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A B S T R A C T

The BDI model is well accepted as an architecture for representing and realiz-
ing rational agents. The beliefs in this model are focused on the representation
of beliefs about the world and other agents and widely independent from the
agents intentions. We argue that also the representation of know-how, which
captures the beliefs about actions and procedures, has to be taken into account
when modeling rational agents. Using the notion of know-how as introduced
by Singh we formalized and implemented a usable and concrete agent archi-
tecture that benefits from this representation of procedural beliefs in multiple
ways and also supports the representation of motivations that influence the
agent’s behavior. We enable the agent to reason about its planning capabilities
in the same way as it can reason about any other of its beliefs by extending
a BDI-based agent architecture to allow the representation of procedural be-
liefs explicitly as part of the agent’s logical beliefs which again influences and
enhances the agents behavior.
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1I N T R O D U C T I O N

Planning and agency are two closely related fields in the research of multiagent
systems and artificial intelligence in general. In this paper we take a look at the
planning capabilities of an agent from the perspective of knowledge represen-
tation by explicitly modeling these capabilities as logical beliefs of the agent
in order to enable it to reason about and revise them in the same way as any
other logical beliefs. We build upon the commonly known and used BDI model
[31, 24, 23] that divides the mental state of an agent into Beliefs, Desires, and
Intentions. In [26] Singh introduced the notion of know-how in order to relate
the components Beliefs and Intentions more closely. Know-how describes the
part of the logical beliefs of an agent that describes structural knowledge to
reach certain goals. While in most modern agent architectures [2] beliefs influ-
ence the selection and achievement of intentions the other way around is not
supported by these systems in general. Singh [26] claims, that “since rational
agency is intimately related to actions and procedures, it is important also to consider
the form of knowledge that is about actions and procedures”. In this paper we take
a first step towards the support and implementation of structural knowledge
about procedures, i. e. know-how, in a concrete agent architecture [30]. We show
how the explicit representation of know-how in an agent can be realized and
in which ways this representation gives rise to advantages in reasoning about
the agent’s beliefs. We support our formal work by an implementation of our
know-how formalism in the full fledged BDI multiagent system KiMAS [15]
which also supports motivations [19] that may influence goal adoption and the
overall behavior of the agent.

This paper is organized as follows. In Section 2 we give some motivation
and examples, followed by a short overview of the KiMAS agent system that
extends the commonly known BDI model in several directions in Section 3. We
continue with our formal proposal of know-how in Section 4 and illustrate the
use of know-how in logic programming in Section 5. In Section 6 we review
related work and in Section 7 we conclude.
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2B E L I E F S A N D K N O W- H O W

The BDI model [31, 23, 24] has become a leading paradigm of the research
in agent representation and realization. This model distinguishes between Be-
liefs, Desires, and Intentions as the main elements of an agent’s mind. Informally
speaking, Beliefs comprise the agent’s beliefs about the world and its current
situation, Desires represent what it wishes to achieve and hence represent possi-
ble goals, whereas Intentions model the agent’s immediate (sub-)goals and thus
focus on the next actions the agent should undertake in order to achieve the
current goal.

Know-how as introduced by Singh [26, 27] is an extension to the traditional
BDI model. In [26] it has been argued that on a descriptive layer an explicit
distinction between beliefs about the world (know-that) and beliefs about how
to achieve certain intentions (know-how) is indispensable in order to model
agents and their behavior in a natural way. But as know-how is a form of be-
lief, an agent should be able to reason about these beliefs and to revise them.
In modern formalizations of the BDI model or other agent architectures for
planning and reasoning [3, 2, 17, 29, 25] planning and beliefs components are
mostly kept separate. Although beliefs do (of course) influence intention delib-
eration and goal generation, the other way round, namely reasoning about the
current intentions of the agent and especially reasoning about the capability of
how to achieve some state cannot be formalized in a natural way in the above
systems. Particularly, the pure knowledge of the possibility to achieve a certain
intention is crucial for the agent in order to determine if the intention can be
pursued or has to be dropped. In general, there are many situations in which
it is necessary for the agent to reason about its planning capabilities.

Example 1. Imagine a cleaner robot that pursuits two goals, namely cleaning all
rooms in his area and maintain a high battery level. It is crucial for the robot
that it knows how to reach the charging station before beginning to clean the
rooms at any time. Moreover, to efficiently do its task the robot should be able
to consider if it can return to the charging station in time when planning more
than one step ahead.

Example 2. Suppose two agents want to determine time and location for a meet-
ing. The agents do not only have to consider their general capabilities of travel-
ing, e. g. if they have a driving license, but also if their plans for traveling are
applicable. If the only road between the first agent’s location and the location
of the meeting is closed due to road works, then it may not have the capability
to reach the meeting in time.

Although the last example can be modeled in several existing agent architec-
tures using only ordinary knowledge representation techniques, there is a dif-
ference between checking the beliefs for plan applicability and reasoning about
the plans directly. The formalization of an agent becomes unclear and compli-
cated when plan applicability has to be modeled in the beliefs of the agent (in
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4 beliefs and know-how

order to answer queries of other agents as in Example 2) as well as in the actual
planning component. This also complicates the programming and maintenance
of agents from an implementation point of view.
In [26] Singh develops a temporal logic in which know-that and know-how can
be specified in order to verify whether an agent is able to achieve certain goals
and whether it knows how to achieve them. In this paper, we take the general
idea of know-how one step further on the way from a specification and verifi-
cation tool towards a programming tool [30]. To our knowledge the concept of
know-how has not been developed further since Singh’s publications in the late
1990s while planning and intention generation are active fields [16, 4] including
some ideas of how to combine state-of-the-art knowledge representation and
reasoning techniques with problem solving and planning, e. g. [17]. Here we
introduce know-how as a formalization of an agent’s planning capabilities in
a declarative manner and show how the agent can use this representation to
reason about it.

Another problem with handling belief and planning components separately
is revision of plans [15, 14, 13, 1]. Although existing agent architectures like
Jason [3] allow rudimentary revision of plans in form of addition and deletion
of plans, sophisticated revision techniques are usually not supported. When
considering know-how as beliefs it is reasonable to apply standard belief revi-
sion techniques for this planning knowledge as well in order to benefit from
this large body of work. Treating planning knowledge as beliefs lets the agent
get revision techniques for planning knowledge for free as this representation
enables the agent to revise this knowledge in the same manner as other beliefs.
Revision of planning knowledge (and not just addition and deletion of frag-
ments of structural knowledge) can be useful in many different circumstances.

Example 3. Consider again the cleaner robot from Example 1. Suppose one of
the rooms the robot is ordered to clean has two doors, one of them is blocked
and the other is passable. Suppose now that due to rearrangement of the furni-
ture the first door is passable and the second one is blocked. The robot now has
to revise its structural knowledge to use the first door in order to know how to
access the room.

Besides revision, the above example introduces another important aspect of
rational agency that is closely related to revision: Learning. A rational agent
should be able to reason about success and failure of its plans and actions and
acquire new (structural) knowledge through experience. When modeling this
structural knowledge as beliefs, learning from experience and belief revision
become even more closely related. In the above example the robot might not
have been explicitly informed about the rearrangement of the furniture and it
has to learn the changes from experience. When trying to enter the room for the
first time it will notice that the action of entering the room cannot be applied
due to the blocked door. This information can be used by an appropriate belief
revision operator to revise the (structural) beliefs accordingly.
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We denote Des as the set of all desires or possible goals an agent can have,
where a desire or a possible goal is an atom that an agent wants to become true
in its beliefs. An agent maintains a subset D ⊆ Des of all possible goals, e. g. the
cleaning robot of Example 1 has the desires D = {clean_all, battery_healthy}.
Every agent has, at each moment, one selected goal that it currently pursuits,
denoted selected(D). Similarly, an agent maintains a set of abstract intentions
I ⊆ Int where Int denotes the set of all possible intentions. In general, the set I
is represented as a stack and is used as one whenever needed. The type of rep-
resentation used will be evident given the context. Intentions describe the aims
of the agent that it currently pursuits in order to fulfill its selected goal. These
are represented as atoms as well but are more concrete than desires. For clarity
of presentation, we use only propositional goals and intentions. Every time an
agent selects a new goal, this goal becomes its next intention. At any time the
set I correlates directly to the current pursuited goal selected(D) and contains
the next subgoals the agent wants to become true in order to fulfill its current
goal selected(D). Some intentions can be directly fulfilled by performing an
atomic action and are called atomic intentions.

