it, or, more precisely, the conditions and the consequence
of the rule. In a semi-formal notation, one might put it like this:

[obligation(X,Y,O) and // meaning "X owes O to Y"
not_money(O) and // true if O isn’t a sum of money
no_performance(X,Y,O) and // X hasn’t delivered O to Y
not (performance_impossible(X,O) or // X cannot deliver O

performance_too_burdensome(X,O) or
alternative_source_available(O) or
personal_obligation(X,Y,O) or
time_limit_exceeded(X,Y,O))] // Y didn’t bring his claim in time
 right_to_performance(Y,X,O) // Y can demand performance (i. e., delivery)

To answer the question of the case, one would aim at gathering information about all
atoms mentioned in the body of the rule and then derive formally whether the formula
specified in the head holds.

However, it should be emphasized that classical logic is not an appropriate frame-
work for processing rules as the one given in Ex. 1, for two reasons: First, legal rules have
usually been amended, over time, by exceptions and counter-exceptions. Therefore, legal
rules are not strict, but defeasible, as we can rarely rely on them not having exceptions
(indicated by unless in Art. 7.2.2.) [17,6]. Second, there is the nature of the situation in
which legal cases typically arise. Usually there are two or more parties involved, one
bringing a claim and the other one defending against it. Since both of them have their
stakes in it, they can hardly be expected to be objective in their description of the situa-
tion. Yet they are often the only ones with first-hand knowledge about the relevant facts,
and thus are the natural starting point when collecting these facts. This raises the question
of how to reconcile the two conflicting views presented by the parties to the judge. Since
a judge must ultimately find a decision, the conflict has to be solved. A way of dealing
with contradictory and missing information has to be found, as it is not possible to send
the plaintiff home with a mere "sorry, I don’t know". So, legal reasoning cannot be log-
ical (or else would trivialize, or run into blazing contradictions), but it has to be ratio-
nal, and, what is particularly important in this domain, justifiable. The question is what
consequences may correctly be inferred from a set of defeasible, possibly contradicting
legal rules. Legal theory provides some guidance, as it has developed requirements of
formal or procedural justice. These requirements will be mimicked by restrictions for
inference mechanisms applicable to our model of law. All inference mechanisms that
observe these restrictions—and the results that can be inferred by applying them—will
be called justifiable. The goal is not to completely determine the inference, but to set out
a frame within which several inference mechanisms can exist. We assume the following
restrictions to form the basic requirements for justifiability:

Strictness Strict legal rules—like e. g. the first article of the basic law in Germany: “The
dignity of a human being is inviolable.”—are to be treated as in classical logic
(accordingly, a knowledge base containing contradicting strict rules is corrupt).

Specificity Exceptions to a rule have a higher priority than the rule itself, as the idea is
that an exception, if its conditions are met, defeats the rule.

Equality Equal cases are to be treated equally.

The last requirement, “Equality”, means that the inference mechanism is not randomized,
so that using the same knowledge base and entering the same facts repeatedly yields the
same result. This, of course, is only one of the implications of “Equality”. The concept
goes further in theory, but insofar cannot be properly formalized here. The reason is
that the expert system cannot decide whether two real-life situations are “alike”. It only
asks for the relevant facts, which are then to be entered by the user. In other words the
inference mechanism guarantees formal equality (same input, same output), while the
user has to guarantee material equality (similar situations, same input).

Beyond justifiability, there are some standard conflict rules [21]. The following
three, given in their original latin form, date back to medieval times, when the ius com-
mune governed continental Europe, and still serve as important guidelines for the admin-
istration of justice:

1. Lex specialis derogat legi generali. (The special rule defeats the general rule.)
2. Lex superior derogat legi inferiori. (The superior rule defeats the inferior rule.)
3. Lex posterior derogat legi priori. (The younger rule defeats the older rule.)

