
Automated Reasoning for Relational
Probabilistic Knowledge Representation?

Christoph Beierle1, Marc Finthammer1,
Gabriele Kern-Isberner2, Matthias Thimm2

1Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. KReator is a toolbox for representing, learning, and auto-
mated reasoning with various approaches combining relational first-order
logic with probabilities. We give a brief overview of the KReator system
and its automated reasoning facilities.

draft – 2010-04-13

1 Introduction

Approaches combining logic with probabilities for representing uncertain infor-
mation are typically based upon propositional logic (see, e.g., [8]). Various exten-
sions to a first-order setting like Bayesian logic programs [3, Ch. 10] or Markov
logic networks [3, Ch. 12] have been proposed. In order to promote the use as
well as the evaluation and comparison of such proposals, KReator provides
a common and easy-to-use interface for representing, learning, and automated
reasoning with different relational probabilistic approaches. In this paper, we
give a brief description of the KReator system and its background and us-
age. In Sec. 2, we start with recalling the concept of Bayesian logic programs
and Markov logic networks and sketch the relational maximum entropy frame-
work RME. Section 3 gives an overview on the KReator system and presents
a system walk-through with several examples, while Sec. 4 outlines its system
architecture and implementation and points out further work.

2 Background

Bayesian logic programming combines logic programming and Bayesian net-
works [3, Ch. 10]. The basic structure for knowledge representation in Bayesian
logic programs are Bayesian clauses like (alarm(X) | lives in(X,Y), tornado(Y))
which model probabilistic dependencies between Bayesian atoms. A function
cpdc for a Bayesian clause c expresses the conditional probability distribution
P (head(c) | body(c)) and thus partially describes an underlying probability dis-
tribution P . In order to aggregate probabilities that arise from applications of
different Bayesian clauses with the same head, BLPs make use of combining

? The research reported here was partially supported by the Deutsche Forschungsge-
meinschaft (grants BE 1700/7-1 and KE 1413/2-1).

rules. Semantics are given to Bayesian logic programs via transformation into
propositional forms, i. e. into Bayesian networks [8] (see [3, Ch. 10] for details).

Markov logic [3, Ch. 12] establishes a framework which combines Markov
networks [8] with first-order logic to handle a broad area of statistical re-
lational learning tasks. The Markov logic syntax complies with first-order
logic where each formula is quantified by an additional weight value, e.g.,
(lives in(x, y) ∧ tornado(y) ⇒ alarm(x), 2.2). Semantics are given to sets of
Markov logic formulas by a probability distribution over propositional possible
worlds that is calculated as a log-linear model over weighted ground formulas.
The fundamental idea in Markov logic is that first-order formulas are not han-
dled as hard constraints but each formula is more or less softened depending on
its weight. A Markov logic network (MLN) L is a set of weighted first-order logic
formulas Fi together with a set of constants C. The semantics of L is given by a
ground Markov network ML,C constructed from Fi and C [3, Ch. 12]. The stan-
dard semantics of Markov networks [8] is used for reasoning, e.g. to determine
the consequences of L (see [3, Ch. 12] for details).

The basic idea of the relational maximum entropy framework (RME) [2,
6, 11]. is to make use of propositional maximum entropy techniques [7, 4,
9] after grounding the knowledge base appropriately. The entropy H is an
information-theoretic measure on probability distributions and is defined as
a weighted sum on the information encoded in every possible world ω ∈ Ω:
H(P) = −

∑
ω∈Ω P (ω) logP (ω). By employing the principle of maximum en-

tropy one can determine the single probability distribution that is the opti-
mal model for a consistent knowledge base R in an information-theoretic sense:
PME
R = arg maxP |=RH(P). However, this depends crucially on R being con-

sistent, for otherwise no model of R exists, let alone models with maximum
entropy. Since groundings may introduce non-trivial conflicts, this problem is
all the more difficult in a first-order context with free variables where one has
probabilistic first-order clauses like (alarm(X) | lives in(X,Y), tornado(Y))[0.9],
specifying that the conditional probability of alarm(X) given lives in(X,Y) and
tornado(Y) ought to be 0.9. The RME inference process can be divided into three
steps: (1) ground the knowledge base R with a grounding operator G, (2) calcu-
late the probability distribution PME

G(R) with maximum entropy for the grounded

instance G(R), and (3) determine the probabilistic implications of PME
G(R) [2, 6,

11].