3.1 the agent model

For simplicity of representation we abstract from a concrete communication
protocol between agents here and introduce the set P of possible perceptions
that is used to model both perceptions from the environment and communi-
cation acts from other agents. We refer to e. g. [15, 5] for the treatment of this
issue in general.

An agent in our framework is modeled using two components: a data compo-
nent and a functional component. The data component is a passive component
that stores the whole mental state of the agent and contains its desires, motiva-
tions, capabilities, logical beliefs, intentions, and know-how. The last three are
also subsumed by the notion of general “beliefs” as these can be manipulated
in the same way as ordinary logical belief by the mechanisms introduced in this
paper. To represent the logical beliefs of an agent we use extended logic pro-
grams as described in the previous section, so let K be the set of all extended
logic programs. Let C be the set of all atomic actions an agent can perform, KH
the set of all know-how bases, and Mot the set of all possible motivations (the
last two will be explained later).

Definition 1 (Data Component). A data component is a tuple A = (KB, Σ, D, I, C,
M), where KB ∈ K is the logical belief base of the agent, Σ ∈ KH is the know-
how base of the agent, D ⊆ Des, I ⊆ Int, C ⊆ C is a set of atomic actions the
agent can perform, and M ∈ Mot denotes the (basic) motivation of the agent.
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6 the formal model

The element Σ is the topic of this paper and will be described in more detail in
the next section. Furthermore, we will shed some light on the element M in the
next subsection.

Given an initial data component A, the agent acts and evolves in its envi-
ronment and thus its data component changes over time. The procedures that
determine how an agent uses its current state to deliberate its next actions are
described by its functional component. The functional component of an agent is a
set of functions revising its internal state in a particular situation or outputting
an action that the agent wants to perform.

Definition 2 (Functional component). Let αbel , αupd, αsubgoal , αselect, αaction be func-
tions defined as:

• αbel : K× P→ K (belief base operation)

• αupd : K×P(Des)×Mot×P(Int)→ P(Int) (intention update operation)

• αsubgoal : K×KH× Int→ P(Int) (subgoal generation operation)

• αselect : P(Int)× C → Int (intention selection operation)

• αaction : Int→ C (action selection operation)

A tuple ϕ = (αbel , αupd, αsubgoal , αselect, αaction) is called a functional component.

Definition 3 (Agent). An agent is a tuple (K, ϕ) with a data component K and a
functional component ϕ.

Agent

“Beliefs”

Environment

belief base

operation

action

selection

intention

update

intention

selection

subgoal

generation

B I

D M

KH

C

1

Figure 1: A graphical representation of the agent model. (The control flow is depicted
with solid lines and the data flow with dashed lines.)
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An agent is modeled as an infinite loop executing these operations as illustrated
in Figure 1. When the agent receives a perception p ∈ P from the environment,
it revises its logical beliefs using its belief base operation yielding a new belief
base. Following on this, the agent has to check whether its current intentions
have to be updated or if a new goal has to be selected given the change of
the world, using its intention update operation. The motivation M of the agent
is used for the determination of a new selected goal as we will elaborate in
Subsection 3.2. The intention selection operation then simply selects the top in-
tention from the agent’s intention stack and checks whether there is an atomic
action to handle it. If that is the case, the action selection operation selects a
suitable action (if there is more than one for the particular intention) and exe-
cutes that action in the environment. If the intention cannot be fulfilled directly
by means of an atomic action, it must be split up in less abstract intentions by
using the agent’s know-how. The subgoal generation operation uses the agents
know-how to split up the current pursued goal or the next intentions into more
concrete intentions. This operation is the topic of the next section. But before
this, in order to motivate the whole agent model, we continue with some il-
lustrations on two other components, namely motivation and the belief base
operation.

3.2 motivations

The desires Des of autonomous agents correspond to the set of possible goals.
An agent maintains a subset D ⊆ Des, but might not be able to aim at several
of these desires simultaneously. Thus a mechanism is needed to decide which
d ∈ D will be taken into consideration next. We introduce motivations [19, 20]
in this context. The possible motivations Mot are non-derivative components
that characterise the personality of an autonomous agent and provide the agent
with a higher-level control.

These components, e. g. greed or altruism, do not specify a state of affairs to
be achieved and can hardly be described in logical terms. Therefore, they are
not equal to the notion of goals in the classical sense of artificial intelligence.
Instead motivations provide reasons for a goal, which could be having someone
else’s money or being generous. More precisely, in our system a motivation
M induces a total preorder ≤M on the set of possible goals, which is a total,
transitive and reflexive relation. Let d1, d2 ∈ D be two desires, then d1 ≤M d2
iff the motivation M for d1 is at least as strong as for d2. Thus the set of the
agent’s desires is partitioned into several sets D = (DM

0 , . . . , DM
k ) with

d1 ∈ DM
i ∧ d2 ∈ DM

j ∧ i ≤ j ⇔ d1 ≤M d2 .

The next goal, selected(D), will be a randomly selected g ∈ DM
0 as the set DM

0
contains the desires which are motivated the most. To simplify matters we let
every agent be driven by only one motivation M that forms the personality of
the agent.

3.3 belief base operations

The environment of a multiagent system tends to be highly dynamic and in
addition to that agents tend to interact with each other. These occurrences lead
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to changes of the beliefs of an agent and are summarized as perceptions in
this paper. On the arrival of new perceptions the belief base operation function
αbel : K × P → K incorporates the new information gained by the perception
into the beliefs of the agent. This new information might be conflicting with
former held beliefs of the agent as the environment might have changed or
more specific information might be available. Therefore, the belief base opera-
tion function has to be capable of dealing with arising conflicts in a sensible
manner in order to come to a consistent belief state and to enable reasoning
based on this. Our framework can deal with a variety of belief base operators,
potentially varying between different agents. The representation of the agents
beliefs as extended logic programs enables the use of standard update mecha-
nisms for these. In such a setting older or less accurate information has to be
selected for rejection in order to come to a consistent belief set this rejection
is widely based on preferences on rules [9]. Particularly interesting scenarios
arise if the informations that are exchanged in the system are not completely
trustworthy such that an appropriate processing of the diverse credibility of
the available information has to be dealt with. For details on communication
and metainformation handling in such a setting we refer to [15] and for details
on credibility handling in multiagent systems to [14].



4K N O W- H O W

The know-how of an agent is structured in know-how statements which is the
atomic form of a structural piece of information.

Definition 4 (Know-How Statement). A know-how statement σ is a tuple

σ = (a, (s1, . . . , sn), {c1, . . . , cm})

with goals a, s1, . . . , sn ∈ Int, a /∈ {s1, . . . , sn} and literals c1, . . . , cm. The goal a is
called the target, the goals s1, . . . , sn are called the sub-targets, and the elements
c1, . . . , cm are called the conditions of σ.