The idea of the first conflict rule is that a rule having additional conditions is based
on more information and therefore preferable to one based on less information. This
is meant by a “special” rule, which applies only to a part of the situations where the
“general” rule applies, because it has additional preconditions. The second conflict rule
makes use of a hierarchy of laws, where e. g. the Constitution is at the top. The rationale
behind the third conflict rule is similar to that of the first one: a legal rule that has been
created at a later stage, for example by an act of parliament, is based on more information
because the lawgiver of the future knows more than the lawgiver of the past.

There are many more formal (and, of course, material) criteria for justice proposed
in legal theory, but none of them have received universal acceptance. Taking the aspects
described above as a specification of minimal requirements for a justifiable inference
mechanism, defeasible argumentation appears to be an optimal framework for a system
that is able to support judicial decisions. The standard version of DeLP [5], which we
used for the LiZ system, is an adequate inference engine for defeasible argumentation. It
turns out that the additional assumptions made in DeLP to add plausibility to the results
inferred (like “Generalized Specificity” as a comparision criterion for arguments and the
“concordance” of argumentation lines) are remarkably similar to the standard conflict
rules used in legal theory. We will come back to this issue later, but first we go on with a
general formalization of the legal concepts of “burden of proof” and “legal trees”.

3. Legal trees and the burden of proof

Gathering information on a legal case is not always simple. Considering again the rule
formalized in Ex. 1, already the first condition obligation(X,Y,O) is problematic. Though
it seems clear that S has promised to B to deliver the car and is thereby obliged to do
so, so that obligation(S,B,CAR) should be true, an obligation per definition belongs to
the legal sphere. It is not tangible or measurable as a real-life object, there is no physical
detector for it. Instead, we need another legal rule to tell us when an obligation arises. In
fact, we find such a rule in the UNIDROIT Principles [9, Art. 1.3], a specialized version
of which would contain the following rules (again in semi-formal notation):

right_to_performance(Y,X,O)
P

obligation(X,Y,O)
P

. . .
P

. . .
P

. . .
D

. . .
D

not_
money(X)

P

no_
perf.(X,Y,O)

P

perf._
impossible(X,O)

D

perf._too_
burdensome(X,O)

D

. . .
D

Figure 1. Part of the legal tree for the claim right_to_performance(Y,X,O). The solid lines correspond to if, a
dashed line to unless. The labels P (plaintiff) and D (defendant) indicate the burden of proof.

(1) sales_contract(X,Y,PRICE,O) obligation(X,Y,money) // the buyer’s obligation
(2) sales_contract(X,Y,PRICE,O) obligation(Y,X,O) // the seller’s obligation

In applying Art. 7.2.2 to the example, we would take recourse to the second one of the
above rules to determine whether a non-monetary obligation between B and S exists.
We will call rules which are invoked in this way (i. e., to explain, define or otherwise
determine the conditions of another rule) secondary rules, as opposed to the primary
rules that directly raise a legal claim as their consequence (in this case: “Can B demand
delivery of the car?”, which is answered by Art. 7.2.2).

The secondary rule tells us that if the condition sales_contract(B,S,PRICE,O) is
met, we can derive obligation(S,B,O). The question whether such a contract exists is
almost a matter of fact, since we would expect that the sales contract exists as a real-life
object. Therefore, in breaking down our initial question "Can B demand delivery?", we
have reached a rather basic level were the legal question is turned into tiny factual bits
of information we can provide easily. Of course, this is only the ideal (see [12] for an
account of the age-old criticism of this method and [10] for a recent investigation of the
relationship between legal argumentation and language). Often questions remain which
are not answered so easily (like "is the enforcement unreasonably burdensome?", see
Art. 7.2.2 lit. b), and would provide even greater difficulty if they should be answered by
artificial intelligence. Yet the method just described has proven workable and is practiced
by judges and lawyers around the globe. Due to the complexity of the law itself, this
method carries far enough potential for computer-assistance even without the possibility
to automatically find the basic factual information finally needed to decide the case.