3 Examples and System Overview

The KReator system provides automated reasoning facilities for all three prob-
abilistic relational frameworks sketched in Sec. 2. As an illustration, we consider
the well-known burglary example given in [8] where we have some (uncertain)
beliefs about the relationships between burglaries, types of neighborhoods, natu-
ral disasters, and alarms. This example could be represented by a BLP containig
the three Bayesian clauses

c1 : (alarm(X) | burglary(X))
c2 : (alarm(X) | lives in(X,Y), tornado(Y))

c3 : (burglary(X) |nhood(X))

together with corresponding conditional probability distributions cpdci . For in-
stance, cpdc2(true, true, true) = 0.9 would express our subjective belief that alarm
is true with probability 0.9 if lives in(X,Y) and tornado(Y) are true. In this BLP
modelling, nhood is a multi-valued unary predicate, while in the modellings using
MLNs and RME, nhood will be a binary-valued two-place predicate.

Using the Alchemy syntax [5] for MLN files, a MLN knowledge base for the
burglary example is given by the following five weighted clauses:

2.2 burglary(x) => alarm(x)
2.2 lives in(x, y) ∧ tornado(y) => alarm(x)

−0.8 nhood(x,Good) => burglary(x)
−0.4 nhood(x,Average) => burglary(x)

0.4 nhood(x,Bad) => burglary(x)

Note that, in contrast to BLPs and RMEs, MLNs do not support conditional
probabilities, so the rule-like knowledge has to be modeled as material implica-
tions. Modeling our running example in RME can be done by

c1: (alarm(X) |burglary(X))[0.9]
c2: (alarm(X) | lives in(X,Y),

tornado(Y))[0.9]
c3: (burglary(X) |nhood(X, bad))[0.6]

c4: (burglary(X) |nhood(X, average))[0.4]
c5: (burglary(X) |nhood(X, good))[0.3]
c6: (nhood(X,Z) |nhood(X,Y))[0.0] [Y 6= Z]
c7: (lives in(X,Z) | lives in(X,Y))[0.0] [Y 6= Z]

where in this knowledge base, the conditionals c6 and c7 ensure mutual exclusion
of the states for literals of “nhood” and “lives in”.

A query in so-called unified syntax can be answered by KReator with re-
spect to a BLP, MLN, or RME knowledge base. This query syntax abstracts from

 KReator

BLP
KBase
Input

RME
KBase
Input

MLN
KBase
Input

Query in
Unified
Syntax

MECoRe
SPIRIT

Alchemy

BLP | MLN | RME
Answers

BLP
Reasoner

GOP
Algo.

BLP
KBase
Repres.

MLN
KBase
Repres.

RME
KBase
Repres.

Alchemy
Adapter

ME
Adapter

BLP
Query

Converter

RME
Query

Converter

MLM
Query

Converter

Fig. 1: Processing query in unified syntax

the respective
syntax which is
necessary to ad-
dress a “native”
query to a BLP,
MLN, or RME
knowledge base.
The idea behind
this functionality
is that while some
knowledge can be
modeled in dif-
ferent knowledge
representation ap-
proaches, the user is
able to compare the
reasoning facilities
of these approaches
in a direct way
by formulating
appropriate queries
in unified syntax,
passing them to the

different knowledge bases, and analyzing the different answers. A KReator
query in unified syntax consists of two parts: In the head of the query there are
one or more ground atoms whose probabilities shall be determined. The body of
the query is composed of several evidence atoms. For each supported knowledge
representation formalism, KReator must convert a query in unified syntax
in the exact syntax required by the respective inference engine. Among other
things, this includes e. g. the conversion from lower case constants to upper case
ones (and variables, vice versa), as required by the Alchemy tool for processing
MLNs. KReator also converts the respective output results to present them
in a standardized format to the user (cf. Fig. 1).