The informal meaning of a know-how statement

σ = (a, (s1, . . . , sn), {c1, . . . , cm})

is as follows: In order to achieve goal a the agent can try to achieve the subgoals
s1, . . . , sm, if the conditions c1, . . . , cm are fulfilled with respect to the agent’s
beliefs. Due to a /∈ {s1, . . . , sn} we do not allow know-how statements to be
recursive.

Example 4. We continue Example 1 of the cleaner robot. Suppose the robot has
the top-level goal (desire) to clean all rooms in its area which is represented
by clean_all. Suppose now that there are two rooms in its area, a hallway and
a lounge, and that the robot shall verify that its battery is full before it starts
cleaning these rooms. This knowledge can be captured by the know-how state-
ment

σ = (cleaned_all, (cleaned_hallway, cleaned_lounge),

{battery_ f ull}).

The function goal/1 is used to denote the goal of a know-how statement, for
example goal(σ) = clean_all for the know-how statement in Example 4.

Definition 5 (Know-How Base). A know-how base Σ is a finite set of know-how
statements.

Example 5. We continue Example 4. Let Σ of the robot be given by Σ = {σ1, . . . ,
σ5}:

σ1 = (cleaned_all, (cleaned_hallway, cleaned_lounge),

{battery_ f ull})
σ2 = (cleaned_hallway, (at_hallway,

vacuumed_hallway), {bag_empty})
σ3 = (cleaned_lounge,

(ordered_robotxy_to_clean_lounge),

{robotxy_available})

9



10 know-how

σ4 = (cleaned_lounge, (at_lounge,

f ree_lounge, vacuumed_lounge), {})
σ5 = ( f ree_lounge,

(people_sent_away), {at_lounge})

The know-how statement σ1 is taken from Example 4 and σ2 states that in
order to clean the hallway the robot has first to go to it and second to do
the actual vacuuming. This statement can only be applied by the robot, if
its vacuum cleaner bag is empty. The interpretation of the other statements
should be clear by following this scheme. Observe that the robot has two al-
ternatives for the intention clean_lounge: Given that the helper robot robotxy
is present, our robot can order robotxy to do the job for it. Also note, that
the fulfillment of the intention at_lounge in σ4 is a prerequisite for the fulfill-
ment of the intention f ree_lounge in σ5. The intentions at_hallway, at_lounge,
vacuumed_hallway, vacuumed_lounge, ordered_robotxy_to_clean_lounge, and
people_sent_away are atomic intentions that can be fulfilled by executing the
suitable atomic action, e. g. a walking action or an action to send away the
inhabitants from the place of work.

In order to describe the semantics of know-how and the algorithm to use it
we use state transition systems [21]. Besides the belief base and the know-how
base, a record describing the current state of the plan deliberation is needed
to fully describe an agent’s mental state in our framework. Also to keep track
of already failed plan deliberations we use a notion of intention tree similar to
e. g. [28, 32] which generalizes the notion of an intention stack.

Definition 6 (Intention tree). An intention tree I is a tree with two sorts of nodes
with the root node being a goal and for every node K it holds:

• iff K is a goal, then every child of K is a know-how statement σ with
goal(σ) = K,

• iff K is a know-how statement σ, then the (ordered) children of K are the
subgoals of σ.

Furthermore there is exactly one node, that is additionally labelled “current”,
which is also returned by the function curr(I). Furthermore the empty tree I∅
is also an intention tree with curr(I∅) being undefined.

Informally speaking, an intention tree I captures the current state of the pursuit
of a goal. The initial state of an intention tree is described by a root node R that
is labelled with “current”. For simplicity of presentation we assume that the
agent only pursues one goal at a time, but the approach can be generalized by
considering several intention trees. When a goal node K is labelled “current”,
then the agent selects a know-how statement with target K that is not already
a child of that node and adds that know-how statement as a child of K. Here
we assume that for every possible intention there is at least one know-how
statement for that goal in the know-how base of the agent1. All sub-targets
of that know-how statement are added as (ordered) children of that node and

1 See also the notion of reliable know-how in Section 5.2.1



11

the “current” label is moved to the first sub-target. That process is repeated
until an atomic goal is labelled with “current”. Then the agent executes the
corresponding action and the “current” label is moved to the next sibling (if it
exists) or to the next sibling of the first know-how statement bottom-up that has
not been fulfilled yet. Here, we assume that actions cannot fail and that they
always bring about the intended results. When a know-how statement cannot
be applied due to failure of the conditions or failure of some of the sub-targets,
the agent selects another know-how statement for the corresponding target
and goes on. If there is no know-how statement for a goal or all know-how
statements failed, then the goal failed as well as its parent know-how node.

We now formalize the above intuition using state transition systems. An
agent’s mental state Ω is described by its data component A = (KB, Σ, D,
I, C, M) and an auxiliary label prev-state

Ω = 〈A, prev-state〉

The label prev-state describes the output of the previous state of deliberation
and is one of

• AP: an action has just been performed

• IA: an intention has been added to I

• KA: a know-how statement has been added to I

• KF: a know-how statement failed

• KP: a know-how statement has been completely processed

• NO: no operation has been performed

As the intention tree I is the only component that can be altered by the follow-
ing state transition system, we will abbreviate the mental state

〈(KB, Σ, D, I, C, M), prev-state〉

of an agent by 〈I, prev-state〉.
We will need some further notation for the upcoming state transition system.

If I is an intention tree and A a node in I, then children(A) denotes the set of chil-
dren of A. If A is labelled with an intention, then all nodes in children(A) are la-
belled with know-how statements and vice versa, due to Definition 6. If curr(I)
is a goal and σ is a know-how statement, the function addChild(I, σ) returns a
new intention tree I′, that is a copy of I except that curr(I) get a new child σ and
the “current” label is moved to σ. Similarly, if curr(I) is a know-how statement
and s1, . . . , sn are the sub-targets of σ, the function addChildren(I, {s1, . . . , sn})
returns a new intention tree I′, that is a copy of I except that curr(I) gets new
(ordered) children s1, . . . , sn and the “current” label is moved to s1. For a goal
node K the function hasNext(K, I) returns true if and only if K has a successor
sibling in I given the ordering that was imposed on it and its siblings. Oth-
erwise hasNext(K, I) returns f alse. Consecutively, if hasNext(K, I) is true, the
function nextSubtarget(I) returns a new intention tree I′, that is a copy of I
except the “current” label is moved to the next sibling of K. For an arbitrary
node K, the function hasParent(K, I) returns true if and only if there is an goal
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node K′ 6= K that is an ancestor of K in I. The function toParent(I) returns a
new intention tree I′, that is a copy of I except the “current” label is moved to
the first intention node K′ 6= K that is an ancestor of K in I. For a know-how
statement node K, the function isApplicable(K) returns true if and only if the
conditions of K are valid conclusions of the agents knowledge base KB.

Now we are able to define a state transition system that describes the seman-
tics of know-how. Given a certain mental state Ω of an agent, the next state Ω’
is given by the following transition rules.

• Transition rules for state IA:

atomic(curr(I))
〈I, IA〉 −→ 〈I, AP〉 (1)

Explanation: If the current intention of the agent is atomic, perform this
action. The actual execution of the action and the integration of the result,
i. e., new perceptions the agent might receive, are not incorporated in the
above rule. As we are only interested in the planning behavior of the
agent, this results in a transition from the intention-added state to the
action-performed state.

¬atomic(curr(I)) ∧ σ ∈ Σ ∧ goal(σ) = curr(I)
〈I, IA〉 −→ 〈addChild(I, σ), KA〉 (2)

Explanation: If an intention has been added to be fulfilled and that in-
tention is not atomic than add a know-how statement for this intention
to the intention tree. Remember that we assume that there is at least
on know-how statement for every intention in the know-how base of an
agent.

