
Using Collaborations for Distributed Argumentation
with Defeasible Logic Programming

Matthias Thimm
Faculty of Computer Science

Technische Universität Dortmund
Germany

Gabriele Kern-Isberner
Faculty of Computer Science

Technische Universität Dortmund
Germany

Alejandro J. Garcı́a
Department of Computer Science and Engineering

Universidad Nacional del Sur, Bahı́a Blanca
Argentina

Guillermo R. Simari
Department of Computer Science and Engineering

Universidad Nacional del Sur, Bahı́a Blanca
Argentina

Abstract

In this paper, we extend previous work on distributed
argumentation using Defeasible Logic Programming.
There, several agents form a multi agent setting, in
which they are able to generate arguments for a given
query and counterarguments to the arguments of other
agents. The framework is monitored by a moderator,
which coordinates the argumentation process and can
be seen as a judge overlooking the defender and accuser
in a legal case. We extend this framework by allowing
the agents to form alliances. We introduce a notion of
cooperation for agents calledcollaborations, which al-
low the agents not only to argue with one another, but
to share their beliefs in order to jointly generate new ar-
guments. We give a declarative definition as well as an
algorithmic characterization of the argument generation
process and relate our framework with general Defeasi-
ble Logic Programming.

Introduction
Defeasible argumentation (Prakken & Vreeswijk 2002)
deals with argumentative reasoning using uncertain knowl-
edge. An instantiation of defeasible argumentation is De-
feasible Logic Programming (DeLP) by Garcı́a and Simari
(Garcı́a & Simari 2004) and is an approach for logical argu-
mentative reasoning (Rahwan & Amgoud 2006; Besnard &
Hunter 2000) based on defeasible logic. InDeLP the belief
in literals is supported by arguments and in order to handle
conflicting information a warrant procedure decides which
information has the strongest grounds to believe in.

There are many approaches to realize multi agent argu-
mentation and especially negotiation (Kraus 1997; Booth
2002) in multi agent systems. Whereas in (Amgoud, Di-
mopolous, & Moraitis 2007; Parsons, Sierra, & Jennings
1998) and especially in (Bench-Capon 2003), the focus lies
on using argumentation for persuasion, here we use argu-
mentation to reach a common conclusion of a group of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents. Considering a jury court it is reasonable to assume
that there are jurors who are less competent in jurisdiction
than others. However it is the main goal to reach an agree-
ment regarding the given case rather than unifying the jurors
beliefs.

In this paper, a distributed argumentation framework for
cooperative agents is introduced in which agents may have
independent or overlapping belief bases. Here, follow-
ing (Thimm 2008; Thimm & Kern-Isberner 2008a), Defea-
sible Logic Programming is used for knowledge represen-
tation. Hence, agents belief bases will be sets of defeasi-
ble rules (Garcı́a & Simari 2004) and agents may build ar-
gument using their local rules. Similar to (Móra, Alferes,
& Schroeder 1998; de Almeida & Alferes 2006), we will
define a notion ofcollaborationand a mechanisms that al-
low agents to cooperate for building arguments will be in-
troduced.

In many different scenarios the cooperation of agents in a
multi agent setting is desirable. Suppose that in a legal dis-
pute a team of lawyers have to work together, acting as one
accuser or defender. Or imagine a dispute between political
parties, where each member tries to defend their party’s in-
terests. The simplest solution to these kinds of scenarios is
to represent each whole team or party as one single agent,
thus merging the beliefs of the members into one knowledge
base. But from a knowledge representational point of view
it is more realistic to represent each member of such a team
as an individual agent and let these agents collaborate with
each other. Another drawback of the first approach is a com-
putational one. If the knowledge of many members of a team
is joined, the computation of arguments can be expensive, as
the whole knowledge base has to be searched. If a team is
made up of many agents, each an expert in his field, the con-
struction and evaluation of arguments can be divided upon
them and only the agents, that can contribute, do so.

The framework proposed in (Thimm & Kern-Isberner
2008a) consists of several agents and a central moderator,
which coordinates the argumentation process undertaken by
the agents. The moderator accepts a query, consisting of a

single literal, and asks the agents to argue about the warrant
status of it. That framework was motivated for modeling
situations where participating agents have opposite viewsof
the given query (e. g. a legal dispute, where agents take the
roles of accuser and defender). Therefore, each agent build
its own arguments using its local belief and it may attack or
defend arguments of other agents. In this paper, we extend
that framework by considering groups of agents who may
collaborate in order to build better arguments using beliefs
of other agents. A collaboration is basically a set of agents
that form an alliance for argument construction. With the
use of collaborations, we are able to derive more arguments
than in the case with no collaborations. The key idea of com-
puting collaborated arguments is similar to (Móra, Alferes,
& Schroeder 1998) but uses another concept of apartial ar-
gument. As will be described below, a partial argument is
some kind of an intermediate result when constructing an
argument in a distributed manner. Partial arguments help
collecting the rules that are necessary to derive a conclusion
from the local belief bases.

The paper is organized as follows. In the next section, a
brief introduction to Defeasible Logic Programming and the
distributed framework of (Thimm & Kern-Isberner 2008a)
is presented. We continue by introducing collaborations into
the multi agent setting, that allow the agents to jointly build
arguments. We proof soundness and completeness of the
algorithmic representation of collaborated argument genera-
tion, followed by a comparison of our approach with Defea-
sible Logic Programming and other related work. Finally,
we conclude we a summary and an outlook to further work.

Distributed Argumentation using DeLP
We give a brief introduction in the distributed argumenta-
tion frameworkArgMAS (Argumentation-based multi agent
system) proposed in (Thimm 2008; Thimm & Kern-Isberner
2008a; 2008b) adapted to our needs in this paper. The frame-
work is based uponDeLP (Defeasible Logic Programming)
(Garcı́a & Simari 2004) and consists of several agents and a
central moderator, which coordinates the argumentation pro-
cess undertaken by the agents. An overview of such a sys-
tem is depicted in figure 1. The moderator accepts a query,
consisting of a single literal, and asks the agents to argue
about the warrant status of it, i. e., whether the literal or its
negation can be supported by an ultimately undefeated ar-
gument. Agents use the global belief base of the system,
which contains strict knowledge, and their own local belief
bases consisting of defeasible knowledge to generate argu-
ments. Eventually the system returns an answer to the ques-
tioner that describes the final status of the literal based on
the agents’ individual beliefs.