In addition to a knowledge base, that typically contains only general generic
knowledge, also evidential knowledge like

lives in(james, yorkshire), lives in(carl , austin), burglary(james),
tornado(austin),nhood(james) = average,nhood(carl) = good

can be taken into account when reasoning with KReator. The following table
shows three queries and their respective probabilities inferred by KReator from
each of the example knowledge bases and the evidence given above:

BLP MLN RME
alarm(james) 0.900 0.896 0.918
alarm(carl) 0.550 0.900 0.880
burglary(carl) 0.300 0.254 0.362

The inferred probabilities are are not identical since the same generic knowledge
is modelled slightly differently in the three formalisms. For instance in BLPs,
specific information resides in the combinig rules (in this example, noisy-or was
used) that aggregate probabilities of different clauses with the same head.

Doing further computations in the different formalisms is conveniently sup-
ported by KReator. For example, dropping tornado(austin) from the evidence
yields, as expected, the values for the query alarm(james) as given in the
table above; whereas the values for alarm(carl) drop dramatically. Replacing
burglary(james) by alarm(james) in the evidence and asking for burglary(james)
yields 0.400 (BLP), 0.411 (MLN), and 0.507 (RME).

All specification and reasoning steps involved in these examples are conve-
niently supported by the KReator system. KReator comes with a graphi-
cal user interface and an integrated console-based interface. The main view of
KReator (see Fig. 2) is divided into the menu, a toolbar and four main panels:
the project, editor, outline, and console panel.

KReator structures its data into projects which may contain knowledge
bases, scripts written in KReatorScript (see below), query collections for
knowledge bases, and sample/evidence files. Although all types of files can be
opened independently in KReator, projects can help the knowledge engineer
to organize his work. The project panel (upper left in Fig. 2) gives a complete
overview on the project the user is currently working on.

All files supported by KReator can be viewed and edited in the editor panel
(upper middle in Fig. 2). Multiple files can be opened at the same time and the

Fig. 2: KReator – Main window

editor supports editing knowledge bases and the like with syntax-highlighting,
syntax check, and other features normally known from development environ-
ments for programming languages.

The outline panel (upper right in Fig. 2) gives an overview on the currently
viewed file in the editor panel. If the file is a knowledge base the outline shows
information on the logical components of the knowledge base, such as used pred-
icates (and, in case of BLPs, their states), constants, and sorts (if the knowledge
base uses a typed language).

The console panel (bottom in Fig. 2) contains two tabs, one with the actual
console interface and one with the report. The console can be used to access all
KReator functionality just using textual commands, e. g. querying knowledge
bases, open and saving file, and so on. The console is a live interpreter for
KReatorScript which can also be used for writing scripts that allows the
knowledge engineer to save recurring tasks. By doing so results can be verified
and sophisticated queries can be addressed to different knowledge bases with
little adaptations. As a further ease, every action executed in KReator, e. g.
opening a file in the graphical user interface or querying a knowledge base from
the console, is recorded as a KReatorScript command in the report. The
whole report or parts of it can easily be saved as script file and executed again
when experiments have to be repeated and results have to be reproduced.

KReator is highly configurable and extensible. Figure 3 shows the pref-
erences dialog which enables the configuration of nearly every property of the
graphical user interface as well as special features of the different knowledge

Fig. 3: Preferences in KReator

representation formalism. Furthermore, every property can also be modified us-
ing KReatorScript so that different configurations can be tested easily in
script files. Due to the open architecture, KReator can be extended effortlessly
by further formalisms and most of the features like querying are automatically
enabled.