• Transition rules for state AP:

hasNext(curr(I), I)
〈I, AP〉 −→ 〈nextSubtarget(I), IA〉 (3)

Explanation: If the current pursued intention has another sub-target af-
ter that one that has just been fulfilled, then set this sub-target as next
intention.

¬hasNext(curr(I), I) ∧ hasParent(curr(I), I)
〈I, AP〉 −→ 〈toParent(I), KP〉 (4)

Explanation: If the just fulfilled intention was the last sub-target of the par-
ent know-how statement, then this know-how statement has been com-
pletely performed.

¬hasNext(curr(I), I) ∧ ¬hasParent(curr(I), I)
〈I, AP〉 −→ 〈I∅, NO〉 (5)

Explanation: If the just fulfilled intention was the last sub-target of the
parent know-how statement and its parent intention is the root intention,
i. e. the current goal, then the agent is finished and does nothing.
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• Transition rules for state KP:

¬hasNext(curr(I), I) ∧ hasParent(curr(I), I)
〈I, KP〉 −→ 〈toParent(I), KP〉 (6)

Explanation: If a know-how statement has been performed and the parent
intention of this statement was the last sub-target of its parent know-how-
statement, then the current know-how statement has been performed.

hasNext(curr(I), I)
〈I, KP〉 −→ 〈nextSubtarget(I), IA〉 (7)

Explanation: If the parent intention of the just performed know-how state-
ment has a successor intention, then set that intention as next to be ful-
filled.

¬hasNext(curr(I), I) ∧ ¬hasParent(curr(I), I)
〈I, KP〉 −→ 〈I∅, NO〉 (8)

Explanation: If the parent intention of the just performed know-how state-
ment is the root intention, i. e. the current goal, then the agent is finished
and does nothing.

• Transition rules for state KA:

isApplicable(curr(I)) ∧ curr(I) = (a, (s1, . . . , sn), {c1, . . . , cm}))
〈I, KA〉 −→ 〈addChildren(I, (s1, . . . , sn)), IA〉 (9)

Explanation: If the just selected know-how statement is applicable, then
add all sub-targets to the intention tree and select the first sub-target as
next intention.

¬isApplicable(curr(I))
〈I, KA〉 −→ 〈toParent(I), KF〉 (10)

Explanation: If the just selected know-how statement is not applicable,
then it failed.

• Transition rules for state KF:

σ ∈ Σ ∧ goal(σ) = curr(I) ∧ σ /∈ children(curr(I))
〈I, KF〉 −→ 〈addChild(I, σ), KA〉 (11)

Explanation: If there exists at least one other know-how statement with
the same goal as the know-how statement that has just failed and this
know-how statement has not already been applied, then add this know-
how statement to the intention tree.

(¬∃σ ∈ Σ : goal(σ) = curr(I) ∧ σ /∈ children(curr(I))) ∧ hasParent(curr(I))
〈I, KF〉 −→ 〈toParent(I), KF〉
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(12)

Explanation: If all know-how statements for the current intention failed
and the current intention is itself a sub-target of another know-how state-
ment, then this know-how statement failed as well.

(¬∃σ ∈ Σ : goal(σ) = curr(I) ∧ σ /∈ children(curr(I))) ∧ ¬hasParent(curr(I))
〈I, KF〉 −→ 〈I∅, NO〉

(13)

Explanation: If all know-how statements for the current intention failed
and the current intention is the root intention, i. e. the current goal, then
the agent has failed completely and does nothing.

Figure 2 gives an overview of the whole transition system. Observe, that we do
not give transition rules for the state NO. This is no accident but pure intent,
as in this case, the motivation of the agent has to deliver a new goal the agent
is going to pursuit. So addition of new goals is outside the responsibility of
the above given transition system but must be done by external mechanisms.
The above transition system is applicable when a new goal has been added by
the agent’s motivational component and thus starts in the state IA. Then the
system tries to fulfill the goal by applying the transition rules an eventually
stops in state NO. Furthermore, the outcome of the agent’s actions are also not
included in the transition system as this has to be done by the agent’s belief
base operation. But as we assume that actions cannot fail the transition rule (1)
is valid for the purpose of describing the semantics of know-how.

AP KP

IA

NO

KA KF

(3)

(1)

(4)

(6)

(7)

(8)

(5)

(2)

(9)

(10)

(11)

(12)

(13)

1

Figure 2: An overview over the transition system.

We show now that the above transition system is sound and complete in
the sense, that every run uniquely (given identical outcomes of the agent’s
actions) determines a sequence of states that eventually halts in state NO. In the
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following proofs, we assume the the component I of the agent cannot be altered
outside the scope of the above transition systems. This means, that for example
the perception component of the agent cannot modify the intention tree. There
is one exception to this rule, as the motivational component of the agent can
add new intentions if necessary. We neglect this case for the upcoming proofs
because at this point we are interested only in the behavior of the planning
component alone.

Proposition 1 (Soundness). The set of state transition rules (1)-(13) is sound in
the sense, that for every mental state Ω of an agent, there is not more than one
transition rule applicable.

Proof. By comparing the conditions of transition rules for the same state it can
easily be seen, that these are mutually exclusive.

Proposition 2 (Completeness). The set of state transition rules (1)-(13) is com-
plete in the sense, that for every mental state Ω of an agent except a state with
label NO, there is at least one transition rule applicable. Furthermore, every run
of the system eventually halts in a state with label NO.

Proof. The execution of the transition system always starts in 〈I, IA〉 with I
being composed of one single intention, that has just been added by the mo-
tivational component of the agent. As one can easily see, every transition rule
(1)-(13) generates output states that are valid input states for the next transition
rules. For example, rule (11) creates a successor state where the “current” label
is moved to a know-how statement which is expected by the transition rules for
state KA (9) and (10). Furthermore, the conditions of the transition rules for the
same state are exhaustive in the sense, that in every state at least one of them
is applicable (except in NO). As the know-how base of the agent is finite and
there are not recursive know-how statements (cf. Definition 4), there can be no
infinite run of the system. As the system has eventually come to halt but every
state except NO enables at least one following transition, the system will halt
in NO.

We now present an implementation of the functions αselect, αaction, αsubgoal from
our agent model by one single algorithm, that realizes the above transition rules.
This algorithm NextAction is depicted in figure 3 and takes an agent’s mental
state 〈I, prev-state〉 and returns the next atomic action as output. Furthermore
it modifies the agent’s intentions according to its deliberations. The notation
used in the algorithm NextAction is the same as used in the transition system.
As one can see, the algorithm NextAction implements exactly the behavior of
the transition rules (1)-(13) and thus is also sound and complete. We illustrate
the application of the algorithm NextAction using the example of the cleaner
robot.