We start our description of this framework by present-
ing the basic argumentative formalisms ofDeLP(Garcı́a &
Simari 2004).

Defeasible Logic Programming
The basic elements ofDeLP are facts and rules. LetL de-
note a set of ground literals, where a literalh is a ground
atomA or a negated ground atom∼A, where the symbol

moderator

global
belief base

agent

agent

agent
...

agent

argumentation

query

Figure 1: An argumentation-based multi agent system
(ArgMAS)

∼ represents the strong negation. Overlining will be used
to denote the complement of a literal with respect to strong
negation, i. e., it isp =∼p and∼p = p for a ground atomp.
A literal h ∈ L is also called afact.

The set of rules is divided into strict rules, i. e., rules en-
coding strict consequences, and defeasible rules which de-
rive uncertain or defeasible conclusions. Astrict rule is an
ordered pairh← B, whereh ∈ L andB ⊆ L. A defeasible
rule is an ordered pairh —< B, whereh ∈ L andB ⊆ L.
A defeasible rule is used to describe tentative knowledge as
in “birds fly”. We use the functionsbody/1 andhead/1 to
refer to the head resp. body of a defeasible or strict rule.
Strict and defeasible rules are ground. However, following
the usual convention (Lifschitz 1996), some examples will
use “schematic rules” with variables (denoted with an ini-
tial uppercase letter). LetDEFX resp.STRX be the set of
all defeasible resp. strict rules, that can be constructed with
literals fromX ⊆ L. We will omit the subscripts when re-
ferring to the whole set of literalsL, e. g. we writeDEF for
DEFL.

Using facts, strict and defeasible rules, one is able to de-
rive additional beliefs as in other rule-based systems. Let
X ⊆ L∪STR∪DEF be a set of facts, strict rules, defeasible
rules, and let furthermoreh ∈ L. A (defeasible) derivation
of h from X , denotedX |∼ h, consists of a finite sequence
h1, . . . , hn = h of literals (hi ∈ L) such thathi is a fact
(hi ∈ X) or there is a strict or defeasible rule inX with
headhi and bodyb1, . . . , bk, where everybl (1 ≤ l ≤ k) is
an elementhj with j < i. If the derivation of a literalh only
uses strict rules, the derivation is called astrict derivation.
A setX is contradictory, denotedX |∼ ⊥, iff there exist de-
feasible derivations of two complementary literals fromX .
In difference toDeLP, the framework ofArgMAS divides
the strict and defeasible knowledge into a global belief base
and several local belief bases which constitute the individual
beliefs of each agent.

Definition 1 (Belief bases). A global belief baseΠ ⊆ L ∪
STR is a non-contradictory set of strict rules and facts. A set
of defeasible rules∆ ⊆ DEF is called alocal belief base.

Given a set of agentsA = {A1, . . . , An} every agentAi

maintains a local belief base∆i (1 ≤ i ≤ n) which repre-
sents his own belief.

Example 1 ((Garcı́a & Simari 2004), example 2.1). Let a
global belief baseΠ and a local belief base∆ be given by

Π =

chicken(tina)
scared(tina)
penguin(tweety)
bird(X) ← chicken(X)
bird(X) ← penguin(X)
∼flies(X) ← penguin(X)

,

∆ =

flies(X) —< bird(X)
∼flies(X) —< chicken(X)
flies(X) —< chicken(X), scared(X)
nests in trees(X) —< flies(X)

.

The global belief baseΠ contains the facts, that Tina is a
scared chicken and that Tweety is penguin. The strict rules
state that all chickens and all penguins are birds, and pen-
guins cannot fly. The defeasible rules of the local belief base
∆ express that birds normally fly, chickens normally do not
fly (except when they are scared) and something that flies
normally nests in trees.

As facts and strict rules describe strict knowledge, it is rea-
sonable to assumeΠ to be non-contradictory, i. e., there are
no derivations of complementary literals fromΠ only. But
when considering several (or just one) local belief bases
∆1, . . . ,∆n of other agents, which may have different be-
liefs, thenΠ ∪∆1 ∪ . . . ∪∆n can be contradictory.

Definition 2 (Argument, Subargument). Let h ∈ L be a
literal and letΠ resp.∆ be a global resp. local belief base.
〈A, h〉 is anargumentfor h, iff

• A ⊆ ∆,
• there exists a defeasible derivation ofh from Π ∪ A,
• the setΠ ∪ A is non-contradictory, and
• A is minimal with respect to set inclusion.

The literalh will be calledconclusionand the setA will be
calledsupportof the argument〈A, h〉. An argument〈B, q〉
is a subargumentof an argument〈A, h〉, iff B ⊆ A. Let
ARGΠ,∆ be the set of all arguments that can be built fromΠ
and∆.

Two literalsh andh1 disagreeregarding a global belief base
Π, iff the setΠ ∪ {h, h1} is contradictory. Two comple-
mentary literalsp und∼p disagree trivially, because for ev-
ery Π the setΠ ∪ {p,∼p} is contradictory. But two liter-
als which are not contradictory, can disagree as well. For
Π = {(∼h ← b), (h ← a)} the literalsa andb disagree,
becauseΠ ∪ {a, b} is contradictory.

We call an argument〈A1, h1〉 a counterargumentto an
argument〈A2, h2〉 at a literalh, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such thath andh1 disagree.

In order to deal with counterarguments to other argu-
ments, a central aspect of defeasible argumentation becomes
a formal comparison criterion among arguments. A possible
preference relation among arguments isGeneralized Speci-
ficity (Stolzenburget al. 2003). According to this criterion
an argument is preferred to another argument, iff the for-
mer one is morespecificthan the latter, i. e., (informally)
iff the former one uses more facts or less rules. For exam-
ple, 〈{c —< a, b}, c〉 is more specific than〈{∼c —< a},∼c〉.

For a formal definition and and desirable properties of pref-
erence criterions in general see (Stolzenburget al. 2003;
Garcı́a & Simari 2004). For the rest of this paper we use≻
to denote an arbitrary but fixed preference criterion among
arguments. The preference criterion is needed to decide
whether an argument defeats another or not, as disagreement
does not imply preference.

Definition 3 (Defeater). An argument〈A1, h1〉 is a de-
featerof an argument〈A2, h2〉, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such that〈A1, h1〉 is a counterargument
of 〈A2, h2〉 at literalh and either〈A1, h1〉 ≻ 〈A, h〉 (proper
defeat) or 〈A1, h1〉 ⊁ 〈A, h〉 and〈A, h〉 ⊁ 〈A1, h1〉 (block-
ing defeat).