Breaking down a rule by using secondary rules leads to a tree structure, as Fig. 1
illustrates. The conditions of the primary rule are “explained” by secondary rules, the
conditions of which may in turn be explained by further secondary rules, and so on.
This goes on until there are no more rules available for any of the conditions that have
not already been explained. It should then be possible to determine these conditions—
represented by the leafs of the tree—with relative ease by collecting appropriate “real-
life” evidence. These conditions pose the decisive questions of the case. Answering them
means to collect the "relevant facts", which then allows deciding on the secondary rules
step by step—moving from the leafs to the root of the tree—and finally deciding whether
the primary rule applies to the given case or not.

Collecting “relevant facts” imposes the next issue that has to be dealt with in order to
integrate all information for a given case. As discussed before, usually, there are multiple
parties involved in legal reasoning and the question at hand is, what to do when these

parties provide contradictory or incomplete information? Or more general, which of the
parties is responsible in bringing forward essential information needed to solve a given
case in an adequate manner? Courts all over the world have developed more or less the
same solution to this problem. The approach is rather simple. First, a kind of assumption
is created for every single one of the relevant facts. If the parties cannot help to clarify
the fact in question, the fact is either assumed to be given or absent. This provides a
way of dealing with incomplete information. Second, if the parties do say something but
contradict each other, evidence is collected from both sides. If the evidence suffices to
establish the fact (or its absence), this result becomes part of the basis for the decision.
If however the evidence remains inconclusive, again recourse is taken to the assumption
created earlier to circumvent the contradiction presented by the parties.

The legal term associated with the creation of the assumption is burden of proof
(see [16], [18], or [7] for an AI and Law perspective on this subject, and e. g. [1] for an
analysis from within legal theory). Saying that a party has the burden to prove fact “A”
means that the assumption for this fact is “NOT A”. Saying a party has the burden to
prove “NOT A” means that the assumption is “A”. Logically it is not important which of
the parties carries the burden, but which content the burden has (to prove “A” or to prove
“NOT A”). However, legal experts are not used to talking about the content at all. They
don’t have to. For a human being, the content of the burden can easily be derived from
the knowledge of who carries it. A party would only try to either prove a fact or to prove
the absence of it, depending on what suits the party best. When the plaintiff likes to prove
"A", the defendant will always like to prove “NOT A”, and both will be clear from the
context. Therefore, knowing who carries the burden of proof regarding a certain fact is
equivalent to knowing the content of the burden, and thus the corresponding assumption.
In anglo-american terminology, this relationship is depicted very clearly: when one party
has the burden of proof, the other one is said to have the benefit of assumption (i. e., it
benefits if the assumption is resorted to).

Naturally, jurists have developed rules to determine the burden of proof. The general
rule is that a party carries the burden of proof for those facts that, if given, would favor the
party, i. e. facts that would either (a) support the party’s claim or (b) support its defense
against the other party’s claim. However, this general rule is sometimes tricky to apply.
The question it raises is whether a certain fact is the negative condition of a claim or
rather the positive condition of a defense to it (or vice versa), which may be hard to
say since the wording of the law can be ambivalent. From the perspective of classical
logic, presupposing an omniscient observer, it wouldn’t make a difference. Yet, in a court
scenario with the possibilities of contradictory and incomplete information, it makes a
difference in determining the assumptions and therefore in deciding most real cases. To
illustrate this, we will use the concept of an exception to a rule. An exception to a rule
can be derived from the rule by adding further conditions and negating the consequence.
For example, if [A and B and C] Z is a rule, then [A and B and C and D] NOT Z
is an exception.