Example 6. Let cleaned_all be the initial intention of the agent, thus let I be com-
posed of the single node cleaned_all and the initial mental state of the agent
A = 〈I, IA〉. Let now NextAction be called with A. As cleaned_all is not atomic,
the lines 10 through 12 of algorithm NextAction are executed. Thus the know-
how statement σ1 is added to I and prev-state is set to KA. Then the algorithm
continues at line 01. Now it is prev-state = KA and suppose σ1 is applicable.
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function NextAction

Input: a mental state 〈I, prev-state〉
Output: an atomic action A
Sideeffect: an updated mental state 〈I, prev-state〉

01 if prev-state = NO is empty then

02 return noop

03 if prev-state = IA then

04 if curr(I) is atomic then

05 I = I
06 prev-state = AP

07 return corresponding action A
08 else

10 let σ ∈ Σ with goal(σ) = curr(I)
11 I = addChild(I, σ)
12 prev-state = KA

13 else if prev-state = AP or prev-state = KP then

14 if hasNext(curr(I), I) then

15 I = nextSubtarget(I)
16 prev-state = IA

17 else if curr(I) is root intention then

18 I = I∅
19 prev-state = NO

20 else

21 I = toParent(I)
22 prev-state = KP

23 else if prev-state = KA

24 if curr(I) = (a, (s1, . . . , sn), {c1, . . . , cm}) is applicable then

25 I = addChildren(I, (s1, . . . , sn))
26 prev-state = IA

27 else

28 I = toParent(I)
29 prev-state = KF

30 else if prev-state′ = KF

31 let F = {σ ∈ Σ | goal(σ) = curr(I) ∧ σ /∈ children(curr(I))}
32 if F 6= ∅ then

33 let σ ∈ F
34 I = addChild(I, σ)
35 prev-state = KA

36 else if curr(I) is root intention then

37 I = I∅
38 prev-state = NO

39 else

40 I = toParent(I)
41 prev-state = KF

42 goto 01 �
Figure 3: The algorithm NextAction
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Then lines 25 and 26 of the algorithm are executed resulting in a new inten-
tion tree where the intentions cleaned_hallway and cleaned_lounge are added
under σ1 and the “current” label is moved to cleaned_hallway. Appropriately
prev-state is now set to IA and the agent selects the know-how statement σ2
to satisfy cleaned_hallway yielding a new mental state with prev-state = KA.
Suppose σ2 is applicable, then the intentions at_hallway and vacuumed_hallway
are added under σ2 and the “current” label is moved to at_hallway. As now
it is prev-state = IA and at_hallway is atomic, the lines 05 through 07 are
executed. The intention tree of the agent is preserved and prev-state is set
to AP. The action is returned by the algorithm and executed in the environ-
ment of the agent. After incorporating new perceptions the agent continues
with another call of NextAction and the preserved mental state from the last
execution. As there is another sub-target of σ2 the lines 15 and 16 of the al-
gorithm are executed. The “current” label is moved to vacuumed_hallway and
prev-state is set to IA. Now lines 05 through 07 are applicable and the agent
executes the action corresponding to the atomic intention vacuumed_hallway.
After incorporating new perceptions, the agent calls again NextAction. Now it
is prev-state = AP, there is no other sub-target of the know-how statement
σ2 to fulfill, and curr(I) = vacuumed_hallway is not the root intention, so lines
21 and 22 are executed. The “current” label is moved to cleaned_hallway and
prev-state is set to KP. As there is another sub-target of σ1 lines 15 through 16

are executed. Now the “current” label moves to cleaned_lounge and prev-state

is set to IA. As cleaned_lounge is not atomic, the lines 10 through 12 are exe-
cuted. As there is more than one know-how statement for cleaned_lounge let σ3
be chosen by the agent to fulfill cleaned_lounged. So σ3 is added to the inten-
tion tree under cleaned_lounge and the “current” label is moved onto it. Suppose
now that σ3 is not applicable, thus resulting in the execution of lines 28 and 29.
The “current” label is moved back on cleaned_lounge at prev-state is set to KF.
As there is another know-how statement for cleaned_lounge lines 33 through
35 are executed. Now σ4 is added under cleaned_lounge and prev-state is set
to KA. Suppose now that all remaining know-how statements are applicable.
Then the agent consecutively performs the corresponding actions of the atomic
intentions at_lounge, people_sent_away, and vacuumed_lounge, eventually lead-
ing to a mental state where prev-state = AP and the “current” label of I is on
vacuumed_lounge. Now lines 21 and 22 are executed twice as both σ5 and σ4
were completely performed and thus are their parent intentions. Now the “cur-
rent” label is moved to the intention cleaned_all and prev-state is set to KP. As
cleaned_all is the root intention lines 18 and 19 are executed yielding to the final
mental state of the agent with an empty intention tree and prev-state = NO.
At last line 02 is executed and the agent returns the empty action. Every fol-
lowing call of NextAction will return the empty action until the motivational
component of the agent adds a new root intention to the intention tree.

The algorithm NextAction is similar to many existing planning algorithms, e. g.,
[28, 32]. In the next section we will present an implementation of that algorithm
and a representation of know-how in logic programming. With this represen-
tation the agent is able not only to use its know-how for means-end reasoning,
but also to reason about it for arbitrary purposes, which is not possible in other
approaches for planning.
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For what is coming, we use extended logic programs under the answer set
semantics [11]. These are capable of dealing with incomplete information in
open environments. An extended logic program consists of rules over a set of
atoms L using strong negation ¬ and default negation not. Rules are of the
form H(r) ← B+,B−. where the body is devided into a positive, B+, and a
negative, B+, set of literals in terms of default negation. PS denotes the reduct
of a program P relative to a set S of literals and is defined as: PS := {H(r) ←
B+(r)|r ∈ P,B−(r)∩ S = ∅}. An answer set of a program P is an interpretation
I which is a minimal model of PI .

Here, we extend the syntax of extended logic programs with lists as in Prolog.
A list is a sequence of literals enclosed by squared brackets, e. g. [a, b, c], that
can appear as arguments for predicates. We use the notion [H | B] to divide
the list in the first element H and the remaining list B. This is a shorthand to
simplify presentation and does not extend the answer set semantics. In fact,
under some conditions (that are fulfilled in the context described here) it can
be shown, that extended logic programs with lists can be rewritten in extended
logic programs without lists, so that the answer sets of the rewritten program
can be appropriately rewritten to answer sets with lists [18]. A yet simpler
treatment of lists in answer set programming that is sufficient for our needs
here is given in Appendix A.1.

5.1 know-how in logic programming

Firstly we translate the know-how base of an agent into a logic program, where
all know-how statements are represented as facts.

Definition 7 (Induced LP Know-How Statement). Let σ = (a, (s1, . . . , sn), {c1,
. . . , cm}) be a know-how statement. The induced LP know-how statement σL is
the logic program:

khStatement(σ, a).

khSubgoal(σ, 1, s1). . . . khSubgoal(σ, n, sn).

khCondition(σ, c1). . . . khCondition(σ, cm).

Besides the induced LP know-how statements an induced LP know-how base
also contains information about the atomicity of intentions, which is captured
by facts using the predicate is_atomic.

Definition 8 (Induced LP Know-How Base). Let Σ = {σ1, . . . , σk} be a know-
how base. The induced LP know-how base ΣL is defined as

ΣL =
k⋃

i=1

σL
i ∪ {is_atomic(int). | int is atomic}.

19
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In order to use the logical beliefs of the agent to check for applicability of know-
how statements a translation mechanism is needed. The conditions of know-
how statements are modeled as parameters in the facts of the induced LP know-
how statements while the logical beliefs of the agent are modeled with literals.
For example, the induced LP know-how statement of σ1 from Example 5 yields
besides others the logical fact khCondition(σ1, battery_ f ull), while the logical
beliefs of the agent may contain the fact BatteryFull. In order to use the logical
beliefs, we assume that for each literal L of arity zero appearing in the logical
belief of the agent, there is also the rule

holds(l′)← L.

in the logical beliefs. There, l′ is a new constant, that shall be identified with
the literal L. For example, for the literal BatteryFull we add the rule

holds(battery_ f ull)← BatteryFull.

to the agents beliefs. As said, we only introduce these rules for literals of arity
zero. For literals with arity greater zero these mechanism can be extended in
order to allow conditions as well as intentions and goals to be parametrized.
But to stay simple in our presentation we omit this extended mechanism and
assume that all conditions of know-how statements can only appear as propo-
sitional literals in the agent’s beliefs.

Given the above representation of know-how in logic programming we con-
tinue by presenting an implementation of the algorithm NextAction (see Fig-
ure 3) in logic programming. For this reason we need to represent the intention
tree of the agent explicitly as facts in logic programming. This is done in the
logic program IL which represents the component I and contains at all times
facts of the following predicates:

• istack(is): is captures the intention stack of the agent as a list, the first
intention being the currently pursued intention.