When considering sequences of arguments, the definition of
defeat is not sufficient to describe a conclusive argumenta-
tion line. Defeat only takes an argument and its counterar-
gument into consideration, but disregards preceeding argu-
ments. But we expect also properties likenon-circularityor
concordancefrom an argumentation sequence. See (Garcı́a
& Simari 2004) for a more detailed description of acceptable
argumentation lines.

Definition 4 (Acceptable Argumentation Line). Let Π be a
global belief base. LetΛ = [〈A1, h1〉, . . . , 〈Am, hm〉] be a
sequence of some arguments.Λ is calledacceptable argu-
mentation line, iff

1. Λ is a finite sequence,
2. every argument〈Ai, hi〉 with i > 1 is a defeater of its

predecessor〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is a blocking
defeater of〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then
〈Ai+1, hi+1〉 is a proper defeater of〈Ai, hi〉,

3. Π ∪ A1 ∪ A3 ∪ . . . is non-contradictory (concordance of
supporting arguments),

4. Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory (concordance of
interfering arguments), and

5. no argument〈Ak, hk〉 is a subargument of an argument
〈Ai, hi〉 with i < k.

Let SEQ denote the set of all sequences of arguments that
can be built using rules fromDEF, STR and facts fromL.

Let + denote the concatenation of argumentation lines and
arguments, e. g.[〈A1, h1〉, . . . , 〈An, hn〉]+〈B, h〉 stands for
[〈A1, h1〉, . . . , 〈An, hn〉, 〈B, h〉].

In DeLP a literalh is warranted, if there is an argument
〈A, h〉 which is non-defeated in the end. To decide whether
〈A, h〉 is defeated or not, every acceptable argumentation
line starting with〈A, h〉 has to be considered.

Definition 5 (Dialectical Tree). LetΠ be a global belief base
and∆1, . . . ,∆n be local belief bases. Let〈A0, h0〉 be an
argument. Adialectical treefor 〈A0, h0〉, denotedT〈A0,h0〉,
is defined as follows.

1. The root ofT is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ =

[〈A0, h0〉, . . . , 〈An, hn〉] be the sequence of nodes from
the root to〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the
defeaters of〈An, hn〉. For every defeater〈Bi, qi〉 with
1 ≤ i ≤ k such that the argumentation lineΛ′ =

[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, the node
〈An, hn〉 has a child〈Bi, qi〉. If there is no such〈Bi, qi〉,
the node〈An, hn〉 is a leaf.

LetDIA denote the set of all dialectical trees with arguments
that can be built using rules fromDEF, STR and facts from
L.

In order to decide whether the argument at the root of a
given dialectical tree is defeated or not, it is necessary to
perform abottom-up-analysis of the tree. Every leaf of the
tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “unde-
feated”. Otherwise it is marked “undefeated”. LetT ∗

〈A,h〉

denote the marked dialectical tree ofT〈A,h〉.
We call a literalh warranted, iff there is an argument
〈A, h〉 for h such that the root of the marked dialectical tree
T ∗
〈A,h〉 is marked “undefeated”. Then〈A, h〉 is awarrant for
h. Observe that, if a literalh is a fact or has a strict deriva-
tion from a the global belief baseΠ alone, thenh is also
warranted as there are no counterarguments for〈∅, h〉.

Formal Description of the Distributed Framework
We now describe the components of the distributed frame-
work, namely the moderator and the agents, using a func-
tional description of their intended behaviour. As the frame-
work of ArgMAS is flexible, many different definitions of
the functions to be presented can be thought of. But we re-
strain them on the notions ofDeLP as described above, so
we use the subscript “D” to denote theDeLP specific imple-
mentation.

When the moderator receives arguments from the agents,
he builds up several dialectical trees and finally he has to
evaluate them using the bottom-up evaluation method de-
scribed above.

Definition 6 (Analysis functionχD). The analysis func-
tion χD is a functionχD : DIA → {0, 1} such that for
every dialectical treeυ ∈ DIA it holds χD(υ) = 1 iff
the root argument ofυ is undefeated.

Furthermore the evaluation of dialectical trees makes only
sense, if the tree was built up according to the definition of
an acceptable argumentation line. Hence, the moderator and
the agents as well, have to check whether new arguments are
valid in the current argumentation line.

Definition 7 (Acceptance functionηD,≻). For a given pref-
erence relation≻ among arguments, theacceptance function
ηD,≻ is a functionηD,≻ : SEQ → {0, 1} such that for ev-
ery argument sequenceΛ ∈ SEQ it holdsηD,≻(Λ) = 1 iff
Λ is acceptable according to Definition 4.

It is possible to assume different acceptance functions for
different agents according to different definitions of an
acceptable argumentation line (Thimm & Kern-Isberner
2008b). But in our multi agent system, we assumeηD,≻

to be fixed and the same for the moderator and all agents by
convention.

At the end of the argumentation process for a queryh,
the agents have produced a set of dialectical trees with root
arguments forh orh, respectively. As we have to distinguish

several different cases, the moderator has to decide, whether
the queryh is warranted, the negation ofh is warranted, or
none of them are warranted in the framework. LetP(S)
denote the power set of a setS.

Definition 8 (Decision function µD). The deci-
sion function µD is a function µD : P(DIA) →
{YES,NO,UNDECIDED,UNKNOWN}. LetQṗ ⊆ DIA

such that all root arguments of dialectical trees inQṗ are
arguments forp or for p, thenµD is defined as

1. µD(Qṗ) = YES, if there is a dialectical treeυ ∈ Qṗ s. t.
the root ofυ is an argument forp andχD(υ) = 1.

2. µD(Qṗ) = NO, if there is a dialectical treeυ ∈ Qṗ s. t.
the root ofυ is an argument forp andχD(υ) = 1.

3. µD(Qṗ) = UNDECIDED, if χD(υ) = 0 for all υ ∈ Qṗ.

4. µD(Qṗ) = UNKNOWN, if p is not in the language (p /∈
L).

The functionµD is well-defined, as it cannot be the case that
both conditions 1. and 2. are simultaneously fulfilled, see
for example (Thimm & Kern-Isberner 2008c).

The above functions are sufficient to define the moderator
of the framework.

Definition 9 (Moderator). For a given preference relation≻
among arguments, themoderatoris a tuple(µD, χD, ηD,≻).

