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Abstract

In this paper, we are interested in the qualitative knowl-
edge that underlies some given probabilistic informa-
tion. To represent such qualitative structures, we use
ordinal conditional functions, OCFs, (or ranking func-
tions) as a qualitative abstraction of probability func-
tions. The basic idea for transforming probabilities into
ordinal rankings is to find well-behaved clusterings of
the negative logarithms of the probabilities. We show
how popular clustering tools can be used for this, and
propose measures for the evaluation of the clustering
results in this context. From the so obtained ranking
functions, we extract conditionals that may serve as a
base for inductive default reasoning.
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Introduction
Knowledge discovery and data mining is an area of very ac-
tive and successful research in the machine learning commu-
nity. It seems to be common knowledge that this has to be
done in a probabilistic context by making use of statistical
information obtained from terabytes of data. Hence, there is
no well-understood connection to the area of knowledge rep-
resentation and commonsense reasoning that usually does
not make use of data and is more interested in qualitative
plausible reasoning. However, to overcome the bottleneck
of knowledge acquisition, using present data in an appropri-
ate way seems to be a tempting option; on the other hand,
humans do not feel at ease when they have to base important
decisions just on numbers, usually, they need some qualita-
tive justification to support a decision convincingly. To date,
the links between qualitative and probabilistic information
have not been elaborated and used in a systematic way, al-
though some work has been done in a similar direction in
the possibility theory community (Benferhat et al. 2003;
Borgelt and Kruse 1997).

In this paper, we use ordinal conditional functions, OCFs,
(or ranking functions) as introduced by Spohn (Spohn 1988),
as qualitative abstractions of probability functions. The
main contribution of this paper consists of two parts. First,
we introduce a mechanism to derive from an empirically ob-
tained probability distribution a more coarse-grained rank-
ing function that subsumes the probability distribution in a
more qualitative manner. This abstraction is inspired by the
work on infinitesimal probabilities reported in (Adams 1966;
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Goldszmidt and Pearl 1996). Many different derivations are
possible here, so we have to make clear how appropriate
rankings can be obtained. We show how clustering tech-
niques (Hartigan 1975) can be used for this purpose. Clus-
ters are to collect probabilities that are “similar enough” so
that they can be regarded to be of the same order of mag-
nitude and hence induce the same qualitative information.
The obtained ranking functions are used for the applica-
tion of the CONDORCKD algorithm, which has been de-
veloped and implemented in a fully probabilistic framework
in (Kern-Isberner and Fisseler 2004) and has recently been
adapted for the task of qualitative knowledge discovery on
ranking functions (Kern-Isberner, Thimm, and Finthammer
2008). This is possible only due to an inherent connection
between ranking functions and probability functions which
can both be subsumed by a more general concept (Kern-
Isberner 2001a). Second, we conducted several experiments
using different settings for the clustering algorithm obtain-
ing different qualitative representations which are used as
input for CONDORCKD. The conditionals discovered by
CONDORCKD from the data represent plausible relation-
ships and can be used as default rules for commonsense rea-
soning, by applying one of the well-known nonmonotonic
inference formalisms (cf. e.g. (Goldszmidt and Pearl 1996)).

This paper is organized as follows. We start with some
preliminaries on conditionals and ranking functions and
afterwards introduce the notion of c-representations as a
means for default reasoning with ranking functions. Then
we present our parametrized approach to obtain qualita-
tive information from a(n empirical) probability distribution.
Consequently, we show how clustering techniques can be
applied to guide the search for good parameters to obtain
suitable ranking functions which are used as input to our
mining system CONDORCKD. We continue with reporting
on experiments with different parameters and compare the
results. Finally, we conclude with a summary and an out-
look on further work.