Back to the problem of the burden of proof we find that exceptions usually constitute
the basis for a defense against a claim, whereas exceptions to exceptions in turn support
the claim, and so on; this kind of proof burden corresponds to the burden of production
in [7]. That means, when the plaintiff claims Z under the rule above, he has the burden
of proof for A, B, and C. In turn, the burden of proof for D lies with the defendant, as
it only occurs as part of the exception which naturally only the defendant would like to

support. The assumptions would be “NOT A”, “NOT B”, “NOT C” and “NOT D”. If,
however, we dropped the exception and modified the strict rule by adding the additional
literal from the exception in negated form as a condition, we would get the single (strict)
rule: [A and B and C and (not D)] Z.

In this scenario, the plaintiff claiming Z would have to prove A, B, C and also "NOT
D", as all these are conditions for the rule supporting his claim. The resulting assumptions
would be “NOT A”, “NOT B”, “NOT C” and "D", so in contrast to the first scenario,
“D” would be assumed. If the plaintiff can show A, B, and C, but the parties disagree
on D, and neither of them can provide sufficient evidence, then in the latter scenario
the plaintiff loses the case (for failing to establish the conditions of the rule supporting
the claim), while winning in the first scenario (where the defendant fails to establish the
conditions of the exception). Generally, the absence of a fact is often hard to show, which
is why negated conditions are kept to a minimum in legal rules (although they do exist).
Instead they are put into exceptions, where they occur in positive form.

Until now, we have only applied the concept of burden of proof to primary rules,
but it can be elegantly extended to the whole legal tree introduced in Fig. 1. To do so,
we start at the root of the tree and mark the root and the conditions of the primary rule
with a “P” for plaintiff, and the conditions of exceptions to the primary rule with a “D”
for defendant. Then we work our way down the tree: In the illustration given in Fig. 1,
this means that the burden of proof is inherited from the parent node along solid lines,
but inverted along dashed lines. Thus, not only the relevant facts needed to solve a given
case but also the respective burden of proof for each of the facts (and, therefore, the
assumptions that follow) can easily and automatically be calculated. The only knowledge
necessary is the rules (and their exceptions).

4. Legal Knowledge Modelling and Reasoning

We will now further extend and formalize our model. As a general starting point we will
allow rules to be either strict or defeasible, while the latter will be the standard.
Legal provisions In order to represent legal rules in a concise fashion, we will represent
exceptions within their corresponding rule. The concept of rules and exceptions correctly
reflects the theoretical structure of the law, but at a somewhat low level. For example, a
single article from any given statute usually contains more than one rule (and can contain
multiple exceptions, cf. Art. 7.2.2). Therefore, a meta-structure comprising all those rules
seems convenient. In our model, rules with the same consequence are incorporated in
a legal provision (cf. Def. 1 below). Grouping rules with the same consequence in this
way also helps to deal with alternatives. In accordance to the way legal experts conceive
and apply legal rules, alternative conditions, corresponding to a logical disjunction, are
removed by introducing extra rules for every alternative. Therefore, in our legal model,
the conditions of a rule will always be cumulative, i. e. a conjunction of literals.
Subsumption When applying a legal rule, after breaking it down as far as possible to
its constituents (i. e. the conditions of the lowest secondary rules in the “legal tree”),
there inevitably comes the task of subsuming the given case under these constituents.
Although there are no more legal rules available to decide whether these conditions are
fulfilled, one will usually find further lexical rules to do so. Taking a trivial example,
to decide whether an obligation is “non-monetary” (see Art. 7.2.2), “money” could be

looked up in a dictionary, which would probably enumerate the forms in which money
comes along or its characteristics. Such definitions are nothing else than further rules.
Our model therefore allows for subsumption rules to be added to the database. They have
the same form as legal rules and are treated likewise in the inference process. They are
only named differently to make clear that they do not share the same authority due to
their non-legal origin.
Open concepts and antagonistic rules As mentioned, legal rules in the knowledge
base are usually meant to be defeasible, i. e. open to exceptions and refutation. Although
modelling law by using defeasible rules is probably against the intuition of many legal
experts, it is suitable for the reasons given above. Moreover, defeasible rules can also
be used for modelling the arguments that are used in law in dealing with open concepts
like “burdensome” (cf. Art. 7.2.2), “reliable”, “adequate” etc. For instance, as adequacy
is a very broad and fuzzy concept, indicators have been developed for the adequacy and
inadequacy of damages to make the handling of the law easier and more foreseeable.
Such arguments can be seen as antagonistic rules, where the consequence of one rule is
the negation of the consequence of the other.