• khstate(ks): ks represents the current stack of know-how statements cor-
responding to the intention stack.

• act(ai): if the agent determined an atomic intention to be executed in the
previous state of plan deliberation, this fact is added to IL.

• khFailed(k f ): k f is a list indicating, that the first know-statement failed
in the context of the rest of k f due to unfulfilled conditions.

• khPer f ormed(kh): this fact is added to IL if all sub-targets of the specified
know-how statement were fulfilled in the previous state of plan deliber-
ation.

• transState(state): this fact describes the current state of plan deliberation
by summarizing the last operation. Accordingly, state is one of

– actionPerformed (an action has been performed)

– intentionAdded (an intention has been added to istack)

– khAdded (a know-how statement has been added to khstate)
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– khFailed (a know-how statement failed)

– khPerformed (a know-how statement has been completely processed)

– noop (no operation has been performed)

The facts istack, khstate and khFailed altogether form an intention tree as de-
scribed earlier. Initially the logic program IL has the structure

istack([initial_intention]).

khstate([]).

transState(intentionAdded).

with a given initial intention initial_intention. Given an induced LP know-how
base ΣL and the logic program IL, we need a set of logic rules that uses these
beliefs to generate the new state IL in an answer set. These logic rules for
computing the next action of the agent are given as follows.

• Rules for State intentionAdded:

(r1) new_act(A) ← istack([A|H]),

is_atomic(A),

transState(intentionAdded).

(r2) new_khstate([KH|K]) ← khstate(K),

khStatement(KH, I),

istack([I|_]),

khCondition(K, X),

not holds(X),

not kh_ f ailed([KH|K]),

transState(intentionAdded),

not new_act(_).

(r3) new_khFailed([KH|K]) ← transState(intentionAdded),

not new_act(_),

not new_khState(_),

khState([KH|K]).

(r4) toParent ← new_khFailed(_).
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• Rules for State actionPerformed:

(r5) new_istack([C|B]) ← khstate([KH|_]),

transState(actionPerformed),

istack([A|B]),

khSubgoal(KH, I, A),

J = I + 1,

khSubgoal(KH, J, C).

(r6) new_khPer f ormed(KH) ← khstate([KH|_]),

transState( actionPerformed),

istack([A|_]),

khSubgoal(KH, I, A),

J = I + 1,

not khSubgoal(KH, J, _).

(r7) toParent ← new_khPer f ormed(_).

• Rules for State khAdded:

(r8) new_istack([I|B]) ← istack(B),

khSubgoal(KH, 1, I),

transState(khAdded),

khstate([KH|K]).

• State transistion rules:

(r9) new_transState(actionPerformed) ← new_act(A).

(r10) new_transState(intentionAdded) ← new_istack(_),

not khPer f ormed(_).

(r11) new_transState(khAdded) ← new_khState(_),

not khPer f ormed(_).

(r12) new_transState(intentionAdded) ← new_khFailed(_),

not istack([]).

(r13) new_transState(noop) ← new_istack([]).

• Auxiliary rules:

(r14) new_istack(B) ← toParent,

istack([_|B]).

(r15) new_khState(K) ← toParent,

khState([KH|K]).
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The rules above have a clear resemblance to the transition rules used to describe
the semantics of know-how in Section 4. Let NextActionL be the logic program
that contains rules (r1) to (r15). Using NextActionL we can state an algorithm
that computes the next action for the agent, see Figure 4. This algorithm has
a one to one correspondence to algorithm NextAction (see Figure 3) but uses
answer set programming as representation language.

do

Compute the intersection ans of all

answer sets of IL ∪ ΣL ∪ KB∪NextActionL

Adjust IL according to ans
until IL contains a fact act(A)
execute the action corresponding to A. �

Figure 4: The algorithm for plan deliberation

It repeatedly computes the intersection of all answer sets of the union of IL, the
know-how base, the logical belief base and the rules in NextActionL. Due to the
single instantiation of transState(·) in IL the applicability of derivation of liter-
als of the form new_action(. . . ), new_istack(. . . ), new_khstate, etc. is the same
for all possible answer sets (given that the logical beliefs in KB do not influence
this derivation in an undesired manner), such that these literals are the same
in every answer set. Finally, these literals are extracted from this intersection,
their “new_” prefixes are stripped off and they are set as the new program IL.

Proposition 3 (Equivalence to the state transition system). The logic program
NextActionL which consists of the rules (r1) − (r15) is equivalent to the state
transition system described in Section 4 in the sense that for every transition
state the same successor state with the same effects is reached. In particular
for every mental state Ω of an agent except a state with label NO (noop), there
will be a successor state reached within a finite number of steps. Furthermore,
every run of the system eventually halts in a state with label NO (noop).

Proof. For the state intentionAdded one of the rules (r1) − (r3) is applicable.
These are mutual exclusive as the heads occur in the negative body of the
other rules. Rule (r1) will directly trigger (r9) and resembles the behaviour of
transition rule (1). (r2) resembles (2), but does also check for the applicability
of the know-how statement as will be explained later. (r2) triggers (r11) which
conducts the state change as desired. The failure of the check for applicability
of know-how statements in (r2) will lead to the application of (r3), if (r1) is
not applicable. At this point no applicable know-how statement for the current
intention is available and therefore the current know-how statement failed (r3).
This triggers (r4) which resembles the toParent operation of the state transition
system by means of rules (r14) and (r15). At last (r12) is applicable in the same
iteration and marks the successor state to be intentionAdded. Thus, in the next
iteration the applicability of (r2) is checked again on the parent intention of the
intention that just proved to be not achievable. Also the know-how statement
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which just failed has been marked as failed and is not taken into consideration
again. The described application of rules (r3), (r4), (r14), (r15) and (r12) initiates
a loop if (r3) is applicable again. This loop is equivalent to the application of
state transition rules (2), (10) and (12). The loop is terminated if (r2) is finally
applicable, which resembles (11), or if the intention stack is empty and (r13) is
applicable, which again resembles (13).

For the state actionPerformed one of the rules (r5) − (r6) can be applicable
which are mutual exclusive. Rule (r5) resembles the state transition rule (3).
Here, the next sub-target is realised by using the ordered structure of the
khSubgoal(·, ·, ·) predicate. (r6) plus (r7) resemble (4) while (5) is captured by
(r13).

For the state khAdded r8 will be applied and adds the first subgoal of the
added know-how statement to the intention stack. Taking into consideration
that the other subgoals are captured by the khSubgoal(·, ·, ·) predicate and that
they will be added by means of the (r5), (r8) captures the behaviour of state
transition rule (9). Finally, (10) for the state khAdded is covered by the applica-
bility checks in (r2) and (r3).

Corollary 1 (Soundness of the logic program representation). The logic program
NextActionL which consists of the rules (r1)− (r15) is sound in the sense, that
for every mental state Ω of an agent, there is not more than one new state
defined by the presence of a predicate new_transState(·) in the answer sets.

Corollary 2 (Completeness of the logic program representation). The logic pro-
gram NextActionL which consists of the rules (1)-(15) is complete in the sense,
that for every mental state Ω of an agent except a state with label NO (noop),
there will be a successor state reached within a finite number of steps. Further-
more, every run of the system eventually halts in a state with label NO (noop).