The agents of the framework provide two functionalities.
First, they propose initial arguments for a given literal (or
its negation) submitted by the moderator of the framework,
which will be roots of the dialectical trees to be constructed.
For a given queryh it may be necessary to examine both, all
dialectical trees with a root argument forh and all dialec-
tical trees with a root argument forh, as a query forh can
only be answered with NO if there is a warrant forh. Sec-
ond, the agents propose counterarguments to arguments of
other agents1 that are valid in the given argumentation line.
An agent is not obliged to return all his valid arguments for
a given query or all his counterarguments for a given argu-
ment. Therefore, it is possible to model different kinds of
argumentation strategies given different instantiationsof the
following argument functions.

Definition 10 (Root argument function). Let Π be a global
belief base and let∆ be a local belief base. Aroot ar-
gument functionϕΠ,∆ relative toΠ and ∆ is a function
ϕΠ,∆ : L → P(ARGΠ,∆) such that for every literalh ∈ L
the setϕΠ,∆(h) is a set of arguments forh or for h from Π
and∆.

Definition 11 (Counterargument function). Let Π be a
global belief base and let∆ be a local belief base. Acoun-
terargument functionψΠ,∆ relative toΠ and∆ is a function
ψΠ,∆ : SEQ → P(ARGΠ,∆) such that for every argumen-
tation sequenceΛ ∈ SEQ the setψΠ,∆(Λ) is a set of at-
tacks fromΠ and∆ on the last argument ofΛ and for every
〈B, h〉 ∈ ψΠ,∆(Λ) it holds thatηD,≻(Λ + 〈B, h〉) = 1.

1Furthermore the agents can possibly propose counterargu-
ments to their own arguments, but here we will not consider this
case explicitly.

Here we assume that the root argument and counterargument
functions of all agents are the same and especiallycomplete,
i. e, they return all possible arguments for the given situation
and do not omit one.

Given the above definitions an agent of the framework is
defined as follows.

Definition 12 (Agent). Let Π be a global belief base. An
agentrelative toΠ is a tuple(∆, ϕΠ,∆, ψΠ,∆) with a local
belief base∆ relative toΠ, a root argument functionϕΠ,∆

and a counterargument functionψΠ,∆.

Finally, the definition of an argumentation-basedmulti agent
system can be given as follows.

Definition 13 (Argumentation-based multi agent system).
An argumentation-based multi agent system(ArgMAS) is a
tuple (M,Π, {A1, . . . , An}) with a moderatorM , a global
belief baseΠ and agentsA1, . . . , An relative toΠ.

Given anArgMAS T and a queryh, the framework pro-
duces an answer toh as follows. First, the moderator of
T asks all agents for initial arguments forh and forh and
starts a dialectical tree with each of them as root arguments.
Then for each of these arguments, the moderator asks every
agent for counterarguments and incorporates them into the
corresponding dialectical trees accordingly. This process is
repeated for every new argument until no more arguments
can be constructed. Eventually the moderator analyses the
resulting dialectical trees and returns the appropriate answer
to the questioner. A dialectical tree built via this process
is called anargumentation product. The answer behaviour
of an ArgMAS is determined by the decision function of
its moderator. For a queryh ∈ L and andArgMAS T the
answerof T onh is µD({υ1, . . . , υn}), whereµD is the de-
cision function of the moderator ofT and{υ1, . . . , υn} is
the set of all argumentation products ofT for h.

We conclude this section with an example that illustrates
the above definitions.

Example 2. Suppose anArgMAS T = (M,Π, {A1, A2})
with two agentsA1, A2. The global belief baseΠ and the
local belief bases∆1 resp.∆2 of the agentsA1 resp.A2 are
given by

Π = {a, b},

∆1 = {(d —< a, c), (c —< b)},

∆2 = {(∼c —< a, b)}.

AssumeGeneralized Specificityas the preference relation
among arguments and letd be the query under considera-
tion. When the moderator passes this query to the agents,
only the root argument function ofA1 returns a non-empty
set of root arguments, namely the set that contains the one
argumentX1 = 〈{(d —< a, c), (c —< b)}, d〉. The moderator
starts the construction of one dialectical tree withX1 as its
root. Then he asks every agent for counterarguments onX1

that are acceptable after the argumentation line[X1]. There
only the counterargument function ofA2 returns the only
possible counterargument〈{(∼c —< a, b)},∼c〉. After that,
no more arguments can be constructed and the final dialec-
tical tree, i. e., the one final argumentation productυ can be
seen in Figure 2. After applying his analysis function, the

〈{(d —< a, c), (c —< b)}, d〉

〈{(∼c —< a, b)},∼c〉

Figure 2: The one argumentation productυ in Example 2.

moderator determines that the root argument ofυ is marked
“defeated” and asυ is the only argumentation product ofT
on d, the answer of the decision function of the moderator
and thus the answer of the system ond is UNDECIDED.

Collaborations
The distributed argumentation framework described above
serves well when modeling scenarios, where the agents are
involved in some kind of a dispute and have opposite views
of the given query, such as a legal dispute, where agents
take the roles of accuser and defender (Thimm 2008). But
the framework fails to model situations, in which the agents
should cooperate in order to reach a common solution, be-
cause they cannot share their beliefs in order to construct
arguments that cannot be constructed by one agent alone.

Example 3. Let T = (M,Π, {A1, A2}) be anArgMAS
with Π = {a, d} and let∆1 resp.∆2 be the local belief
bases ofA1 resp.A2 with

∆1 = {(b —< a), (b —< a, c)} and

∆2 = {(∼b —< a), (c —< d)} .

Given the queryb, T yields two argumentation products

[〈{(b —< a)}, b〉, 〈{(∼b —< a)},∼b〉] and

[〈{(∼b —< a)},∼b〉, 〈{(b —< a)}, b〉] .

As the roots of both argumentation products will be marked
“defeated”, the answer ofT onb is UNDECIDED.

Observe that there is the additional argument
〈{(b —< a, c), (c —< d)}, b〉, that could be constructed,
if both agents share their beliefs. This argument cannot be
defeated by〈{(∼b —< a)},∼b〉, as the first is more specific
than the second, and thus would be a warrant forb. So in
this case, the answer of the system for queryb should be
YES instead of UNDECIDED.