Conditionals and Ranking Functions
We are working with a propositional language L over a fi-
nite set V = {V1, V2, . . .} of propositional variables Vi with
finite domains. For each variable Vi ∈ V , the values are de-
noted by vi. Expressions of the form Vi = vi are called liter-
als and are abbreviated by just vi. The language L consists



of all formulasA built by conjoining finitely many literals by
conjunction (∧), disjunction (∨), and negation (¬) in a well-
formed way. We will write AB for A ∧ B and negation is
indicated by overlining, i. e., A = ¬A. An elementary con-
junction is a conjunction consisting of literals, and a com-
plete conjunction is an elementary conjunction where each
variable from V is instantiated by exactly one value. Let
Ω denote the set of complete conjunctions of L. Ω can be
taken as the set of possible worlds ω, providing a complete
description of each possible state, and hence corresponding
to elementary events in probability theory.

Conditionals are written in the form (B|A), with an-
tecedents, A, and consequents, B, both formulas in L, and
may be read as uncertain rules of the form if A then B.
Let (L|L) denote the set of all conditionals over L. Single-
elementary conditionals are conditionals whose antecedents
are elementary conjunctions, and whose consequents con-
sist of one single literal. We give semantics for condition-
als using a notion of acceptance of conditionals. Basically,
for a conditional (B|A) to be accepted, its confirmation,
AB, must be more probable, plausible etc. than its refu-
tation, AB. Conditionals can be annotated with quantitative
values, e. g. probabilities or ranking values, to specify the
strength with which they are believed. In this paper, we are
interested in the qualitative knowledge that underlies some
given probabilistic information. To represent such qualita-
tive structures, we use ordinal conditional functions, OCFs,
as introduced by Spohn (Spohn 1988) as a qualitative ab-
straction of probability functions.
Definition 1. An ordinal conditional function (or ranking
function) κ is a function κ : Ω→ N∪{∞}with κ−1(0) 6= ∅.
An OCF κ assigns a degree of implausibility (or ranking
value) to each world ω: The higher κ(ω), the less plausible
is ω. A world ω with κ(ω) = 0 is regarded as being com-
pletely normal (most plausible), and for a consistent mod-
elling, there has to be at least one such world. To keep tech-
nical details easy, we will only consider finitely valued OCFs
in this paper. For formulas A ∈ L, a ranking is computed
via

κ(A) =
{

min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

So we have κ(A∨B) = min{κ(A), κ(B)} and in particular,
κ(A∨A) = 0. The belief in (or acceptance of) a formula A
is defined as

κ |= A iff κ(A) > 0 ,

Notice, that κ(A) > 0 implies κ(A) = 0. An OCF κ is
extended to conditionals by setting

κ(B|A) =
{
κ(AB)− κ(A) if κ(A) 6=∞
∞ otherwise ,

and a conditional is accepted by κ,

κ |= (B|A) iff κ(AB) < κ(AB) iff κ(B|A) > 0.

As usual, a proposition A is identified with the conditional
(A|>), hence κ |= (A|>) iff κ(A) > κ(A) = 0, in accor-
dance with what was said above.

The acceptance relation for quantified OCF-conditionals
(B|A)[m] is defined by using the difference between κ(AB)
and κ(AB):

κ |= (B|A)[m] iff κ(AB) +m = κ(AB)

iff κ(B|A) = m, m ∈ N,m ≥ 1.

Thus, if (B|A) is believed with a degree of belief m then
verifying the conditional is m degrees more plausible than
falsifying it. So, κ |= (B|A)[1] expresses belief in (B|A),
but only to the smallest possible degree. For a propositional
fact A, this yields

κ |= A[m] iff κ(A) = m.

Ranking functions provide a perfect framework for qualita-
tive reasoning, as they allow us to handle conditionals in a
purely qualitative manner, but also leave room to take more
precise, quantitative information into account.

Default Reasoning with OCFs
In this paper, we focus on qualitative inductive reasoning
that is based on so-called c-representations which have been
introduced in (Kern-Isberner 2000; 2001a); many proper-
ties, proofs, and lots of examples can be found in (Kern-
Isberner 2001a). This approach follows the same structural
lines as probabilistic reasoning under maximum entropy and
provides the techniques for model-based inductive reason-
ing in a qualitative environment the quality of which out-
performs system Z clearly (Kern-Isberner 2001b). Due to
space restrictions, we give only a short and mostly informal
overview here.