5.2 reasoning about know-how

One of the main motivations for the explicit representation of know-how and
intentions in the agents beliefs is that this enables the agent to reason about
these. The agents awareness about the procedural knowledge it has to achieve
goals can deeply influence the behaviour of what we call its functional compo-
nent. To be more precise, the information reflected by the know-how is useful
for the selection of new goals as the achievement of these is critically depen-
dent on know-how. The structure of know-how also reveals information on the
involved conditions and subgoals of the achievement of goals. This informa-
tion enables the agent to reason about the feasibility and effort as well of the
reliability of the achievement of goals. The just described way of reasoning in-
teracts with the agents motivations as these can be dependent on the current
level of confidence of the agent in a given situation. The level of confidence can
be determined by the applicability of the agent’s know-how, weighted with the
significance of its goals. These ideas lead to the definition of sound and reliable
know-how in the following subsections.
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achievable(I) ← is_atomic(I).
achievable(I) ← khStatement(KH, I),

not ¬sound(KH).
¬sound(KH) ← khSubgoal(KH, J, SI),

not achievable(SI).

Figure 5: Determination of sound know-how

5.2.1 Sound Know-How

Example 2 showed that an agent must be capable of determining if it has the
means to achieve a given intention. This is captured by the following definition.

Definition 9 (Sound Know-How). Let Σ be a know-how base. An intention I ∈
Int is achievable in Σ if

• I is an atomic intention or

• there is at least one know-how statement σ ∈ Σ with goal(σ) = I and
every sub-target of σ is achievable.

Σ is called sound if every intention I ∈ Int is achievable.

Given an know-how base ΣL in logic programming the rules stated in Fig-
ure 5 determine whether an intention I is achievable. The definition of sound
know-how and the corresponding logic program do not take the conditions of
a know-how statement into consideration when determining if an intention is
achievable. In order to comprehend for these conditions we discuss in the next
subsection a notion called reliable know-how.

5.2.2 Reliable Know-How

Singh states that reliable know-how should meet some form of natural lan-
guage understanding and defines a very strong notion of reliable know-how in
[26]. He also notes that alternative, less strict, versions of reliability might be
formulated. A similar notion is the one of secure planning [8], which captures
the intuition of a know-how statement or an intention, that can always be ful-
filled no matter what the circumstances are. Due to uncertainty of the agent’s
beliefs, one might be interested if the agent is able to fulfill a given intention
even if its beliefs are incomplete or if the environment changes due to other
agents’ actions. In our framework reliability of know-how is understood as the
robustness of know-how to the incompleteness of information. Reliable know-
how is know-how which is known not to fail given the incomplete information
available. In particular this means that literals which are neither known to be
true nor false are irrelevant for the success of the application of the know-how.
As said above, we assume that actions cannot fail, so atomic intentions are
reliably achievable by definition. For complex intentions reliability is recursively
defined using the reliability of its subcomponents and a context as defined in
the following.
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reliablyAchievable(I, C) ← is_atomic(I).
reliablyAchievable(I, C) ← khStatement(KH, I),

not ¬reliable(KH, C).
¬reliable(KH, C) ← khCondition(KH, Cond),

notin(Cond, C).
notin(X, []).
notin(X, [H|B]) ← X 6= H, notin(X, B).
¬reliable(KH, C) ← khSubgoal(KH, I, Int),

context(C2, C, KH, I),
not reliablyAchievable(Int, C2).

context(C, C, KH, 1).
context([Int|C2], C, KH, I)← I 6= 1,

J = I − 1,
context(C2, C, KH, J),
khSubgoal(KH, J, Int).

Figure 6: Determination of reliable know-how

Definition 10 (Context). Let Σ be a know-how base and C the set of all conditions
of know-how statements σ with σ ∈ Σ. A context C is any subset of C.

Definition 11 (Reliability). Let Σ be a know-how base, I an intention and C a
context. The intention I is reliably achievable in C iff

• I is an atomic intention or

• there is at least one know-how statement σ with target I and σ is reliable
in context C.

A know-how statement σ with sub-targets I′1, . . . , I′n is reliable in context C iff

1. each sub-target I′i (1 ≤ i ≤ n) of σ is reliably achievable in C∪{I1, . . . , Ii−1}
and

2. the conditions of σ are fulfilled in C.

An intention that is reliably achievable in the context ∅ is absolutely reliably
achievable, as there are no necessary conditions for this intention to succeed.
Note, that as we assume that actions do not fail and thus complex intentions do
neither given they are reliably achievable, the intentions of previous sub-targets
are added to the context of a sub-target as well, because previous actions may
presuppose the application of later intentions.

Our notion of reliable know-how is implemented through the addition of
the rules depicted in Figure 6. The rules in Figure 6 enable agents to always
have knowledge about which of their know-how is reliable and which is not.
This knowledge influence the intention update operation αupd as described in
Section 3.1. Thus, the knowledge about the reliability of know-how influences
the behaviour of the agent as it can take care of some tasks as long as it reliably
knows how to achieve some important goals. In the example of the cleaning
robot this means, that it keeps on cleaning as long as it reliably knows how to
get to the charging station. In general the motivation of agents is dependent
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on the level of confidence of their current situation. While the motivation to
achieve higher order goals while having a high sense of confidence the moti-
vation to survive takes over in more unstable situations. This behaviour can
be modelled by different preference relations on the agents motivations each
reflecting a state of confidence. These states are based on the reliability of the
know-how of the agent. Thereby the beliefs of the agent and the reasoning
about these do influence other components of the agent such as its motivation.

5.3 belief revision and know-how

In Section 3.3 we introduced the role of belief operations in our framework.
Belief dynamics are usually limited to factual knowledge, referred to as know-
that here. One of the main features of our approach of explicit representation of
know-how is that this way know-how can as well be subject to dynamic changes
carried out by belief operations. Especially, new know-how can be incorporated
into existing know-how bases while maintaining consistency. Furthermore, the
dynamics of classic beliefs, i. e. know-that, and of know-how are processed
together respecting interactions of both. Updates of subgoals or conditions of
know-how statements are automatically achieved if new subgoals or conditions
are added for a given know-how statement and lead to a conflict. This conflict
can either be a direct one which is handled by the update mechanisms directly
or induced by integrity constraints of the form:

← khSubgoal(KH, I, Int1), khSubgoal(KH, I, Int2), Int1 6= Int2.

Updates of know-that will instantaneously lead to changes to the reliability
of know-how which again will influence other components as laid out earlier.
Another aspect in this manner is the communication and transfer of know-how
[15]. Agents can ask other agents how to achieve certain intentions and as know-
how is represented as beliefs, the answering of these queries can be handled
analogue to other beliefs in a straightforward fashion. Agents receiving new
know-how can integrate this new know-how into their own know-how base
using ordinary belief base operations as described above.

5.4 implementation

The system described in this paper has been implemented in the KiMAS frame-
work that has been introduced in a previous paper [15]. The KiMAS frame-
work is a multiagent system, that focuses on the representation of beliefs and
on methods to process information exchanged among the agents. It has been
implemented using the Jadex framework [22] and DLV [7] as the underlying
answer set reasoner. While in the first version, a variant of the NextAction algo-
rithm has been implemented in Java, we also implemented the logic program-
ming version described in this section to fully benefit from the representation
of intentions and know-how in logic programming.





6R E L AT E D W O R K

There exist several approaches for plan generation, the most commonly known
probably being the STRIPS language [10]. STRIPS is a declarative programming
language that enables an agent to do means-end reasoning by stating atomic
actions, featuring some conditions. Given a certain goal the STRIPS algorithm
generates a sequence of atomic actions that lead to the fulfillment of this goal.
With this paper we do not propose an alternative method for planning, but an
orthogonal one. By using pre-written plan fragments to reach a certain goal, we
do not fully have the means for plan deliberation. In fact, a planning algorithm
like STRIPS can provide the input for building up a know-how base.