In (Móra, Alferes, & Schroeder 1998) a framework for
cooperating agents in a context very similar to that of an
ArgMAS was introduced. There – in contrast to here –
extended logic programs (Gelfond & Lifschitz 1991) were
used to model an agent’s belief. We follow the ideas of
(Móra, Alferes, & Schroeder 1998) to define the notion of
collaborationand the mechanisms that allow our agents to
cooperate in anArgMAS, but extend their framework ac-
cording to our needs.

We begin by defining acollaborationwhich describes a
coalition of several agents, like a team of lawyers or a po-
litical party. A collaboration describes a set of agents each
obliged to one another to support them with necessary infor-
mation.

Definition 14 (Collaboration). Let T =
(M,Π, {A1, . . . , An}) be an ArgMAS. A collabora-
tionC of T is a set of agents withC ⊆ {A1, . . . , An}.

A collaboration is basically a set of agents that form an al-
liance for argument construction. With the use of collabora-
tions, we are able to derive more arguments than in the case
with no collaborations. Observe, that we do not impose any
conditions on collaborations. Although it might be appro-
priate to enforce the agents in a collaboration (for example)
to have non-conflicting beliefs, we do not restrain the above
definition to stay simple in our presentation. Furthermore,
if an agent has conflicting beliefs with its partners in a col-
laboration, this does not affect the conjoint constructionof
arguments, since not all rules of each agents have to be in
conflict.

Definition 15 (Collaborated argument). LetT = (M,Π,A)
be anArgMAS andC = {A1, . . . , Al} ⊆ A a collaboration
of T . If ∆1, . . . ,∆l are the local belief bases ofA1, . . . , Al,
then an argument〈A, h〉 is a collaborated argumentof the
collaborationC iff 〈A, h〉 ∈ ARGΠ,∆1∪...∪∆l

, i. e., 〈A, h〉
is an argument regarding the global belief baseΠ with A ⊆
∆1 ∪ . . . ∪∆l.

Example 4. Consider again theArgMAS of example 3.
Suppose agentsA1 andA2 are members of a collaboration
C, i. e.,C = {A1, A2}. Then

〈{(b—<a, c), (c—<d)}, b〉

is a collaborated argument ofC.

We call〈A, h〉 a strict collaborated argument of the collab-
orationC iff it is a collaborated argument ofC and it can
not be constructed by any agent alone, i. e., it isA * ∆ for
every local belief base∆ of an agent inC. For instance,
the argument in example 4 is a strict collaborated argument.
In the upcoming algorithm, we do not intend to generate
only strict collaborated arguments. This means, that the al-
gorithm will also generate arguments, that could have been
generated by an agent alone. A modification of the algo-
rithm to suppress the generation of non-strict collaborated
arguments is straightforward, but loses simplicity and clar-
ity.

We can describe the intended behaviour of the distributed
framework including collaborations by introducing meta
agents, each representing a collaboration, and then subsum-
ing the extended case with collaborations by the simple
framework described in the last section. Without consid-
ering these meta agents, the generation of collaborated argu-
ments must be done completely autonomously by the agents
of a collaboration alone. We do not address this issue in the
present work, but leave it open for future research. For now,
assume thatϕcoll

C resp.ψcoll
C is a root argument resp. coun-

terargument function that generates collaborated arguments
of the collaborationC. We will give a formal definition of
these functions and an operational description of their com-
putation in the next subsection.

Definition 16 (Associated meta agent). Let T = (M,Π,A)
be an ArgMAS, C = {A1, . . . , Al} ⊆ A be a col-
laboration of T with ∆1, . . . ,∆l being the local belief

bases of agentsA1, . . . , Al ∈ A and η be an acceptance
function. The agent(∅, ϕcoll

C , ψcoll
C , η) is called themeta

agent associated to the collaborationC with functions
ϕcoll

C : L → P(ARGΠ,∆1∪...∪∆l
) andψcoll

C : SEQ →
P(ARGΠ,∆1∪...∪∆l

).

Definition 17 (Collaborative ArgMAS). A tuple T =
(M,Π, {A1, . . . , An}, {C1, . . . , Cm}) is a collaborative
ArgMAS if T ′ = (M,Π, {A1, . . . , An, AC1

, . . . , ACm
}) is

anArgMAS withACi
being the meta agent associated to the

collaborationCi (for 1 ≤ i ≤ m).

The above definition does not impose, that an agent cannot
belong to more than one collaboration, but in the following
we only consider the case, whereC1, . . . , Cm are disjoint.

Before turning to the operational aspects of computing
collaborated arguments, we give a small example to illus-
trate collaborations.

Example 5. Let Π = {(h ← a, b), c, d} and two local be-
lief bases∆1,∆2 of two agentsA1, A2 given by

∆1 = {(a —< c), (g —< d)},

∆2 = {(b —< f), (f —< g)}.

Let C = {A1, A2} be a collaboration andAC the corre-
sponding meta agent. When asked for an argument forh the
two agents aloneA1 andA2 can obviously not return any.
But when combing their beliefs, the meta agentAC is able
to generate the argument

〈{(a —< c), (b —< f), (f —< g), (g —< d)}, h〉 ,

which makes also use of the strict ruleh ← a, b.

Generating collaborated arguments
The key idea of computing collaborated arguments is similar
to (Móra, Alferes, & Schroeder 1998) but uses another char-
acterization of apartial argument. While Móra et al. impose
a partial argument to be a partial derivation with no interme-
diate rules missing, we define a partial argument declara-
tively as an argument with some additional facts missing.
For both, a partial argument is some kind of an intermediate
result when constructing an argument in a distributed man-
ner.

Definition 18 (Partial argument). Let Π be a global be-
lief base andR ⊆ DEF a set of defeasible rules. A tuple
〈A, h〉 is apartial argumentfor a literalh regardingΠ and
R, iff A ⊆ R and there is a set of literalsF ⊆ L such
that 〈A, h〉 ∈ ARGΠ∪F,R, i. e., 〈A, h〉 is an argument in
(Π∪F,R). The smallest setsF (regarding set inclusion) sat-
isfying this condition are calledfree sets. The set of all free
sets is denotedfree(〈A, h〉) for a partial argument〈A, h〉.
Let PARΠ,R be the set of all partial arguments for the global
belief baseΠ and a set of defeasible rulesR ⊆ DEF.

Example 6. Let Π = {(h← a), (h← b)}. Then〈∅, h〉 is a
partial argument (regardingDEF), since there is a set of lit-
erals, namely{a}, such that〈∅, h〉 is an argument regarding
Π′ = {(h ← a), (h ← b), a}. The same is true for the set
{b}, so the free sets of〈∅, h〉 regardingΠ are given by

free(〈∅, h〉) = {{a}, {b}} .