First, an indicator function σ is defined to repre-
sent the effects of a conditional on possible worlds
by associating to each conditional (Bi|Ai) in R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L|L) two abstract symbols
a+
i ,a

−
i , symbolizing a (possibly) positive effect on verifying

worlds and a (possibly) negative effect on falsifying worlds:

σi(ω) =

 a+
i if ω |= AiBi

a−i if ω |= AiBi
1 if ω |= Ai

(1)

Here, 1 is the neutral element of the (free abelian) group
FR = 〈a+

1 ,a
−
1 , . . . , a+

n ,a
−
n 〉, generated by all symbols

a+
1 ,a

−
1 , . . . ,a

+
n ,a

−
n . The function σR : Ω → FR, defined

by

σR(ω) =
∏

1≤i≤n

σi(ω) =
∏

1≤i≤n
ω|=AiBi

a+
i

∏
1≤i≤n
ω|=AiBi

a−i (2)

describes the all-over effect of R on ω. σR(ω) is called the
conditional structure of ω with respect toR.

Using this representation we can identify possible worlds,
or more generally, combinations of possible worlds on
which the conditionals in R have equal effects. Then an
OCF κ that assigns equal values to these worlds, or com-
binations of worlds, is called conditionally indifferent with
respect to R. The next theorem characterizes indifferent or-
dinal conditional functions:



Theorem 1. An ordinal conditional function
κ is indifferent with respect to a set R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L|L) iff there are ratio-
nal numbers κ0, κ

+
1 , κ

−
1 , . . . , κ

+
n , κ

−
n ∈ Q, such that for all

ω ∈ Ω,

κ(ω) = κ0 +
∑

1 ≤ i ≤ n
ω |= AiBi

κ+
i +

∑
1 ≤ i ≤ n
ω |= AiBi

κ−i . (3)

Now, in order to obtain a proper representation of a set of
conditionals R, we can use the schema (3) and impose the
constraints induced by the conditionals inR.
Definition 2 (C-representation). An ordinal conditional
function κ is a c-representation of a set R =
{(B1|A1), . . . , (Bn|An)} of conditionals iff κ is indiffer-
ent with respect to R and accepts all conditionals in R, i. e.
κ |= R.

In an analogous way, c-representations for quantified
OCF-conditionals can be defined. However, different from
the maximum entropy principle in the probabilistic case,
ordinal c-representations are not uniquely determined. It
is still an open problem of research to specify conditions
for unique c-representations. For the knowledge discovery
problem dealt with in this paper, this is not a severe prob-
lem, as the ranking function is not searched for, but will be
derived from the given empirical distribution.

Rankings as Qualitative Probabilities
Let P be a probability distribution over V that could have
been collected via a statistical survey. We are interested in
the qualitative structure that underlies the probabilities in P .
So we represent P by qualitative probabilities yielding an
ordinal conditional function that approximates the quantita-
tive structure in P . This can be done using the approach dis-
cussed in (Kern-Isberner, Thimm, and Finthammer 2008).
We start by representing a probability of a specific world ω
as a polynomial in a fixed base value ε in the spirit of (Gold-
szmidt and Pearl 1996). Using this base representation, the
order of magnitude of a probability can be represented only
by the corresponding exponents and different probabilities
can be compared by these exponents yielding a qualitative
abstraction of the original values.
Definition 3. Let ε ∈ (0, 1) be a base value to parameter-
ize probabilities. Then a probability value P (ω) can be ex-
pressed as a polynomial in ε ,

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . . ,

with appropriate coefficients ai ∈ N respecting 0 ≤ ai <
ε−1 for all i to match the value P (ω).
Due to the restriction 0 ≤ ai < ε−1 the above definition is
sound and uniquely determines a base representation Pε(ω)
for given P (ω) and ε with Pε(ω) = P (ω). The above def-
inition is quite similar to the one proposed in (Goldszmidt
and Pearl 1996) but unlike there we use positive coefficients
for the base representation, which seems more natural for
our intentions, see (Kern-Isberner, Thimm, and Finthammer
2008).