In the knowledge base, not only rules with the same consequence, but also their
antagonistic counterparts become part of one single legal provision:

Definition 1 (legal provision). A legal provision is a triple P = (c,B,B) with B =
{B1, . . . , Bk} and B = {Bk+1, . . . , Bk+l} where k ≥ 1 is the number of legal rules
having c as their consequence, and l ≥ 0 is the number of corresponding antagonistic
rules. Each Bi is of the form Bi = ((b1, . . . , bn), E1, . . . , Em) where the bj are the
conditions and Ej sequences of exceptions for the i-th rule with n ≥ 1, and m ≥ 0.

For instance, in an attribute-value pair notation for legal provisions (in LiZ, an XML
representation is used), Art. 7.2.2 is given by the following knowledge base entry:

Art. 7.2.2 = (consequence = right_to_performance(Y,X,O),
rules = ((conditions = (obligation(X,Y,O), not_money(X),

no_performance(X,Y,O)),
exception = (performance_impossible(X,O)),
exception = (performance_too_burdensome(X,O)),. . .)))

A legal knowledge base is a set KB = {P1, . . . , Pn} of legal provisions. For each
claim c, such a knowledge base uniquely determines a legal tree ltree(c,KB) with root c
and whose further nodes and arrows are constructed from KB . For the general case, we
extended the legal tree construction as illustrated in Fig. 1 accordingly:

• Multiple rules with the same consequence: Outgoing arrows of a node are grouped
together if they belong to the same rule.

• Conjunctions of exceptions: The respective arrows are grouped accordingly.
• Antagonistic rules: Introduce not-if and not-unless arrows.

Note that the computation of the burden of proof within the legal tree carries over
smoothly to antagonistic rules: The burden of proof is inverted along not-if arrows, but
inherited along not-unless arrows.

We continue with a brief excursus to some technical details of DeLP that will be
used to represent and to reason with the model formalized above.

5. Defeasible Logic Programming

The basic elements of Defeasible Logic Programming (DeLP) are facts and rules. A
single atom h or a negated atom ~h (in DeLP negation is denoted by ~) is called a literal
or fact. Rules are divided into strict rules of the form h← B and defeasible rules of the
form h −�B where h is a literal and B is a set of literals. A literal h is derivable from
a set of facts, strict rules, and defeasible rules X , denoted byX |∼h, iff it is derivable
in the classical rule-based sense treating strict and defeasible rules equally. A set X
is contradictory, denoted X |∼ ⊥, iff both X |∼h and X |∼~h holds for some h. A
defeasible logic program (de.l.p.) P is a tuple P = (Π,∆) with a non-contradictory set
of strict rules and facts Π and a set of defeasible rules ∆. Using rules and facts arguments
can be constructed as follows.

Definition 2 (Argument, Subargument). Let h ∈ L be a literal and let P = (Π,∆) be a
de.l.p.. Then 〈A, h〉 with A ⊆ ∆ is an argument for h, iff Π ∪ A |∼h, Π ∪ A |/∼ ⊥, and
A is minimal with respect to set inclusion. An argument 〈B, q〉 is a subargument of an
argument 〈A, h〉, iff B ⊆ A.

Two literals h and h1 disagree regarding a de.l.p. P = (Π,∆), iff the set Π∪{h, h1}
is contradictory. An argument 〈A1, h1〉 is a counterargument to an argument 〈A2, h2〉 at
a literal h, iff there is a subargument 〈A, h〉 of 〈A2, h2〉 such that h and h1 disagree.