Example 7. Let Π = {(h← a, b), b} andA = {(a —< c)}.
Then 〈A, h〉 is a partial argument (regardingDEF), since
{c} is a free set of〈A, h〉 regardingΠ:

free(〈A, h〉) = {{c}}

Observe, that every argument〈A, h〉 is also a partial argu-
ment (withfree(〈A, h〉) = ∅), as well as〈∅, h〉 for anyh.

Our approach to compute collaborated arguments is a top-
down approach that starts with the empty set and iteratively
adds defeasible rules until the given conclusion can be de-
rived. For this purpose we equip every agent with a function
that extends a given partial argument as much as possible.
Definition 19 (Partial argument function). LetΠ be a global
belief base,A be an agent and∆A its local belief base. A
partial argument functionκA for agentA is a functionκA :
PARΠ,DEF → P(PARΠ,DEF) and is defined as

κA(〈A, h〉) = {〈A′, h〉 ∈ PARΠ,A∪∆A
| A′ ⊃ A}

Example 8. Let Π = {(d← e)} be a global belief base and
A be an agent with a local belief base

∆ = {(g —< c, d), (e —< f)} .

Then it is

κA(〈∅, g〉) = {〈A1, g〉, 〈A2, g〉}

with

A1 = {(g —< c, d)},

A2 = {(g —< c, d), (e —< f)}.

Furthermore it isfree(〈A1, g〉) = {{c, d}, {c, e}} and
free(〈A2, g〉) = {{c, f}}

Using the partial argument functions of the agents in a col-
laboration, the associated meta agent is able to compute
the collaborated arguments for a given literalh with Al-
gorithm 1. The algorithmCollaboratedArguments
takes as input a global belief baseΠ, a collaboration of
agents{A1, . . . , Al} and a literalh, and it returns the set of
all collaborated arguments of{A1, . . . , Al} in a backward
chaining manner.

1 CollaboratedArguments(Π,{A1, . . . , Al},h)
2 iArgs := {〈∅, h〉}
3 cArgs := ∅
4 while iArgs 6= ∅
5 remove a tuple 〈A, h〉 from iArgs
6 if free(〈A, h〉) = ∅ then
7 cArgs := cArgs ∪ 〈A, h〉
8 else
9 for i from 1 to l

10 iArgs := iArgs ∪ κAi
(〈A, h〉)

11 return cArgs

Algorithm 1: Construction of collaborated arguments

First, the algorithm initializes the set of partial arguments
iArgs with the trivial partial argument〈∅, h〉 (line 2). As
long as there are partial arguments available, the algorithm
removes one of them fromiArgs and extends it in every
possible way, i. e., by eliminating free literals from any free
set by every agents’ partial argument function. When an
argument is complete, i. e.,free(〈A, h〉) = ∅, the argument
can be added to the result set (line 6,7).

Example 9. Let Π be a global belief base with

Π = {(g ← c), (d← f), a, b}

and letA1, A2 be two agents with local belief bases∆1,∆2,
respectively, given by

∆1 = {(c —< a), (c —< h), (d —< e)} and

∆2 = {(g —< d), (e —< b)} .

Let g be a query and consider the following exemplary
execution of CollaboratedArguments on the call
CollaboratedArguments(Π,{A1, A2},g).

First, the setiArgs is initialized with the partial argu-
mentX1 = 〈∅, g〉. As free(X1) = {{g}, {c}} 6= ∅ the al-
gorithm continues at line 10. There,κA1

(X1) is called yield-
ing {X2, X3} as the set of possible extensions toX1 with
X2 = 〈(c —< a), g〉 andX3 = 〈(c —< h), g〉. ThenκA2

(X1)
is called yieldingX4 = 〈(g —< d), g〉 as a possible extension
toX1. So back at line 4 we haveiArgs= {X2, X3, X4}.

Let thenX3 be chosen at line 5. Asfree(X3) = {{h}}
the algorithm continues at line 10. Neither agent can ex-
tendX3 because neither has a defeasible rule with headh
nor is there a strict rule with headh, so it is κA1

(X3) =
κA2

(X3) = ∅. Back at line 4 we haveiArgs= {X2, X4}.
Let thenX2 be chosen at line 5. Asfree(X2) = ∅ the

algorithm continues at line 7 andX2 is added to the result
setcArgs.

Now it is iArgs= {X4} and free(X4) = {{d}}.
Continuing at line 10, κA1

(X4) is called yielding
X5 = 〈(g —< d), (d —< e), g〉 and κA2

(X4) is called
yielding no further extension toX4. So back at
line 4 we have iArgs= {X5} with free(X5) =
{{e}}. Finally, agentA2 completesX5 yielding X6 =
〈(g —< d), (d —< e), (e —< b), g〉 with free(X6) = ∅.

So,CollaboratedArguments(Π,{A1, A2},g) re-
turns the setcArgs= {X2, X6}.

Using theCollaboratedArguments algorithm we are
now able to define the root argument and counterargument
functions of the associated meta agents.

Definition 20 (Root argument functionϕcoll
C). Let Π be a

global belief base,C = {A1, . . . , Al} a collaboration with
∆i being the local belief base of agentAi (1 ≤ i ≤ l) and
h a literal. The functionϕcoll

C : L → P(ARGΠ,∆1∪...∪∆l
) is

defined as

ϕcoll
C (h) = CollaboratedArguments(Π,C,h) ∪

CollaboratedArguments(Π,C,∼h)

Definition 21 (Counterargument functionψcoll
C). Let Π be

a global belief base,C C = {A1, . . . , Al} a collaboration
with ∆i being the local belief base of agentAi (1 ≤ i ≤ l)
andh a literal. Letλ be an argumentation sequence. The
functionψcoll

C : SEQ → P(ARGΠ,∆1∪...∪∆l
) is defined as

ψcoll
C (λ) = {〈A, h〉 ∈ ARGΠ,∆1∪...∪∆l

| ∃h : 〈A, h〉 ∈

CollaboratedArguments(Π,C,h) ∧

λ+ 〈A, h〉 is acceptable}

Example 10. We continue Example 5. So letΠ =
{(h ← a, b), c, d} and two local belief bases∆1,∆2 of two
agentsA1, A2 given by

∆1 = {(a —< c), (g —< d)},

∆2 = {(b —< f), (f —< g)}.