We use a fixed value ε for the base representation and take
this value throughout the process of qualitative knowledge
discovery as an indicator for the granularity of the qualita-
tive probabilities. Given a fixed base value ε, we determine
the most significant term of a base representation with re-
spect to ε and use this value as a rank value for an OCF κ̃Pε .
More specifically, let ω be a world and P (ω) its (empirical)
probability. From now on let ε ∈ (0, 1) be a fixed base value
and let

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . .

be the base representation of P (ω) according to Definition 3.
We are looking for the first ai that differs from zero to define
the rank of ω:

κ̃Pε (ω) = min{i | ai 6= 0} .

Let i satisfy ai 6= 0. Then it holds that

P (ω) ≥ aiεi ≥ εi

because ai is a natural number and ai > 0. From this obser-
vation, it follows immediately that

P (ω) ≥ εi iff
logP (ω)

log ε
≤ i .

Therefore for the minimal i satisfying ai 6= 0 and so for the
rank assigned to ω it follows

κ̃Pε (ω) =
⌈

logP (ω)
log ε

⌉
. (4)

In general, the function κ̃Pε defined using equation (4) does
not satisfy (κ̃Pε )−1(0) 6= ∅. Therefore, we normalize κ̃Pε
by shifting all ranking values appropriately, i. e., by defining
κPε (ω) := κ̃Pε (ω)− c with c = min{κ̃Pε (ω) | ω ∈ Ω}. Then
κPε defines an ordinal conditional function according to Def-
inition 1. As κPε is the only ordinal conditional function we
are dealing with, we will write just κ for κPε , when P and ε
are clear from context.

Furthermore, we can state an approximated probability
based on the ranking values for each conditional (B|A). Be-
cause the ranking values are determined according to equa-
tion (4), each probability P (ω) is qualitatively approximated
by its corresponding ranking value, so we have:

P (ω) ≈ εκ
P (ω) (5)

By taking into consideration the equation

P (B|A) =
1

P (A)
P (AB)

=
1

P (AB)+P (AB)
P (AB)

=
1

1 + P (AB)
P (AB)

,

we can approximate the probability of a conditional by its
degree of belief m:

P (B|A) ≈ 1

1 + εκP (AB)

εκP (AB)

=
1

1 + εm
(6)

The process of transforming a given probability distribution
into a qualitative representation (according to equation (4))
is crucially influenced by the chosen base value ε. It de-
pends on ε how similar some probabilities must be to be



projected to the same ranking value. Thus, ε is the param-
eter that controls the qualitative smoothing of the probabili-
ties. For this reason, an appropriate choice for ε is important
for the qualitative modeling since it determines the variation
in the resulting ranking values and this way it heavily influ-
ences all following calculations based on this values. If the
value for ε is close to 1, then even quite similar probabilities
will still be projected to different ranking values. However,
a too small value of ε will have the effect that even quite
different probabilities will be assigned an identical ranking
value. Thus, an unacceptable large amount of information
contained in the probabilities will be lost, i. e., the probabil-
ities are smoothed so much that the resulting ranking values
do not carry enough information to be useful as a qualitative
abstraction.

In principle, it is up to the user to set ε, depending on his
point of view, but clustering techniques applied to the loga-
rithmic probabilities may help to find an appropriate ε. We
will investigate the determination of a suitable value of ε us-
ing heuristics and clustering techniques in the next sections.

Mining Default Rules
In order to extract qualitative information from a probabil-
ity distribution P obtained from statistical data, we have
to compute ranking values from the probabilities, as has
been described in the previous section. Once a ranking
function κ has been derived, a qualitative variation of the
CONDORCKD algorithm (Kern-Isberner and Fisseler 2004;
Kern-Isberner, Thimm, and Finthammer 2008) can be used
to discover a setR of quantified or unquantified default rules
in the form of conditionals such that κ is a c-representation
of R (see Definition 2). Hence, R may serve as a base for
inductive default reasoning via c-representations.