In order to deal with counterarguments, a central aspect of defeasible logic program-
ming is a formal comparison criterion among arguments. Bearing in mind the context
of legal reasoning Generalized Specificity [5] seems to be the most appropriate choice.
According to this criterion an argument is preferred to another argument, iff the former
one is more specific than the latter, i. e., (informally) iff the former one uses more facts
or less rules. For example, 〈{c −� a, b}, c〉 is more specific than 〈{~c −� a},~c〉, denoted
by 〈{c −� a, b}, c〉 � 〈{~c −� a},~c〉, cf. [5]. Then an argument 〈A1, h1〉 is a defeater of
an argument 〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 is
a counterargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉 � 〈A, h〉 (proper defeat)
or 〈A1, h1〉 � 〈A, h〉 and 〈A, h〉 � 〈A1, h1〉 (blocking defeat).

When considering sequences of arguments, the definition of defeat is not sufficient
to describe a conclusive argumentation line since it disregards the dialectical structure of
argumentation, cf. [5].

Definition 3 (Acceptable Argumentation Line). Let P = (Π,∆) be a de.l.p.. Let Λ =
[〈A1, h1〉, . . . , 〈Am, hm〉] be a sequence of some arguments. Λ is called an acceptable
argumentation line, iff 1.) Λ is a finite sequence, 2.) every argument 〈Ai, hi〉 with i > 1
is a defeater of its predecessor 〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is a blocking defeater of
〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a proper defeater of 〈Ai, hi〉,
3.) Π ∪A1 ∪A3 ∪ . . . is non-contradictory (concordance of supporting arguments), 4.)
Π∪A2 ∪A4 ∪ . . . is non-contradictory (concordance of interfering arguments), and 5.)
no argument 〈Ak, hk〉 is a subargument of an argument 〈Ai, hi〉 with i < k.

In DeLP a literal h is warranted, if there is an argument 〈A, h〉which is non-defeated
in the end. To decide whether 〈A, h〉 is defeated or not, every acceptable argumentation
line starting with 〈A, h〉 has to be considered.

Definition 4 (Dialectical Tree). Let P = (Π,∆) be a de.l.p. and let 〈A0, h0〉 be an
argument. A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉, is defined as follows:

1. The root of T is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ = [〈A0, h0〉, . . . , 〈An, hn〉] be the sequence

of nodes from the root to 〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the defeaters of
〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k such that the argumentation
line Λ′ = [〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, the node 〈An, hn〉 has
a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉, the node 〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree is
defeated or not, it is necessary to perform a bottom-up-analysis of the tree. Every leaf
of the tree is marked “undefeated” and every inner node is marked “defeated”, if it has
at least one child node marked “undefeated”. Otherwise it is marked “undefeated”. Let
T ∗〈A,h〉 denote the marked dialectical tree of T〈A,h〉. We call a literal h warranted, iff
there is an argument 〈A, h〉 for h such that the root of the marked dialectical tree T ∗〈A,h〉
is marked “undefeated”. Then 〈A, h〉 is a warrant for h.

6. Using DeLP for Legal Reasoning

One advantage of the representation for legal knowledge described in Sec. 4 is the sim-
ilarity to a de.l.p.. The legal knowledge can be transformed into DeLP rules straightfor-
wardly. The relevant facts of the case can then be added as DeLP facts.

For example, Art. 7.2.2 in DeLP rules becomes:

R1: right_to_performance(Y,X,O)−� obligation(X,Y,O), not_money(X), no_performance(X,Y,O).
R2: ~right_to_performance(Y,X,O)−� obligation(X,Y,O), not_money(X),

no_performance(X,Y,O), performance_impossible(X,O).
R3: ~right_to_performance(Y,X,O)−� obligation(X,Y,O), not_money(X),

no_performance(X,Y,O), performance_too_burdensome(X,O).