There is also a wide range of agent architectures that built on the BDI model
[2, 3, 22]. All these architectures do not inherently support the notion of know-
how nor reasoning about intentions and plan deliberation in the way described
here. The system Jason [3], although, allows a simple treatment of revision
of plans in the sense, that plan fragments may be added or deleted from the
agent program. Nonetheless, we believe that our proposal might by adapted
for several agent architectures in order to enrich them with a similar notion of
know-how.

Extended logic programming has been extensively used as a language for
plan deliberation. For example, in [17] Lifschitz uses extended logic program-
ming in order to to provide solutions for the blocks world problem. In contrast
to [17], our use of extended logic programming is much more general, as our
algorithm is universal enough to handle a wide range of problems given a
suitable know-how base. The system K [8] also makes use of extended logic
programs as representation technique and also features a notion of reliability
called secure plans. But like in other agent systems, K does not allow the treat-
ment of structural knowledge about planning capabilities as ordinary logical
beliefs.
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7C O N C L U S I O N

In this paper we took on the work of Singh on the formalization and represen-
tation of know-how and focused on the realization of rational agents that are
capable of the representation of and reasoning about their know-how. We for-
malized an extension of the BDI model for this sake, also including motivations
for agents and set know-how apart from common planing approaches by rep-
resenting know-how as logical beliefs in the mental state of the agent. By doing
so, the agent acquires the capability to reason about its current state of plan
deliberation within its logical beliefs and enables it to treat this kind of beliefs
in the same way as its other beliefs. We presented a realization of know-how
and its treatment in logic programming and illustrated the advantages that
come with this representation. We see this proposal as a first step to the full
support of the notion of know-how [26] in a concrete logic-based agent archi-
tecture. This constitutes an enhancement of the agents reasoning capabilities as
well as it improves the interplay of the agents components. For future work, we
plan to exploit and extend the new possibilities opened by our work in terms
of reasoning with and about know-how as well as the further integration of
agent components. Also, the notion of motivation has to be elaborated further
in order to implement it in an entirely logic-based and practically usable agent
architecture as was done here with know-how.
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AA P P E N D I X

a.1 using lists in answer set programming

The handling of lists is a key feature in the logic programming language PRO-
LOG [6]. In this section, a very restricted form of lists, namely finite non-nested
lists where every member does not appear more than once, are incorporated
into extended logic programs under the answer set semantics [12]. The ap-
proach for integrating lists in extended logic programs presented here is very
simple and straightforward. A more sophisticated approach can be found in
[18]. There, a general handling of functions in normal logic program is pre-
sented. As lists can be represented using functions this approach is also appli-
cable for the handling of lists. The approach also generalizes easy to extended
logic programs.

a.1.1 Syntax

Let C be a finite set of constant symbols and X resp. XL be two disjoint finite
sets of variable symbols. Variables in X are called c-term variables and stand
for the constants appearing in C, while variables in XL are called list variables
and stand for lists (see below). By convention, constant symbols begin with a
lowercase letter, while variable symbols begin with an uppercase letter. Here,
we only consider a very restricted form of lists, namely lists that do not have
lists as members and every element does not appear more than once.

Definition 12 (List). The set of lists LC,X ,XL for a set of constants C and disjoint
sets of variables X and XL is recursively defined as follows

• It is [] ∈ LC,X ,XL (the empty list).

• It is XL ⊆ LC,X ,XL (list variables).

• If L ∈ LC,X ,XL and t ∈ C ∪ X does not appear in L, then it is [t|L] ∈
LC,X ,XL .

A list [a1|[a2| . . . [an|[]] . . . ] can also be written as [a1, . . . , an] which is called the
normalized form.

Remark 1. For a finite set of constant symbols C and finite sets of variable sym-
bols X and XL, the set LC,X ,XL is finite.

Remark 2. Notice the two distinct meanings of the expressions [X|Y] and [X|[Y|[]]].
In both expressions X is a c-term variable denoting the first element of the list,
i. .e. a member of the list. In the first expression the variable Y is a list variable
denoting the rest of the list, thus representing a list of its own, while in the sec-
ond expression Y is a c-term variable denoting the second element of the list,
i. e. a member of the list. As we do not consider nesting of lists in this paper,
these two expressions differ fundamentally in their semantics.
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A term is either a constant symbol c ∈ C, a variable symbol X ∈ X ∪ XL or a
list l ∈ LC,X ,XL . An atom A is a predicate symbol P with arity n followed by
a sequence of n terms enclosed in parentheses. A literal is either an atom A
or a negated atom ¬A. A literal L is said to be ground, if no variable symbol
appears in L either as a term or as a member of a list. Let not denote the default
negation.

Definition 13 (Extended logic program with lists). An extended logic program with
lists – or program for short – is a finite set of rules of the form

A← A1, . . . , An, not B1, . . . not Bm.

with literals A,A1, . . . , An, B1, . . . , Bm.

a.1.2 Semantics

Let P be a program and C be the set of constants appearing in P either as a term
or as a member of a list. The grounding Pg of P is determined by replacing all
variable symbols appearing in P with the constant symbols in C and the lists in
LC,∅,∅ as follows.

Definition 14 (Grounding). Let P be a program and C the set of all constants
appearing in P. The grounding Pg of P is obtained by replacing each rule r ∈ P
with its grounded versions. A grounded version r′ of a rule r ∈ P is obtained by

1. substituting each variable X appearing not inside a list in r with a term
t ∈ C ∪ LC,∅,∅,

2. substituting each c-term variable X appearing in a list in r with a term
t ∈ C, and

3. substituting each list variable X appearing in a list in r with a list l ∈
LC,∅,∅

such that every list appearing in r′ is in LC,∅,∅.

The last condition in the above definition ensures that all lists appearing in a
grounded version r′ of a rule r are valid in the sense, that no list member is a
list itself and every element does not appear more that once.

Remark 3. The grounding Pg of a program P satisfies the following properties:

1. Pg is finite.

2. Pg does not contain any variable.

Example 7. Suppose C = {a, b} and consider the rule

R(X, [Y|Z])← P(X), Q([Y, a]), R(Z).

In a first step the variable X is substituted with a term t ∈ C ∪ LC,∅,∅ =
{a, b, [a, b], [b, a], [a], [b], []} yielding among others

R(b, [Y|Z])← P(b), Q([Y, a]), R(Z).
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Then the c-term variable Y is substituted with a term t ∈ C yielding (t = b)

R(b, [b|Z])← P(b), Q([b, a]), R(Z).

Notice that Y cannot be substituted by a as this would produce the expres-
sion [a, a] which is not a valid list in our sense. Finally, the list variable Z is
substituted with a list l ∈ LC,∅,∅ yielding among others

R(b, [b|[a]])← P(b), Q([b, a]), R([a]).

Notice that in the final step the list variable Z cannot be substituted by the list
[a, b] because then the expression [b|[a, b]] appears in r′ which is not a member
of LC,∅,∅.

Given the grounding Pg of a program P the semantics of P is defined via answer
sets as for general extended logic programs. For that reason, assume that all
lists appearing in Pg are in normalized form. This can be achieved by a simple
preprocessing step.

Definition 15 (Reduct). Let Pg be the grounding of a program P and let K be a
set of grounded literals. The reduct PK of P with K is the logic program without
default negation given by

PK = {A← A1, . . . , An | A← A1, . . . , An, not B1, . . . not Bm ∈ Pg,

K ∩ {B1, . . . , Bm} = ∅}

Definition 16 (Answer set). A set A of grounded literals is an answer set of a
program P, iff A is the minimal model of PA.

For the task of computing the answer sets of the grounded program Pg lists can
be treated as ordinary constant symbols. Thus standard techniques for comput-
ing answers sets for extended logic programs can be used to obtain answer sets
for extended logic programs with lists.
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