Originally, CONDORCKD was implemented to discover
probabilistic conditionals from frequency distributions such
that the computed set of rules represents most informative
information in the sense that applying the principle of max-
imum entropy to it will generate a probability distribution
which approximates the given frequency distribution (Kern-
Isberner 2001a). In particular, the computed rules are as
concise as possible. This is due to the exploitation of struc-
tural information and conditional indifference (see Theo-
rem 1). Since conditional indifference generalizes condi-
tional independence, it allows the finding of correlations that
are interesting and expressive but are not necessarily in ac-
cordance with a strictly causal interpretation. Since maxi-
mum entropy reasoning and c-representations make use of
the same structural foundation, the same machinery can be
used for knowledge discovery in both frameworks. Qualita-
tive CONDORCKD just has to replace locally probabilities
by ranking values and respect some basic differences be-
tween OCF and probabilistic reasoning. Note that the core
of CONDORCKD – even for probabilities – works on ab-
stract algebraic information and returns a set of unquantified
conditionals which can easily be given the proper semantics
by computing the respective values directly from the given
data, be they statistical or qualitative in nature.

So, the road to extract default rules from ranking func-
tions has already been paved, thanks to work previously

done. What still has to be done is to transform statistical
information into the ranking values of an appropriate ordi-
nal conditional function. As has been discussed at the end
of the previous section, this comes down to finding a proper
parameter ε which defines a measure of similarity that is
to make probabilities indistinguishable. From equation (4)
we see that rankings correspond to equidistant intervals of
(negative) logarithmic probabilities, each of which has equal
length α = − ln ε. The logarithmic probabilities inside each
interval should be similar enough to give rise to the same
qualitative abstraction, while logarithmic probabilities from
different intervals should be different enough to be clearly
distinguished. This amounts to finding an optimal clustering
of the probabilities. However, neither the maximal cluster
width α is known in advance, nor is the number of clusters.
Moreover, we expect the clusters to fit into an equidistant
partitioning of the interval defined by minimal and maxi-
mal (negative logarithmic) probability found in the data, and
we also would like to have empty clusters (corresponding to
empty ordinal layers) represented. We are not aware of any
clustering method that satisfies perfectly all these require-
ments, so we had to use an existing algorithm and modify it
according to our needs.

We chose k-means (Hartigan 1975) as a suitable cluster-
ing technique for our experiments. The k-means algorithm
(or Lloyd’s algorithm) starts by randomly distributing k so
called centroids on the event space and assigning each point
to its nearest centroid, forming a partitioning. Then, for each
partition a new centroid is calculated and the procedure is
repeated until a convergence criterium is reached, e. g., the
partitioning does not change any more, and the partitions
represent clusters. Here, the event space is an interval of the
real numbers, so calculating the new centroid of a partition
is equal to calculating the mean of the points in the partition.

The idea is to use k-means with equidistant start-
ing centroids for various numbers k and check how
well the resulting clustering fits into an equidistant par-
titioning of the interval [(ln p)min, (ln p)max] needed to
cover all negative logarithmic probabilities/frequencies, i.e.
(ln p)min = minω:P (ω)6=0− lnP (ω) and (ln p)max =
maxω:P (ω) 6=0− lnP (ω). Since we expect the clusters to
be roughly of the same size, the estimated width of each
cluster correspond to the logarithmic similarity α that is
searched for: (ln p)max−(ln p)min

k = α. In this way, num-
bers k that lead to clustering results that are close enough to
an equidistant partitioning, yield candidates for α. Then, we
use such α’s to compute (normalized) ranking functions κPε
with ε = e−α, according to (4), and evaluated the quality of
the ranking by measuring similarity within each non-empty
ranking layer and dissimilarity between each two neighbour-
ing non-empty layers.