4 System Architecture and Implementation

The implementation of KReator is done in Java and mirrors its objective to
support different approaches to relational probabilistic knowledge representa-
tion and reasoning. It strictly separates the internal logic and the user interface,
employing an abstract command structure allowing easy modifications on both
sides. In order to support the implementation of other approaches, KReator
features a large library on first-order logic and basic probabilistic methods.
Among others this library contains classes for formulæ, rules, conditionals and
various methods to operate on these. There is also a rudimentary implementa-
tion of Prolog available that can be used for specifying background knowledge
as e. g. in BLPs. This integrated library is designed to support a fast imple-
mentation of specific approaches to statistical relational learning. The task of
integrating a new approach into the KReator system is supported by a small
set of interfaces that have to be implemented in order to be able to access the
new approach from the user interface. There are interfaces for knowledge bases
(which demands e. g. support for querying), file writers and parsers (for reading
and writing the specific syntax of an approach), and learner. One thing to note
is that both file writers and parsers have to work on strings only, all the cum-
bersome overhead of file operations and I/O is handled by KReator. With the
help of a plugin-like architecture the developer of a new approach only has to
be concerned with connecting her approach to KReator using these interfaces.
Then all the benefits of an integrated development environment as provided
by KReator are immediately accessible. Currently, KReator supports know-
ledge representation using BLPs, MLNs, and the relational maximum entropy
approach RME; other formalisms will be integrated in the near future.

Performing inference on MLNs is done using the Alchemy software package
[5], a console-based tool for processing Markov logic networks. For BLPs, a
reasoning component was implemented within KReator. To process ground
RME knowledge bases, KReator uses a so-called ME-adapter to communicate
with a MaxEnt-reasoner. Currently, such adapters are supplied for the SPIRIT
reasoner [10] and for MEcore [1] which are tools for processing (propositional)
conditional probabilistic knowledge bases using maximum entropy methods.

Ongoing work includes integration of different learning algorithms. Due to
the availability of several formalisms in KReator these algorithms can be im-
plemented in a very general manner and employed by the formalisms in an easy
way. Future work consists of extending the support for other relational proba-
bilistic formalisms, such as Probabilistic Relational Models [3, Ch. 5].

References

1. M. Finthammer, C. Beierle, B. Berger, and G. Kern-Isberner. Probabilistic reason-
ing at optimum entropy with the MEcore system. In H. C. Lane and H. W. Gues-
gen, editors, Proceedings 22nd International FLAIRS Conference, FLAIRS’09.
AAAI Press, Menlo Park, California, 2009.

2. M. Finthammer, S. Loh, and M. Thimm. Towards a toolbox for relational prob-
abilistic knowledge representation, reasoning, and learning. In Relational Ap-
proaches to Knowledge Representation and Learning. Workshop at KI-2009, Pader-
born, Germany, Informatik-Bericht 354, pages 34–48. FernUniv. in Hagen, 2009.

3. L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning.
MIT Press, 2007.

4. G. Kern-Isberner. Characterizing the principle of minimum cross-entropy within
a conditional-logical framework. Artificial Intelligence, 98:169–208, 1998.

5. S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner, H. Poon, D. Lowd,
and J. Wang. The Alchemy System for Statistical Relational AI: User Manual.
Department of Computer Science and Engineering, University of Washington, 2008.

6. S. Loh, M. Thimm, and G. Kern-Isberner. On the problem of grounding a relational
probabilistic conditional knowledge base. In Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada, May 2010.

7. J.B. Paris. The uncertain reasoner’s companion – A mathematical perspective.
Cambridge University Press, 1994.

8. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1998.

9. W. Rödder and C.-H. Meyer. Coherent knowledge processing at maximum entropy
by SPIRIT. In E. Horvitz and F. Jensen, editors, Proceedings 12th Conference on
Uncertainty in Artificial Intelligence, pages 470–476, San Francisco, Ca., 1996.
Morgan Kaufmann.

10. W. Rödder, E. Reucher, and F. Kulmann. Features of the expert-system-shell
SPIRIT. Logic Journal of the IGPL, 14(3):483–500, 2006.

11. M. Thimm, M. Finthammer S. Loh, G. Kern-Isberner, and C. Beierle. A system for
relational probabilistic reasoning on maximum entropy. In Proceedings 23rd Inter-
national FLAIRS Conference, FLAIRS’10. AAAI Press, Menlo Park, California,
2010. (to appear).