Let there be a collaborationC = {A1, A2} andAC the
corresponding meta agent. Given the queryh, the agent
AC would use his root argument functionϕcoll

C and thus
the algorithmCollaboratedArguments in order to
generate a root argument for or againsth. In the algo-
rithm CollaboratedArguments for the literal h the
setiArgs is initialized with{〈∅, h〉} with free(〈∅, h〉) =
{{h}, {a, b}}. This means, that the partial argument〈∅, h〉
can be completed by either an argument forh or by argu-
ments for botha andb using the strict rule(h ← a, b). Ob-
serve that there is no possibility to complete〈∅, h〉 without
the use of the strict rule(h ← a, b), as no agent has a de-
feasible rule withh as its head.

Next, suppose, thatAC asks agentA1 to extend
the partial argument〈∅, h〉. As A1 has a defeasi-
ble rule for a, he can extend〈∅, h〉 to 〈A, h〉 with
A = {(a —< c)} and free(〈A, h〉) = {{b}}. Agent
A2 can then extend〈A, h〉 to 〈A′, h〉 with A′ =
{(a —< c), (b —< f), (f —< g)} andfree(〈A′, h〉) = {{g}}
and finally agentA1 can extend 〈A′, h〉 to 〈A′′, h〉
with A′′ = {(a —< c), (b —< f), (f —< g), (g —< d)} and
free(〈A′′, h〉) = ∅.

Observe, that the algorithm Collaborated-
Arguments generates this argument also on other
ways than the described above, e. g. by first using the partial
argument〈(b —< f), h〉 provided byA2.

Soundness and completeness
We will now show, that the algorithmCollaborated-
Arguments is sound and complete. The soundness and
completeness of the root argument functionϕcoll

C and the
counterargument functionψcoll

C then follow directly.
We start by showing soundness, i. e., that

every argument 〈A, h〉 that is returned by
CollaboratedArguments(Π,{A1, . . . , An},h)
is indeed a collaborated argument ofC with conclusionh.

Theorem 1(Soundness). LetΠ be a global belief base,C =
{A1, . . . , An} be a collaboration of agentsA1, . . . , An with
local belief bases∆1, . . . ,∆n respectively. Ifh is a literal
and

〈A, h′〉 ∈ CollaboratedArguments(Π,C,h),

thenh = h′ and〈A, h′〉 is a collaborated argument ofC.

Proof. It is clear due to line 7 of Algorithm 1 thath = h′.
So it remains to show, that〈A, h〉 is a collaborated argument
of C, i. e., that〈A, h〉 is an argument of(Π,∆′) with ∆′ =
∆1 ∪ . . . ∪∆n.

1. Clearly it isA ⊆ ∆′ because the partial argument func-
tion of an agentAi (1 ≤ i ≤ n) only adds defeasible rules
to the argument that belong to∆i ⊆ ∆′.

2. 〈A, h〉 defeasibly derivesh, because it isfree(〈A, h〉) =
∅ (line 6 in Algorithm 1).

3. A is non-contradictory, because the partial argument
functions of the agents only return partial arguments
due to definition. A partial argument must be non-
contradictory, as there must be an extension (possibly an
extension by∅ as in the last completion step of a partial ar-
gument) that is an argument and hence non-contradictory.

4. 〈A, h〉 is minimal using the same argumentation as above.

Furthermore our algorithm is complete in the sense, that if
〈A, h〉 is a collaborated argument of a collaborationC with
respect to a global belief baseΠ, then〈A, h〉will be returned
by the algorithmCollaboratedArguments.

Theorem 2 (Completeness). Let Π be a global belief base,
C = {A1, . . . , An} be a collaboration of agentsA1, . . . , An

with local belief bases∆1, . . . ,∆n respectively. If〈A, h〉 is
a collaborated argument ofC then it is

〈A, h〉 ∈ CollaboratedArguments(Π,C,h) .

Proof. We have to show, that〈A, h〉 is added to the set
cArgs at line 7 of Algorithm 1. Ifh can be strictly de-
rived fromΠ, i. e., it isA = ∅, then it isfree(〈A, h〉) = ∅
and〈A, h〉 is added at line 7 of Algorithm 1. Otherwise, as
〈A, h〉 is a collaborated argument ofC, there is a defeasible
rule r ∈ A with head(r) ∈ K for someK ∈ free(〈∅, h〉).
Let r ∈ ∆k for somek ∈ {1, . . . , n}, then agentAk will ex-
tend the partial argument〈∅, h〉 with at least ruler in line 10
of Algorithm 1. Inductively it follows that there is always
an extension of this argument by rules ofA. As 〈A, h〉 is an
argument, it isfree(〈A, h〉) = ∅ and so〈A, h〉 is added to
cArgs in line 7 of Algorithm 1.

Related work and comparison
In (Thimm & Kern-Isberner 2008b) it has been shown, that
the distributed framework without collaborations subsumes
ordinaryDeLP, as every defeasible logic program can be
translated into an equivalent distributed framework with the
same answer behaviour. The other way round is not always
possible, as there are distributed settings, where there isno
equivalent single defeasible logic program that models the
same situation. With the use of collaborations we are now
able to establish an equivalence between a special case of
the distributed framework with collaborations and ordinary
DeLP. For the special case of a collaborativeArgMAS with
one collaboration involving all agents, the answer behaviour
is the same as when considering a defeasible logic program
which is built upon the union of all local belief bases.

Many other proposals exist for introducing argumen-
tative capabilities into distributed systems and especially
negotiation systems, see for example (Kraus 1997; Am-
goud, Dimopolous, & Moraitis 2007; Bench-Capon 2003;
Rueda, Garcia, & Simari 2002; Karunatillakeet al. 2005).

There are especially two other approaches, that have simi-
larities with the approach proposed in this paper. The frame-
work of (Móra, Alferes, & Schroeder 1998; de Almeida &
Alferes 2006) uses extended logic programs to model an

agent’s belief and defines a notion of distributed argumen-
tation using these extended logic programs. The framework
uses the argumentation semantics from (Prakken 1997) and
defines a notion of cooperation, that allows the agents to
share their beliefs in order to construct new arguments. As
this framework uses extended logic programs as the underly-
ing representation formalism, it has a declarative semantics
in contrast to the dialectical semantics ofDeLP used here.