To be more precise, we use the following measurement
for the evaluation of the ranking derived from the (logarith-
mic) probabilities: Let Cλ be the cluster of all negative log-
arithmic probabilities (different from 0) that are mapped to
(finite) λ by equation (4) (plus normalization):

Cλ = {− lnP (ω) | κPε (ω) = λ}.
Let Cλ0 , . . . , Cλs with λ0 = 0 < λ1 < . . . λs be the non-



empty clusters among these clusters. We define the similar-
ity1 associated withCλi as the average distance between two
neighbouring members of Cλi :

simi =
{

(maxCλi −minCλi )/#Cλi if #Cλi > 1
α/2 if #Cλi = 1,

where #Cλi(> 0) denotes the cardinality of Cλi . If Cλi
contains only one value, then simi is set to α/2, in order to
take the estimated width α of the cluster into account. To
measure dissimilarity between clusters, let dist−i (dist+i ) be
the distance between minCλi (maxCλi ) and the next smaller
(greater) negative logarithmic probability. dist−i resp. dist+

i
can be interpreted as the distance of Cλi to its left resp. right
neighbour cluster. Let dissimi = min{dist−i , dist

+
i }. Then

qsimi = dissimi/simi reflects how well Cλi is discrimi-
nated from its neighbours, compared to its inner structure.
The quality of the whole clustering or the ranking, respec-
tively, is measured by Qsim = mini qsimi .

Afterwards, default rules are extracted from high quality
rankings with the aid of qualitative CONDORCKD. Ranking
values to express the strengths of these rules can be com-
puted directly from the ranking if needed. We will illustrate
this procedure by describing some experiments in the next
section.

Experiments
As statistical input to our experiments, we use a probability
distribution on the binary variables young, student and par-
ent, and the three-valued variable marital status with out-
comes s = single, m = married, and c = cohabiting. The
distribution is depicted in Figure 1 and can be considered as
empirically obtained statistical data for the well-known “Lea
Sombe” example from (Sombé 1990).

The experimental setup follows the plan that we described
in the previous section. First, we computed the negative
logarithms of the probabilities of the distribution, and then
applied k-means to these one-dimensional data. We used
the YALE machine learner (Mierswa et al. 2006) for this,
with various k-values, but each time with equidistant start-
ing centroids. For selected values of k, we calculated nor-
malized ranking functions κPε with ε = e−α and α ≈ k−1 ∗
(maxω:P (ω)6=0− logP (ω)−minω:P (ω)6=0− logP (ω)). The
YALE output for k = 14 and k = 34 is shown in Figure 2
where each logarithmic probability is assigned the number
of the cluster it belongs to.

Figure 1 shows the resulting rankings for α = 0.2 (cor-
responding to k = 34), and α = 0.5 (corresponding to
k = 14). Note that in general the clustering computed by
k-means will only approximate the sharply calculated ranks.
Both rankings are evaluated by the similarity-dissimilarity-
measure Qsim = mini qsimi , the respective values qsimi can
also be seen from the figure. The assignment α = 0.5 in-
duced the best ranking function in our tests, so we used it
for qualitative knowledge discovery in the first place. The
computed default rules ∆0.5 are listed in Figure 3.

1Strictly spoken, simi is not a similarity but a distance measure,
but it reflects similarity and serves our needs better in this form.

α = 0.2 α = 0.5
ω P − lnP κ qsim

i κ qsim
i

ysps 0.1757 1.74 0 3.9 0 1.5
ysps 0.1757 1.74 0 0
ysps 0.1196 2.12 2 1.9 1

5.9
ysps 0.0986 2.32 3 1.3 1
ysps 0.0986 2.32 3 1
yspm 0.0865 2.45 4 1.3 1
yspm 0.0865 2.45 4 1
yspc 0.0206 3.88 11

103.4
4

103.4yspc 0.0206 3.88 11 4
yspc 0.0204 3.89 11 4
yspc 0.0141 4.26 13 1.9 5

6.8yspm 0.0117 4.45 14
52.6

5
yspm 0.0117 4.45 14 5
yspm 0.0115 4.46 14 5
yspc 0.0082 4.80 16

9.1

6

9.1yspc 0.0082 4.80 16 6
yspm 0.0080 4.83 16 6
yspm 0.0074 4.91 16 6
ysps 0.0058 5.15 17 1.3 7