Likewise, secondary and antagonistic rules are translated to DeLP, for instance:

R4: performance_too_burdensome(X,O)−� performance_req_excessive_expense(X,O).
R5: ~performance_too_burdensome(X,O)−� obstacles_were_foreseeable(X,O).
R6: performance_req_excessive_expense(X,O)−� severe_short_of_goods(O), out_of_stock(X,O).

For the general case, let P = (c,B,B) be a legal provision as in Def. 1 and let
B = ((b1, . . . , bn), E1, . . . , Em) with Ei = (ei,1, . . . , ei,ri). If B ∈ B, the following
m + 1 DeLP rules are generated:

c −� b1, . . . , bn.
~c −� b1, . . . , bn, e1,1, . . . , e1,r1 .

. . .
~c −� b1, . . . , bn, em,1, . . . , em,rm .

For B ∈ B, the DeLP rules generated are obtained from the rules above by replacing c
(resp. ~c) in each rule head by ~c (resp. c).

When passing the rules {R1, . . . , R6} together with the facts obligation(X,Y,O),
not_money(O), no_performance(X,Y,O), severe_short_of_goods(O), out_of_stock(X,O),
obstacles_were_foreseeable(X,O) to the DeLP interpreter and asking for the status of
the claim right_to_performance(Y,X,O), it generates the dialectical tree shown in Fig. 2.
Since the root of this tree is undefeated, DeLP warrants its claim.

〈{R1}, right_to_performance(Y,X,O)〉

〈{R2,R4,R6}, ~right_to_performance(Y,X,O)〉

〈{R5}, ~performance_too_burdensome(X,O)〉

Figure 2. Example of a dialectical
tree generated by DeLP

Figure 3. Illustration of the LiZ system. The system
is interactive, steps 5 to 8 are repeated during the legal
procedure until no more relevant facts are submitted.

It is obvious that the inference mechanism of DeLP is justifiable according to our
definition in Sec. 2. This is true regardless of the concrete comparison criterion used to
decide between conflicting rules (DeLP allows for different criteria), as long as this crite-
rion prefers exceptions over the corresponding rule. Above that, the standard criterion of
“generalized specificity” is particularly suitable for modeling legal reasoning. The con-
cept of “generalized specificity” is twofold. First, it prefers “more precise” rules, where
rule A is more precise than rule B if the conditions of B are a true subset of the conditions
of A. Secondly, it prefers more concise arguments, where an argument is more concise
when it makes less use of rules than another. This concept corresponds remarkably well
to the widely acclaimed standard rules of interpretation in legal theory that we recalled
in Sec. 2. Indeed, generalized specificity incorporates the same idea as the lex specialis.

As an extension to this work, also the ideas of lex superior and lex posterior could be
easily implemented on the basis of DeLP. For this, only the priority relation between ar-
guments has to be changed, e. g., by combining generalized specificity with information
about time and law hierarchies in a lexicographic way.

The structure of the LiZ system itself is illustrated in Fig. 3. It interactively follows
the course of a civil action from the judge’s point of view. First, the user enters general in-
formation about the case, especially the kind of claim. Then, LiZ searches the knowledge
base for rules that might support such a claim, collects all the secondary rules needed to
interpret them, and constructs and shows the legal tree(s). It also determines the burden
of proof for the relevant facts. The user can then successively enter the relevant facts as
presented by plaintiff and defendant through the GUI. Whenever a new fact is entered,
LiZ updates the three fact sets (view of the plaintiff/defendant, view to be taken by the
judge), transforms them to DeLP facts and passes them on to the DeLP interpreter, along
with a query as to whether the claim would be supported under each of the fact sets. The
results are transformed into plain text as used by judges, the user can base his or her inter-
mediary decisions on them (e. g., ask the defendant to produce further evidence to avoid
losing the case). Thus, the system shows the decision that would have to be made at any
given time, which becomes the final decision once all facts have been entered. Currently,
the LiZ database contains rules from the law of obligations of the German Civil Code,
but the design of LiZ is in no way specifically tailored to the German jurisdiction.