Black et al. (Black 2007; Black & Hunter 2007) also use
defeasible logic programming as the underlying representa-
tion formalism to model distributed argumentation. Com-
plementary to the proposal in this paper, the focus of (Black
2007) is on modeling communication protocols and strate-
gies for successful argumentation between agents. They in-
troduce two kinds of inquiry dialogues, one to generate com-
bined arguments and one for the actual argumentation.

Conclusion

Usually, argumentation is considered as a dialectical process
which involves two parties, a proponent and an opponent
who generate arguments in order to evaluate reasons in fa-
vor of or against claims. Argumentation might even reflect
deliberations taking place within one single agent.

In this paper, we study argumentation in distributed sce-
narios in which the pro and con parties consist of several col-
laborating agents, each agent possessing its own subjective
beliefs but sharing strict knowledge with all other agents.
As a proper framework to realize such distributed argumen-
tation, we choose DeLP (Garcı́a & Simari 2004) since it al-
lows a distinction between strict, commonly known world
knowledge, on one side, and subjective and defeasible be-
liefs, on the other. Via collaborations, the agents may pro-
duce more and better arguments as any of them might bring
forward when only using its own belief base. For each col-
laboration, we introduce a meta agent that organizes the gen-
eration of arguments and counterarguments from the rule
reservoir of each agent in a dialogue. As a crucial con-
cept for handling fragments of arguments effectively to build
complete arguments, we definedpartial argumentsby mod-
ifying an idea from (Móra, Alferes, & Schroeder 1998).

For the operational part of our approach, we present an
algorithm to generate collaborated arguments, and prove its
soundness and completeness. Finally, we show that the
results in this paper generalize the approach proposed in
(Thimm & Kern-Isberner 2008a), and compare our work to
related approaches.

As part of our ongoing work, we explore different appli-
cations of our collaborative argumentation framework. One
particularly appealing scenario is to realize negotiations in
a multi-agent system under confidentiality constraints. In
such scenario, each agent tries to hide its subjective beliefs
as well as possible, while at the same time being interested in
making as much information available as necessary to reach
a good negotiation result.

AcknowledgmentsThe authors thank the reviewers for their
very helpful comments to improve the original version of
this paper.

References
Amgoud, L.; Dimopolous, Y.; and Moraitis, P. 2007. A uni-
fied and general framework for argumentation-based nego-
tiation. InProceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agents Systems,
AAMAS’2007.
Bench-Capon, T. 2003. Persuasion in practical argument
using value based argumentation frameworks.Journal of
Logic and Computation13(3):429–448.
Besnard, P., and Hunter, A. 2000. Towards a logic-based
theory of argumentation. InProc. of the 17th American
Nat. Conf. on Artif. Intelligence (AAAI’2000), 411–416.
Black, E., and Hunter, A. 2007. A generative inquiry di-
alogue system. InProceedings of the Sixth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’07). IEEE Press.
Black, E. 2007. A Generative Framework for
Argumentation-Based Inquiry Dialogues. Ph.D. Disserta-
tion, University College London.
Booth, R. 2002. Social contraction and belief negotia-
tion. In Proceedings of the Eighth Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR
2002), 375–384.
de Almeida, I. C., and Alferes, J. J. 2006. An
argumentation-based negotiation for distributed extended
logic programs. InProceedings of CLIMA VII, 191–210.

Garcı́a, A., and Simari, G. 2004. Defeasible logic program-
ming: An argumentative approach.Theory and Practice of
Logic Programming4(1-2):95–138.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.
Karunatillake, N. C.; Jennings, N. R.; Rahwan, I.; and Nor-
man, T. J. 2005. Argument-based negotiation in a social
context. InAAMAS ’05: Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multia-
gent systems, 1331–1332. New York, NY, USA: ACM.
Kraus, S. 1997. Negotiation and cooperation in multi-agent
environments.Artificial Intelligence94(1-2):79–97.
Lifschitz, V. 1996. Foundations of logic programming.
In Principles of Knowledge Representation. CSLI Publica-
tions. 69–127.
Móra, I. A.; Alferes, J. J.; and Schroeder, M. 1998. Argu-
mentation and cooperation for distributed extended logic
programs. InNonmonotonic Reasoning Workshop’98.
Parsons, S.; Sierra, C.; and Jennings, N. 1998. Agents
that reason and negotiate by arguing.Journal of Logic and
Computation8(3):261–292.
Prakken, H., and Vreeswijk, G. 2002. Logical systems for
defeasible argumentation. In Gabbay, D., and Guenthner,
F., eds.,Handbook of Philosophical Logic, volume 4. Dor-
drecht: Kluwer Academic Publishers, 2 edition. 219–318.
Prakken, H. 1997. Dialectical proof theory for defeasi-
ble argumentation with defeasible priorities (preliminary
report). InModelAge Workshop, 202–215.

Rahwan, I., and Amgoud, L. 2006. An argumentation-
based approach for practical reasoning. In Weiss, G., and
Stone, P., eds.,5th International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, AAMAS’2006,
347–354.
Rueda, S. V.; Garcia, A.; and Simari, G. R. 2002.
Argument-based negotiation among BDI agents.Journal
of Computer Science and Technology2(7).
Stolzenburg, F.; Garcı́a, A.; Chesnevar, C. I.; and Simari,
G. 2003. Computing generalized specificity.Journal of
Non-Classical Logics13(1):87–113.
Thimm, M., and Kern-Isberner, G. 2008a. A distributed
argumentation framework using defeasible logic program-
ming. In Besnard, P.; Doutre, S.; and Hunter, A., eds.,Pro-
ceedings of the 2nd International Conference on Computa-
tional Models of Argument (COMMA’08), number 172 in
Frontiers in Artificial Intelligence and Applications, 381–
392. Toulouse, France: IOS Press.
Thimm, M., and Kern-Isberner, G. 2008b. A distributed
argumentation framework using defeasible logic program-
ming (extended version). Technical report, Technische
Universität Dortmund.
Thimm, M., and Kern-Isberner, G. 2008c. On the relation-
ship of defeasible argumentation and answer set program-
ming. In Besnard, P.; Doutre, S.; and Hunter, A., eds.,Pro-
ceedings of the 2nd International Conference on Computa-
tional Models of Argument (COMMA’08), number 172 in
Frontiers in Artificial Intelligence and Applications, 393–
404. Toulouse, France: IOS Press.
Thimm, M. 2008. Verteilte logikbasierte Argumenta-
tion: Konzeption, Implementierung und Anwendung im
Rechtswesen. VDM Verlag Dr. Müller.