2.3yspm 0.0051 5.28 18 1.3 7
ysps 0.0042 5.46 19 1.8 7
yspc 0.0008 7.19 27 3.7 11 1.5
yspc 0.0005 7.56 29 3.7 12 1.5
ysps 0.0002 8.49 34 9.3 13 3.7
minimum quality Qsim 1.3 1.5

Figure 1: Distribution and rankings for α = 0.2 and α = 0.5

ω P − lnP k = 14 k = 34

ysps 0.1757 1.74 0 0
ysps 0.1757 1.74 0 0
ysps 0.1196 2.12 1 2
ysps 0.0986 2.32 1 3
ysps 0.0986 2.32 1 3
yspm 0.0865 2.45 1 3
yspm 0.0865 2.45 1 3
yspc 0.0206 3.88 4 10
yspc 0.0206 3.88 4 10
yspc 0.0204 3.89 4 11
yspc 0.0141 4.26 5 12
yspm 0.0117 4.45 5 13
yspm 0.0117 4.45 5 13
yspm 0.0115 4.46 5 13
yspc 0.0082 4.80 6 15
yspc 0.0082 4.80 6 15
yspm 0.0080 4.83 6 15
yspm 0.0074 4.91 6 15
ysps 0.0058 5.15 7 17
yspm 0.0051 5.28 7 17
ysps 0.0042 5.46 7 18
yspc 0.0008 7.19 11 27
yspc 0.0005 7.56 11 28
ysps 0.0002 8.49 13 33

Figure 2: YALE: k-means for k = 14 and k = 34



r1 : (young | student ∧ parent ∧marStat=s)
r2 : (young | >)
r3 : (young | ¬student)
r4 : (¬student | ¬young)
r5 : (marStat=s ∨marStat=m) | >
r6 : (marStat=c ∨marStat=m

| young ∧ student ∧ parent)
r7 : (marStat=c ∨marStat=m

| ¬young ∧ student ∧ parent)

Figure 3: Discovered default rules ∆0.5 for α = 0.5

α = 0.2 α = 0.5
rule P exact Rank P approx. Rank P approx.
r1 : 0.94 15 0.95 6 0.95
r2 : 0.59 3 0.65 1 0.62
r3 : 0.52 3 0.65 1 0.62
r4 : 0.95 13 0.93 5 0.92
r5 : 0.91 11 0.90 4 0.88
r6 : 0.89 8 0.83 3 0.82
r7 : 0.97 18 0.97 7 0.97

Figure 4: Ranks, exact and approx. probabilities for ∆0.5

Figure 4 shows the qualitative ranks of the rules, as well as
a comparison between approximated probability (via equa-
tion (6)) and exact probability. It is obvious that both
α = 0.5 and α = 0.2 yield good approximations of the
exact probabilities.

Summary and Conclusion
In this paper, we presented a method to extract qualitative
default rules from probability distributions. The set of ex-
tracted rules can be used as a base for inductive default rea-
soning via c-representations and hence is expected to repre-
sent core dependencies between variables.

We first transformed the probabilities into ordinal rank-
ings by applying clustering techniques to the logarithmic
probabilities. By modifying the probabilistic knowledge dis-
covery tool CONDORCKD appropriately, we computed con-
ditionals from these rankings by elaborating structural infor-
mation underlying the rankings. The resulting conditionals
can be equipped with qualitative ranks in order to show their
strength. We also showed how well approximated probabil-
ities can be computed from the ordinal ranks.

The methods and the experimental results described in
this paper show a tight connection between qualitative and
probabilistic knowledge representation from which either
framework can take profit. Ordinal conditional functions
once again proved to allow high quality default reasoning
very close to the full probabilistic framework; probabilistic
results, on the other hand, can be enriched by qualitative jus-
tification abstracting from numerical subtleties.

We will pursue this work on the borderline between qual-
itative and probabilistic knowledge representation by devel-
oping a full qualitative version of CONDORCKD and by fur-
ther optimizing the transformation of probabilities into rank-
ings via clustering.
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