7. Conclusions and Further Work

We presented an approach to an argumentation-based system that supports a judge in
deciding private law cases. Starting from a focus on general principles governing judicial
legal reasoning, we argued that the defeasibility inherent in laws and rules as well as
the way rules are aggregated, compared, and preferred match the reasoning behavior of
DeLP, together with the power of generalized specificity that is used as comparison cri-
terion among arguments. The introduced knowledge representation model based on the
notion of legal provisions has been implemented with an XML representation in the LiZ
system. In particular, LiZ automatically determines the burden of proof that is essential
for argumentation, exploits the defeasible reasoning facilities of the DeLP system, and
provides interface functionalities as required from a private law judge point of view. As
part of our future work, we plan to modify the priority relation among arguments in such
a way as to take superiority of laws into account, or to favor more recent laws. More-
over, the modelling of further and more intricate cases will be necessary for a thorough
usability and acceptance evaluation of the LiZ system.

References

[1] A. Aarnio. The Rational as Reasonable. D. Reidel Publ. Co., Dordrecht, 1987.
[2] R. J. Aldisert. Logic for Lawyers. National Institute for Trial Advocacy, 3rd edition, 1997.
[3] T. Bench-Capon and H. Prakken. Introducing the logic and law corner. J. of Logic and Computation,

18(1):1–12, 2008.
[4] E. Bund. Juristische Logik und Argumentation. Rombach & Co., Freiburg im Breisgau, 1983.
[5] Alejandro J. García and Guillermo R. Simari. Defeasible logic programming: An argumentative ap-

proach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.
[6] D. M. Godden and D. Walton. Defeasibility in judicial opinion: Logical or procedural? Informal Logic,

28(1):6–19, 2008.
[7] T. F. Gordon and D. Walton. Proof burdens and standards. In I. Rahwan and G. Simari, editors, Argu-

mentation in Artificial Intelligence, pages 239–260–144. Springer, 2009.
[8] J. Horovitz. Law and Logic. Springer, 1972.
[9] International Institute for the Unification of Private Law. UNIDROIT Principles of International Com-

mercial Contracts. UNIDROIT, Rome, 2nd edition, 2004.
[10] M. Klatt. Making the law explicit. Hart Publishing, Oxford, 2008.
[11] X. Minghui. On the inference rules in legal logic. Social Sciences in China, 30:58–74, 2009.
[12] K. Olivecrona. Law as Fact. Steven and Sons, London, 1971.
[13] E. Ott. Die Methode der Rechtsanwendung. Schulthess Polygraphischer Verlag AG, Zürich, 1979.
[14] A. Peczenik. On Law and Reason. Springer Science + Business Media B.V., 2009.
[15] A. Podlech, editor. Rechnen und Entscheiden, Mathematische Modelle juristischer Argumentation.

Duncker & Humblot, Berlin, 1977.
[16] H. Prakken. A formal model of adjudication dialogues. AI and Law, 16(3):333–359, 2008.
[17] H. Prakken and G. Sartor. The role of logic in computational models of legal argument: A critical survey.

In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Beyond, volume
2408 of Lecture Notes in Computer Science, pages 342–381. Springer, 2002.

[18] G. Sartor. Defeasibility in legal reasoning. In Z. Bankowski, I. White, and U. Hahn, editors, Informatics
and the Foundations of Legal Reasoning, pages 119–157. Kluwer, 1995.

[19] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. The British nation-
ality act as a logic program. Commun. ACM, 29(5):370–386, 1986.

[20] V. Varano. Some reflections on procedure, comparative law, and the common core approach. Global
Jurist Topics, 3(2):395–418, 2003.

[21] E. Vranes. The definition of ‘norm conflict’ in international law and legal theory. The European Journal
of International Law, 17(2):395–418, 2006.

